JP2009027921A - Linear actuator - Google Patents

Linear actuator Download PDF

Info

Publication number
JP2009027921A
JP2009027921A JP2008283167A JP2008283167A JP2009027921A JP 2009027921 A JP2009027921 A JP 2009027921A JP 2008283167 A JP2008283167 A JP 2008283167A JP 2008283167 A JP2008283167 A JP 2008283167A JP 2009027921 A JP2009027921 A JP 2009027921A
Authority
JP
Japan
Prior art keywords
permanent magnets
pair
mover
stator
reciprocating direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008283167A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakagawa
洋 中川
Kazumichi Kato
一路 加藤
Toshio Miki
利夫 三木
Yutaka Maeda
豊 前田
Takashi Fukunaga
崇 福永
Kozo Furuya
浩三 古谷
Toshiya Sugimoto
俊哉 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP2008283167A priority Critical patent/JP2009027921A/en
Publication of JP2009027921A publication Critical patent/JP2009027921A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear actuator which can enhance the reliability and can enhance the performance easily. <P>SOLUTION: The linear actuator comprises a stator 12, a mover 13 provided reciprocally for the stator, first pair of permanent magnets 14 and 15 facing the mover while adjoining mutually in the reciprocating direction and being provided on the stator under such a state as the magnetic poles are arranged perpendicularly to the reciprocating direction while reversing the mutual arrangement of the magnetic poles, second pair of permanent magnets 16 and 17 facing the mover while adjoining mutually in the reciprocating direction with the position being matched to that of the first pair of permanent magnets in the reciprocating direction and provided on the stator under such a state as the magnetic poles are arranged perpendicularly to the reciprocating direction while reversing the mutual arrangement of the magnetic poles, and a coil provided in the stator 12 wherein the first pair of permanent magnets and the second pair of permanent magnets reverse the magnetic poles facing the mover between the permanent magnets having positions matching in the reciprocating direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リニアアクチュエータに関し、特にその信頼性向上および性能向上に関する。   The present invention relates to a linear actuator, and more particularly to improvement in reliability and performance.

リニアアクチュエータは、バネを併用し共振させることによって少ない損失で駆動できることから、コンプレッサモータ等として利用されている。そして、このリニアアクチュエータを用いたコンプレッサは高効率である等優れた性能を発揮できることから、冷蔵庫や、冷凍庫、あるいはエアコンディショナ用としての利用が期待されている。   Linear actuators are used as compressor motors and the like because they can be driven with little loss by resonating together with a spring. And since the compressor using this linear actuator can exhibit excellent performance such as high efficiency, it is expected to be used for a refrigerator, a freezer, or an air conditioner.

リニアアクチュエータとしては、ボイスコイルモータがある。このボイスコイルモータは、永久磁石により作られた磁界の中でコイルに電流を流すことによりコイルに生じる力で駆動を行うもので、コイルを含む可動子が動く可動コイル型とも呼ばれている。   As the linear actuator, there is a voice coil motor. This voice coil motor is driven by a force generated in a coil by passing a current through the coil in a magnetic field generated by a permanent magnet, and is also called a movable coil type in which a mover including the coil moves.

また、他のリニアアクチュエータとして、上記可動コイル型のものに対して永久磁石とコイルとを入れ替えた構造であって、永久磁石を含む可動子が動く可動磁石型と呼ばれるものもある。   Further, as another linear actuator, there is a structure called a movable magnet type in which a permanent magnet and a coil are exchanged with respect to the movable coil type, and a mover including the permanent magnet moves.

ところで、上記した可動コイル型のものは、可動子にコイルが含まれることから、可動子に電流を流さなければならず、このための給電線に可動子の移動で断線を生じてしまうことがあり、信頼性に劣るという問題があった。   By the way, in the above-described movable coil type, since the mover includes a coil, it is necessary to pass an electric current through the mover, and the movement of the mover may cause disconnection in the power supply line. There was a problem that it was inferior in reliability.

また、上記した可動磁石型のものは、性能向上を図るために高い磁束密度を得ようとした場合に永久磁石の重量が増大することになり、その結果、可動子の重量が増加することになるため、望むように性能向上が図れないという問題があった。   Further, the above-mentioned movable magnet type increases the weight of the permanent magnet when trying to obtain a high magnetic flux density in order to improve the performance. As a result, the weight of the mover increases. Therefore, there is a problem that the performance cannot be improved as desired.

したがって、本発明は、信頼性を向上させることができ、しかも性能向上を容易に図ることができるリニアアクチュエータの提供を目的とする。   Accordingly, an object of the present invention is to provide a linear actuator that can improve reliability and can easily improve performance.

上記目的を達成するために、本発明の請求項1記載のリニアアクチュエータは、固定子と、前記固定子の内部にその軸方向と同じ軸方向に配置されその軸方向に往復動可能に支持されており、少なくとも一部に鉄部材を有する可動子とからなるリニアアクチュエータであって、前記固定子はその軸方向に垂直な断面における内壁面から前記可動子に向かって相対して伸びる一対の凸部を有し、それら凸部の先端には凹状の第1の円筒面部および第2の円筒面部が形成されており、前記第1の円筒面部には、互いに前記往復動の方向に隣り合った状態で前記鉄部材に対向しかつ前記往復動の方向に直交して磁極を並べしかも互いの磁極の並びを逆にした状態で前記固定子に設けられた第1の一対の永久磁石が設けられており、前記第2の円筒面部には、一対の該第1の一対の永久磁石に対し前記往復動の方向における位置を合わせるとともに、互いに前記往復動の方向に隣り合った状態で前記鉄部材に対向しかつ前記往復動の方向に直交して磁極を並べしかも互いの磁極の並びを逆にした状態で前記固定子に設けられた第2の一対の永久磁石が設けられており、前記可動子を挟んで配置されて前記固定子に設けられた一対のコイルを備え、前記第1の一対の永久磁石および前記第2の一対の永久磁石は、前記往復動の方向に位置が合う永久磁石同士で前記鉄部材に対向させる磁極を逆にしており、前記固定子は、前記可動子の往復動方向に延在する貫通穴を有する筒形状になっており前記可動子は、前記第1、第2の一対の永久磁石の間に配置されているとともに、該可動子の往復動方向に延在する貫通穴を有する筒形状になっており、前記往復動の方向と垂直な面における前記可動子の厚さは、前記と同じ垂直な面における前記固定子の前記凸部が形成されていない部分を通る磁束密度に比べ密となるように薄く設定されていることを特徴としている。   In order to achieve the above object, a linear actuator according to claim 1 of the present invention is arranged in the same axial direction as the axial direction of the stator and the stator, and is supported so as to be capable of reciprocating in the axial direction. A linear actuator comprising a mover having at least a part of an iron member, the stator having a pair of protrusions extending relative to the mover from an inner wall surface in a cross section perpendicular to the axial direction thereof. A concave first cylindrical surface portion and a second cylindrical surface portion are formed at the tips of the convex portions, and the first cylindrical surface portions are adjacent to each other in the reciprocating direction. A first pair of permanent magnets provided on the stator is provided in a state where the magnetic poles are arranged perpendicularly to the reciprocating direction and opposed to the iron member in a state, and the arrangement of the magnetic poles is reversed. The second cylindrical surface The first pair of permanent magnets are aligned with each other in the reciprocating direction and are opposed to the iron member and adjacent to each other in the reciprocating direction. A second pair of permanent magnets provided on the stator is provided in a state where the magnetic poles are arranged orthogonal to each other and the arrangement of the magnetic poles is reversed, and the fixed pair is provided with the mover interposed therebetween. The first pair of permanent magnets and the second pair of permanent magnets are provided with a pair of coils provided on the child, and the magnetic poles are opposed to the iron member by permanent magnets that are positioned in the reciprocating direction. The stator has a cylindrical shape with a through hole extending in the reciprocating direction of the mover, and the mover is between the first and second pair of permanent magnets. And the reciprocating motion of the mover It has a cylindrical shape with a through hole extending in the direction, and the thickness of the movable element in a plane perpendicular to the reciprocating direction is formed by the convex portion of the stator in the same vertical plane as described above. It is characterized in that it is set thin so as to be denser than the magnetic flux density passing through the part that is not.

