JP2006106726A - Polarized light diffracting element - Google Patents

Polarized light diffracting element Download PDF

Info

Publication number
JP2006106726A
JP2006106726A JP2005264317A JP2005264317A JP2006106726A JP 2006106726 A JP2006106726 A JP 2006106726A JP 2005264317 A JP2005264317 A JP 2005264317A JP 2005264317 A JP2005264317 A JP 2005264317A JP 2006106726 A JP2006106726 A JP 2006106726A
Authority
JP
Japan
Prior art keywords
refractive index
polarized light
diffraction element
structural birefringent
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005264317A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kishigami
勝博 岸上
Nobuhiro Umebayashi
信弘 梅林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005264317A priority Critical patent/JP2006106726A/en
Publication of JP2006106726A publication Critical patent/JP2006106726A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarized light diffracting element which can be manufactured inexpensively. <P>SOLUTION: A polarized light diffracting element 1 is provided with a polarized light diffracting body 11 of which the diffraction efficiency with respect to various order of diffraction light is different in accordance with the vibration direction of incident polarized light. The polarized light diffracting body 11 has a plurality of structural birefringence sections 111 in which structural birefringence is generated by the projecting and recessing parts being formed on the surface of the polarized light diffracting body 11. The structural birefringence sections 111 are spaced apart from each other so as to function as diffraction gratings. An in-between structural birefringence section 113 has a medium which is different from a medium that constitutes the structural birefringence section. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、偏光回折素子及びそれを用いた光ヘッド装置に関するものである。   The present invention relates to a polarization diffraction element and an optical head device using the polarization diffraction element.

偏光回折素子は、多くの用途を有し、例えばCD(Compact Disk)やDVD(Digital Versataile Disk)等の光ディスク等の光記録媒体に光学的情報を記録再生を行う場合のホログラム偏光光学素子として活用されたり、また、光磁気ディスクヘッドの検光子として活用されている。   Polarization diffraction elements have many uses, and are used as hologram polarization optical elements for recording and reproducing optical information on optical recording media such as optical disks such as CD (Compact Disk) and DVD (Digital Versataile Disk). It is also used as an analyzer for magneto-optical disk heads.

従来の偏光回折素子は例えば液晶等の複屈折材を利用している。(例えば、特許文献1の従来技術の欄参照)   Conventional polarization diffraction elements use birefringent materials such as liquid crystal. (For example, refer to the column of prior art in Patent Document 1)

光ディスクの偏光ビームスプリッタを例として、図4に従来の偏光回折素子の構成例を示す。偏光回折素子1は、レーザ等の光源(図示せず)からの光は通過させて光記録媒体2に照射するが、光記録媒体2からの反射光に対しては回折格子として機能する。このような機能を実現するために偏光回折素子1は、白板ガラス42の光記録媒体2側に1/4波長板12を設け、反対側に長尺形状の複屈折材411が一定間隔で配置され、当該複屈折材411を覆うように充填樹脂41が充填されている。   An example of the configuration of a conventional polarization diffraction element is shown in FIG. 4 taking a polarization beam splitter of an optical disk as an example. The polarization diffraction element 1 passes light from a light source (not shown) such as a laser and irradiates the optical recording medium 2, but functions as a diffraction grating for reflected light from the optical recording medium 2. In order to realize such a function, the polarization diffraction element 1 is provided with a quarter-wave plate 12 on the optical recording medium 2 side of the white plate glass 42, and a long birefringent material 411 is arranged on the opposite side at regular intervals. The filling resin 41 is filled so as to cover the birefringent material 411.

複屈折材411としては、例えば液晶、ポリカーボネイト、方解石、水晶、サファイヤ、雲母、LN(ニオブ酸リチウム)が用いられる。ここで、複屈折材411の長尺方向の振動方向を持つ偏光に対する複屈折材の屈折率をn2、複屈折材411の長尺方向に垂直方向の振動方向を持つ偏光に対する複屈折材の屈折率をn1とすれば、充填樹脂41の屈折率は、複屈折材411の長尺方向に垂直な方向の振動方向を持つ偏光に対する複屈折材の屈折率n1と同じn1としている。   As the birefringent material 411, for example, liquid crystal, polycarbonate, calcite, crystal, sapphire, mica, or LN (lithium niobate) is used. Here, the refractive index of the birefringent material with respect to the polarized light having the vibration direction in the longitudinal direction of the birefringent material 411 is n2, and the refraction of the birefringent material with respect to the polarized light having the vibration direction perpendicular to the longitudinal direction of the birefringent material 411. If the rate is n1, the refractive index of the filling resin 41 is set to n1 which is the same as the refractive index n1 of the birefringent material for polarized light having a vibration direction perpendicular to the longitudinal direction of the birefringent material 411.

