JP2009025501A - Wavelength plate with diffraction grating, and method of manufacturing wavelength plate with diffraction grating - Google Patents

Wavelength plate with diffraction grating, and method of manufacturing wavelength plate with diffraction grating Download PDF

Info

Publication number
JP2009025501A
JP2009025501A JP2007187743A JP2007187743A JP2009025501A JP 2009025501 A JP2009025501 A JP 2009025501A JP 2007187743 A JP2007187743 A JP 2007187743A JP 2007187743 A JP2007187743 A JP 2007187743A JP 2009025501 A JP2009025501 A JP 2009025501A
Authority
JP
Japan
Prior art keywords
diffraction grating
wave plate
resin
film resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007187743A
Other languages
Japanese (ja)
Inventor
Nobuki Tanaka
伸樹 田中
Takao Saito
孝朗 齋藤
Yasuo Hidane
康夫 日種
Tatsuya Nakada
達也 中田
Takashi Takahashi
崇 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2007187743A priority Critical patent/JP2009025501A/en
Publication of JP2009025501A publication Critical patent/JP2009025501A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and lightweight composite element of excellent environment resistant performance, by providing a diffraction grating directly on a resin phase difference plate, without using an adhesive. <P>SOLUTION: Irregular shapes are formed on a film resin surface by a nano-printing method, and the diffraction grating is formed directly on the film resin surface, in this wavelength plate with the diffraction grating. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、CD、DVD(登録商標)、HD−DVD(登録商標)、Blu−Ray Disc(登録商標)などの記録媒体の読取再生に用いられる光ピックアップ装置、半導体露光装置、PDP・液晶基板用露光装置、電子顕微鏡などの電子ビーム装置、測量機、眼科用測定光学装置などに用いられる回折格子付き波長板及び回折格子付き波長板の製造方法に関する。   The present invention relates to an optical pickup device, a semiconductor exposure device, and a PDP / liquid crystal substrate used for reading / reproducing a recording medium such as a CD, a DVD (registered trademark), an HD-DVD (registered trademark), and a Blu-Ray Disc (registered trademark). The present invention relates to a wave plate with a diffraction grating and a method for manufacturing a wave plate with a diffraction grating used in an electron beam apparatus such as an exposure apparatus, an electron microscope, a surveying instrument, and an ophthalmic measurement optical apparatus.

従来から、光ピックアップ(光ヘッド)の軽量化、小型化等の研究が盛んに行われている。   Conventionally, researches such as lightening and downsizing of an optical pickup (optical head) have been actively conducted.

この中で、これまで光の回折・拡散・分離などを行う場合には、主に1つの目的に対して1つの光学素子を光路中に導入してきた。そして、複数の機能を1つの光学素子に集約させた複合光学素子も開発されてきた。   Of these, when diffracting / diffusing / separating light, etc., one optical element has been introduced into the optical path mainly for one purpose. A composite optical element in which a plurality of functions are integrated into one optical element has also been developed.

例えば、特許文献1には、波長板として機能する水晶から成る異方性結晶板の片面に積層した中間層上に、SiO2から成る回折格子を形成し、全体を一体化した構成が示されている。   For example, Patent Document 1 discloses a configuration in which a diffraction grating made of SiO 2 is formed on an intermediate layer laminated on one side of an anisotropic crystal plate made of quartz that functions as a wavelength plate, and the whole is integrated. Yes.

また、回折格子の形成方法として、例えば特許文献2には、透明性の基板の上に形成されたフォトレジスト層に格子パターンを露光し現像を行い、回折格子のパターンを形成し、アルミニウム、クロムなどの金属層を真空蒸着、スパッタリング法などにより形成し、次にフォトレジストパターンと金属層の除去を行い、透明性の基板上に金属格子パターンを形成したものをイオンビームエッチングなどのドライエッチングし、所望の深さまでエッチング部を形成し、金属マスクを除去して回折格子を形成する方法が開示されている。   Further, as a method for forming a diffraction grating, for example, in Patent Document 2, a photoresist pattern formed on a transparent substrate is exposed and developed, and a diffraction grating pattern is formed. A metal layer is formed by vacuum deposition, sputtering, etc., then the photoresist pattern and metal layer are removed, and a metal lattice pattern is formed on a transparent substrate by dry etching such as ion beam etching. Discloses a method of forming an etching part to a desired depth and removing a metal mask to form a diffraction grating.

