JP2009026874A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2009026874A
JP2009026874A JP2007187047A JP2007187047A JP2009026874A JP 2009026874 A JP2009026874 A JP 2009026874A JP 2007187047 A JP2007187047 A JP 2007187047A JP 2007187047 A JP2007187047 A JP 2007187047A JP 2009026874 A JP2009026874 A JP 2009026874A
Authority
JP
Japan
Prior art keywords
region
polysilicon layer
power supply
supply voltage
voltage circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007187047A
Other languages
Japanese (ja)
Other versions
JP5147319B2 (en
Inventor
Hiroaki Takasu
博昭 鷹巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007187047A priority Critical patent/JP5147319B2/en
Publication of JP2009026874A publication Critical patent/JP2009026874A/en
Application granted granted Critical
Publication of JP5147319B2 publication Critical patent/JP5147319B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having a high element integration degree which has a sufficient element separation characteristic and latch-up resistance at a high power supply voltage circuit with no increase in the number of processes, while a trench separation identical with that of the high power supply voltage circuit is used even at a low power supply voltage circuit. <P>SOLUTION: In the semiconductor device having a trench separation structure, polysilicon layers 771 and 772 are embedded in a trench separation region 301 near ends of well regions 201 and 202, to prevent the formation of an inversion layer formed in a parasitic manner on the surface of the semiconductor substrate because of the potential of wiring. Their conductive types are identical with those of the well region and the semiconductor substrate on the lower surface. The distance between the side surface of the trench separation region and the polysilicon layer is longer than that between the bottom surface of the trench separation region and the polysilicon layer so that the formation of the inversion layer on the lower surface of the trench region is prevented while insulation characteristics for an MOS type transistor is maintained. This effectively prevents the formation of the inversion layer and prevents the occurrence of latch up. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、素子分離構造にトレンチ分離を使用した多電源電圧を持つCMOSデバイス等のトレンチ分離構造を有する半導体装置に関する。   The present invention relates to a semiconductor device having a trench isolation structure such as a CMOS device having multiple power supply voltages using trench isolation as an element isolation structure.

多電源電圧を使用するCMOSデバイスを有する半導体装置では、ロジック回路などの内部回路を構成する低電源電圧部の集積度を向上させるとともに、入出力回路などに用いられる高電源電圧部の素子分離領域での寄生トランジスタの形成を防止し、ラッチアップ耐性を確保することが重要である。   In a semiconductor device having a CMOS device that uses multiple power supply voltages, the degree of integration of a low power supply voltage part constituting an internal circuit such as a logic circuit is improved and an element isolation region of a high power supply voltage part used for an input / output circuit or the like It is important to prevent the formation of a parasitic transistor in order to ensure latch-up resistance.

近年の素子分離にはLOCOS法に比べて高集積化に適しているトレンチ分離方法が採用される場合が多い。しかしながら、LOCOS法においては寄生チャネルの発生を防止するための不純物濃度の濃い領域、いわゆるチャネルストッパー領域あるいはフィールドドープ領域を容易に具備することができ、LOCOS下の半導体基板の反転を防止することができるため高電圧電源回路の素子分離特性に優れていた。一方、トレンチ分離で素子分離した半導体装置では、トレンチ分離領域上を通過する配線の電位によってトレンチ分離領域下部の半導体基板の表面に寄生的な反転層が形成される、いわゆる寄生チャネルを生じやすいという問題点があり、特に高電圧電源回路部の形成に支障を来たしていた。   In recent years, a trench isolation method suitable for higher integration than the LOCOS method is often employed for element isolation. However, in the LOCOS method, a region having a high impurity concentration for preventing the generation of a parasitic channel, a so-called channel stopper region or a field doped region can be easily provided, and the inversion of the semiconductor substrate under the LOCOS can be prevented. Therefore, the element isolation characteristics of the high voltage power supply circuit were excellent. On the other hand, in a semiconductor device in which elements are isolated by trench isolation, a parasitic inversion layer is formed on the surface of the semiconductor substrate below the trench isolation region due to the potential of the wiring passing over the trench isolation region, so-called parasitic channels are likely to occur. There was a problem, and in particular, the formation of the high voltage power supply circuit part was hindered.

ここで、反転層や寄生チャネルの形成、およびそれらにより引き起こされるラッチアップについて、図4を参照して説明する。   Here, the formation of the inversion layer and the parasitic channel and the latch-up caused by them will be described with reference to FIG.

図4は、従来の半導体装置の高電源電圧回路部の一部を示す模式的断面図である。   FIG. 4 is a schematic cross-sectional view showing a part of a high power supply voltage circuit portion of a conventional semiconductor device.

第1導電型半導体基板としてのP型のシリコン基板101上には、第1ウエルとしてP型の低濃度不純物領域からなるPウエル領域201および第2ウエルとしてN型の低濃度不純物領域からなるNウエル領域202が隣接して形成されており、Pウエル領域201の表面には例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501が、またNウエル領域202の表面には例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502が形成されており、その間には素子分離用のトレンチ分離領域301が形成されている。トレンチ分離領域301内部にはシリコン酸化膜のような絶縁物が一般には充填されている。また、その上部には各素子を電気的に接続するためのアルミニウムなどからなる配線901が、シリコン酸化膜などよりなる第1の絶縁膜601を介して配置されている。   On a P-type silicon substrate 101 as a first conductivity type semiconductor substrate, a P-well region 201 composed of a P-type low-concentration impurity region as a first well and an N-type low-concentration impurity region as a second well. A well region 202 is formed adjacently, and an N-type high-concentration impurity region 501 that is a source or drain region of an N-type MOS transistor, for example, is formed on the surface of the P-well region 201. On the surface, for example, a P-type high-concentration impurity region 502 which is a source or drain region of a P-type MOS transistor is formed, and a trench isolation region 301 for element isolation is formed therebetween. The trench isolation region 301 is generally filled with an insulator such as a silicon oxide film. In addition, a wiring 901 made of aluminum or the like for electrically connecting each element is disposed on the upper portion thereof via a first insulating film 601 made of a silicon oxide film or the like.