従って、光源からの光を複屈折材411の長尺方向に垂直な方向の振動方向を持つ偏光とすると、複屈折材411と充填樹脂41とは屈折率が同じであるため、回折格子として機能せず、回折光が発生しない。他方で、1/4波長板12によって複屈折材411の長尺方向に垂直な方向の振動方向を持つ偏光から複屈折材411の長尺の振動方向を持つ偏光へと変換された反射光に対しては、複屈折材411と充填樹脂41とは異なる屈折率となるため、回折格子として機能し、回折光を発生させる。
特開2000−249831号公報
Therefore, when the light from the light source is polarized light having a vibration direction perpendicular to the longitudinal direction of the birefringent material 411, the birefringent material 411 and the filling resin 41 have the same refractive index, and thus function as a diffraction grating. No diffracted light is generated. On the other hand, the reflected light converted from the polarized light having the vibration direction perpendicular to the long direction of the birefringent material 411 to the polarized light having the long vibration direction of the birefringent material 411 by the quarter wavelength plate 12. On the other hand, since the birefringent material 411 and the filling resin 41 have different refractive indexes, it functions as a diffraction grating and generates diffracted light.
JP 2000-249831 A

従来の偏光回折素子は、液晶等の複屈折材を用いているため、製造コストの上昇を招いていた。   Since the conventional polarization diffraction element uses a birefringent material such as liquid crystal, the manufacturing cost has been increased.

本発明は、低コストで製造可能な偏光回折素子及び光ヘッド装置を提供することを目的とする。さらに、高い光学特性を有する偏光回折素子及び光ヘッド装置を提供することを目的とする。   An object of the present invention is to provide a polarization diffraction element and an optical head device that can be manufactured at low cost. It is another object of the present invention to provide a polarization diffraction element and an optical head device having high optical characteristics.

本発明にかかる偏光回折素子は、入射した偏光の波長λ以下のピッチの凹凸を有する偏光の振動方向によって屈折率が異なる構造性複屈折部を複数有し、当該構造性複屈折部は、互いに離間して設けられ、隣接する構造性複屈折部同士のピッチが前記波長λより大きい偏光回折素子であって、前記構造性複屈折部と隣接する構造性複屈折部の間を屈折率調整部と定義し、前記屈折率調整部は、前記構造性複屈折部を構成する媒質とは異なる屈折率を有する屈折率調整部を有するものである。このような構成によれば、複屈折を生じさせる部分に液晶等の複屈折材を用いる必要がないため、製造コストを低下させることができる。さらに、屈折率調整部の材料を変更することにより容易に回折効率を調整できるため、高い光学特性を容易に実現できる。   The polarization diffraction element according to the present invention has a plurality of structural birefringent portions having different refractive indices depending on the vibration direction of polarized light having irregularities with a pitch of λ or less of incident polarized light, and the structural birefringent portions are mutually connected. A polarization diffractive element that is provided apart and has a pitch between adjacent structural birefringent portions larger than the wavelength λ, and a refractive index adjusting unit between the structural birefringent portion and the adjacent structural birefringent portion The refractive index adjustment unit includes a refractive index adjustment unit having a refractive index different from that of the medium constituting the structural birefringence unit. According to such a configuration, it is not necessary to use a birefringent material such as a liquid crystal in a portion that generates birefringence, and thus the manufacturing cost can be reduced. Furthermore, since the diffraction efficiency can be easily adjusted by changing the material of the refractive index adjusting unit, high optical characteristics can be easily realized.

ここで、偏光回折素子は、前記構造性複屈折部に設けられた凹凸により形成された微細溝に平行な偏光を透過させ、当該微細溝に垂直な偏光に対しては回折格子として機能することが好ましい。   Here, the polarization diffraction element transmits polarized light parallel to the fine groove formed by the unevenness provided in the structural birefringence portion, and functions as a diffraction grating for polarized light perpendicular to the fine groove. Is preferred.

前記屈折率調整部の屈折率は、前記構造性複屈折部を構成する媒質の最小の屈折率よりも高いことが望ましい。   The refractive index of the refractive index adjusting unit is preferably higher than the minimum refractive index of the medium constituting the structural birefringent unit.