また、例えば特許文献3には、複屈折光学結晶からなる光回折素子を有する波長板が開示されている。とくに、第6図には複屈折回折型素子と1/4波長板を同一のパッケージに収めた複合光学素子が開示されている。   For example, Patent Document 3 discloses a wave plate having an optical diffraction element made of a birefringent optical crystal. In particular, FIG. 6 discloses a composite optical element in which a birefringent diffractive element and a quarter-wave plate are contained in the same package.

また、特許文献4の請求項1及び請求項4に記載されているように、複屈折性の領域と等方性の領域が交互に配置された周期格子により入射光の直交する偏光を0次光と回折光に分離する格子型の広帯域偏光分離素子を用いた光ヘッドにおいて、広帯域光分離素子に1/4波長板が一体化されている光ヘッドが提案されている。特許文献4の明細書の段落0037〜0038には、偏光分離素子の等方性オーバーコート層の上に1/4波長板を接着して一体化するか、あるいは偏光分離素子のガラス基板の上に1/4波長板を接着して一体化することにより、1/4波長板付き偏光分離素子とすることが開示されている。   Further, as described in claim 1 and claim 4 of Patent Document 4, the orthogonal polarization of incident light is converted to zero order by a periodic grating in which birefringent regions and isotropic regions are alternately arranged. In an optical head using a grating-type broadband polarization separation element that separates light into diffracted light, an optical head in which a quarter-wave plate is integrated with the broadband light separation element has been proposed. In paragraphs 0037 to 0038 of the specification of Patent Document 4, a quarter-wave plate is bonded and integrated on the isotropic overcoat layer of the polarization separation element, or on the glass substrate of the polarization separation element. It is disclosed that a quarter wave plate is attached and integrated to form a polarization separation element with a quarter wave plate.

また、特許文献5には、基板上に形成された配向性薄膜を等方性媒質で覆った偏光性回折素子の上に、λ/4板を一体化させた複合光学素子が開示されている。   Patent Document 5 discloses a composite optical element in which a λ / 4 plate is integrated on a polarizing diffractive element in which an oriented thin film formed on a substrate is covered with an isotropic medium. .

また、特許文献6には、ガラス等からなる光透過性基板の一方の面(図1における下面)に、微細周期構造としてのサブ波長構造体からなる1/4波長板相当の機能を有する面を備え、この面を構成するサブ波長構造体は、ナノ加工技術等の微細加工技術を用いて形成ピッチ(凹凸ピッチ)が使用する光の波長よりも小さい大きさに形成された構造体であり、これ以外の断面形状を選択することも可能である旨記載されている。さらに、特許文献6の段落0029には、サブ波長構造体を構成する材料としては、SiNxやSi(好ましくは、屈折率が2.0以上のもの)等の材料を適宜選択することができる旨記載されている。   Patent Document 6 discloses a surface having a function equivalent to a quarter-wave plate made of a sub-wavelength structure as a fine periodic structure on one surface (the lower surface in FIG. 1) of a light-transmitting substrate made of glass or the like. The sub-wavelength structure constituting this surface is a structure formed with a size smaller than the wavelength of light used by the formation pitch (uneven pitch) using a fine processing technique such as a nano-processing technique. It is described that other cross-sectional shapes can be selected. Further, in paragraph 0029 of Patent Document 6, as a material constituting the subwavelength structure, a material such as SiNx or Si (preferably having a refractive index of 2.0 or more) can be appropriately selected. Are listed.

また、例えば特許文献7、段落0083、図12には、1/4波長板の片面側の外周部にアパーチャが形成されており、中央に回折格子が形成されている複合機能光学部材が開示されている。
特開2004−101984号公報、段落0008、図1 特許第3851253号公報、段落0036〜0038、図3 特許第2616018号公報、特許請求の範囲、第3頁左欄第33行〜同頁同欄第37行、第6図 特許第3667984号公報、特許請求の範囲、段落0038〜0037、図8 特開平11−312329号公報、段落0032、図4 特開2005−77659号公報、段落0027〜0029、図1 特開平7−169062号、段落0083、図12
Further, for example, Patent Document 7, Paragraph 0083, and FIG. 12 disclose a composite functional optical member in which an aperture is formed on the outer peripheral portion on one side of a quarter-wave plate and a diffraction grating is formed in the center. ing.
JP 2004-101984, paragraph 0008, FIG. Japanese Patent No. 3852253, paragraphs 0036-0038, FIG. Japanese Patent No. 2616018, claims, page 3, left column, line 33 to page 37, line 37, FIG. Japanese Patent No. 3667984, claims, paragraphs 0038-0037, FIG. JP 11-31329 A, paragraph 0032, FIG. Japanese Patent Laying-Open No. 2005-77659, paragraphs 0027-0029, FIG. Japanese Patent Laid-Open No. 7-169062, paragraph 0083, FIG.