これにより、固定子側のコイルの電流が一方向に流れた状態では、例えば、固定子、第1の一対の永久磁石の一方の永久磁石、鉄部材、第2の一対の永久磁石のうち往復動方向において第1の一対の永久磁石の一方の永久磁石と位置が合う一方の永久磁石、固定子のループで磁束が形成され、固定子側のコイルの電流が切り替えられ逆方向に流れた状態では、固定子、第2の一対の永久磁石の他方の永久磁石、鉄部材、第1の一対の永久磁石の他方の永久磁石、固定子のループで磁束が形成されることになる。これにより、固定子側のコイルの電流の方向を交互に切り替えると、固定子側の第1の一対の永久磁石および第2の一対の永久磁石において鉄部材に対し磁束を導く側を可動子の往復動の方向に交互に切り替えることになり、鉄部材すなわち可動子を往復動させることになる。このように、コイルと永久磁石とがともに固定子側に設けられるため、可動子側に給電する必要がなくなって、移動する可動子がコイルへの給電線に断線を生じさせてしまうことがなくなる。また、性能向上を図るために高い磁束密度を得ようとした場合に永久磁石の重量が増大しても、可動子の重量が増加することがない。さらに、可動子に磁石がないことから、可動子への着磁が作業が不要となる。加えて、上記した磁束のループで可動子を移動させることから、可動子の永久磁石に対し反対側に固定子の一部をバックヨークとして配置しない構成にできる。   Thus, in a state where the current of the coil on the stator side flows in one direction, for example, the stator, one permanent magnet of the first pair of permanent magnets, the iron member, and the second pair of permanent magnets reciprocate. A state in which a magnetic flux is formed in one permanent magnet and the stator loop that are aligned with one of the first pair of permanent magnets in the moving direction, and the current of the coil on the stator side is switched and flows in the opposite direction Then, a magnetic flux is formed by the stator, the other permanent magnet of the second pair of permanent magnets, the iron member, the other permanent magnet of the first pair of permanent magnets, and the loop of the stator. As a result, when the direction of the current of the coil on the stator side is switched alternately, the side of the first pair of permanent magnets and the second pair of permanent magnets on the stator side that guides the magnetic flux to the iron member is The direction of reciprocation is switched alternately, and the iron member, that is, the mover is reciprocated. Thus, since both the coil and the permanent magnet are provided on the stator side, there is no need to supply power to the mover side, and the moving mover does not cause a break in the power supply line to the coil. . Moreover, even if the weight of the permanent magnet increases when trying to obtain a high magnetic flux density for improving the performance, the weight of the mover does not increase. Furthermore, since there is no magnet in the mover, the operation of magnetizing the mover becomes unnecessary. In addition, since the mover is moved by the above-described magnetic flux loop, a part of the stator is not disposed as a back yoke on the opposite side to the permanent magnet of the mover.

本発明の請求項2記載のリニアアクチュエータは、請求項1記載のものに関して、前記第1の一対の永久磁石および前記第2の一対の永久磁石の組と記鉄部材の凸部とのセットが往復動方向に隣り合って複数設けられることを特徴としている。   A linear actuator according to a second aspect of the present invention relates to the linear actuator according to the first aspect, wherein a set of the first pair of permanent magnets and the second pair of permanent magnets and the convex portion of the iron member is provided. A plurality of the sensors are provided adjacent to each other in the reciprocating direction.

このように、第1の一対の永久磁石および第2の一対の永久磁石の組が可動子の往復動の方向における位置を合わせて複数組設けられているため、さらに強力な永久磁石の磁界と電流による起磁力を得ることができる。
また、第1の一対の永久磁石および第2の一対の永久磁石の組が可動子の往復動の方向に隣り合った状態で複数組設けられており、これに合わせて鉄部材には可動子の往復動の方向に隣り合って永久磁石の方向に突出する凸部が複数設けられているため、ストロークは減少するが、歯数に比例して推力を増大させることができる。
As described above, a plurality of sets of the first pair of permanent magnets and the second pair of permanent magnets are provided in the same direction in the reciprocating direction of the mover. Magnetomotive force due to current can be obtained.
In addition, a plurality of sets of the first pair of permanent magnets and the second pair of permanent magnets are provided adjacent to each other in the reciprocating direction of the mover. Since a plurality of projections are provided adjacent to the reciprocating direction and projecting in the direction of the permanent magnet, the stroke is reduced, but the thrust can be increased in proportion to the number of teeth.

本発明の請求項3記載のリニアアクチュエータは、請求項1乃至3のいずれか一項記載のものに関して、前記固定子は前記往復動の方向に積層された積層鋼板から成ることを特徴としている。   The linear actuator according to a third aspect of the present invention is characterized in that, with respect to the linear actuator according to any one of the first to third aspects, the stator is composed of laminated steel plates laminated in the reciprocating direction.

このように、固定子は可動子の往復動の方向に積層された積層鋼板からなるため、ムク材から削り出されて形成される場合に比して渦電流損失を低減することができ、焼結や圧粉鉄心で形成される場合に比してヒステリシス損を低減することができる。また、特に固定子を大型化する場合に、ムク材からの削り出しおよび焼結に比して製造が容易となる。   Thus, since the stator is composed of laminated steel plates laminated in the direction of the reciprocating movement of the mover, eddy current loss can be reduced compared to the case where the stator is cut and formed from the waste material, and the firing is reduced. Hysteresis loss can be reduced as compared with the case where the core is formed with a sintered iron core. In particular, when the stator is increased in size, the manufacture becomes easier as compared with the cutting and sintering from the waste material.

以上詳述したように、本発明の請求項1記載のリニアアクチュエータによれば、固定子側のコイルの電流が一方向に流れた状態では、例えば、固定子、第1の一対の永久磁石の一方の永久磁石、鉄部材、第2の一対の永久磁石のうち往復動方向において第1の一対の永久磁石の一方の永久磁石と位置が合う一方の永久磁石、固定子のループで磁束が形成され、固定子側のコイルの電流が切り替えられ逆方向に流れた状態では、固定子、第2の一対の永久磁石の他方の永久磁石、鉄部材、第1の一対の永久磁石の他方の永久磁石、固定子のループで磁束が形成されることになる。これにより、固定子側のコイルの電流の方向を交互に切り替えると、固定子側の第1の一対の永久磁石および第2の一対の永久磁石において鉄部材に対し磁束を導く側を可動子の往復動の方向に交互に切り替えることになり、鉄部材すなわち可動子を往復動させることになる。   As described in detail above, according to the linear actuator of the first aspect of the present invention, in the state where the current of the stator side coil flows in one direction, for example, the stator and the first pair of permanent magnets Magnetic flux is formed by one permanent magnet, iron member, and one of the second pair of permanent magnets, one permanent magnet aligned with one of the first pair of permanent magnets in the reciprocating direction, and the stator loop. In the state where the current of the coil on the stator side is switched and flows in the opposite direction, the stator, the other permanent magnet of the second pair of permanent magnets, the iron member, the other permanent of the first pair of permanent magnets Magnetic flux is formed by the loops of the magnet and the stator. As a result, when the direction of the current of the coil on the stator side is switched alternately, the side of the first pair of permanent magnets and the second pair of permanent magnets on the stator side that guides the magnetic flux to the iron member is The direction of reciprocation is switched alternately, and the iron member, that is, the mover is reciprocated.

このように、コイルと永久磁石とがともに固定子側に設けられるため、可動子側に給電する必要がなくなって、移動する可動子がコイルへの給電線に断線を生じさせてしまうことがなくなる。したがって、信頼性を向上させることができる。   Thus, since both the coil and the permanent magnet are provided on the stator side, there is no need to supply power to the mover side, and the moving mover does not cause a break in the power supply line to the coil. . Therefore, reliability can be improved.

また、性能向上を図るために高い磁束密度を得ようとした場合に永久磁石やコイルの重量が増大しても、可動子の重量が増加することがない。したがって、性能向上を容易に図ることができる。   Moreover, even if the weight of the permanent magnet or coil increases when trying to obtain a high magnetic flux density in order to improve the performance, the weight of the mover does not increase. Therefore, the performance can be easily improved.

さらに、可動子に磁石がないことから、可動子への着磁作業が不要となる。
したがって、製造が容易となってコストダウンを図ることができる。
Further, since the mover has no magnet, the work of magnetizing the mover becomes unnecessary.
Therefore, manufacture becomes easy and cost reduction can be achieved.

加えて、上記した磁束のループで可動子を移動させることから、可動子の永久磁石に対し反対側に固定子の一部をバックヨークとして配置しない構成にできる。したがって、可動子の永久磁石に対し反対側の空間を有効利用できる。   In addition, since the mover is moved by the above-described magnetic flux loop, a part of the stator is not disposed as a back yoke on the opposite side to the permanent magnet of the mover. Therefore, the space on the opposite side to the permanent magnet of the mover can be used effectively.

本発明の請求項2記載のリニアアクチュエータによれば、第1の一対の永久磁石および第2の一対の永久磁石の組が可動子の往復動の方向における位置を合わせて複数組設けられているため、さらに強力な永久磁石の磁界と電流による起磁力を得ることができる。   According to the linear actuator of the second aspect of the present invention, a plurality of sets of the first pair of permanent magnets and the second pair of permanent magnets are provided with their positions in the reciprocating direction of the mover being aligned. Therefore, it is possible to obtain a magnetomotive force due to the magnetic field and current of a stronger permanent magnet.

また、第1の一対の永久磁石および第2の一対の永久磁石の組が可動子の往復動の方向に隣り合った状態で複数組設けられており、これに合わせて鉄部材には可動子の往復動の方向に隣り合って永久磁石の方向に突出する凸部が複数設けられているため、さらに強力な永久磁石の磁界と電流による起磁力を得ることができるとともに、凸部の端面に効率的に吸引力を作用させることができる。   In addition, a plurality of sets of the first pair of permanent magnets and the second pair of permanent magnets are provided adjacent to each other in the reciprocating direction of the mover. Since there are a plurality of protrusions that are adjacent to the direction of reciprocating movement and protrude in the direction of the permanent magnet, it is possible to obtain a stronger magnetomotive force due to the magnetic field and current of the permanent magnet and to the end face of the protrusion. A suction force can be applied efficiently.