電源電圧に例えば30Vを使用する高電源電圧回路では、配線901には30Vの電位が供給される場合がある。この際にPウエル領域201の電位はグランドレベル(0V)であるため、Pウエル領域201のトレンチ分離領域301の下部には、容易にN型の反転層921が形成されてしまう。これにより、N型の高濃度不純物領域501とN型の反転層921とNウエル領域202からなる寄生トランジスタが導通し、オン電流が生じる。このオン電流によるNウエル領域202の電位降下によりP型の高濃度不純物領域502、Nウエル領域202、P型のシリコン基板101によるバーチカルな寄生PNPトランジスタがオンする。これによって、Pウエル領域201の電位上昇が生じ、いわゆるラッチアップ現象を引き起こす。   In a high power supply voltage circuit using, for example, 30 V as the power supply voltage, a potential of 30 V may be supplied to the wiring 901 in some cases. At this time, since the potential of the P well region 201 is at the ground level (0 V), an N-type inversion layer 921 is easily formed below the trench isolation region 301 of the P well region 201. As a result, the parasitic transistor including the N-type high-concentration impurity region 501, the N-type inversion layer 921, and the N-well region 202 becomes conductive, and an on-current is generated. Due to the potential drop in the N-well region 202 due to this on-current, the vertical parasitic PNP transistor composed of the P-type high concentration impurity region 502, the N-well region 202, and the P-type silicon substrate 101 is turned on. As a result, the potential of the P-well region 201 rises, causing a so-called latch-up phenomenon.

高電源電圧回路部に十分なラッチアップ耐性を持たせるためにはウエルの深さを深くして寄生バイポーラ動作を抑える必要があり、またNMOSトランジスタとPMOSトランジスタ間のリーク電流を抑え、充分な耐圧を確保するために、トレンチ分離部の分離幅を大きくとる必要があった。   In order to make the high power supply voltage circuit section have sufficient latch-up resistance, it is necessary to reduce the parasitic bipolar operation by increasing the depth of the well, and to suppress the leakage current between the NMOS transistor and the PMOS transistor, and withstand voltage sufficiently Therefore, it is necessary to increase the isolation width of the trench isolation part.

さらに、高電源電圧回路部のウエルの深さを低電源電圧回路部のウエルの深さよりも深くしたり、高電源電圧回路部のトレンチ分離部の分離幅を低電源電圧回路部のトレンチ分離幅に比べて広くしたりする方法も提案されている。(例えば、特許文献1参照。)
特開2000−58673(第1図)
Furthermore, the well depth of the high power supply voltage circuit section is made deeper than the well depth of the low power supply voltage circuit section, or the trench isolation width of the high power supply voltage circuit section is set to the trench isolation width of the low power supply voltage circuit section. A method of making it wider than that has also been proposed. (For example, refer to Patent Document 1.)
JP 2000-58673 (FIG. 1)

しかしながら、上述のようにトレンチ分離で素子分離した多電源電圧を使用する半導体装置においては、高電源電圧回路部に十分なラッチアップ耐性を持たせるためにはウエルの深さを深くして寄生バイポーラ動作を抑える必要があり、またNMOSトランジスタとPMOSトランジスタ間のリーク電流を抑え、反転耐圧特性を確保するために、トレンチ分離部の分離幅を大きくとる必要があったために、低電源電圧回路部においても高電源電圧回路部と同じトレンチ分離を使用すると高い集積度が要求される低電源電圧回路部の素子の集積度が低下するという問題点を有していた。   However, in the semiconductor device using the multiple power supply voltage separated by trench isolation as described above, the well bipolar circuit is formed by increasing the well depth in order to give the high power supply voltage circuit portion sufficient latch-up resistance. It is necessary to suppress the operation, and it is necessary to increase the isolation width of the trench isolation part in order to suppress the leakage current between the NMOS transistor and the PMOS transistor and to secure the inversion withstand voltage characteristic. However, when the same trench isolation as that of the high power supply voltage circuit unit is used, there is a problem that the degree of integration of the elements of the low power supply voltage circuit unit that requires a high degree of integration is lowered.

また、高電源電圧回路部のウエルの深さを低電源電圧回路部のウエルの深さよりも深くしたり、高電源電圧回路部のトレンチ分離部の分離幅を低電源電圧回路部に比べて広くしたりする方法も開示されているが製造工程が増加したり、分離幅が増大したりしてコストアップに繋がるなどの問題点があった。   Also, the well depth of the high power supply voltage circuit section is made deeper than the well depth of the low power supply voltage circuit section, and the isolation width of the trench isolation section of the high power supply voltage circuit section is wider than that of the low power supply voltage circuit section. However, there have been problems such as an increase in manufacturing steps and an increase in separation width leading to an increase in cost.

上記問題点を解決するために、本発明は半導体装置を以下のように構成した。   In order to solve the above problems, the present invention is configured as follows.

半導体基板上に高電源電圧回路部と低電源電圧回路部とを有し、高電源電圧回路部および低電源電圧回路部における各素子をトレンチ分離領域により素子分離したトレンチ分離構造を有し、高電源電圧回路部は、少なくとも一つのウエル領域とMOS型トランジスタ、及び各素子を電気的に接続する配線を有する半導体装置において、配線の電位によって半導体基板の表面に寄生的に形成される反転層の発生を防止するためにウエル領域の端部近傍のトレンチ分離領域内にポリシリコン層が埋設されており、ポリシリコン層の導電型は、ポリシリコン層の下面に位置する半導体基板もしくはウエル領域とそれぞれ同一の導電型であるようにした。   It has a high power supply voltage circuit portion and a low power supply voltage circuit portion on a semiconductor substrate, and has a trench isolation structure in which each element in the high power supply voltage circuit portion and the low power supply voltage circuit portion is separated by a trench isolation region. The power supply voltage circuit unit includes an inversion layer formed parasitically on the surface of a semiconductor substrate by a potential of a wiring in a semiconductor device having at least one well region, a MOS transistor, and a wiring for electrically connecting each element. In order to prevent the occurrence, a polysilicon layer is buried in the trench isolation region near the end of the well region, and the conductivity type of the polysilicon layer is different from that of the semiconductor substrate or well region located on the lower surface of the polysilicon layer, respectively. It was made to be the same conductivity type.