しかしながら、特許文献3、4、7に示されているような従来の光学複合素子では、例えばガラス製の回折格子に樹脂製の位相差板を接着剤で接着して作製される。この場合、両者の材料の線膨張係数の差が大きいために、高温下で使用したときに、接着部分が剥離するなどの問題があった。   However, conventional optical composite elements such as those disclosed in Patent Documents 3, 4, and 7 are manufactured by, for example, bonding a resin retardation plate to a glass diffraction grating with an adhesive. In this case, since the difference between the linear expansion coefficients of the two materials is large, there is a problem that the bonded portion peels off when used at a high temperature.

また、特許文献2に示されているようにして製造された回折格子を波長板と一体化する場合、接着剤などの樹脂を必要とし、両者の材料の線膨張係数の差が大きいために、高温下で使用したときに、接着部分が剥離するなどの問題があった。   Moreover, when integrating the diffraction grating manufactured as shown in Patent Document 2 with a wave plate, a resin such as an adhesive is required, and the difference in linear expansion coefficient between the two materials is large. When used under high temperature, there were problems such as peeling of the bonded part.

また、特許文献1、5に示されているような従来の複合光学素子では、石英や水晶、また配向性薄膜などで作られた回折格子と位相差板を接着した場合に、石英、水晶、配向性薄膜などと接着剤の線膨張係数の差などから接着部分が剥離することがあった。   Further, in the conventional composite optical elements as shown in Patent Documents 1 and 5, when a diffraction grating made of quartz, quartz, or an orientation thin film is bonded to a retardation plate, quartz, quartz, The adhesive part sometimes peeled off due to the difference in linear expansion coefficient between the oriented thin film and the adhesive.

さらに、一般の(従来の)UV硬化型樹脂は膨張係数が大きく、たわんだりして、実際に回折格子を作製した場合には、アスペクト比が悪くなってしまい、回折性能が悪くなったり、波長シフトが生じてしまう。   Furthermore, a general (conventional) UV curable resin has a large expansion coefficient and is bent, and when a diffraction grating is actually manufactured, the aspect ratio deteriorates, the diffraction performance deteriorates, the wavelength A shift will occur.

また、例えば特許文献6の発明においても、サブ波長構造体を蒸着あるいは接着によってガラス等からなる光透過性基板に形成しており、前述したように、サブ波長構造体と接着剤との線膨張係数の差などから接着部分が剥離することがあった。   For example, also in the invention of Patent Document 6, the sub-wavelength structure is formed on a light-transmitting substrate made of glass or the like by vapor deposition or adhesion, and as described above, the linear expansion between the sub-wavelength structure and the adhesive is performed. The bonded part sometimes peeled off due to the difference in coefficient.

そこで、本発明は、上記問題点を除くために、接着剤を用いずに、例えば樹脂の位相差板上に直接回折格子を設けることで、小型・軽量で耐環境性能に優れる複合素子を提供することを目的とする。   Therefore, in order to eliminate the above-mentioned problems, the present invention provides a composite element that is compact, lightweight, and has excellent environmental resistance performance, for example, by directly providing a diffraction grating on a resin retardation plate without using an adhesive. The purpose is to do.

上記課題を解決するための本発明の解決手段を例示すると、次のとおりである。   Examples of the solution means of the present invention for solving the above-described problems are as follows.

(1) 接着剤を用いずにフィルム樹脂製の波長板の表面に回折格子直接形成されていることを特徴とする回折格子付き波長板。 (1) A wave plate with a diffraction grating, which is directly formed on the surface of a film resin wave plate without using an adhesive.

(2) ナノインプリント法によりフィルム樹脂表面に凹凸形状が形成されていて、そのフィルム樹脂表面に直接回折格子が設けられていることを特徴とする前述の回折格子付き波長板。 (2) The above-mentioned wavelength plate with a diffraction grating, wherein a concavo-convex shape is formed on the surface of the film resin by a nanoimprint method, and the diffraction grating is directly provided on the surface of the film resin.

(3) フィルム樹脂が膨張係数を下げたものであることを特徴とする前述の回折格子付き波長板。 (3) The aforementioned wavelength plate with a diffraction grating, wherein the film resin has a reduced expansion coefficient.

(4) フィルム樹脂が石英のナノ粒子の導入によって膨張係数を下げたものであることを特徴とする前述の回折格子付き波長板。 (4) The aforementioned wavelength plate with a diffraction grating, wherein the film resin has a coefficient of expansion lowered by introduction of quartz nanoparticles.