本発明の請求項3記載のリニアアクチュエータによれば、固定子は可動子の往復動の方向に積層された積層鋼板からなるため、ムク材から削り出されて形成される場合に比して渦電流損失を低減することができ、焼結で形成される場合に比してヒステリシス損を低減することができる。また、特に固定子を大型化する場合に、ムク材からの削り出しおよび焼結に比して製造が容易となる。したがって、性能を向上させることができ、また、全体の大型化に伴う固定子の大型化に容易に対応することができる。   According to the linear actuator according to claim 3 of the present invention, the stator is composed of laminated steel plates laminated in the direction of reciprocation of the mover. Current loss can be reduced, and hysteresis loss can be reduced as compared with the case of being formed by sintering. In particular, when the stator is increased in size, the manufacture becomes easier as compared with the cutting and sintering from the waste material. Therefore, the performance can be improved, and the increase in the size of the stator accompanying the increase in the overall size can be easily accommodated.

本発明の第1実施形態のリニアアクチュエータを図1〜図6を参照して以下に説明する。   The linear actuator of 1st Embodiment of this invention is demonstrated below with reference to FIGS.

第1実施形態のリニアアクチュエータ11は、ヨーク(固定子)12と、このヨーク12の内側に往復動可能に設けられた可動子13と、ヨーク12に固定された一対の永久磁石(第1の一対の永久磁石)14,15と、ヨーク12に固定された一対の永久磁石(第2の一対の永久磁石)16,17と、ヨーク12に固定された二つのコイル18とを備えている。   The linear actuator 11 according to the first embodiment includes a yoke (stator) 12, a mover 13 provided inside the yoke 12 so as to be able to reciprocate, and a pair of permanent magnets (first magnet) fixed to the yoke 12. A pair of permanent magnets 14 and 15, a pair of permanent magnets (second pair of permanent magnets) 16 and 17 fixed to the yoke 12, and two coils 18 fixed to the yoke 12 are provided.

上記ヨーク12は、その中心位置に貫通穴21が形成されることにより全体として角筒形状をなしている。貫通穴21は、円筒の内周面を所定の間隔をあけて二カ所その軸線に平行に切断した形状をなし互いに離間状態で対向する二カ所の円筒面部22と、各円筒面部22のそれぞれの両端縁部から円筒面部22同士を結ぶ方向に沿って外側に延出する平面部23と、各平面部23のそれぞれの円筒面部22に対し反対側の端縁部から平面部23と直交して外側に延出する平面部24と、円筒面部22同士を結ぶ方向に延在して各平面部24の対応するもの同士をそれぞれ連結させる平面状の内面部25とを有している。ここで、二カ所の円筒面部22は、同径同長同幅をなしており同軸に配置されている。また、平面部23、平面部24および内面部25で、各円筒面部22の円周方向における両側に半径方向に凹む凹部30がそれぞれ形成されている。   The yoke 12 has a rectangular tube shape as a whole by forming a through hole 21 at its center position. The through-hole 21 has two cylindrical surface portions 22 which are formed in a shape in which the inner peripheral surface of the cylinder is cut in two places parallel to the axis thereof at a predetermined interval and which are opposed to each other in a separated state. A flat surface portion 23 extending outward from the edge portions of both ends along the direction connecting the cylindrical surface portions 22, and an orthogonal edge to the flat surface portion 23 from the opposite edge portion with respect to each cylindrical surface portion 22 of each flat surface portion 23. A flat surface portion 24 extending outward and a planar inner surface portion 25 extending in a direction connecting the cylindrical surface portions 22 and connecting corresponding ones of the flat surface portions 24 are provided. Here, the two cylindrical surface portions 22 have the same diameter, the same length, and the same width, and are arranged coaxially. Further, in the flat surface portion 23, the flat surface portion 24, and the inner surface portion 25, concave portions 30 that are recessed in the radial direction are formed on both sides of each cylindrical surface portion 22 in the circumferential direction.

なお、このヨーク12は、上記二カ所の円筒面部22と四カ所の平面部23と四カ所の平面部24と二カ所の内面部25とを有する形状に薄板状の鋼板をプレスで打ち抜いて基部材27を形成し、この基部材27を貫通穴21の貫通方向に複数、位置を合わせながら積層しつつ接合させた積層鋼板からなっている。
また、このヨーク12には、可動子13の内側に延出する形状のバックヨークは設けられていない。
The yoke 12 is formed by punching a thin steel plate into a shape having the two cylindrical surface portions 22, the four flat surface portions 23, the four flat surface portions 24, and the two inner surface portions 25 with a press. A member 27 is formed, and the base member 27 is made of a laminated steel plate that is joined while being laminated while aligning a plurality of base members 27 in the penetrating direction of the through hole 21.
Further, the yoke 12 is not provided with a back yoke having a shape extending inside the movable element 13.

ヨーク12においては、各内面部25と各内面部25に平行をなしてそれぞれ近接する外面部26との間の部分がコイル巻回部28とされており、その結果、このようなコイル巻回部28が二カ所互いに平行に設けられている。コイル巻回部28には内面部25の全幅にわたってコイル18が巻き付けられ、その結果、各コイル18はリング状をなしてヨーク12に固定されている。   In the yoke 12, a portion between each inner surface portion 25 and the outer surface portion 26 that is adjacent to and parallel to each inner surface portion 25 is a coil winding portion 28, and as a result, such coil winding is performed. Two portions 28 are provided in parallel to each other. A coil 18 is wound around the coil winding portion 28 over the entire width of the inner surface portion 25. As a result, each coil 18 is fixed to the yoke 12 in a ring shape.

上記永久磁石14,15は、円筒を所定の間隔をあけて二カ所その軸線に平行に切断した形状をなす同径同長同幅のフェライト磁石からなるもので、互いに同軸をなし円周方向の位置を合わせ軸線方向に隣り合った状態で並べられて一方の円筒面部22に接合固定されている。ここで、これら永久磁石14,15は、軸線方向に直交する方向に磁極を並べたラジアル異方性のもので、互いの磁極の並びを逆にしている。具体的には、貫通穴21の貫通方向における一側の永久磁石14は、N極14aが外径側にS極14bが内径側に配置されており、他側の永久磁石15は、N極15aが内径側にS極15bが外径側に配置されている。なお、永久磁石14,15の配列方向に直交する方向の両側にヨーク12の凹部30が配置されている。   The permanent magnets 14 and 15 are made of ferrite magnets having the same diameter, the same length and the same width, which are formed by cutting a cylinder in parallel at two places at predetermined intervals, and are coaxial with each other in the circumferential direction. The cylinders are aligned and positioned adjacent to each other in the axial direction, and are bonded and fixed to one cylindrical surface portion 22. Here, these permanent magnets 14 and 15 have radial anisotropy in which magnetic poles are arranged in a direction orthogonal to the axial direction, and the arrangement of the magnetic poles is reversed. Specifically, the permanent magnet 14 on one side in the penetration direction of the through hole 21 has an N pole 14a arranged on the outer diameter side and an S pole 14b arranged on the inner diameter side, and the other permanent magnet 15 has an N pole. 15a is disposed on the inner diameter side and the S pole 15b is disposed on the outer diameter side. The concave portions 30 of the yoke 12 are arranged on both sides in the direction orthogonal to the arrangement direction of the permanent magnets 14 and 15.

上記永久磁石16,17は、円筒の内周面を所定の間隔をあけて二カ所その軸線に平行に切断した形状をなす同径同長同幅をなすフェライト磁石からなるもので、互いに同軸をなし円周方向の位置を合わせ軸線方向に隣り合った状態で並べられて他方の円筒面部22に、上記永久磁石14,15に対し円周方向の逆側に離間し貫通穴21の軸線方向における位置を合わせて接合固定されている。ここで、これら永久磁石16,17は、軸線方向に直交する方向に磁極を並べたラジアル異方性のもので、互いの磁極の並びを逆にしている。具体的には、貫通穴21の貫通方向における一側の永久磁石16は、N極16aが内径側にS極16bが外径側に配置されており、他側の永久磁石17は、N極17aが外径側にS極17bが内径側に配置されている。なお、永久磁石16,17の配列方向に直交する方向の両側にヨーク12の凹部30が配置されている。   The permanent magnets 16 and 17 are made of ferrite magnets having the same diameter, the same length, and the same width, which are formed by cutting the inner peripheral surface of the cylinder at a predetermined interval and parallel to the axis thereof. None Positioned in the circumferential direction so that the positions in the circumferential direction are aligned and separated from the permanent magnets 14 and 15 on the other cylindrical surface portion 22 on the opposite side in the circumferential direction. They are joined and fixed together. Here, these permanent magnets 16 and 17 have radial anisotropy in which magnetic poles are arranged in a direction orthogonal to the axial direction, and the arrangement of the magnetic poles is reversed. Specifically, the permanent magnet 16 on one side in the penetration direction of the through hole 21 has an N pole 16a disposed on the inner diameter side and an S pole 16b disposed on the outer diameter side, and the other permanent magnet 17 has an N pole. 17a is arranged on the outer diameter side and S pole 17b is arranged on the inner diameter side. The concave portions 30 of the yoke 12 are arranged on both sides in the direction orthogonal to the arrangement direction of the permanent magnets 16 and 17.