さらに具体的には、前記屈折率調整部の屈折率は、構造性複屈折部に設けられた凹凸により形成された微細溝に平行な偏光に対する当該構造性複屈折部の屈折率又は前記微細溝に垂直な偏光に対する当該複屈折率部の屈折率と略同じであるとよい。また、前記屈折率調整部の屈折率は、構造性複屈折部に設けられた凹凸により形成された微細溝に平行な偏光に対する当該構造性複屈折部の屈折率及び前記微細溝に垂直な偏光に対する当該複屈折率部の屈折率の双方と異なるようにすることも可能である。   More specifically, the refractive index of the refractive index adjusting portion is determined by the refractive index of the structural birefringent portion with respect to polarized light parallel to the microgroove formed by the unevenness provided in the structural birefringent portion or the fine groove. It is preferable that the refractive index of the birefringence portion is substantially the same with respect to the polarized light perpendicular to. Further, the refractive index of the refractive index adjusting unit is such that the refractive index of the structural birefringent portion with respect to the polarized light parallel to the fine groove formed by the unevenness provided in the structural birefringent portion and the polarized light perpendicular to the fine groove. It is also possible to make it different from both of the refractive indexes of the birefringence portion.

好適な実施の形態における屈折率調整部は、前記構造性複屈折部を構成している媒質とは異なる屈折率を持つ樹脂により形成されている。特に、記屈折率調整部は、光硬化性樹脂により形成されることにより容易に製造することができる。
偏光回折素子を利用する光ヘッドにおいては、上記構成の偏光回折素子を備えていることが望ましい。
The refractive index adjusting unit in a preferred embodiment is formed of a resin having a refractive index different from that of the medium constituting the structural birefringent unit. In particular, the refractive index adjusting unit can be easily manufactured by being formed of a photocurable resin.
In an optical head using a polarization diffraction element, it is desirable to include the polarization diffraction element having the above configuration.

本発明によれば、低コストで製造可能な偏光回折素子及び光ヘッド装置を提供することができる。さらに本発明によれば、高い光学特性を有する偏光回折素子及び光ヘッド装置を提供することができる。   According to the present invention, it is possible to provide a polarization diffraction element and an optical head device that can be manufactured at low cost. Furthermore, according to the present invention, a polarization diffraction element and an optical head device having high optical characteristics can be provided.

発明の実施の形態1.
図1に本発明の実施の形態1にかかる偏光回折素子の断面模式図を示す。図1(a)は全体模式図、図1(b)は光源からの入射光について説明するための図、図1(c)は光記録媒体2において反射した光について説明するための図である。
Embodiment 1 of the Invention
FIG. 1 shows a schematic sectional view of a polarization diffraction element according to Embodiment 1 of the present invention. 1A is an overall schematic diagram, FIG. 1B is a diagram for explaining incident light from a light source, and FIG. 1C is a diagram for explaining light reflected by an optical recording medium 2. .

偏光回折素子1は、偏光回折体11及び1/4波長板12を備えている。図1(a)に示されるように、偏光回折体11が光源側に、1/4波長板12が光記録媒体2側に設けられている。偏光回折体11と1/4波長板12は、部品の取り扱いや部品点数の点から図1(a)に示されるように、一体化していることが望ましいが、それらは分離されていてもよい。   The polarization diffraction element 1 includes a polarization diffraction body 11 and a quarter wavelength plate 12. As shown in FIG. 1A, the polarization diffractive body 11 is provided on the light source side, and the quarter wavelength plate 12 is provided on the optical recording medium 2 side. The polarization diffractive body 11 and the quarter-wave plate 12 are preferably integrated as shown in FIG. 1A from the viewpoint of handling of parts and the number of parts, but they may be separated. .

偏光回折体11は、アクリル樹脂やシクロオレフィンポリマー樹脂等の透明性を有するプラスチック樹脂により形成されている。   The polarization diffractive body 11 is formed of a transparent plastic resin such as an acrylic resin or a cycloolefin polymer resin.

偏光回折体11の光源側の表面には、複数の凹凸からなる構造性複屈折部111が複数存在する。構造性複屈折部111における凹凸のピッチW3は通過する光の波長よりも小さくする。それによりTM偏光に対する屈折率とTE偏光に対する屈折率が異なる値を持ち、複屈折材と同等の性質を有することとなる。この実施の形態1における構造性複屈折部111の凹部112には、樹脂等が充填されておらず、空気が存在する。それぞれの構造性複屈折部111は、同じ幅W1を有し、同じ間隔W2で配置されている。隣接する構造性複屈折部同士のピッチ(図1におけるW1+W2)は、入射光の波長より大きい。   A plurality of structural birefringent portions 111 having a plurality of projections and depressions are present on the light source side surface of the polarization diffractive body 11. The uneven pitch W3 in the structural birefringent portion 111 is set to be smaller than the wavelength of light passing therethrough. As a result, the refractive index for TM polarized light and the refractive index for TE polarized light have different values and the same properties as the birefringent material. The concave portion 112 of the structural birefringent portion 111 in the first embodiment is not filled with resin or the like and air is present. The respective structural birefringent portions 111 have the same width W1 and are arranged at the same interval W2. The pitch between adjacent structural birefringent portions (W1 + W2 in FIG. 1) is larger than the wavelength of incident light.