(5) フィルム樹脂が光硬化樹脂からなり、その光硬化樹脂の中に波長選択のある色素が導入されていることを特徴とする前述の回折格子付き波長板。 (5) The aforementioned wavelength plate with a diffraction grating, wherein the film resin is made of a photo-curing resin, and a dye having wavelength selection is introduced into the photo-curing resin.

(6) 5以下の高アスペクト比でフィルム樹脂表面に凸型が形成されていることを特徴とする前述の回折格子付き波長板。 (6) The wave plate with a diffraction grating described above, wherein a convex shape is formed on the surface of the film resin with a high aspect ratio of 5 or less.

(7) 接着剤を用いずにフィルム樹脂製の波長板の表面に回折格子を直接形成することを特徴とする回折格子付き波長板の製造方法。 (7) A method for producing a wave plate with a diffraction grating, wherein a diffraction grating is directly formed on the surface of a wave plate made of a film resin without using an adhesive.

(8) ナノインプリント法によりフィルム樹脂表面に凹凸形状をつけて、フィルム樹脂表面に直接回折格子を形成することを特徴とする、前述の回折格子付き波長板の製造方法。 (8) The method for producing a wave plate with a diffraction grating as described above, wherein a concave and convex shape is formed on the surface of the film resin by a nanoimprint method, and the diffraction grating is directly formed on the surface of the film resin.

(9) フィルム樹脂として膨張係数を下げたものを使用することを特徴とする、前述の回折格子付き波長板の製造方法。 (9) The method for producing a wave plate with a diffraction grating as described above, wherein a film resin having a reduced expansion coefficient is used.

(10) 石英のナノ粒子を導入してフィルム樹脂の膨張係数を下げることを特徴とする、前述の回折格子付き波長板の製造方法。 (10) The method for producing a wave plate with a diffraction grating as described above, wherein quartz nanoparticles are introduced to lower the expansion coefficient of the film resin.

(11) フィルム樹脂として光硬化樹脂を使用し、その光硬化樹脂の中に波長選択のある色素を導入することを特徴とする、前述の回折格子付き波長板の製造方法。 (11) The method for producing a wave plate with a diffraction grating described above, wherein a photocurable resin is used as the film resin, and a dye having a wavelength selection is introduced into the photocurable resin.

(12) 金型離型処理用の離型材としてフッ素系の樹脂を用いることによって、金型離型の際に、素子に反射防止コート又は汚れ防止コートを施すことを特徴とする、前述の回折格子付き波長板の製造方法。 (12) The above-mentioned diffraction, wherein a fluorine-based resin is used as a mold release material for mold mold release treatment, so that an antireflection coating or an antifouling coat is applied to the element at the time of mold release. Manufacturing method of wave plate with grating.

本発明は、接着剤を用いずに、例えばナノインプリント法によって、樹脂製の位相差板上に直接回折格子を設けることで、小型・軽量で耐環境性能に優れる複合素子を提供することができる。   The present invention can provide a composite element having a small size and light weight and excellent environmental resistance performance by providing a diffraction grating directly on a resin phase difference plate, for example, by a nanoimprint method without using an adhesive.

また、接着剤を用いずに回折格子を直接フィルム樹脂製の波長板の表面に形成したので、接着剤の線膨張係数の差などから接着部分が剥離することがない。   Further, since the diffraction grating is formed directly on the surface of the wave plate made of film resin without using an adhesive, the bonded portion does not peel off due to the difference in the linear expansion coefficient of the adhesive.

また、フィルム樹脂は石英のナノ粒子などを導入することで膨張係数を下げることができ、その場合、熱変化が少なく、安定した性能での製造が可能となる。   In addition, the expansion coefficient of the film resin can be reduced by introducing quartz nanoparticles or the like, and in this case, the thermal change is small and the production with stable performance becomes possible.

また、金型離型処理用の離型材としてフッ素系の樹脂を用いると、金型離型の際に、素子に反射防止コートや汚れ防止コートなどを施すことができる。   In addition, when a fluorine-based resin is used as a mold release material for mold release treatment, an antireflection coating, a stain prevention coat, or the like can be applied to the element during mold release.

また、UVナノインプリントにおいて、光硬化樹脂の中に波長選択のある色素を導入すれば、波長選択性のある回折格子を作製することができる。   Further, in the UV nanoimprint, if a dye having wavelength selection is introduced into the photocurable resin, a diffraction grating having wavelength selectivity can be produced.