以上により、一対の永久磁石14,15および一対の永久磁石16,17は、貫通穴21の貫通方向に位置が合う永久磁石同士で内径側すなわち可動子13側の磁極を逆にしている。すなわち、貫通穴21の貫通方向に位置が合う永久磁石14および永久磁石16は互いに内径側の磁極を逆にしており、貫通穴21の貫通方向に位置が合う永久磁石15および永久磁石17も互いに内径側の磁極を逆にしている。   As described above, the pair of permanent magnets 14 and 15 and the pair of permanent magnets 16 and 17 are permanent magnets whose positions are aligned in the penetrating direction of the through hole 21, and the magnetic poles on the inner diameter side, that is, the mover 13 side are reversed. That is, the permanent magnet 14 and the permanent magnet 16 that are aligned in the penetration direction of the through hole 21 have the inner poles opposite to each other, and the permanent magnet 15 and the permanent magnet 17 that are aligned in the penetration direction of the through hole 21 are also mutually. The magnetic pole on the inner diameter side is reversed.

可動子13は、中央に貫通穴31が形成されることにより円筒状をなしており、その外径が永久磁石14〜17の内径よりも若干小径とされている。この可動子13はヨーク12の円筒面部22の内側すなわち永久磁石14〜17の内径側に、これらと対向しつつ同軸をなすように挿入されることによって、ヨーク12に対して貫通穴21の貫通方向に往復動可能に設けられる。ここで、可動子13の軸線方向における長さは、ヨーク12の貫通穴21の貫通方向における長さよりも短くされている。   The mover 13 has a cylindrical shape with a through hole 31 formed in the center, and has an outer diameter slightly smaller than the inner diameter of the permanent magnets 14 to 17. The movable element 13 is inserted inside the cylindrical surface portion 22 of the yoke 12, that is, on the inner diameter side of the permanent magnets 14 to 17 so as to be coaxial with the movable element 13 so as to pass through the through hole 21 with respect to the yoke 12. It can be reciprocated in the direction. Here, the length of the mover 13 in the axial direction is shorter than the length of the through hole 21 of the yoke 12 in the through direction.

なお、この可動子13は、薄板状の鋼板をプレスで打ち抜いて内側に貫通穴31を有する円環状の基部材32を形成し、この基部材32を貫通穴31の貫通方向に複数、位置を合わせながら積層させて接合させた積層鋼板からなっている。
これにより可動子13は全体が鉄部材からなっている。
The movable element 13 is formed by punching a thin steel plate with a press to form an annular base member 32 having a through hole 31 on the inside, and a plurality of the base members 32 are arranged in the through direction of the through hole 31. It consists of laminated steel plates that are laminated and bonded together.
Thereby, the whole needle | mover 13 consists of an iron member.

上記構造のリニアアクチュエータ11においては、両側のコイル18に交流電流(正弦波電流、矩形波電流)を同期して流す。ここで、両側のコイル18には、それぞれのコイル巻回部28よりも可動子13側の部分に、貫通穴21の貫通方向に沿って逆向きの電流を流すことになる。   In the linear actuator 11 having the above structure, an alternating current (sine wave current, rectangular wave current) is passed through the coils 18 on both sides in synchronization. Here, in the coils 18 on both sides, currents in opposite directions are caused to flow along the penetrating direction of the through hole 21 in the portions closer to the mover 13 than the respective coil winding portions 28.

なお、両側のコイル18に電流を流していない状態では、一対の永久磁石14,15によって、図2に二点鎖線で示すように、ヨーク12、永久磁石15、可動子13、永久磁石14およびヨーク12をこの順に結ぶループで磁束が形成されるとともに、一対の永久磁石16,17によって、ヨーク12、永久磁石16、可動子13、永久磁石17およびヨーク12をこの順に結ぶループで磁束が形成される。このとき、可動子13は停止状態とされる。   In a state in which no current flows through the coils 18 on both sides, the yoke 12, the permanent magnet 15, the mover 13, the permanent magnet 14 and the pair of permanent magnets 14 and 15 as shown by a two-dot chain line in FIG. A magnetic flux is formed in a loop connecting the yoke 12 in this order, and a pair of permanent magnets 16 and 17 forms a magnetic flux in a loop connecting the yoke 12, the permanent magnet 16, the mover 13, the permanent magnet 17 and the yoke 12 in this order. Is done. At this time, the movable element 13 is stopped.

そして、例えば、図3に示すように、一方(図3における左側)のコイル18に、その可動子13側に貫通穴21の貫通方向における一方向(図3における紙面を裏から表に貫く方向)に流れるように電流を流すと、その内側のコイル巻回部28に一方向(図3における下方向)に起磁力が生じる。すると、一対の永久磁石14,15および一対の永久磁石16,17によって、この一方のコイル18側には、図3および図4に二点鎖線で示すように、ヨーク12、一対の永久磁石14,15のうちの一方(図3においては紙面奥側)の永久磁石15、可動子13、一対の永久磁石16,17のうちの貫通穴21の貫通方向において上記一方の永久磁石15と位置が合う一方の永久磁石17およびヨーク12を、この順に結ぶループで磁束が形成されることになる。これと同時に、他方(図3における右側)のコイル18に、その可動子13側に貫通穴21の貫通方向における逆方向(図3における紙面を表から裏に貫く方向)に流れるように電流を流すと、コイル巻回部28に一方向(図3における下方向)に起磁力が生じる。すると、図3に二点鎖線で示すように、一対の永久磁石14,15および一対の永久磁石16,17によって、この他方のコイル18側にも、ヨーク12、一対の永久磁石14,15の一方(図3においては紙面奥側)の永久磁石15、可動子13、一対の永久磁石16,17のうち貫通方向において上記一方の永久磁石15と位置が合う一方の永久磁石17およびヨーク12をこの順に結ぶループで磁束が形成されることになる。   And, for example, as shown in FIG. 3, one coil 18 (on the left side in FIG. 3) has one direction in the penetration direction of the through hole 21 on the movable element 13 side (the direction through the paper surface in FIG. 3 from the back to the front). When a current is passed so as to flow in a direction, a magnetomotive force is generated in one direction (downward direction in FIG. 3) in the coil winding portion 28 inside. Then, by the pair of permanent magnets 14 and 15 and the pair of permanent magnets 16 and 17, the yoke 12 and the pair of permanent magnets 14 are disposed on the one coil 18 side as shown by a two-dot chain line in FIGS. 3 and 4. , 15 (the back side in FIG. 3), the position of the permanent magnet 15 and the position of the one permanent magnet 15 in the penetrating direction of the through hole 21 of the pair of permanent magnets 16 and 17 is the same. A magnetic flux is formed by a loop connecting the matching permanent magnet 17 and yoke 12 in this order. At the same time, a current is applied to the coil 18 on the other side (right side in FIG. 3) so as to flow in the reverse direction in the direction of penetration of the through hole 21 (direction in which the paper surface in FIG. When flowing, a magnetomotive force is generated in the coil winding portion 28 in one direction (downward direction in FIG. 3). Then, as shown by a two-dot chain line in FIG. 3, the yoke 12 and the pair of permanent magnets 14, 15 are also provided on the other coil 18 side by the pair of permanent magnets 14, 15 and the pair of permanent magnets 16, 17. One permanent magnet 17 and the yoke 12 that are aligned with the one permanent magnet 15 in the penetrating direction among the permanent magnet 15 on one side (the back side in FIG. 3), the mover 13, and the pair of permanent magnets 16 and 17 are arranged. A magnetic flux is formed by a loop connecting in this order.

以上によって、可動子13が貫通穴21の貫通方向における一方向(図3における紙面を表から裏に貫く方向、図4における右方向)に移動する。   As described above, the mover 13 moves in one direction in the penetration direction of the through hole 21 (the direction passing through the paper surface in FIG. 3 from the front to the back, the right direction in FIG. 4).