構造性複屈折部111における凹凸は、複数の互いに平行な溝として図1(a)の紙面に垂直な方向に延在している。即ち、構造性複屈折部111は、紙面に対して垂直な方向に長い長方形の凹溝が複数形成され、方向性に異方性を有する構造になっている。尚、この例では、凹凸の凹部には空気が位置することになるが、当該凹部に対して偏光回折体11と屈折率の異なる物質又は媒質を充填してもよい。   The unevenness in the structural birefringent portion 111 extends in a direction perpendicular to the paper surface of FIG. 1A as a plurality of parallel grooves. That is, the structural birefringent portion 111 has a structure in which a plurality of rectangular concave grooves that are long in the direction perpendicular to the paper surface are formed and the directionality is anisotropic. In this example, air is located in the concave / convex concave portion, but the concave portion may be filled with a substance or medium having a refractive index different from that of the polarizing diffraction body 11.

構造性複屈折部111の間には、屈折率調整部113が設けられている。この屈折率調整部113は、構造性複屈折部111を構成する媒質、つまり構造性複屈折部の凸部の媒質である樹脂と凹部に位置する空気の屈折率とは異なる屈折率を有する。当該屈折率調整部113は、熱硬化性ポリマー樹脂や、UV硬化性樹脂等の光硬化性ポリマー樹脂等により形成される。   A refractive index adjustment unit 113 is provided between the structural birefringence units 111. The refractive index adjusting unit 113 has a refractive index different from the refractive index of the medium constituting the structural birefringent unit 111, that is, the resin serving as the convex medium of the structural birefringent unit and the air located in the concaved portion. The refractive index adjusting unit 113 is formed of a thermosetting polymer resin, a photocurable polymer resin such as a UV curable resin, or the like.

構造性複屈折部111の屈折率は、TM偏光に対してはn2、TE偏光に対してはn1(n1とn2は等しくない)である。また、屈折率調整部113の屈折率は、構造性複屈折部111のTE偏光に対する屈折率と同じn1である。なお、屈折率調整部113において用いられる材料を変更して屈折率を変えることによって各偏光に対する各次数回折光への回折効率を容易に調整することも可能である。   The refractive index of the structural birefringent portion 111 is n2 for TM polarized light and n1 for TE polarized light (n1 and n2 are not equal). Further, the refractive index of the refractive index adjusting unit 113 is n1 which is the same as the refractive index of the structural birefringent unit 111 with respect to the TE polarized light. In addition, it is also possible to easily adjust the diffraction efficiency for each order diffracted light with respect to each polarized light by changing the refractive index by changing the material used in the refractive index adjusting unit 113.

1/4波長板12は、光源から偏光回折体を通過した直線偏光を円偏光に変換して光記録媒体2に照射する、あるいは光記録媒体2で反射された円偏光を直線偏光へ変換して偏光回折体11に入射させる機能を有する。尚、1/4波長板12の代わりに5/4波長板を設けてもよい。   The quarter wave plate 12 converts the linearly polarized light that has passed through the polarization diffractor from the light source to circularly polarized light and irradiates the optical recording medium 2, or converts the circularly polarized light reflected by the optical recording medium 2 into linearly polarized light. And has a function of making it incident on the polarization diffractive body 11. Note that a 5/4 wavelength plate may be provided instead of the 1/4 wavelength plate 12.

次に、図1(b)(c)を用いて、光の挙動について説明する。この例では、光源からの光はレーザ光であるため、既に直線偏光である。そして、当該直線偏光がTE偏光となるように位置調整がなされている。図1(b)に示されるように、TE偏光L1が偏光回折体11に入射したとき、構造性複屈折部111は、屈折率調整部113と同じ屈折率n1となる。このため、TE偏光L1はそのまま通過し、1/4波長板12に入射する。従って、この状態の偏光回折体11は、0次透過効率が高い。1/4波長板12に入射したTE偏光L1は、円偏光L2に変換されて光記録媒体2に対して出射する。   Next, the behavior of light will be described with reference to FIGS. In this example, since the light from the light source is laser light, it is already linearly polarized light. The position is adjusted so that the linearly polarized light becomes TE polarized light. As shown in FIG. 1B, when the TE polarized light L1 is incident on the polarization diffractive body 11, the structural birefringence unit 111 has the same refractive index n1 as that of the refractive index adjustment unit 113. For this reason, the TE polarized light L1 passes through as it is and enters the quarter-wave plate 12. Therefore, the polarization diffractive body 11 in this state has high zero-order transmission efficiency. The TE polarized light L1 incident on the quarter-wave plate 12 is converted into circularly polarized light L2 and emitted to the optical recording medium 2.