また、トレンチ分離領域内のポリシリコン層は、トレンチ分離領域の側面とポリシリコン層との距離がトレンチ分離領域の底面とポリシリコン層との距離よりも広くなるように形成して、トレンチ領域下面に寄生的に形成される恐れのある反転層の発生をポリシリコン層の導電型による仕事関数差を利用して効果的に押さえ込みつつ、トレンチ分離領域と隣接して形成されるMOS型トランジスタの濃い不純物濃度領域からなるドレイン領域やソース領域に高い電圧が印加されても絶縁性を保持できるようにした。   The polysilicon layer in the trench isolation region is formed so that the distance between the side surface of the trench isolation region and the polysilicon layer is larger than the distance between the bottom surface of the trench isolation region and the polysilicon layer. The MOS layer transistor formed adjacent to the trench isolation region is effectively suppressed by effectively utilizing the work function difference due to the conductivity type of the polysilicon layer to suppress the generation of the inversion layer that may be parasitically formed in the MOS layer. The insulating property can be maintained even when a high voltage is applied to the drain region and the source region including the impurity concentration region.

また、ポリシリコン層は、第1の導電型の領域と第2の導電型の領域とからなり、第1の導電型の領域と第2の導電型の領域は、同一のポリシリコン層内に連続して形成されているようにした。   The polysilicon layer is composed of a first conductivity type region and a second conductivity type region, and the first conductivity type region and the second conductivity type region are within the same polysilicon layer. It was made to form continuously.

そして、ポリシリコン層の電位は、ポリシリコン層の下面に位置する半導体基板もしくはウエル領域とそれぞれ同一の電位になるように固定されるようにして、仕事関数に加えて固定された電位で反転層の形成をより強固に防止するようにした。   Then, the potential of the polysilicon layer is fixed so as to be the same potential as that of the semiconductor substrate or well region located on the lower surface of the polysilicon layer, and the inversion layer at a fixed potential in addition to the work function. The formation of was more strongly prevented.

あるいは、比較的濃い不純物濃度を有する半導体基板やウエル領域を用いた場合には、半導体基板上に高電源電圧回路部と低電源電圧回路部とを有し、高電源電圧回路部および低電源電圧回路部における各素子をトレンチ分離領域により素子分離した前記トレンチ分離構造を有し、高電源電圧回路部は、少なくとも一つのウエル領域とMOS型トランジスタ、及び各素子を電気的に接続する配線を有する半導体装置において、配線の電位によって半導体基板の表面に寄生的に形成される反転層の発生を防止するためにウエル領域の端部近傍のトレンチ分離領域内にポリシリコン層が埋設されており、ポリシリコン層は、ポリシリコン層の下面に位置する半導体基板もしくはウエル領域の中で、最も不純物濃度の薄い領域と同一の導電型で形成することで、より反転層が形成されやすい側に集中して反転層形成を防止することでより簡便にラッチアップを防止するようにした。   Alternatively, when a semiconductor substrate or well region having a relatively high impurity concentration is used, the semiconductor substrate has a high power supply voltage circuit portion and a low power supply voltage circuit portion on the semiconductor substrate. The device has the trench isolation structure in which each element in the circuit part is isolated by a trench isolation region, and the high power supply voltage circuit part has at least one well region, a MOS transistor, and a wiring for electrically connecting the elements. In a semiconductor device, a polysilicon layer is embedded in a trench isolation region near the end of a well region in order to prevent the occurrence of an inversion layer formed parasitically on the surface of a semiconductor substrate due to the potential of a wiring. The silicon layer is formed with the same conductivity type as the region with the lowest impurity concentration in the semiconductor substrate or well region located on the lower surface of the polysilicon layer. In Rukoto and to prevent more easily latch-up by preventing the inversion layer formed concentrate to more easily an inversion layer is formed side.

本発明によれば、工程の増加もなく高電源電圧回路部に十分な素子分離特性とラッチアップ耐性を持たせつつ、低電源電圧回路部においても高電源電圧回路部と同じトレンチ分離を使用しながら高い素子集積度を持った半導体装置を得ることができる。   According to the present invention, the same trench isolation as that of the high power supply voltage circuit unit is used in the low power supply voltage circuit unit while the high power supply voltage circuit unit has sufficient element isolation characteristics and latch-up resistance without increasing the number of processes. However, a semiconductor device having a high degree of element integration can be obtained.

図1は、本発明の半導体装置の高電源電圧回路部の第1の実施例を示す模式的断面図である。   FIG. 1 is a schematic cross-sectional view showing a first embodiment of the high power supply voltage circuit portion of the semiconductor device of the present invention.

第1導電型半導体基板としてのP型のシリコン基板101上には、第1ウエルとしてP型の低濃度不純物領域からなるPウエル領域201および第2ウエルとしてN型の低濃度不純物領域からなるNウエル領域202が隣接して形成されており、Pウエル領域201の表面には、例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501が、またNウエル領域202の表面には例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502が形成されており、その間には素子分離用のトレンチ分離領域301が形成されている。一般にはトレンチ分離領域301内部にはシリコン酸化膜のような絶縁物が充填されている。   On a P-type silicon substrate 101 as a first conductivity type semiconductor substrate, a P-well region 201 composed of a P-type low-concentration impurity region as a first well and an N-type low-concentration impurity region as a second well. A well region 202 is formed adjacently. An N-type high-concentration impurity region 501 that is a source or drain region of an N-type MOS transistor, for example, is formed on the surface of the P-well region 201, and an N-well region 202 is also formed. For example, a P-type high-concentration impurity region 502 which is a source or drain region of a P-type MOS transistor is formed on the surface, and a trench isolation region 301 for element isolation is formed therebetween. In general, the trench isolation region 301 is filled with an insulator such as a silicon oxide film.

Pウエル領域201上の素子分離用のトレンチ分離領域301内にはP型のポリシリコン層771が形成され、図示しないがその電位はPウエル領域201と同一であり、たとえばグランドレベルになるように固定接続されている。   A P-type polysilicon layer 771 is formed in the trench isolation region 301 for element isolation on the P well region 201. Although not shown, the potential thereof is the same as that of the P well region 201. Fixed connection.