次に、図5および図6に示すように、一方(図5における左側)のコイル18に、その可動子13側に貫通穴21の貫通方向における逆方向(図5における紙面を表から裏に貫く方向)に流れるように電流を流すと、その内側のコイル巻回部28に一方向(図5における上方向)に起磁力が生じる。すると、図5および図6に二点鎖線で示すように、一対の永久磁石14,15および一対の永久磁石16,17によって、この一方のコイル18側に、ヨーク12、一対の永久磁石14,15のうちの他方(図5においては紙面手前側)の永久磁石14、可動子13、一対の永久磁石16,17のうちの貫通穴21の貫通方向において上記他方の永久磁石14と位置が合う他方の永久磁石16およびヨーク12を、この順に結ぶループで磁束が形成されることになる。これと同時に、他方(図5における右側)のコイル18に、その可動子13側に貫通穴21の貫通方向における一方向(図5における紙面を裏から表に貫く方向)に流れるように電流を流すと、その内側のコイル巻回部28に一方向(図5における上方向)に起磁力が生じる。すると、図5に二点鎖線で示すように、一対の永久磁石14,15および一対の永久磁石16,17によって、この他方のコイル18側には、ヨーク12、一対の永久磁石14,15のうちの他方(図5においては紙面手前側)の永久磁石14、可動子13、一対の永久磁石16,17のうちの貫通穴21の貫通方向において上記他方の永久磁石14と位置が合う他方の永久磁石16およびヨーク12を、この順に結ぶループで磁束が形成されることになる。   Next, as shown in FIGS. 5 and 6, one coil 18 (left side in FIG. 5) has a reverse direction in the direction of penetration of the through hole 21 on the movable element 13 side (the paper surface in FIG. When an electric current is passed so as to flow in the direction of penetration, a magnetomotive force is generated in one direction (upward direction in FIG. 5) in the coil winding portion 28 inside thereof. Then, as shown by a two-dot chain line in FIG. 5 and FIG. 6, the yoke 12, the pair of permanent magnets 14, The permanent magnet 14 on the other side of FIG. 15 (the front side in FIG. 5), the mover 13, and the other permanent magnet 14 are aligned in the penetrating direction of the through hole 21 of the pair of permanent magnets 16, 17. A magnetic flux is formed by a loop connecting the other permanent magnet 16 and the yoke 12 in this order. At the same time, a current is applied to the coil 18 on the other side (right side in FIG. 5) so as to flow in one direction in the direction of penetration of the through hole 21 (direction in which the paper surface in FIG. When flowing, a magnetomotive force is generated in one direction (upward direction in FIG. 5) in the coil winding portion 28 inside thereof. Then, as shown by a two-dot chain line in FIG. 5, the pair of permanent magnets 14 and 15 and the pair of permanent magnets 16 and 17 cause the yoke 12 and the pair of permanent magnets 14 and 15 to be placed on the other coil 18 side. The other permanent magnet 14 on the other side (the front side in FIG. 5), the mover 13, and the other permanent magnet 14, 17 is aligned with the other permanent magnet 14 in the penetration direction of the through hole 21. A magnetic flux is formed by a loop connecting the permanent magnet 16 and the yoke 12 in this order.

以上によって、可動子13が貫通穴21の貫通方向における逆方向(図5における紙面を裏から表に貫く方向、図6における左方向)に移動する。   As described above, the movable element 13 moves in the reverse direction in the penetration direction of the through hole 21 (the direction penetrating the paper surface in FIG. 5 from the back to the front, the left direction in FIG. 6).

そして、交流電流によって両コイル18への電流の流れの方向が交互に変化することにより、以上の作動を繰り返して、可動子13はヨーク12に対して貫通穴21の貫通方向に所定のストロークで往復動することになる。   The direction of current flow to both coils 18 is alternately changed by the alternating current, so that the above operation is repeated, so that the movable element 13 moves with a predetermined stroke in the through direction of the through hole 21 with respect to the yoke 12. It will reciprocate.

以上に述べた第1実施形態のリニアアクチュエータ11によれば、コイル18が可動子13ではなくヨーク12に設けられるため、可動子13側に給電する必要がなくなって、移動する可動子13がコイル18への給電線に断線を生じさせてしまうことがなくなる。したがって、連続運転等に対する信頼性を向上させることができる。   According to the linear actuator 11 of the first embodiment described above, since the coil 18 is provided not on the mover 13 but on the yoke 12, there is no need to supply power to the mover 13 side, and the moving mover 13 is a coil. No disconnection is caused in the power supply line to 18. Therefore, the reliability with respect to continuous operation etc. can be improved.

また、永久磁石14〜17も可動子13ではなくヨーク12に設けられるため、性能向上を図るために高い磁束密度を得ようとした場合に永久磁石14〜17やコイル18の重量が増大しても、可動子13の重量が増加することがない。したがって、性能向上(推力アップ)を容易に図ることができる。   Further, since the permanent magnets 14 to 17 are provided not on the mover 13 but on the yoke 12, the weights of the permanent magnets 14 to 17 and the coil 18 increase when a high magnetic flux density is to be obtained in order to improve the performance. However, the weight of the mover 13 does not increase. Therefore, performance improvement (thrust increase) can be easily achieved.

加えて、可動子13に永久磁石がないことから、可動子13への着磁が作業が不要となり、また、可動子13の製造時に可動子13には吸引力が働かないため、可動子13の製造が容易となる。したがって、製造が容易となってコストダウンを図ることができる。   In addition, since there is no permanent magnet in the mover 13, it is not necessary to magnetize the mover 13, and no attracting force acts on the mover 13 when the mover 13 is manufactured. Is easy to manufacture. Therefore, manufacture becomes easy and cost reduction can be achieved.

加えて、上述したようなループの磁束で可動子13を移動させることから、可動子13の永久磁石14〜17に対し反対側すなわち内径側にヨーク12の一部をバックヨークとして配置しない構成にできる。したがって、可動子13の永久磁石14〜17に対し反対側すなわち貫通穴31側の空間を有効利用できる。具体的には、貫通穴31内に別途のシリンダやそのピストン等を配置する場合の設計自由度が大幅に増す。   In addition, since the movable element 13 is moved by the magnetic flux of the loop as described above, a part of the yoke 12 is not arranged as a back yoke on the opposite side, that is, on the inner diameter side with respect to the permanent magnets 14 to 17 of the movable element 13. it can. Therefore, the space opposite to the permanent magnets 14 to 17 of the mover 13, that is, the space on the through hole 31 side can be effectively used. Specifically, the degree of freedom in design when a separate cylinder, its piston, or the like is arranged in the through hole 31 is greatly increased.

加えて、ヨーク12は可動子13の往復動の方向に積層された積層鋼板からなるため、ムク材から削り出されて形成される場合に比して渦電流損失を低減することができる一方、焼結で形成される場合に比してヒステリシス損を低減することができる。したがって、性能を向上させることができる。また、特にヨーク12を大型化する場合に、ムク材からの削り出しおよび焼結に比して製造が容易となる。したがって、全体の大型化に伴うヨーク12の大型化に容易に対応することができる。   In addition, since the yoke 12 is made of laminated steel plates laminated in the direction of reciprocating movement of the mover 13, eddy current loss can be reduced as compared with the case where the yoke 12 is formed by cutting out from the bulk material, Hysteresis loss can be reduced as compared with the case of forming by sintering. Therefore, performance can be improved. In particular, when the yoke 12 is increased in size, the manufacture becomes easier as compared with the cutting and sintering from the waste material. Therefore, it is possible to easily cope with an increase in the size of the yoke 12 accompanying an increase in the size of the whole.

なお、永久磁石14〜17としては、上記したフェライト磁石以外にも、ネオジウム、サマリウムコバルト等の希土類系のものを用いたり、プラスチック磁石を用いることも可能であるが、フェライト磁石を用いるのがコスト低減の観点からより好ましい。   As the permanent magnets 14 to 17, it is possible to use rare earths such as neodymium and samarium cobalt, or plastic magnets in addition to the above-mentioned ferrite magnets, but it is costly to use ferrite magnets. More preferable from the viewpoint of reduction.

また、このリニアアクチュエータ11は、可動子13にバネを組み込んだり、外部に置かれたバネとの併用で共振させて使用されるのが一般的であるが、勿論、このまま使用することも可能である。   The linear actuator 11 is generally used by incorporating a spring in the movable element 13 or by resonating with a spring placed outside, but of course, it can be used as it is. is there.

また、このリニアアクチュエータ11に位置、速度等を検出するセンサを設け、閉ループ制御を行うことで速度や位置の制御が可能なリニアサーボアクチュエータとして利用できる。   Further, the linear actuator 11 can be used as a linear servo actuator capable of controlling speed and position by providing a sensor for detecting position, speed, etc. and performing closed loop control.

次に、本発明の第2実施形態のリニアアクチュエータを図7および図8を参照して以下に説明する。   Next, the linear actuator of 2nd Embodiment of this invention is demonstrated below with reference to FIG. 7 and FIG.

第2実施形態のリニアアクチュエータ51は、ヨーク(固定子)52と、このヨーク52の内側に往復動可能に設けられた可動子53と、ヨーク52に固定された四組の永久磁石(第1の一対の永久磁石)54,55と、ヨーク52に固定された四組の永久磁石(第2の一対の永久磁石)56,57と、ヨーク52に固定された八つのコイル58とを備えている。   The linear actuator 51 of the second embodiment includes a yoke (stator) 52, a mover 53 that can be reciprocated inside the yoke 52, and four sets of permanent magnets (first) fixed to the yoke 52. A pair of permanent magnets) 54, 55, four sets of permanent magnets (second pair of permanent magnets) 56, 57 fixed to the yoke 52, and eight coils 58 fixed to the yoke 52. Yes.