光記録媒体2において反射した反射光L3は、円偏光である。この反射光L3は、再び1/4波長板12に入射する。図1(c)に示されるように、反射光L3は、1/4波長板12において直線偏光であるTM偏光L4に変換されて、偏光回折体11に入射する。   The reflected light L3 reflected from the optical recording medium 2 is circularly polarized light. The reflected light L3 is incident on the quarter wavelength plate 12 again. As shown in FIG. 1C, the reflected light L <b> 3 is converted into TM polarized light L <b> 4 that is linearly polarized light in the quarter wavelength plate 12 and is incident on the polarization diffracting body 11.

偏光回折体11の構造性複屈折部111は、TM偏光L4に対して屈折率調整部113とは異なる屈折率となるため、回折格子として機能する。   Since the structural birefringence part 111 of the polarization diffractive body 11 has a refractive index different from that of the refractive index adjustment part 113 for the TM polarized light L4, it functions as a diffraction grating.

続いて、図2及び図3を用いて本発明の実施の形態1にかかる偏光回折素子の製造方法の一例について説明する。まず、パターニング工程を実行する(S101)。このパターニング工程では、まず、シリコン基板に対してレジストを塗布し、KrFステッパー装置によってパターン露光を行なう。次にエッチング工程を実行する(S102)。この例では、D−RIE(Deep Reactive Ion Etching)によりエッチングを行なう。その後、レジスト上にスパッタ等により導電膜を形成した後、電解メッキにより金型、即ちメッキスタンパを形成する(S103)。スタンパはいわゆる反転型であり、その一面には偏光回折体11を構成するための形状が形成されている。好適な実施の形態では、1つのスタンパには、複数の偏光回折体11に対応した形状が形成されている。スタンパは例えばNi、Cu、Auにより形成される。   Next, an example of a method for manufacturing the polarization diffraction element according to the first embodiment of the present invention will be described with reference to FIGS. First, a patterning process is performed (S101). In this patterning step, first, a resist is applied to the silicon substrate, and pattern exposure is performed by a KrF stepper device. Next, an etching process is performed (S102). In this example, etching is performed by D-RIE (Deep Reactive Ion Etching). Thereafter, a conductive film is formed on the resist by sputtering or the like, and then a die, that is, a plating stamper is formed by electrolytic plating (S103). The stamper is a so-called inversion type, and a shape for forming the polarization diffractive body 11 is formed on one surface thereof. In a preferred embodiment, one stamper is formed with a shape corresponding to the plurality of polarization diffraction bodies 11. The stamper is made of, for example, Ni, Cu, or Au.

このようにして製造されたスタンパを用いて樹脂成型を行なう(S104)。このとき、2P法やナノプリンティングにより樹脂を所定形状に加工してもよい。図3(a)に樹脂成型により形成された偏光回折体11の断面図を示す。この段階の偏光回折体11の上面には、構造性複屈折部111となる凹凸や屈折率調整部113が形成される凹部は形成されているが、その中には何も充填されていない。   Resin molding is performed using the stamper thus manufactured (S104). At this time, the resin may be processed into a predetermined shape by the 2P method or nanoprinting. FIG. 3A shows a cross-sectional view of the polarization diffractive body 11 formed by resin molding. On the upper surface of the polarization diffractive body 11 at this stage, concaves and convexes to be the structural birefringent part 111 and concave parts in which the refractive index adjusting part 113 is formed are formed, but nothing is filled therein.

次に、レジン塗布を行なう(S105)。図3(b)にレジン塗布後の様子を示す。この例では、レジンとしてUV硬化性樹脂115が塗布されている。そして、露光・現像工程を行う(S106)。露光は、構造性複屈折部111を遮光し、屈折率調整部113を露光するマスクを配置した状態で紫外線光を照射することにより行なわれる(図3(c))。これにより、屈折率調整部113にあるUV硬化性樹脂115は硬化し、さらに、現像により、構造性複屈折部111の凹部に充填された未硬化のUV硬化性樹脂115を除去する。   Next, resin coating is performed (S105). FIG. 3B shows a state after the resin is applied. In this example, a UV curable resin 115 is applied as a resin. Then, an exposure / development process is performed (S106). The exposure is performed by irradiating with ultraviolet light in a state where the structural birefringent portion 111 is shielded from light and the mask for exposing the refractive index adjusting portion 113 is disposed (FIG. 3C). Thereby, the UV curable resin 115 in the refractive index adjusting unit 113 is cured, and further, the uncured UV curable resin 115 filled in the concave portion of the structural birefringent unit 111 is removed by development.