ここで、P型のポリシリコン層771とトレンチ分離領域301との横方向の間隔となるトレンチ側面の絶縁膜厚911は、P型のポリシリコン層771とトレンチ分離領域301との縦方向の間隔となるトレンチ底面の絶縁膜厚912よりも広く設定されており、トレンチ分離領域301に隣接して形成されるN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501に高い電圧が印加された場合でも絶縁破壊を生じることなく良好な絶縁性を保持するとともに、仕事関数差を利用して、トレンチ領域301の下面に形成される恐れのある反転層の形成を効果的に抑えることが出来る。   Here, the insulating film thickness 911 on the side surface of the trench, which is the lateral distance between the P-type polysilicon layer 771 and the trench isolation region 301, is the vertical distance between the P-type polysilicon layer 771 and the trench isolation region 301. The N-type high-concentration impurity region 501 is a source or drain region of an N-type MOS transistor formed adjacent to the trench isolation region 301. Even when a high voltage is applied, good insulation is maintained without causing dielectric breakdown, and it is effective to form an inversion layer that may be formed on the lower surface of the trench region 301 by utilizing the work function difference. Can be suppressed.

Nウエル領域202上の素子分離用のトレンチ分離領域301内にはN型のポリシリコン層772が形成され、図示しないがその電位はNウエル領域202と同一であり、たとえば電源電圧になるように固定接続されている。本実施例ではP型のポリシリコン層771とN型のポリシリコン層772とは接触しておらず、間にトレンチ分離領域301をはさんで離間している。   In the trench isolation region 301 for element isolation on the N well region 202, an N type polysilicon layer 772 is formed. Although not shown, the potential thereof is the same as that of the N well region 202, so that it becomes, for example, a power supply voltage. Fixed connection. In this embodiment, the P-type polysilicon layer 771 and the N-type polysilicon layer 772 are not in contact with each other and are separated with the trench isolation region 301 interposed therebetween.

ここで、P型のポリシリコン層771とトレンチ分離領域301との関係で説明したのと同様に、N型のポリシリコン層772とトレンチ分離領域301との関係も、横方向の間隔となるトレンチ側面の絶縁膜厚が縦方向の間隔となるトレンチ底面の絶縁膜厚よりも広く設定されており、トレンチ分離領域301に隣接して形成されるP型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域502に相対的に高い電圧が印加された場合でも絶縁破壊を生じることなく良好な絶縁性を保持するとともに、仕事関数差を利用して、トレンチ領域301の下面に形成される恐れのある反転層の形成を効果的に抑えることが出来る。   Here, similarly to the relationship between the P-type polysilicon layer 771 and the trench isolation region 301, the relationship between the N-type polysilicon layer 772 and the trench isolation region 301 is also a trench having a horizontal interval. The insulating film thickness on the side surface is set wider than the insulating film thickness on the bottom surface of the trench, which is the vertical interval, and is a source or drain region of a P-type MOS transistor formed adjacent to the trench isolation region 301. Even when a relatively high voltage is applied to the N-type high-concentration impurity region 502, good insulation is maintained without causing dielectric breakdown, and a work function difference is used to form the lower surface of the trench region 301. It is possible to effectively suppress the formation of the inversion layer that may be formed.

トレンチ領域301の上には、シリコン酸化膜などよりなる第1の絶縁膜601や第2の絶縁膜801を介して、各素子を電気的に接続するためのアルミニウムなどからなる配線901が形成されている。   A wiring 901 made of aluminum or the like for electrically connecting each element is formed on the trench region 301 via a first insulating film 601 and a second insulating film 801 made of a silicon oxide film or the like. ing.

ここで、配線901に例えば30Vの高い電位が供給された場合でも、トレンチ領域301内にP型のポリシリコン層771が形成されており、その電位はPウエル領域201と同一になるように固定されているため、Pウエル領域201の表面にN型の反転層を形成することはない。   Here, even when a high potential of 30 V, for example, is supplied to the wiring 901, the P-type polysilicon layer 771 is formed in the trench region 301, and the potential is fixed to be the same as that of the P well region 201. Therefore, an N-type inversion layer is not formed on the surface of the P-well region 201.

ここで、トレンチ領域301内に形成されたP型のポリシリコン層771の電位を固定することなく、フローティング状態で配置しても、P型の導電体としてそれ自身が有する仕事関数により、その下面に位置するPウエル領域201の表面に反転層を形成することを防止する効果を有するので、レイアウト上の制約や、コスト的な観点などから、P型のポリシリコン層771の電位固定を行わない使用方法も場合によっては可能である。   Here, even if it is arranged in a floating state without fixing the potential of the P-type polysilicon layer 771 formed in the trench region 301, the lower surface of the P-type polysilicon layer 771 depends on the work function of the P-type conductor itself. Since the effect of preventing the formation of the inversion layer on the surface of the P-well region 201 located in the region is not fixed, the potential of the P-type polysilicon layer 771 is not fixed from the viewpoint of layout restrictions and cost. Usage is also possible in some cases.

一方、配線901に例えば0Vなどの低い電位が供給された場合には、たとえば30Vの高い電源電圧に固定されたNウエル領域202表面との電位差が大きくなるため、Nウエル領域202の表面にP型の反転層が形成されてしまうことが懸念されるが、本発明によればトレンチ領域301内にN型のポリシリコン層772が形成されており、その電位はNウエル領域202と同一になるように固定されているため、Nウエル領域202の表面にP型の反転層を形成することはない。   On the other hand, when a low potential such as 0V is supplied to the wiring 901, for example, the potential difference from the surface of the N well region 202 fixed to a high power supply voltage of 30V, for example, increases. However, according to the present invention, the N-type polysilicon layer 772 is formed in the trench region 301, and the potential thereof is the same as that of the N-well region 202. Therefore, a P-type inversion layer is not formed on the surface of the N-well region 202.

ここで、N型のポリシリコン層772の電位についてもP型のポリシリコン層771についての説明と同様ニ、フローティング状態で配置しても、N型の導電体としてそれ自身が有する仕事関数により、その下面に位置するNウエル領域202の表面に反転層を形成することを防止する効果を有するので、レイアウト上の制約や、コスト的な観点などから、N型のポリシリコン層772の電位固定を行わない使用方法も場合によっては可能である。   Here, even if the potential of the N-type polysilicon layer 772 is arranged in a floating state as in the description of the P-type polysilicon layer 771, depending on the work function of the N-type conductor itself, Since it has the effect of preventing the formation of an inversion layer on the surface of the N well region 202 located on the lower surface, the potential of the N type polysilicon layer 772 can be fixed from the viewpoint of layout restrictions and cost. Usage methods that are not performed are possible in some cases.

以上の説明のとおり、本発明によって効果的に反転層の形成を防止し、それによって生じる恐れがあるラッチアップの発生も未然に防止することができる。   As described above, according to the present invention, it is possible to effectively prevent the formation of the inversion layer and to prevent the occurrence of latch-up that may be caused thereby.