上記ヨーク52は、その中心位置に貫通穴61が形成されることにより全体として円筒形状をなしている。貫通穴61は、円筒の内周面を所定の間隔をあけて二カ所その軸線に平行に切断した形状をなし円周方向に等間隔で配置される八カ所の円筒面部62を有している。ここで、円周方向に隣り合う円筒面部62同士の間は、半径方向外方に凹む凹部63とされており、その結果、円周方向に隣り合う凹部63同士の間には、円筒面部62を有する凸部64が形成されている。
ここで、八カ所の円筒面部62は、同径同長同幅をなしており同軸に配置されている。なお、このヨーク52は、図示は略すが、第1実施形態と同様に、上記八カ所の凹部63および凸部64を有する形状に薄板状の鋼板をプレスで打ち抜いて基部材を形成し、この基部材を貫通穴61の貫通方向に複数、位置を合わせながらを積層させつつ接合させた積層鋼板からなっている。
また、このヨーク52には、可動子53の内側に延出する形状のバックヨークは設けられていない。
The yoke 52 has a cylindrical shape as a whole by forming a through hole 61 at its center position. The through hole 61 has a shape obtained by cutting the inner peripheral surface of the cylinder at a predetermined interval at two locations parallel to the axis thereof, and has eight cylindrical surface portions 62 arranged at equal intervals in the circumferential direction. . Here, between the cylindrical surface parts 62 adjacent to each other in the circumferential direction is a concave part 63 that is recessed outward in the radial direction. As a result, between the concave parts 63 adjacent to each other in the circumferential direction, the cylindrical surface part 62 is provided. The convex part 64 which has is formed.
Here, the eight cylindrical surface portions 62 have the same diameter, the same length, and the same width, and are arranged coaxially. Although not shown in the drawings, this yoke 52 is formed by punching a thin steel plate into a shape having the eight concave portions 63 and the convex portions 64, and forming a base member, as in the first embodiment. The base member is made of a laminated steel plate in which a plurality of base members are laminated in the penetrating direction of the through-hole 61 while being laminated.
Further, the yoke 52 is not provided with a back yoke having a shape extending inside the movable element 53.

第2実施形態において、ヨーク52の各凸部64には、軸線方向と円周方向とに交互に延在するようにコイル58が巻き付けられ、その結果、各コイル58はリング状をなしてヨーク52に固定されている。   In the second embodiment, a coil 58 is wound around each convex portion 64 of the yoke 52 so as to alternately extend in the axial direction and the circumferential direction. As a result, each coil 58 has a ring shape to form a yoke. 52 is fixed.

上記永久磁石54,55は、円筒を所定の間隔をあけて二カ所その軸線に平行に切断した形状をなす同径同長同幅のフェライト磁石からなるもので、互いに同軸をなし円周方向の位置を合わせ軸線方向に隣り合った状態で並べられて共通の円筒面部62に接合固定されている。ここで、これら永久磁石54,55は、軸線方向に直交する方向に磁極を並べたラジアル異方性のもので、互いの磁極の並びを逆にしている。具体的には、貫通穴61の貫通方向における一側の永久磁石54は、N極54aが外径側にS極54bが内径側に配置されており、他側の永久磁石55は、N極55aが内径側にS極55bが外径側に配置されている。そして、このような一対の永久磁石54,55の組が四組、円周方向に一つおきに配置された各円筒面部32に放射状をなすように配置されている。   The permanent magnets 54 and 55 are made of ferrite magnets having the same diameter, the same length and the same width, which are formed by cutting a cylinder in parallel at two places at predetermined intervals, and are coaxial with each other in the circumferential direction. They are aligned and positioned adjacent to each other in the axial direction, and are fixedly joined to a common cylindrical surface portion 62. Here, these permanent magnets 54 and 55 are of radial anisotropy in which magnetic poles are arranged in a direction orthogonal to the axial direction, and the arrangement of the magnetic poles is reversed. Specifically, the permanent magnet 54 on one side in the penetration direction of the through hole 61 has an N pole 54a arranged on the outer diameter side and an S pole 54b arranged on the inner diameter side, and the other permanent magnet 55 has an N pole. 55a is arranged on the inner diameter side and the S pole 55b is arranged on the outer diameter side. And four sets of such a pair of permanent magnets 54 and 55 are arrange | positioned so that each cylindrical surface part 32 arrange | positioned every other in the circumferential direction may make radial shape.

上記永久磁石56,57は、円筒の内周面を所定の間隔をあけて二カ所その軸線に平行に切断した形状をなす同径同長同幅をなすフェライト磁石からなるもので、互いに同軸をなし円周方向の位置を合わせ軸線方向に隣り合った状態で並べられて共通の円筒面部62に接合固定されている。ここで、これら永久磁石56,57は、軸線方向に直交する方向に磁極を並べたラジアル異方性のもので、互いの磁極の並びを逆にしている。具体的には、貫通穴61の貫通方向における一側の永久磁石56は、N極56aが内径側にS極56bが外径側に配置されており、他側の永久磁石57は、N極57aが外径側にS極57bが内径側に配置されている。そして、このような一対の永久磁石56,67の組が四組、円周方向に一つおきに配置された残りの各円筒面部32に放射状をなすように配置されている。   The permanent magnets 56 and 57 are made of ferrite magnets having the same diameter, the same length, and the same width, which are formed by cutting the inner peripheral surface of the cylinder at a predetermined interval and parallel to the axis thereof. None Positioned in the circumferential direction so as to be adjacent to each other in the axial direction and joined and fixed to a common cylindrical surface portion 62. Here, these permanent magnets 56 and 57 are of radial anisotropy in which magnetic poles are arranged in a direction orthogonal to the axial direction, and the arrangement of the magnetic poles is reversed. Specifically, the permanent magnet 56 on one side in the penetration direction of the through hole 61 has an N pole 56a disposed on the inner diameter side and an S pole 56b disposed on the outer diameter side, and the other permanent magnet 57 is disposed on the N pole. 57a is arranged on the outer diameter side, and S pole 57b is arranged on the inner diameter side. And four sets of such a pair of permanent magnets 56 and 67 are arranged so as to radiate to the remaining cylindrical surface portions 32 arranged alternately in the circumferential direction.

以上により、一対の永久磁石54,55および一対の永久磁石56,57は、貫通穴61の貫通方向に位置が合う永久磁石同士で内径側すなわち可動子53の磁極を逆にしている。すなわち、貫通穴61の貫通方向に位置が合う永久磁石54および永久磁石56は互いに内径側の磁極を逆にしており、貫通穴61の貫通方向に位置が合う永久磁石55および永久磁石57も互いに内径側の磁極を逆にしている。   As described above, the pair of permanent magnets 54, 55 and the pair of permanent magnets 56, 57 are the permanent magnets whose positions are aligned in the penetrating direction of the through hole 61, and the magnetic poles of the mover 53 are reversed. That is, the permanent magnet 54 and the permanent magnet 56 that are aligned in the through direction of the through hole 61 have the magnetic poles on the inner diameter side opposite to each other, and the permanent magnet 55 and the permanent magnet 57 that are aligned in the through direction of the through hole 61 are also mutually connected. The magnetic pole on the inner diameter side is reversed.

ここで、円周方向に互いに離間して隣り合う一対の永久磁石54,55と一対の永久磁石56,57とが組となっており、このような組が、貫通穴21の貫通方向における位置を合わせて複数組具体的には四組設けられている。   Here, a pair of permanent magnets 54 and 55 and a pair of permanent magnets 56 and 57 which are adjacent to each other in the circumferential direction form a pair, and such a pair is a position in the through direction of the through hole 21. A plurality of sets, specifically four sets are provided.

可動子53は、中央に貫通穴71が形成されることにより円筒状をなす鉄部材72とこの鉄部材72の軸線方向における一側に設けられた主部73とを有しており、主部73は鉄部材72と同軸同径をなして隣り合う大径円筒部75と、この大径円筒部75の鉄部材72に対し反対側にこれよりも小径をなして同軸に設けられた小径円筒部76とを有している。なお、鉄部材72および大径円筒部75の外径が永久磁石54〜57の内径よりも若干小径とされている。この可動子53はヨーク52の円筒面部62の内側すなわち永久磁石54〜57の内径側に、これらと同軸をなすように挿入されることにより、ヨーク52に対して貫通穴61の貫通方向に往復動可能に設けられる。ここで、鉄部材72の軸線方向における長さは、ヨーク52の貫通穴61の貫通方向における長さよりも短くされている。また、小径円筒部76には内径側に通した軸等を固定するためのボルト78が半径方向に螺合されている。   The mover 53 includes an iron member 72 having a cylindrical shape with a through hole 71 formed in the center, and a main portion 73 provided on one side in the axial direction of the iron member 72. Reference numeral 73 denotes a large-diameter cylindrical portion 75 that is coaxially adjacent to the iron member 72 and adjacent to the iron member 72, and a small-diameter cylinder that is coaxially provided on the opposite side of the large-diameter cylindrical portion 75 with a smaller diameter. Part 76. Note that the outer diameters of the iron member 72 and the large-diameter cylindrical portion 75 are slightly smaller than the inner diameters of the permanent magnets 54 to 57. The mover 53 is reciprocated in the through direction of the through hole 61 with respect to the yoke 52 by being inserted inside the cylindrical surface portion 62 of the yoke 52, that is, on the inner diameter side of the permanent magnets 54 to 57 so as to be coaxial with them. It is provided to be movable. Here, the length in the axial direction of the iron member 72 is shorter than the length in the through direction of the through hole 61 of the yoke 52. Further, a bolt 78 for fixing a shaft or the like passing through the inner diameter side is screwed into the small diameter cylindrical portion 76 in the radial direction.