本発明においては、フィルム樹脂表面に凹凸形状をつけて、フィルム樹脂表面に直接回折格子を形成する。例えば、ナノインプリント法によって、フィルム樹脂からなる位相差板上に直接回折格子を設ける。好ましくは、フィルム樹脂として膨張係数を下げたものを使用する。とくに、石英のナノ粒子を導入してフィルム樹脂の膨張係数を下げる。   In the present invention, a concavo-convex shape is formed on the film resin surface, and a diffraction grating is formed directly on the film resin surface. For example, a diffraction grating is directly provided on a phase difference plate made of a film resin by a nanoimprint method. Preferably, a film resin having a reduced expansion coefficient is used. In particular, quartz nanoparticles are introduced to lower the expansion coefficient of the film resin.

また、フィルム樹脂として光硬化樹脂を使用し、その光硬化樹脂の中に波長選択のある色素を導入することが好ましい。   Moreover, it is preferable to use a photocurable resin as the film resin and introduce a dye having wavelength selection into the photocurable resin.

また、金型離型処理用の離型材としてフッ素系の樹脂を用いることによって、金型離型の際に、素子に反射防止コート又は汚れ防止コートを施すことが好ましい。   Further, it is preferable to apply an antireflection coating or a stain prevention coating to the element at the time of mold release by using a fluorine-based resin as a mold release material for the mold release treatment.

熱式ナノインプリントの場合、使用する金型は、以下に示すように成形するのが好ましい。   In the case of thermal nanoimprint, the mold to be used is preferably molded as shown below.

図1において、(A)は、リソグラフィーやレーザアブレーションなどの技術を用いて、SiやSiOの表面に凹凸の微細構造を形成した金型1(母型)の断面図である。 1 is a cross-sectional view of (A), using a technique such as lithography or laser ablation, die to form a fine uneven structure on the Si and SiO 2 surface 1 (the matrix).

金型1の大きさは、例えば一辺が1mm〜100mm程度である。とくに、レーザアブレーション法を用いると、金型1の凸型1aのアスペクト比が5以下、好ましくは5程度である超微細加工をすることができる。   The size of the mold 1 is, for example, about 1 mm to 100 mm on one side. In particular, when the laser ablation method is used, it is possible to perform ultrafine processing in which the aspect ratio of the convex mold 1a of the mold 1 is 5 or less, preferably about 5.

リソグラフィーの電子ビームやレーザアブレーションのレーザ光などの超尖鋭な光線2により凸型1aを形成すると、金型1の凸型1aのアスペクト比が5程度になるように超微細加工するのが容易である。   When the convex mold 1a is formed by an ultra-sharp beam 2 such as a lithography electron beam or laser ablation laser beam, it is easy to perform ultrafine processing so that the aspect ratio of the convex mold 1a of the mold 1 is about 5. is there.

凹凸微細構造において、凸型1aは、円柱状や角柱状等であってもよい。   In the concavo-convex microstructure, the convex mold 1a may be cylindrical or prismatic.

また、凸型1aは、格子状、千鳥状又はランダムな構造でもよい。   Further, the convex mold 1a may have a lattice shape, a staggered shape, or a random structure.

好ましくは、凸型1aの間隔は、数nm〜100nm程度である。   Preferably, the interval between the convex molds 1a is about several nm to 100 nm.

図1の(B)に示すように、好ましくは、金型1の表面に離型膜3を塗布により形成する。   As shown in FIG. 1B, a release film 3 is preferably formed on the surface of the mold 1 by coating.

さらに、図1の(C)に示すように、例えばカラーリンク・ジャパン製の厚さ0.1mmのCOP(シクロオレフィンポリマー、環状ポリオレフィン)樹脂などで作られた波長板4を構成するフィルム樹脂の表面にナノインプリントする。金型1に対応して、フィルム樹脂表面上には、凹凸の微細構造が転写され、5以下の高アスペクト比で凸型4aが形成される。その際、数nm〜100nm程度の凸型4aの間隔で凹凸微細構造が形成される。   Furthermore, as shown in FIG. 1C, for example, a film resin constituting the wave plate 4 made of COP (cycloolefin polymer, cyclic polyolefin) resin having a thickness of 0.1 mm manufactured by Colorlink Japan, etc. Nanoimprint on the surface. Corresponding to the mold 1, an uneven fine structure is transferred on the surface of the film resin, and a convex mold 4 a is formed with a high aspect ratio of 5 or less. In that case, the uneven | corrugated fine structure is formed in the space | interval of the convex mold | type 4a about several nm-100 nm.

凹凸微細構造が転写されるフィルム樹脂の種類は、上述したCOP以外に、ポリアミド(PA)、ナイロン、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m−PPE、変性PPE)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンテレフタレート・ガラス樹脂入り(PET−G)、グラスファイバー強化ポリエチレンテレフタレート(GF−PET)などのエンジニアリングプラスチック(略してエンプラともいう)や、ポリエチレン(PE)、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、テフロン(登録商標)、ポリテトラフルオロエチレン、PTFE、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、AS樹脂、アクリル樹脂(PMMA)などの汎用プラスチックなどの熱可塑性樹脂や、フェノール樹脂(PF)、エポキシ樹脂(EP)、メラミン樹脂(MF)、尿素樹脂(ユリア樹脂、UF)、不飽和ポリエステル樹脂(UP)、アルキド樹脂、ポリウレタン(PUR)、ポリイミド(PI)などの熱硬化性樹脂などが使用できる。   The types of film resin to which the concavo-convex microstructure is transferred include polyamide (PA), nylon, polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE, modified PPE), and polybutylene in addition to the above-mentioned COP. Engineering plastics (abbreviated as engineering plastic for short) such as terephthalate (PBT), polyethylene terephthalate (PET), polyethylene terephthalate with glass resin (PET-G), glass fiber reinforced polyethylene terephthalate (GF-PET), polyethylene (PE) , High density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene ( S), polyvinyl acetate (PVAc), Teflon (registered trademark), polytetrafluoroethylene, PTFE, ABS resin (acrylonitrile butadiene styrene resin), AS resin, acrylic resin (PMMA), and other thermoplastic resins such as , Phenolic resin (PF), epoxy resin (EP), melamine resin (MF), urea resin (urea resin, UF), unsaturated polyester resin (UP), alkyd resin, polyurethane (PUR), polyimide (PI), etc. A thermosetting resin or the like can be used.

以上により、波長板4のフィルム樹脂表面にナノインプリント法により10以上の高アスペクト比で凸型4aが形成され、数nm〜100nm程度の凸型4aの間隔で凹凸微細構造が生成され、所望の回折格子付き波長板が製造される。   As described above, the convex mold 4a is formed on the surface of the film resin of the wave plate 4 with a high aspect ratio of 10 or more by the nanoimprint method, and the concave / convex microstructure is generated at intervals of the convex mold 4a of about several nm to 100 nm. A wave plate with a grating is manufactured.

この回折格子付き波長板4によると、たとえば、HD−DVDやBlue−Ray Discなどに用いられる波長300nm〜450nmの波長域(特に、405nmの波長)のレーザ光線で、左回り旋回光、右回り旋回光に偏光された場合であっても、十分に回折され、回折効率90%〜99%の高い効率を示す。   According to this wave plate 4 with a diffraction grating, for example, a laser beam having a wavelength range of 300 nm to 450 nm (especially a wavelength of 405 nm) used for HD-DVD or Blue-Ray Disc, Even when polarized by swirling light, it is sufficiently diffracted and exhibits a high efficiency of 90% to 99% diffraction efficiency.

なお、上記実施例では、COPなどのフィルム樹脂製の波長板に回折格子をナノインプリント法により形成したが、本発明は、これに限定されない。例えば、ナノインプリントによる凹凸形状の形成後に、凹凸表面にAl、Siなどの金属を積層し、ワイヤーグリッドを形成してもよい。 In the above embodiment, the diffraction grating is formed on the wave plate made of film resin such as COP by the nanoimprint method, but the present invention is not limited to this. For example, after forming the uneven shape by nanoimprint, a metal grid such as Al or Si may be laminated on the uneven surface to form a wire grid.

(A)は、本発明にかかる光ナノインプリント法に用いる金型の断面の概略を示す。(B)は、(A)に示されている金型に離型膜を形成した状態を示す。(C)は、(B)に示されている離型膜付きの金型でフィルム樹脂製の波長板にナノインプリント法により回折格子を形成する形態の一例を示す。(A) shows the outline of the cross section of the metal mold | die used for the optical nanoimprint method concerning this invention. (B) shows a state in which a release film is formed on the mold shown in (A). (C) shows an example of a form in which a diffraction grating is formed on a wavelength plate made of a film resin by a nanoimprint method using the mold with a release film shown in (B).