図1の例においては、第1の絶縁膜601と第2の絶縁膜801とを有する例を示したが、第1の絶縁膜601あるいは第2の絶縁膜801のどちらか一方のみが配置されることもある。   In the example of FIG. 1, an example having the first insulating film 601 and the second insulating film 801 is shown, but only one of the first insulating film 601 and the second insulating film 801 is arranged. Sometimes.

また、半導体基板とウエル領域の組み合わせについて、図1の例では、第1導電型半導体基板としてP型のシリコン基板、第1ウエルとしてPウエル、第2ウエルとしてNウエルからなる例を示したが、第1導電型半導体基板としてN型のシリコン基板、第1ウエルとしてNウエル、第2ウエルとしてPウエルとした場合にも、図1の例の極性をそれぞれ逆にすればよい。   As for the combination of the semiconductor substrate and the well region, the example of FIG. 1 shows an example in which a P-type silicon substrate is used as the first conductive semiconductor substrate, a P well is used as the first well, and an N well is used as the second well. In the case where an N-type silicon substrate is used as the first conductive semiconductor substrate, an N well is used as the first well, and a P well is used as the second well, the polarities in the example of FIG. 1 may be reversed.

また、NウエルとPウエルの両方の導電方のウエル領域を有さず、片方の導電方のウエル領域だけを有する構造の場合、たとえば第1導電型半導体基板としてP型のシリコン基板、第2ウエルとしてNウエルからなる場合は、P型のシリコン基板を図1の例におけるPウエル領域201と読み替えれば同様の効果を奏することが可能であり、またその逆の組み合わせである、第1導電型半導体基板としてN型のシリコン基板、第2ウエルとしてPウエルからなる例については、第1導電型半導体基板としてN型のシリコン基板、第1ウエルとしてNウエル、第2ウエルとしてPウエルとした場合と同様に逆の極性に置き換えればよい。   Further, in the case of a structure having only the well region of one conductive direction without having the well region of both the N well and the P well, for example, a P-type silicon substrate as the first conductivity type semiconductor substrate, When the well is composed of an N-well, the same effect can be obtained if the P-type silicon substrate is replaced with the P-well region 201 in the example of FIG. In an example of an N type silicon substrate as a type semiconductor substrate and a P well as a second well, an N type silicon substrate as a first conductivity type semiconductor substrate, an N well as a first well, and a P well as a second well Similar to the case, the polarity may be reversed.

なお、図示は省略するが、本発明における半導体装置の低電源電圧回路部においては、動作電圧が低いため、寄生バイポーラ動作やラッチアップは発生しにくい。そのため上記の説明のような反転層形成防止電極は必要ないので高集積化が可能となる。   Although illustration is omitted, in the low power supply voltage circuit portion of the semiconductor device according to the present invention, since the operating voltage is low, parasitic bipolar operation and latch-up hardly occur. Therefore, since the inversion layer formation preventing electrode as described above is not necessary, high integration can be achieved.

図2は、本発明の半導体装置の高電源電圧回路部の第2の実施例を示す模式的断面図である。   FIG. 2 is a schematic cross-sectional view showing a second embodiment of the high power supply voltage circuit portion of the semiconductor device of the present invention.

第1導電型半導体基板としてのP型のシリコン基板101上には、第1ウエルとしてP型の低濃度不純物領域からなるPウエル領域201および第2ウエルとしてN型の低濃度不純物領域からなるNウエル領域202が隣接して形成されており、Pウエル領域201の表面には、例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501が、またNウエル領域202の表面には例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502が形成されており、その間には素子分離用のトレンチ分離領域301が形成されている。   On a P-type silicon substrate 101 as a first conductivity type semiconductor substrate, a P-well region 201 composed of a P-type low-concentration impurity region as a first well and an N-type low-concentration impurity region as a second well. A well region 202 is formed adjacently. An N-type high-concentration impurity region 501 that is a source or drain region of an N-type MOS transistor, for example, is formed on the surface of the P-well region 201, and an N-well region 202 is also formed. For example, a P-type high-concentration impurity region 502 which is a source or drain region of a P-type MOS transistor is formed on the surface, and a trench isolation region 301 for element isolation is formed therebetween.

Pウエル領域201上の素子分離用のトレンチ分離領域301内にはP型のポリシリコン層771が形成され、P型のポリシリコン層771とトレンチ分離領域301との横方向の間隔となるトレンチ側面の絶縁膜厚911は、P型のポリシリコン層771とトレンチ分離領域301との縦方向の間隔となるトレンチ底面の絶縁膜厚912よりも広く設定されており、トレンチ分離領域301に隣接して形成されるN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501に高い電圧が印加された場合でも絶縁破壊を生じることなく良好な絶縁性を保持するとともに、仕事関数差を利用して、トレンチ領域301の下面に形成される恐れのある反転層の形成を効果的に抑えることが出来る。   A P-type polysilicon layer 771 is formed in the trench isolation region 301 for element isolation on the P-well region 201, and the side surface of the trench serving as a lateral distance between the P-type polysilicon layer 771 and the trench isolation region 301 is formed. The insulating film thickness 911 is set wider than the insulating film thickness 912 on the bottom surface of the trench, which is the vertical interval between the P-type polysilicon layer 771 and the trench isolation region 301, and is adjacent to the trench isolation region 301. Even when a high voltage is applied to the N-type high-concentration impurity region 501 that is the source or drain region of the N-type MOS transistor to be formed, good insulation is maintained without causing breakdown and a work function. By utilizing the difference, it is possible to effectively suppress the formation of an inversion layer that may be formed on the lower surface of the trench region 301.

また、Nウエル領域202上の素子分離用のトレンチ分離領域301内にはP型のポリシリコン層771と同一のポリシリコン層にて連続してN型のポリシリコン層772が形成されており、この点が図1で説明した第1の実施例と異なる点である。   Further, in the trench isolation region 301 for element isolation on the N well region 202, an N type polysilicon layer 772 is continuously formed with the same polysilicon layer as the P type polysilicon layer 771, This point is different from the first embodiment described in FIG.

P型のポリシリコン層771とN型のポリシリコン層772との間に間隙を形成する必要がないので、分離領域の横方向の大きさを削減することが可能である。   Since it is not necessary to form a gap between the P-type polysilicon layer 771 and the N-type polysilicon layer 772, it is possible to reduce the lateral size of the isolation region.