なお、この可動子53は、主部73が非磁性材料であるエンジニアリングプラスチック等の合成樹脂からなっており、鉄部材72は焼結材からなっている。可動子53は、鉄部材72を入れ子とする合成樹脂のインサート成形により形成されている。   The mover 53 is made of a synthetic resin such as engineering plastic whose main portion 73 is a nonmagnetic material, and the iron member 72 is made of a sintered material. The mover 53 is formed by insert molding of synthetic resin with the iron member 72 as a nest.

以上に述べた第2実施形態のリニアアクチュエータ51によれば、第1実施形態のリニアアクチュエータ11と同様の効果を発揮することができ、その上で、一対の永久磁石54,55と一対の永久磁石56,57との組が複数組具体的には四組に分配されていることから、ヨーク厚さを薄くでき、軽量化が図れる。   According to the linear actuator 51 of the second embodiment described above, the same effect as that of the linear actuator 11 of the first embodiment can be exhibited. In addition, the pair of permanent magnets 54 and 55 and the pair of permanent actuators can be obtained. Since a plurality of sets of magnets 56 and 57, specifically four sets, are distributed, the yoke thickness can be reduced and the weight can be reduced.

可動子厚さも薄くでき、可動部の軽量化が図れることから、応答性が改善される。   Since the thickness of the mover can be reduced and the weight of the movable part can be reduced, the responsiveness is improved.

なお、第2実施形態においても第1実施形態と同様の変更等が可能である。   In the second embodiment, the same changes as in the first embodiment can be made.

次に、本発明の第3実施形態のリニアアクチュエータを図9を参照して第2実施形態との相違部分を中心に以下に説明する。なお、第2実施形態と同様の部分には同一の符号を付しその説明は略す。   Next, a linear actuator according to a third embodiment of the present invention will be described below with reference to FIG. 9, focusing on the differences from the second embodiment. In addition, the same code | symbol is attached | subjected to the part similar to 2nd Embodiment, and the description is abbreviate | omitted.

第3実施形態においては、一対の永久磁石54,55および一対の永久磁石56,57の各組に対し、円周方向における位置を合わせ貫通穴61の貫通方向に隣り合った状態で別の一対の永久磁石54,55および一対の永久磁石56,57の組がそれぞれ設けられている。すなわち、各一対の永久磁石54,55には、円周方向における位置を合わせ貫通穴61の貫通方向に隣り合った状態で一対の永久磁石54,55がそれぞれ設けられており、各一対の永久磁石56,57には、円周方向における位置を合わせ貫通穴61の貫通方向に隣り合った状態で一対の永久磁石56,57がそれぞれ設けられている。   In the third embodiment, the pair of permanent magnets 54 and 55 and the pair of permanent magnets 56 and 57 are aligned with each other in the circumferential direction so as to be adjacent to each other in the penetrating direction of the through hole 61. The permanent magnets 54 and 55 and a pair of permanent magnets 56 and 57 are provided. That is, each pair of permanent magnets 54 and 55 is provided with a pair of permanent magnets 54 and 55 in a state where the positions in the circumferential direction are aligned and adjacent to each other in the through direction of the through hole 61. The magnets 56 and 57 are provided with a pair of permanent magnets 56 and 57 in a state where the positions in the circumferential direction are aligned and adjacent to each other in the through direction of the through hole 61.

また、鉄部材には、永久磁石の方向すなわち外径側に突出する環状の凸部80が貫通穴61の貫通方向すなわち可動子53の往復動の方向に隣り合って複数具体的には二カ所設けられている。ここで、貫通穴61の貫通方向における一側の凸部80が、貫通穴61の貫通方向におけるこれと同側に設けられた永久磁石54,55および永久磁石56,57との間で磁束を導く一方、貫通穴61の貫通方向における逆側の凸部80が、貫通穴61の貫通方向におけるこれと同側に設けられた永久磁石54,55および永久磁石56,57との間で磁束を導く。   In addition, the iron member has a plurality of, specifically, two locations, adjacent to the direction of the permanent magnet, that is, the annular protrusion 80 projecting toward the outer diameter side in the direction of penetration of the through hole 61, that is, the direction of reciprocation of the mover 53. Is provided. Here, the convex portion 80 on one side in the penetration direction of the through hole 61 causes magnetic flux to be generated between the permanent magnets 54 and 55 and the permanent magnets 56 and 57 provided on the same side in the penetration direction of the through hole 61. On the other hand, the convex portion 80 on the opposite side in the penetrating direction of the through hole 61 causes magnetic flux to pass between the permanent magnets 54 and 55 and the permanent magnets 56 and 57 provided on the same side in the penetrating direction of the through hole 61. Lead.

以上に述べた第3実施形態のリニアアクチュエータ51によれば、第2実施形態と同様の効果を発揮することができ、その上で、一対の永久磁石54,55および一対の永久磁石56,57の組が可動子53の往復動の方向に複数組設けられているため、さらに強力な永久磁石の磁界と電流による起磁力を得ることができる。その上、鉄部材72には可動子53の往復動の方向に隣り合って永久磁石54〜57の方向に突出する凸部80が複数設けられているため、往復動のいずれにおいても凸部80の端面に効率的に吸引力を作用させることができ、その結果、可動子をより大きな力で駆動することができる。   According to the linear actuator 51 of the third embodiment described above, the same effect as that of the second embodiment can be exhibited. In addition, the pair of permanent magnets 54 and 55 and the pair of permanent magnets 56 and 57 can be obtained. Are provided in the direction of the reciprocating motion of the mover 53, the magnetic field of the stronger permanent magnet and the magnetomotive force due to the current can be obtained. In addition, since the iron member 72 is provided with a plurality of convex portions 80 that are adjacent to the reciprocating direction of the mover 53 and project in the direction of the permanent magnets 54 to 57, the convex portion 80 is provided in any of the reciprocating motions. Thus, it is possible to efficiently apply a suction force to the end face, and as a result, it is possible to drive the mover with a larger force.

なお、上述したすべてのリニアアクチュエータ11について、中心軸線側と外径側とで構成を反転させるようにしても良い。例えば、図10および図11に示すように、コイル18を含むヨーク12の外径側に永久磁石14,15および永久磁石16,17を配置し、永久磁石14,15および永久磁石16,17の外径側に往復動可能に円筒状の可動子13を設けるのである。このように構成すれば、全体として同じ大きさとした場合に、コイル18が小さくなるので、銅損失が少なくなり、力を発生させる面積を大きくすることができて、効率を向上させることができる。   In addition, about all the linear actuators 11 mentioned above, you may make it reverse a structure by the center axis line side and an outer diameter side. For example, as shown in FIGS. 10 and 11, permanent magnets 14 and 15 and permanent magnets 16 and 17 are arranged on the outer diameter side of the yoke 12 including the coil 18, and the permanent magnets 14 and 15 and the permanent magnets 16 and 17 are arranged. A cylindrical mover 13 is provided on the outer diameter side so as to be able to reciprocate. If configured in this manner, the coil 18 becomes smaller when the same size is adopted as a whole, so that the copper loss is reduced, the area for generating force can be increased, and the efficiency can be improved.

本発明の第1実施形態のリニアアクチュエータを示す正断面図である。It is a front sectional view showing the linear actuator of the first embodiment of the present invention. 本発明の第1実施形態のリニアアクチュエータを示す側断面図であって、コイルに電流が流れていないときの磁束の状態を二点鎖線で示すものである。It is a sectional side view which shows the linear actuator of 1st Embodiment of this invention, Comprising: The state of the magnetic flux when the electric current is not flowing into the coil is shown with a dashed-two dotted line. 本発明の第1実施形態のリニアアクチュエータを示す正断面図であって、コイルに電流が一方向に流れているときの磁束の状態を二点鎖線で示すものである。It is a front sectional view showing a linear actuator of a 1st embodiment of the present invention, and shows a state of magnetic flux when a current is flowing through a coil in one direction by a two-dot chain line. 本発明の第1実施形態のリニアアクチュエータを示す側断面図であって、コイルに電流が一方向に流れているときの磁束の状態を二点鎖線で示すものである。It is a sectional side view which shows the linear actuator of 1st Embodiment of this invention, Comprising: The state of the magnetic flux when the electric current is flowing through the coil to one direction is shown with a dashed-two dotted line. 本発明の第1実施形態のリニアアクチュエータを示す正断面図であって、コイルに電流が逆方向に流れているときの磁束の状態を二点鎖線で示すものである。It is a front sectional view showing a linear actuator of a 1st embodiment of the present invention, and shows a state of magnetic flux when a current is flowing through a coil in the reverse direction by a two-dot chain line. 本発明の第1実施形態のリニアアクチュエータを示す側断面図であって、コイルに電流が逆方向に流れているときの磁束の状態を二点鎖線で示すものである。It is a sectional side view which shows the linear actuator of 1st Embodiment of this invention, Comprising: The state of the magnetic flux when the electric current is flowing through the coil in the reverse direction is shown with a dashed-two dotted line. 本発明の第2実施形態のリニアアクチュエータを示す正断面図である。It is a front sectional view showing a linear actuator of a second embodiment of the present invention. 本発明の第2実施形態のリニアアクチュエータを示す図7に示すX−X線に沿う断面図である。It is sectional drawing which follows the XX line shown in FIG. 7 which shows the linear actuator of 2nd Embodiment of this invention. 本発明の第3実施形態のリニアアクチュエータを示す図7に示すX−X線に沿う断面図である。It is sectional drawing which follows the XX line shown in FIG. 7 which shows the linear actuator of 3rd Embodiment of this invention. 本発明の第1実施形態のリニアアクチュエータの変形例を示す正断面図である。It is a front sectional view showing a modification of the linear actuator of the first embodiment of the present invention. 本発明の第1実施形態のリニアアクチュエータの変形例を示す側断面図である。It is a sectional side view which shows the modification of the linear actuator of 1st Embodiment of this invention.