その後、ダイシング工程(S107)によって、複数の偏光回折体11に分離する。   Then, it isolate | separates into the several polarization | polarized-light diffraction body 11 by a dicing process (S107).

以上説明したように、本発明の実施の形態1にかかる偏光回折素子は、液晶等の高価な複屈折材料を用いることなく偏光回折素子を形成したため、極めて安価に製造することが可能である。   As described above, since the polarization diffraction element according to the first embodiment of the present invention is formed without using an expensive birefringent material such as liquid crystal, it can be manufactured at a very low cost.

その他の実施の形態.
上述の例では、1/4波長板を用いたが、これに限らず、回折格子素子の光記録媒体側の面に通過する光の波長より小さいピッチの凹凸の微細溝を設けて、同様の機能を達成するようにしてもよい。
Other embodiments.
In the above example, the quarter-wave plate is used. However, the present invention is not limited to this, and a concave and convex fine groove having a pitch smaller than the wavelength of light passing through the surface on the optical recording medium side of the diffraction grating element is provided. You may make it achieve a function.

この実施例にかかる偏光回折素子は、図1に示す構造を有する。偏光回折体11は、屈折率が1.60のNTT−AT社製の紫外線硬化樹脂である光導波路用アクリル樹脂を用いて製造した。屈折率調整部113には屈折率が1.38の紫外線硬化性樹脂である、フッ素系樹脂(JSR株式会社製Opstar)を用いている。構造性複屈折部111の凹部112には何も充填されていないため、屈折率は空気の1である。   The polarization diffraction element according to this example has the structure shown in FIG. The polarization diffractive body 11 was manufactured using an acrylic resin for optical waveguide, which is an ultraviolet curable resin manufactured by NTT-AT having a refractive index of 1.60. The refractive index adjusting unit 113 is made of a fluorine-based resin (Opstar manufactured by JSR Corporation), which is an ultraviolet curable resin having a refractive index of 1.38. Since the concave portion 112 of the structural birefringent portion 111 is not filled with anything, the refractive index is 1 for air.

構造性複屈折部111の凹部112の幅は195nm、凹部112の深さ及び屈折率調整部113の深さは2794nmである。構造性複屈折部111における凹凸のピッチW3は390nmであり、入射光の波長780nmよりも短く、半分の長さを有する。構造性複屈折部111の凸部の幅は、195nmである。この場合の構造性複屈折部111の屈折率は、TE偏光に対しては1.38、TM偏光に対しては1.24である。   The width of the concave portion 112 of the structural birefringent portion 111 is 195 nm, the depth of the concave portion 112 and the depth of the refractive index adjusting portion 113 are 2794 nm. The uneven pitch W3 in the structural birefringent portion 111 is 390 nm, which is shorter than the wavelength 780 nm of incident light and has a half length. The width of the convex portion of the structural birefringent portion 111 is 195 nm. In this case, the refractive index of the structural birefringent portion 111 is 1.38 for TE polarized light and 1.24 for TM polarized light.

このような構成の場合には、TE偏光に対しては回折が起きず、TM偏光に対しては略全ての光を回折可能にできる。薄膜近似を用いたスカラー回折理論を利用し計算した結果によれば、回折が起こらず透過した光である0次回折光に関しては、TE偏光に対しては99%以上、TM偏光に対しては0.1%未満の回折効率を有することが導かれた。また、+1次回折光に関しては、TE偏光に対しては0.1%未満、TM偏光に対しては40%程度の回折効率を有することが導かれた。   In such a configuration, diffraction does not occur with respect to TE polarized light, and almost all light can be diffracted with respect to TM polarized light. According to the result calculated using the scalar diffraction theory using the thin film approximation, the 0th-order diffracted light that is transmitted without being diffracted is 99% or more for TE polarized light and 0 for TM polarized light. It was derived to have a diffraction efficiency of less than 1%. Further, regarding the + 1st order diffracted light, it was derived that it has a diffraction efficiency of less than 0.1% for TE polarized light and about 40% for TM polarized light.

本発明にかかる偏光回折素子の断面図である。It is sectional drawing of the polarization | polarized-light diffraction element concerning this invention. 本発明にかかる偏光回折素子の製造フローを示すフローチャートである。It is a flowchart which shows the manufacture flow of the polarization | polarized-light diffraction element concerning this invention. 本発明にかかる偏光回折素子の製造フローを示す断面図である。It is sectional drawing which shows the manufacture flow of the polarization | polarized-light diffraction element concerning this invention. 従来の偏光回折素子の断面図である。It is sectional drawing of the conventional polarization | polarized-light diffraction element.