その他の動作、機能の説明については 図1と同一の符号を付記することで説明に代える。   Other operations and functions will be described by adding the same reference numerals as those in FIG.

また、半導体基板とウエル領域の組み合わせについては、図1の例と同様に、幾つかの組み合わせが考えられるが図1の例の説明をもって説明に代える。   As for the combination of the semiconductor substrate and the well region, several combinations are conceivable as in the example of FIG. 1, but the description is replaced with the description of the example of FIG.

このようにして、本発明によって効果的に反転層の形成を防止し、それによって生じる恐れがあるラッチアップの発生も未然に防止することができる。   In this way, the present invention can effectively prevent the formation of the inversion layer, and also prevent the occurrence of latch-up that may be caused thereby.

なお、図示は省略するが、本発明における半導体装置の低電源電圧回路部においては、動作電圧が低いため、寄生バイポーラ動作やラッチアップは発生しにくい。そのため上記の説明のような反転層形成防止電極は必要ないので高集積化が可能となる。   Although illustration is omitted, in the low power supply voltage circuit portion of the semiconductor device according to the present invention, since the operating voltage is low, parasitic bipolar operation and latch-up hardly occur. Therefore, since the inversion layer formation preventing electrode as described above is not necessary, high integration can be achieved.

図3は、本発明の半導体装置の高電源電圧回路部の第3の実施例を示す模式的断面図である。   FIG. 3 is a schematic sectional view showing a third embodiment of the high power supply voltage circuit portion of the semiconductor device of the present invention.

第1導電型半導体基板としてのP型のシリコン基板101上には、第1ウエルとしてP型の低濃度不純物領域からなるPウエル領域201および第2ウエルとしてN型の低濃度不純物領域からなるNウエル領域202が隣接して形成されており、Pウエル領域201の表面には、例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501が、またNウエル領域202の表面には例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502が形成されており、その間には素子分離用のトレンチ分離領域301が形成されている。   On a P-type silicon substrate 101 as a first conductivity type semiconductor substrate, a P-well region 201 composed of a P-type low-concentration impurity region as a first well and an N-type low-concentration impurity region as a second well. A well region 202 is formed adjacently. An N-type high-concentration impurity region 501 that is a source or drain region of an N-type MOS transistor, for example, is formed on the surface of the P-well region 201, and an N-well region 202 is also formed. For example, a P-type high-concentration impurity region 502 which is a source or drain region of a P-type MOS transistor is formed on the surface, and a trench isolation region 301 for element isolation is formed therebetween.

Pウエル領域201上およびNウエル領域202上の素子分離用のトレンチ分離領域301内にはP型のポリシリコン層771が形成され、P型のポリシリコン層771とトレンチ分離領域301との横方向の間隔となるトレンチ側面の絶縁膜厚911は、P型のポリシリコン層771とトレンチ分離領域301との縦方向の間隔となるトレンチ底面の絶縁膜厚912よりも広く設定されており、トレンチ分離領域301に隣接して形成されるN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501に高い電圧が印加された場合でも絶縁破壊を生じることなく良好な絶縁性を保持するとともに、仕事関数差を利用して、トレンチ領域301下面に形成される恐れのある反転層の形成を効果的に抑えることが出来る。   A P-type polysilicon layer 771 is formed in the trench isolation region 301 for element isolation on the P well region 201 and the N well region 202, and the lateral direction between the P type polysilicon layer 771 and the trench isolation region 301 is formed. The insulating film thickness 911 on the side surface of the trench that is the distance between the trenches is set wider than the insulating film thickness 912 on the bottom surface of the trench that is the vertical distance between the P-type polysilicon layer 771 and the trench isolation region 301. Even when a high voltage is applied to the N-type high-concentration impurity region 501 which is a source or drain region of an N-type MOS transistor formed adjacent to the region 301, good insulation is achieved without causing dielectric breakdown. In addition, it is possible to effectively suppress the formation of an inversion layer that may be formed on the lower surface of the trench region 301 by utilizing the work function difference. Come.

ここで、図1で説明した第1の実施例や図2で説明した第2の実施例と異なる点は、Pウエル領域201上およびNウエル領域202上の素子分離用のトレンチ分離領域301内にはP型のポリシリコン層771のみが形成されていて、N型のポリシリコン層772が形成されていない点である。   Here, the first embodiment described in FIG. 1 and the second embodiment described in FIG. 2 are different from each other in the trench isolation region 301 for element isolation on the P well region 201 and the N well region 202. Only the P-type polysilicon layer 771 is formed, and the N-type polysilicon layer 772 is not formed.

第3の実施例は、Pウエル領域201およびNウエル領域202の不純物濃度が図1や図2に示された実施例に比べて比較的高く、そのうちPウエル領域201の不純物濃度が、不純物濃度がNウエル領域202に不純物濃度に比べ低い場合を想定したものである。   In the third embodiment, the impurity concentration in the P well region 201 and the N well region 202 is relatively higher than that in the embodiment shown in FIGS. 1 and 2, and the impurity concentration in the P well region 201 is higher than the impurity concentration. Is assumed to be lower than the impurity concentration in the N well region 202.

Pウエル領域201およびNウエル領域202の不純物濃度が比較的高い場合には、特別な手段を講じなくとも反転層が生じにくく、ラッチアップも発生し難い。この場合には、より安全にするために不純物濃度の低い側だけを監視しておけばよいので、Pウエル領域201上およびNウエル領域202上の素子分離用のトレンチ分離領域301内にはP型のポリシリコン層771のみを形成して、Pウエル領域201上にN型の反転層が形成されることだけを防止するようにしている。2種類の導電型のポリシリコン層を形成せず、1つの導電型だけで構成することにより、より工程の簡便化、短縮化を行うことができ、コスト低減に効果を奏することができる。   When the impurity concentration of the P well region 201 and the N well region 202 is relatively high, an inversion layer is hardly generated and latch-up is not easily generated without taking special measures. In this case, since only the low impurity concentration side needs to be monitored in order to make it safer, the element isolation trench isolation region 301 on the P well region 201 and the N well region 202 has P Only the polysilicon layer 771 of the type is formed to prevent the N-type inversion layer from being formed on the P well region 201 only. By forming only one conductivity type without forming two types of conductivity type polysilicon layers, the process can be simplified and shortened, and the cost can be reduced.