符号の説明Explanation of symbols

11 リニアアクチュエータ
12 ヨーク(固定子)
13 可動子
14,15 永久磁石(第1の一対の永久磁石)
14a,15a,16a,17a N極(磁極)
14b,15b,16b,17b S極(磁極)
16,17 永久磁石(第2の一対の永久磁石)
18 コイル
51 リニアアクチュエータ
52 ヨーク(固定子)
53 可動子
54,55 永久磁石(第1の一対の永久磁石)
54a,55a,56a,57a N極(磁極)
54b,55b,56b,57b S極(磁極)
56,57 永久磁石(第2の一対の永久磁石)
58 コイル
72 鉄部材
80 凸部
11 Linear actuator 12 Yoke (stator)
13 Movers 14, 15 Permanent magnets (first pair of permanent magnets)
14a, 15a, 16a, 17a N pole (magnetic pole)
14b, 15b, 16b, 17b S pole (magnetic pole)
16, 17 Permanent magnets (second pair of permanent magnets)
18 Coil 51 Linear actuator 52 Yoke (stator)
53 Movers 54, 55 Permanent magnets (first pair of permanent magnets)
54a, 55a, 56a, 57a N pole (magnetic pole)
54b, 55b, 56b, 57b S pole (magnetic pole)
56, 57 Permanent magnets (second pair of permanent magnets)
58 Coil 72 Iron member 80 Convex

Claims (3)

固定子と、
前記固定子の内部にその軸方向と同じ軸方向に配置されその軸方向に往復動可能に支持されており、少なくとも一部に鉄部材を有する可動子とからなるリニアアクチュエータであって、
前記固定子はその軸方向に垂直な断面における内壁面から前記可動子に向かって相対して伸びる一対の凸部を有し、それら凸部の先端には凹状の第1の円筒面部および第2の円筒面部が形成されており、
前記第1の円筒面部には、互いに前記往復動の方向に隣り合った状態で前記鉄部材に対向しかつ前記往復動の方向に直交して磁極を並べしかも互いの磁極の並びを逆にした状態で前記固定子に設けられた第1の一対の永久磁石が設けられており、
前記第2の円筒面部には、一対の該第1の一対の永久磁石に対し前記往復動の方向における位置を合わせるとともに、互いに前記往復動の方向に隣り合った状態で前記鉄部材に対向しかつ前記往復動の方向に直交して磁極を並べしかも互いの磁極の並びを逆にした状態で前記固定子に設けられた第2の一対の永久磁石が設けられており、
前記可動子を挟んで配置されて前記固定子に設けられた一対のコイルを備え、
前記第1の一対の永久磁石および前記第2の一対の永久磁石は、前記往復動の方向に位置が合う永久磁石同士で前記鉄部材に対向させる磁極を逆にしており、
前記固定子は、前記可動子の往復動方向に延在する貫通穴を有する筒形状になっており
前記可動子は、前記第1、第2の一対の永久磁石の間に配置されているとともに、該可動子の往復動方向に延在する貫通穴を有する筒形状になっており、
前記往復動の方向と垂直な面における前記可動子の厚さは、前記と同じ垂直な面における前記固定子の前記凸部が形成されていない部分を通る磁束密度に比べ密となるように薄く設定されていることを特徴とするリニアアクチュエータ。
A stator,
A linear actuator which is arranged in the same axial direction as the axial direction inside the stator and is supported so as to be able to reciprocate in the axial direction.
The stator has a pair of convex portions extending from an inner wall surface in a cross section perpendicular to the axial direction thereof toward the mover, and a concave first cylindrical surface portion and a second cylindrical portion are formed at the tips of the convex portions. The cylindrical surface part is formed,
The first cylindrical surface portion is arranged adjacent to each other in the reciprocating direction, facing the iron member and arranged perpendicular to the reciprocating direction, and the arrangement of the magnetic poles is reversed. A first pair of permanent magnets provided on the stator in a state are provided;
The second cylindrical surface portion is aligned with the position of the first pair of permanent magnets in the reciprocating direction and is opposed to the iron member in a state adjacent to each other in the reciprocating direction. And a second pair of permanent magnets provided on the stator in a state where the magnetic poles are arranged perpendicular to the reciprocating direction and the arrangement of the magnetic poles is reversed,
A pair of coils arranged on the stator and sandwiched between the movers,
The first pair of permanent magnets and the second pair of permanent magnets have opposite magnetic poles facing the iron member between permanent magnets that are aligned in the reciprocating direction,
The stator has a cylindrical shape having a through hole extending in a reciprocating direction of the mover, and the mover is disposed between the first and second pair of permanent magnets. , A cylindrical shape having a through hole extending in the reciprocating direction of the mover,
The thickness of the mover in the plane perpendicular to the reciprocating direction is thin so as to be denser than the magnetic flux density passing through the portion of the stator in which the convex portion is not formed in the same vertical plane. A linear actuator characterized by being set.
前記第1の一対の永久磁石および前記第2の一対の永久磁石の組と記鉄部材の凸部とのセットが往復動方向に隣り合って複数設けられることを特徴とする請求項1記載のリニアアクチュエータ。   2. The set of the first pair of permanent magnets and the pair of second pair of permanent magnets and a set of convex portions of the iron member are provided adjacent to each other in the reciprocating direction. Linear actuator. 前記固定子は前記往復動の方向に積層された積層鋼板から成ることを特徴とする請求項1又は2のいずれか一項に記載のリニアアクチュエータ。   The linear actuator according to claim 1, wherein the stator is made of laminated steel plates laminated in the reciprocating direction.
JP2008283167A 2008-11-04 2008-11-04 Linear actuator Pending JP2009027921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008283167A JP2009027921A (en) 2008-11-04 2008-11-04 Linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008283167A JP2009027921A (en) 2008-11-04 2008-11-04 Linear actuator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002143954A Division JP2003339147A (en) 2001-12-03 2002-05-20 Linear actuator

Publications (1)

Publication Number Publication Date
JP2009027921A true JP2009027921A (en) 2009-02-05

Family

ID=40399173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283167A Pending JP2009027921A (en) 2008-11-04 2008-11-04 Linear actuator

Country Status (1)

Country Link
JP (1) JP2009027921A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419108A (en) * 1977-07-13 1979-02-13 Mitsubishi Electric Corp Electromagnetic type reciprocal motion generating apparatus
JP2000253640A (en) * 1999-02-25 2000-09-14 Sanyo Electric Co Ltd Linear vibration motor
JP2001078417A (en) * 1999-09-06 2001-03-23 Matsushita Electric Ind Co Ltd Linear actuator
JP2002519981A (en) * 1997-08-22 2002-07-02 ソンセボズ エス.エー. Electromagnetic actuator with two moving parts of opposite phase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419108A (en) * 1977-07-13 1979-02-13 Mitsubishi Electric Corp Electromagnetic type reciprocal motion generating apparatus
JP2002519981A (en) * 1997-08-22 2002-07-02 ソンセボズ エス.エー. Electromagnetic actuator with two moving parts of opposite phase
JP2000253640A (en) * 1999-02-25 2000-09-14 Sanyo Electric Co Ltd Linear vibration motor
JP2001078417A (en) * 1999-09-06 2001-03-23 Matsushita Electric Ind Co Ltd Linear actuator

Similar Documents

Publication Publication Date Title
KR100918507B1 (en) Linear actuator
US6946754B2 (en) Linear motor and linear compressor
JP3873836B2 (en) Linear actuator
US8310113B2 (en) Multiple armature linear motor/alternator having magnetic spring with no fringe fields and increased power output
JP2007037273A (en) Vibratory linear actuator
JP2003339145A (en) Linear actuator
JP3818243B2 (en) Linear vibrator
JP2003339147A (en) Linear actuator
JP2006320150A (en) Linear actuator
JP2010158166A (en) Linear actuator
JP4556930B2 (en) Linear actuator
JP3873764B2 (en) Linear actuator
JP2003309964A (en) Linear motor
JP3873765B2 (en) Linear actuator
JP2009027921A (en) Linear actuator
JP2009027922A (en) Linear actuator
US20060214753A1 (en) Linear actuator
JP4457598B2 (en) Linear actuator
JP4692711B2 (en) Linear actuator
JP4692713B2 (en) Linear actuator
JP3873791B2 (en) Linear actuator
JP2003250256A (en) Linear actuator
JP4572577B2 (en) Linear actuator
JP2005328685A (en) Linear actuator
JP7030558B2 (en) Reciprocating electric shaver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

RD04 Notification of resignation of power of attorney

Effective date: 20101201

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110810

A02 Decision of refusal

Effective date: 20111206

Free format text: JAPANESE INTERMEDIATE CODE: A02