符号の説明Explanation of symbols

1 偏光回折素子
2 光記録媒体
11 偏光回折体
12 1/4波長板
41 充填樹脂
42 白板ガラス
111 構造性複屈折部
112 凹部
113 屈折率調整部
115 硬化性樹脂
411 複屈折材
DESCRIPTION OF SYMBOLS 1 Polarization diffraction element 2 Optical recording medium 11 Polarization diffractive body 12 1/4 wavelength plate 41 Filling resin 42 White plate glass 111 Structural birefringence part 112 Recession 113 Refractive index adjustment part 115 Curable resin 411 Birefringence material

Claims (8)

入射した偏光の波長λ以下のピッチの凹凸を有する偏光の振動方向によって屈折率が異なる構造性複屈折部を複数有し、当該構造性複屈折部は、互いに離間して設けられ、隣接する構造性複屈折部同士のピッチが前記波長λより大きい偏光回折素子であって、
前記構造性複屈折部と隣接する構造性複屈折部の間を屈折率調整部と定義し、前記屈折率調整部は、前記構造性複屈折部を構成している媒質とは異なる屈折率を有したことを特徴とする偏光回折素子。
There are a plurality of structural birefringent portions having different refractive indexes depending on the vibration direction of polarized light having irregularities with a pitch of λ or less of incident polarized light, and the structural birefringent portions are provided apart from each other and adjacent structures A polarization diffraction element in which the pitch between the characteristic birefringence portions is larger than the wavelength λ,
Between the structural birefringent part and the adjacent structural birefringent part is defined as a refractive index adjusting part, and the refractive index adjusting part has a refractive index different from that of the medium constituting the structural birefringent part. A polarization diffraction element characterized by having.
前記屈折率調整部の屈折率は、前記構造性複屈折部を構成する媒質の最小の屈折率よりも高いことを特徴とする請求項1記載の偏光回折素子。   2. The polarization diffraction element according to claim 1, wherein a refractive index of the refractive index adjusting unit is higher than a minimum refractive index of a medium constituting the structural birefringent unit. 前記屈折率調整部の屈折率は、構造性複屈折部に設けられた微細溝に対し、平行又は垂直方向のいずれかの偏光に対する構造性複屈折部の屈折率と略同じであることを特徴とする請求項1又は2記載の偏光回折素子。   The refractive index of the refractive index adjusting part is substantially the same as the refractive index of the structural birefringent part for polarized light in either the parallel or vertical direction with respect to the fine groove provided in the structural birefringent part. The polarization diffraction element according to claim 1 or 2. 前記屈折率調整部の屈折率は、構造性複屈折部に設けられた微細溝に対し、平行又は垂直方向の偏光に対する構造性複屈折部の屈折率の、いずれとも異なることを特徴とする請求項1又は2記載の偏光回折素子。   The refractive index of the refractive index adjusting unit is different from the refractive index of the structural birefringent unit with respect to polarized light in parallel or perpendicular direction with respect to the fine groove provided in the structural birefringent unit. Item 3. The polarization diffraction element according to Item 1 or 2. 前記屈折率調整部は、樹脂により形成されていることを特徴とする請求項1乃至4いずれかに記載の偏光回折素子。   The polarization diffraction element according to claim 1, wherein the refractive index adjusting unit is formed of a resin. 前記屈折率調整部は、光硬化性樹脂により形成されていることを特徴とする請求項5記載の偏光回折素子。   The polarizing diffraction element according to claim 5, wherein the refractive index adjusting unit is made of a photocurable resin. 前記偏光回折素子は、さらに1/4又は5/4波長板を備えたことを特徴とする請求項1乃至6いずれかに記載の偏光回折素子。   The polarization diffraction element according to any one of claims 1 to 6, wherein the polarization diffraction element further includes a quarter or 5/4 wavelength plate. 請求項1乃至7いずれかに記載の偏光回折素子を備えた光ヘッド装置。   An optical head device comprising the polarization diffraction element according to claim 1.
JP2005264317A 2004-09-13 2005-09-12 Polarized light diffracting element Pending JP2006106726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005264317A JP2006106726A (en) 2004-09-13 2005-09-12 Polarized light diffracting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004264842 2004-09-13
JP2005264317A JP2006106726A (en) 2004-09-13 2005-09-12 Polarized light diffracting element

Publications (1)

Publication Number Publication Date
JP2006106726A true JP2006106726A (en) 2006-04-20

Family

ID=36376475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264317A Pending JP2006106726A (en) 2004-09-13 2005-09-12 Polarized light diffracting element

Country Status (1)