符号の説明Explanation of symbols

1 金型
1a 凸型
4 波長板
4a 凸型
1 Mold 1a Convex 4 Wave plate 4a Convex

Claims (12)

接着剤を用いずにフィルム樹脂製の波長板の表面に回折格子が直接形成されていることを特徴とする回折格子付き波長板。   1. A wave plate with a diffraction grating, wherein a diffraction grating is directly formed on the surface of a wave plate made of film resin without using an adhesive. ナノインプリント法によりフィルム樹脂表面に凹凸形状が形成されていて、そのフィルム樹脂表面に直接回折格子が設けられていることを特徴とする、請求項1に記載の回折格子付き波長板。   2. The wave plate with a diffraction grating according to claim 1, wherein an uneven shape is formed on the surface of the film resin by a nanoimprint method, and the diffraction grating is directly provided on the surface of the film resin. フィルム樹脂が膨張係数を下げたものであることを特徴とする、請求項1又は2に記載の回折格子付き波長板。   The wave plate with a diffraction grating according to claim 1 or 2, wherein the film resin has a reduced expansion coefficient. フィルム樹脂が石英のナノ粒子の導入によって膨張係数を下げたものであることを特徴とする、請求項1又は2に記載の回折格子付き波長板。   The wave plate with a diffraction grating according to claim 1 or 2, wherein the film resin has a coefficient of expansion lowered by introducing quartz nanoparticles. フィルム樹脂が光硬化樹脂からなり、その光硬化樹脂の中に波長選択のある色素が導入されていることを特徴とする、請求項1〜4のいずれか1項に記載の回折格子付き波長板。   The wavelength plate with a diffraction grating according to any one of claims 1 to 4, wherein the film resin is made of a photocurable resin, and a dye having wavelength selection is introduced into the photocurable resin. . 5以下の高アスペクト比でフィルム樹脂表面に凸型が形成されていることを特徴とする、請求項1〜5のいずれか1項に記載の回折格子付き波長板。   The wave plate with a diffraction grating according to claim 1, wherein a convex shape is formed on the surface of the film resin with a high aspect ratio of 5 or less. 接着剤を用いずにフィルム樹脂製の波長板の表面に回折格子を直接形成することを特徴とする回折格子付き波長板の製造方法。   A method for producing a wave plate with a diffraction grating, wherein a diffraction grating is directly formed on the surface of a wave plate made of film resin without using an adhesive. ナノインプリント法によりフィルム樹脂表面に凹凸形状をつけて、フィルム樹脂表面に直接回折格子を形成することを特徴とする、請求項7に記載の回折格子付き波長板の製造方法。   The method for producing a wave plate with a diffraction grating according to claim 7, wherein a concavo-convex shape is formed on the surface of the film resin by a nanoimprint method, and the diffraction grating is directly formed on the surface of the film resin. フィルム樹脂として膨張係数を下げたものを使用することを特徴とする、請求項7又は8に記載の回折格子付き波長板の製造方法。   The method for producing a wave plate with a diffraction grating according to claim 7 or 8, wherein a film resin having a reduced expansion coefficient is used. 石英のナノ粒子を導入してフィルム樹脂の膨張係数を下げることを特徴とする、請求項9に記載の回折格子付き波長板の製造方法。   The method for producing a wave plate with a diffraction grating according to claim 9, wherein the expansion coefficient of the film resin is lowered by introducing quartz nanoparticles. フィルム樹脂として光硬化樹脂を使用し、その光硬化樹脂の中に波長選択のある色素を導入することを特徴とする、請求項7〜10のいずれか1項に記載の回折格子付き波長板の製造方法。   The wavelength plate with a diffraction grating according to any one of claims 7 to 10, wherein a photocurable resin is used as a film resin, and a wavelength-selective dye is introduced into the photocurable resin. Production method. 金型離型処理用の離型材としてフッ素系の樹脂を用いることによって、金型離型の際に、素子に反射防止コート又は汚れ防止コートを施すことを特徴とする請求項7〜11のいずれか1項に記載の回折格子付き波長板の製造方法。   The antireflection coating or the antifouling coating is applied to the element at the time of mold release by using a fluorine-based resin as a mold release material for mold release processing. A method for producing a wave plate with a diffraction grating according to claim 1.
JP2007187743A 2007-07-19 2007-07-19 Wavelength plate with diffraction grating, and method of manufacturing wavelength plate with diffraction grating Pending JP2009025501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187743A JP2009025501A (en) 2007-07-19 2007-07-19 Wavelength plate with diffraction grating, and method of manufacturing wavelength plate with diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187743A JP2009025501A (en) 2007-07-19 2007-07-19 Wavelength plate with diffraction grating, and method of manufacturing wavelength plate with diffraction grating