その他の動作、機能の説明については 図1および図2と同一の符号を付記することで説明に代える。   Other operations and functions will be described by adding the same reference numerals as those in FIGS. 1 and 2.

また、半導体基板とウエル領域の組み合わせについては、図1および図2の例と同様に、幾つかの組み合わせが考えられるが図1および図2の例の説明をもって説明に代える。   As for the combination of the semiconductor substrate and the well region, several combinations are conceivable as in the example of FIGS. 1 and 2, but the description is replaced with the description of the example of FIGS.

このようにして、本発明によって効果的に反転層の形成を防止し、それによって生じる恐れがあるラッチアップの発生も未然に防止することができる。   In this way, the present invention can effectively prevent the formation of the inversion layer, and also prevent the occurrence of latch-up that may be caused thereby.

なお、図示は省略するが、本発明における半導体装置の低電源電圧回路部においては、動作電圧が低いため、寄生バイポーラ動作やラッチアップは発生しにくい。そのため上記の説明のような反転層形成防止電極は必要ないので高集積化が可能となる。   Although illustration is omitted, in the low power supply voltage circuit portion of the semiconductor device according to the present invention, since the operating voltage is low, parasitic bipolar operation and latch-up hardly occur. Therefore, since the inversion layer formation preventing electrode as described above is not necessary, high integration can be achieved.

本発明の半導体装置の高電源電圧回路部の第1の実施例を示す模式的断面図である。It is a typical sectional view showing the 1st example of the high power supply voltage circuit part of the semiconductor device of the present invention. 本発明の半導体装置の高電源電圧回路部の第2の実施例を示す模式的断面図である。It is a typical sectional view showing the 2nd example of the high power supply voltage circuit part of the semiconductor device of the present invention. 本発明の半導体装置の高電源電圧回路部の第3の実施例を示す模式的断面図である。It is a typical sectional view showing the 3rd example of the high power supply voltage circuit part of the semiconductor device of the present invention. 従来の半導体装置の高電源電圧回路部の一部を示す模式的断面図である。It is typical sectional drawing which shows a part of high power supply voltage circuit part of the conventional semiconductor device.

符号の説明Explanation of symbols

101 P型のシリコン基板
201 Pウエル領域
202 Nウエル領域
301 トレンチ分離領域
501 N型の高濃度不純物領域
502 P型の高濃度不純物領域
601 第1の絶縁膜
771 P型のポリシリコン層
772 N型のポリシリコン層
801 第2の絶縁膜
901 配線
911 トレンチ側面の絶縁膜厚
912 トレンチ底面の絶縁膜厚
921 N型の反転層
101 P-type silicon substrate 201 P-well region 202 N-well region 301 Trench isolation region 501 N-type high-concentration impurity region 502 P-type high-concentration impurity region 601 First insulating film 771 P-type polysilicon layer 772 N-type Polysilicon layer 801 Second insulating film 901 Wiring 911 Insulating film thickness on side of trench 912 Insulating film thickness on bottom of trench 921 N-type inversion layer

Claims (7)

半導体基板上に高電源電圧回路部と低電源電圧回路部とを有し、前記高電源電圧回路部および前記低電源電圧回路部における各素子をトレンチ分離領域により素子分離したトレンチ分離構造を有し、前記高電源電圧回路部は、少なくとも一つのウエル領域とMOS型トランジスタ、及び各素子を電気的に接続する配線を有する半導体装置であって、前記高電源電圧回路部においては、前記配線の電位によって前記半導体基板の表面に寄生的に形成される反転層の発生を防止するために、前記ウエル領域の領域端部近傍に配置された前記トレンチ分離領域内にはポリシリコン層が埋設されており、前記ポリシリコン層の導電型は、前記ポリシリコン層の下面に位置する前記半導体基板および前記ウエル領域とそれぞれ同一の導電型であることを特徴とする半導体装置。   Having a high power supply voltage circuit portion and a low power supply voltage circuit portion on a semiconductor substrate, and having a trench isolation structure in which each element in the high power supply voltage circuit portion and the low power supply voltage circuit portion is separated by a trench isolation region The high power supply voltage circuit unit is a semiconductor device having at least one well region, a MOS transistor, and a wiring that electrically connects each element. In the high power supply voltage circuit unit, the potential of the wiring In order to prevent the occurrence of an inversion layer formed parasitically on the surface of the semiconductor substrate, a polysilicon layer is embedded in the trench isolation region disposed near the end of the well region. The conductivity type of the polysilicon layer is the same as that of the semiconductor substrate and the well region located on the lower surface of the polysilicon layer. The semiconductor device according to symptoms. 前記トレンチ分離領域内の前記ポリシリコン層は、前記トレンチ分離領域の側面と前記ポリシリコン層との間の横方向の距離が、前記トレンチ分離領域の底面と前記ポリシリコン層との間の縦方向の距離よりも広くなるように形成されていることを特徴とする請求項1記載の半導体装置。   The polysilicon layer in the trench isolation region has a lateral distance between a side surface of the trench isolation region and the polysilicon layer, and a vertical direction between the bottom surface of the trench isolation region and the polysilicon layer. The semiconductor device according to claim 1, wherein the semiconductor device is formed so as to be wider than the distance. 前記ポリシリコン層は、第1の導電型の領域と第2の導電型の領域とからなり、前記第1の導電型の領域と前記第2の導電型の領域は、同一の前記ポリシリコン層内に連続して形成されていることを特徴とする請求項1あるいは2に記載の半導体装置。   The polysilicon layer is composed of a first conductivity type region and a second conductivity type region, and the first conductivity type region and the second conductivity type region are the same polysilicon layer. 3. The semiconductor device according to claim 1, wherein the semiconductor device is continuously formed in the semiconductor device. 前記ポリシリコン層の電位は、前記ポリシリコン層の下面に位置する前記半導体基板もしくは前記ウエル領域とそれぞれ同一の電位になるように固定されていることを特徴とする請求項1乃至3のいずれか1項に記載の半導体装置。   4. The potential of the polysilicon layer is fixed to be the same potential as that of the semiconductor substrate or the well region located on the lower surface of the polysilicon layer, respectively. The semiconductor device according to 1. 前記半導体基板上に前記高電源電圧回路部と前記低電源電圧回路部とを有し、前記高電源電圧回路部および前記低電源電圧回路部における各素子をトレンチ分離領域により素子分離した前記トレンチ分離構造を有し、前記高電源電圧回路部は、少なくとも一つのウエル領域とMOS型トランジスタ、及び各素子を電気的に接続する配線を有する半導体装置であって、前記高電源電圧回路部においては、前記配線の電位によって前記半導体基板の表面に寄生的に形成される反転層の発生を防止するために前記ウエル領域の周辺端部近傍に配置された前記トレンチ分離領域内にはポリシリコン層が埋設されており、前記ポリシリコン層は、前記ポリシリコン層の下面に位置する前記半導体基板もしくは前記ウエル領域の中で、最も不純物濃度の薄い領域と同一の導電型で形成されていることを特徴とする半導体装置。   The trench isolation having the high power supply voltage circuit section and the low power supply voltage circuit section on the semiconductor substrate, wherein each element in the high power supply voltage circuit section and the low power supply voltage circuit section is separated by a trench isolation region The high power supply voltage circuit unit is a semiconductor device having at least one well region, a MOS transistor, and a wiring that electrically connects each element. In the high power supply voltage circuit unit, A polysilicon layer is embedded in the trench isolation region disposed near the peripheral edge of the well region in order to prevent the occurrence of an inversion layer formed parasitically on the surface of the semiconductor substrate due to the potential of the wiring. The polysilicon layer has the lowest impurity concentration in the semiconductor substrate or the well region located on the lower surface of the polysilicon layer. Wherein a that are formed of the same conductivity type as the region. 前記トレンチ分離領域内の前記ポリシリコン層は、前記トレンチ分離領域の側面と前記ポリシリコン層との間の横方向の距離が、前記トレンチ分離領域の底面と前記ポリシリコン層との間の縦方向の距離よりも広くなるように形成されていることを特徴とする請求項5記載の半導体装置。   The polysilicon layer in the trench isolation region has a lateral distance between a side surface of the trench isolation region and the polysilicon layer, and a vertical direction between the bottom surface of the trench isolation region and the polysilicon layer. The semiconductor device according to claim 5, wherein the semiconductor device is formed so as to be wider than the distance. 前記ポリシリコン層の電位は、前記ポリシリコン層の下面に位置する前記半導体基板もしくは前記ウエル領域の中で、最も不純物濃度の薄い領域と同一の電位になるように固定されていることを特徴とする請求項5あるいは6に記載の半導体装置。   The potential of the polysilicon layer is fixed to be the same potential as a region having the lowest impurity concentration in the semiconductor substrate or the well region located on the lower surface of the polysilicon layer. The semiconductor device according to claim 5 or 6.
JP2007187047A 2007-07-18 2007-07-18 Semiconductor device Expired - Fee Related JP5147319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187047A JP5147319B2 (en) 2007-07-18 2007-07-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187047A JP5147319B2 (en) 2007-07-18 2007-07-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2009026874A true JP2009026874A (en) 2009-02-05
JP5147319B2 JP5147319B2 (en) 2013-02-20