Country Link
JP (1) JP2006106726A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262620A (en) * 2007-04-10 2008-10-30 Ricoh Co Ltd Wavelength-selective diffraction element, optical pickup, optical information processor, and optical information processing method
JP2008299084A (en) * 2007-05-31 2008-12-11 Ricoh Opt Ind Co Ltd Method of manufacturing optical element having fine irregular shape on the surface
JP4491555B1 (en) * 2009-06-29 2010-06-30 ナルックス株式会社 Optical element and manufacturing method thereof
JP2011227991A (en) * 2011-08-03 2011-11-10 Ricoh Co Ltd Diffraction element, optical pickup, and optical information processing apparatus
CN112816055A (en) * 2020-12-31 2021-05-18 北方工业大学 Self-calibration optical micro-vibration detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326604A (en) * 1986-07-18 1988-02-04 Nec Corp Polarization beam splitter
JPH02205802A (en) * 1989-02-03 1990-08-15 Nec Corp Polarizing element
JP2000090480A (en) * 1998-09-11 2000-03-31 Sharp Corp Optical pickup
JP2000249831A (en) * 1999-02-26 2000-09-14 Asahi Glass Co Ltd Optical device and optical head device
JP2004004621A (en) * 2002-03-25 2004-01-08 Sanyo Electric Co Ltd Element having microstructure and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326604A (en) * 1986-07-18 1988-02-04 Nec Corp Polarization beam splitter
JPH02205802A (en) * 1989-02-03 1990-08-15 Nec Corp Polarizing element
JP2000090480A (en) * 1998-09-11 2000-03-31 Sharp Corp Optical pickup
JP2000249831A (en) * 1999-02-26 2000-09-14 Asahi Glass Co Ltd Optical device and optical head device
JP2004004621A (en) * 2002-03-25 2004-01-08 Sanyo Electric Co Ltd Element having microstructure and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262620A (en) * 2007-04-10 2008-10-30 Ricoh Co Ltd Wavelength-selective diffraction element, optical pickup, optical information processor, and optical information processing method
JP2008299084A (en) * 2007-05-31 2008-12-11 Ricoh Opt Ind Co Ltd Method of manufacturing optical element having fine irregular shape on the surface
JP4491555B1 (en) * 2009-06-29 2010-06-30 ナルックス株式会社 Optical element and manufacturing method thereof
WO2011001459A1 (en) * 2009-06-29 2011-01-06 ナルックス株式会社 Optical element and manufacturing method thereof
JP2011227991A (en) * 2011-08-03 2011-11-10 Ricoh Co Ltd Diffraction element, optical pickup, and optical information processing apparatus
CN112816055A (en) * 2020-12-31 2021-05-18 北方工业大学 Self-calibration optical micro-vibration detection method
CN112816055B (en) * 2020-12-31 2021-09-03 北方工业大学 Self-calibration optical micro-vibration detection method

Similar Documents

Publication Publication Date Title
KR101226346B1 (en) Optical element, optical apparatus, optical pickup, optical information processing apparatus, optical attenuator, polarization conversion element, projector optical system, and optical apparatus system
JP4999556B2 (en) Manufacturing method of optical element having fine irregularities on surface
JP2007265581A (en) Diffraction element
WO2007055245A1 (en) Polarization split element and production method thereof, and optical pickup, optical device, optical isolator and polarizing hologram provided with the polarization split element
JP2006106726A (en) Polarized light diffracting element
JP2009085974A (en) Polarizing element and method for fabricating the same
JP2010102008A (en) Photomask and method for making sawtooth pattern
JP4387141B2 (en) Polarization diffraction grating
JP4338558B2 (en) Optical pickup
JP2012159802A (en) Optical element, optical pickup, optical information processor, optical attenuator, polarization conversion element, projector optical system, isolator and optical instrument
JP4999401B2 (en) Manufacturing method of optical element having fine irregularities on surface
JP2006114201A (en) Polarization diffraction element and optical head apparatus
JP4561080B2 (en) Diffraction element and optical head device
JP2004205880A (en) Reflective diffraction grating
JP4336665B2 (en) Optical element and optical pickup apparatus having the same
JP2006216162A (en) Diffraction optical element and optical pickup apparatus
JPH1010307A (en) Production of optical diffraction gating and optical head device formed by using the same
JP4965275B2 (en) Method for manufacturing hologram optical element
JP5313725B2 (en) 1/4 wave plate
JP4599763B2 (en) Optical head device
JP4999485B2 (en) Beam splitting element and beam splitting method
JP2013073047A (en) Broadband 1/4 wavelength plate
JP5272985B2 (en) Diffractive optical element and optical pickup
JP2007317326A (en) Diffraction grating, its manufacturing method, and optical pickup apparatus
KR100703951B1 (en) Wave selection type diffractive optical elements and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726