Publications (1)

Publication Number Publication Date
JP2009025501A true JP2009025501A (en) 2009-02-05

Family

ID=40397366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187743A Pending JP2009025501A (en) 2007-07-19 2007-07-19 Wavelength plate with diffraction grating, and method of manufacturing wavelength plate with diffraction grating

Country Status (1)

Country Link
JP (1) JP2009025501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170125937A (en) * 2015-03-05 2017-11-15 매직 립, 인코포레이티드 Improved Manufacturing for Virtual and Augmented Reality Systems and Components
JP2019523910A (en) * 2016-06-07 2019-08-29 エアリー3ディー インコーポレイティドAiry3D Inc. Light field imaging device and method for depth acquisition and 3D imaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049803A (en) * 1990-04-27 1992-01-14 Kuraray Co Ltd Diffraction grating
JP2003098351A (en) * 2001-09-25 2003-04-03 Konica Corp Base material to be plotted, metallic mold for the base material, optical pickup device, method for machining optical element, base material machined by the method, electron beam plotting device and optical element
JP2005258120A (en) * 2004-03-12 2005-09-22 Fuji Photo Film Co Ltd Curable resin composition for optical component, optical component and image display apparatus
JP2005321611A (en) * 2004-05-10 2005-11-17 Mitsui Chemicals Inc Phase contrast element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049803A (en) * 1990-04-27 1992-01-14 Kuraray Co Ltd Diffraction grating
JP2003098351A (en) * 2001-09-25 2003-04-03 Konica Corp Base material to be plotted, metallic mold for the base material, optical pickup device, method for machining optical element, base material machined by the method, electron beam plotting device and optical element
JP2005258120A (en) * 2004-03-12 2005-09-22 Fuji Photo Film Co Ltd Curable resin composition for optical component, optical component and image display apparatus
JP2005321611A (en) * 2004-05-10 2005-11-17 Mitsui Chemicals Inc Phase contrast element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170125937A (en) * 2015-03-05 2017-11-15 매직 립, 인코포레이티드 Improved Manufacturing for Virtual and Augmented Reality Systems and Components
KR102319390B1 (en) 2015-03-05 2021-10-28 매직 립, 인코포레이티드 Improved Manufacturing for Virtual and Augmented Reality Systems and Components
JP2019523910A (en) * 2016-06-07 2019-08-29 エアリー3ディー インコーポレイティドAiry3D Inc. Light field imaging device and method for depth acquisition and 3D imaging
JP7120929B2 (en) 2016-06-07 2022-08-17 エアリー3ディー インコーポレイティド Light field imaging device and method for depth acquisition and 3D imaging

Similar Documents

Publication Publication Date Title
US6969472B2 (en) Method of fabricating sub-micron hemispherical and hemicylidrical structures from non-spherically shaped templates
JP5024047B2 (en) Manufacturing method of microstructure
TWI467252B (en) Wire grid type polarizer and manufacturing method thereof
EP2560034A1 (en) Systems and methods for a nanofabricated optical circular polarizer
KR20190029489A (en) Diffraction light guide plate and manufacturing method for diffraction light guide plate
JP2008299084A (en) Method of manufacturing optical element having fine irregular shape on the surface
JP2008107720A (en) Polarizer and its manufacturing method
JP2012103468A (en) Optical element and projection type liquid crystal display device
JP2010117634A (en) Wire grid polarizer, and method of manufacturing the same
JP2003302532A (en) Polarizing plate and method for manufacturing the same
JP2009085974A (en) Polarizing element and method for fabricating the same
CN114829986A (en) Optical super-surface film
JP2006330221A (en) Polarizer
JP2004219626A (en) Optical element
JP2009025501A (en) Wavelength plate with diffraction grating, and method of manufacturing wavelength plate with diffraction grating
JP4491555B1 (en) Optical element and manufacturing method thereof
JP2007149249A (en) Diffraction element for three wavelength, diffraction element for three wavelength with topology plate and optical head apparatus
TWI389115B (en) Optical pickup device and optical information processing apparatus using the optical pickup device
JP2010117646A (en) Functional grid structure and method of manufacturing the same
JP2006106726A (en) Polarized light diffracting element
JP4183526B2 (en) Surface microstructure optical element
JP5331174B2 (en) Diffraction grating integrated polarization conversion element
JP2003315540A (en) Polarization diffraction element and method for manufacturing the same
JP2015152828A (en) Alignment film manufacturing method and display manufacturing method
JP2009069490A (en) Diffraction grating integrated polarization conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110