Family

ID=40398427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187047A Expired - Fee Related JP5147319B2 (en) 2007-07-18 2007-07-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5147319B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101140205B1 (en) 2010-10-01 2012-05-02 한국과학기술원 semiconductor device and method of fabricating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213443A (en) * 1982-06-04 1983-12-12 Nec Corp Semiconductor device
JPS61248459A (en) * 1985-04-25 1986-11-05 Nippon Telegr & Teleph Corp <Ntt> Complementary type mis semiconductor integrated circuit
JPH07122630A (en) * 1993-10-22 1995-05-12 Nippon Steel Corp Semiconductor device
JPH08306880A (en) * 1995-05-10 1996-11-22 Nittetsu Semiconductor Kk Semiconductor device
JP2000294763A (en) * 1999-04-06 2000-10-20 Nec Corp Semiconductor device
JP2004311891A (en) * 2003-04-10 2004-11-04 Seiko Instruments Inc Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213443A (en) * 1982-06-04 1983-12-12 Nec Corp Semiconductor device
JPS61248459A (en) * 1985-04-25 1986-11-05 Nippon Telegr & Teleph Corp <Ntt> Complementary type mis semiconductor integrated circuit
JPH07122630A (en) * 1993-10-22 1995-05-12 Nippon Steel Corp Semiconductor device
JPH08306880A (en) * 1995-05-10 1996-11-22 Nittetsu Semiconductor Kk Semiconductor device
JP2000294763A (en) * 1999-04-06 2000-10-20 Nec Corp Semiconductor device
JP2004311891A (en) * 2003-04-10 2004-11-04 Seiko Instruments Inc Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101140205B1 (en) 2010-10-01 2012-05-02 한국과학기술원 semiconductor device and method of fabricating the same

Also Published As

Publication number Publication date
JP5147319B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
KR101879989B1 (en) Semiconductor device and method for manufacturing the same
JP5172654B2 (en) Semiconductor device
KR100802461B1 (en) Semiconductor device
US10262997B2 (en) High-voltage LDMOSFET devices having polysilicon trench-type guard rings
JP5432750B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP4864344B2 (en) Semiconductor device
TWI612665B (en) Semiconductor device and method of manufacturing the same
JP2012019093A (en) Semiconductor device and method of manufacturing the same
US10256340B2 (en) High-voltage semiconductor device and method for manufacturing the same
JP2004311891A (en) Semiconductor device
JP5623898B2 (en) Semiconductor device and manufacturing method thereof
JP2007019413A (en) Semiconductor device for protection circuit
KR101442252B1 (en) Semiconductor device
US10128331B1 (en) High-voltage semiconductor device and method for manufacturing the same
JP5147319B2 (en) Semiconductor device
JP2015122543A (en) Semiconductor device and manufacturing method of the same
KR20130110088A (en) Semiconductor device
JP2017011311A (en) Semiconductor device and manufacturing method of the same
KR101391580B1 (en) semiconductor device
JP4950692B2 (en) Semiconductor device
JP2011204938A (en) Semiconductor device and method of manufacturing the same
JP2011103408A (en) Semiconductor device
US7911022B2 (en) Isolation structure in field device
CN109216453B (en) High voltage semiconductor device and method for manufacturing the same
JP4793078B2 (en) Semiconductor device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

R150 Certificate of patent or registration of utility model

Ref document number: 5147319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees