JP2009025266A - Analyzer - Google Patents

Analyzer Download PDF

Info

Publication number
JP2009025266A
JP2009025266A JP2007191620A JP2007191620A JP2009025266A JP 2009025266 A JP2009025266 A JP 2009025266A JP 2007191620 A JP2007191620 A JP 2007191620A JP 2007191620 A JP2007191620 A JP 2007191620A JP 2009025266 A JP2009025266 A JP 2009025266A
Authority
JP
Japan
Prior art keywords
container
analysis unit
sample
analysis
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007191620A
Other languages
Japanese (ja)
Other versions
JP4950792B2 (en
Inventor
Hiroshi Hirata
泰士 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2007191620A priority Critical patent/JP4950792B2/en
Publication of JP2009025266A publication Critical patent/JP2009025266A/en
Application granted granted Critical
Publication of JP4950792B2 publication Critical patent/JP4950792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzer that holds an energy radiation source at a fixed position and enables accurate analysis, without having to apply strength, structure or material restrictions on an airtight vessel, such as, vacuum vessel. <P>SOLUTION: The analyzer comprises the airtight vessel 1 for accommodating a sample in a predetermined position within an internal space; an analysis section 2 for analyzing the sample S; a base plate 113 for supporting the airtight vessel 1; a support structure 3 fixed to the base plate 112, supporting the analysis section 2, and separating it from the sample S at a predetermined distance; and a connection mechanism 5 for allowing a relative movement between the airtight vessel 1 and the analysis section 2 by deformation of the airtight vessel 1, accompanying introduction and emission of a gas, and airtightly connecting the air-tight vessel 1 and the analysis section 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、X線や電子線などを用いてサンプルの定量・定性分析を行う分析装置に関するものである。   The present invention relates to an analyzer for performing quantitative / qualitative analysis of a sample using an X-ray, an electron beam or the like.

X線や電子線などのエネルギ線をサンプルに照射して当該サンプルの定量・定性分析を行うこの種の分析装置において、大気などのガスによって分析が阻害される場合には、真空容器中にサンプルを収容して、真空中で分析を行うようにしている。   In this type of analyzer that performs quantitative and qualitative analysis of a sample by irradiating the sample with energy rays such as X-rays and electron beams, if the analysis is hindered by gas such as the atmosphere, the sample is placed in a vacuum vessel. And the analysis is performed in a vacuum.

一方、このような構成においては、空間分解能を向上させるために、集光機構を用いてエネルギ線をできるだけ小さい領域に収斂して照射するようにしており、その集光位置にサンプルが位置するように、サンプルとエネルギ線源との距離を正確に設定している。そして従来は、このようなエネルギ線源や集光機構を、真空容器の壁体に取り付けている
特開2005−19708号公報
On the other hand, in such a configuration, in order to improve the spatial resolution, the energy beam is converged and irradiated in the smallest possible region using a light collecting mechanism, and the sample is positioned at the light collecting position. In addition, the distance between the sample and the energy source is set accurately. Conventionally, such an energy ray source and a light collecting mechanism are attached to the wall of the vacuum vessel.
Japanese Patent Laid-Open No. 2005-19708

ところが、真空容器を密閉し、内部空間を真空にすると、大気圧による周りからの圧縮力で真空容器が歪むため、その変形によって前記集光機構等とサンプルとの距離が変わり、スポット径が大きくなって所望の空間分解能を得られない場合が生じる。特に高い分解能を要求される場合には、真空容器のわずかの歪みが大きな問題となり得る。   However, when the vacuum vessel is sealed and the internal space is evacuated, the vacuum vessel is distorted by the compressive force from the surroundings due to atmospheric pressure, so the deformation changes the distance between the condensing mechanism and the sample, and the spot diameter increases. In some cases, the desired spatial resolution cannot be obtained. In particular, when a high resolution is required, a slight distortion of the vacuum vessel can be a big problem.

そこで、特許文献1に示すように、最も歪みが小さいと考えられる真空容器の角部分からビームを伸ばし、そのビームに前記エネルギ線源等を支持させるようにした構造も知られているが、変形する真空容器に支持させていることに変わりなく、抜本的な問題解決には至っていない。   Therefore, as shown in Patent Document 1, there is also known a structure in which a beam is extended from a corner portion of a vacuum vessel considered to have the smallest distortion, and the energy beam source is supported by the beam. It is still supported by a vacuum vessel that does not provide a fundamental solution to the problem.

また、真空容器の壁体を厚くしたり、強度の大きい材料を使ったりして、歪みそのものを小さくすることも考えられるが、重量やコストの増大などの不具合を招き得るし、あるいは、歪みを見越してサンプルとの距離設定をするといった対応では、正確な設定が難しい上に、その設定操作が煩雑になるという問題点が生じ得る。そして、こういった問題点は、真空容器のみならず、内部を加圧して密閉する加圧容器にも共通する。   In addition, it is conceivable to reduce the distortion itself by thickening the wall of the vacuum vessel or using a material with high strength, but this may cause problems such as an increase in weight and cost, or the distortion may be reduced. In response to the setting of the distance to the sample in anticipation, it is difficult to set accurately, and the setting operation may be complicated. Such problems are common not only to vacuum containers but also to pressurized containers that pressurize and seal the inside.

本発明は、こういった問題点を一挙に解決すべくなされたものであって、その主たる所期課題は、真空容器や加圧容器などの気密容器に対し、強度上の構造的、材料的な制限を加えることなく、エネルギ線源等を一定の位置に保持できて、精度良い分析が可能な分析装置を提供することにある。   The present invention has been made to solve these problems all at once, and its main problem is that it is structurally and structurally strong against airtight containers such as vacuum containers and pressurized containers. It is an object of the present invention to provide an analysis apparatus that can hold an energy ray source or the like at a certain position without any particular limitation and can perform an accurate analysis.

すなわち本発明に係る分析装置は、サンプルを内部空間の所定位置に収容する気密容器と、前記サンプルの分析を行う分析部と、前記気密容器を支持するベース板と、前記ベース板に固定されるものであって、前記分析部を前記サンプルから予め定めた所定距離離間した位置に支持する支持構造体と、ガス導出入に伴う気密容器の変形による、当該気密容器と前記分析部との相対移動を許容しながら、この分析部と気密容器とを気密に接続する接続機構と、を備えていることを特徴とする。   That is, the analyzer according to the present invention is fixed to the airtight container that accommodates the sample in a predetermined position in the internal space, the analysis unit that analyzes the sample, the base plate that supports the airtight container, and the base plate. A support structure that supports the analysis unit at a predetermined distance from the sample, and a relative movement between the hermetic container and the analysis unit due to deformation of the hermetic container when the gas is led in and out. And a connection mechanism for hermetically connecting the analyzing section and the hermetic container.

このようなものであれば、分析部を支持する支持構造体が、構造上の強度が最も大きい部材の一つであるベース板に固定され、気密容器とは別に配設されているため、気密容器内を減圧又は加圧することによる歪みの影響をほとんど受けない。しかも、その分析部は気密容器に対して固定されずに相対移動可能に構成されているため、気密容器が歪んで変形移動してもその移動を接続機構が吸収して分析部を一定の位置に保持することができる。したがって、分析部とサンプルとの距離が変化せず一定に保たれ、精度良い測定が可能となる。また、分析部と気密容器との間で相対移動が生じても、前記接続機構によって気密状態を維持できる。   In such a case, the support structure that supports the analysis unit is fixed to the base plate, which is one of the members having the greatest structural strength, and is disposed separately from the airtight container. It is hardly affected by distortion caused by decompression or pressurization in the container. In addition, since the analysis unit is configured to be relatively movable without being fixed to the hermetic container, even if the hermetic container is distorted and deformed, the connection mechanism absorbs the movement and the analysis unit is positioned at a certain position. Can be held in. Therefore, the distance between the analysis unit and the sample does not change and is kept constant, enabling accurate measurement. Moreover, even if relative movement occurs between the analysis unit and the airtight container, the airtight state can be maintained by the connection mechanism.

コンパクト化や構造容易化が可能な前記接続機構としては、気密容器の壁体に略垂直に貫通させた貫通孔と、この貫通孔にスライド可能に嵌合する分析部の外周面と、それらの間に設けられたシール構造と、からなるものが好ましい。このようなものであれば、分析部が、真空容器内に貫通することとなるので分析部とサンプルとの距離を短くできるという効果も奏し得る。   As the connection mechanism that can be made compact and easy in structure, there are a through hole that penetrates the wall of the airtight container substantially perpendicularly, an outer peripheral surface of the analysis section that is slidably fitted in the through hole, What consists of the sealing structure provided in between is preferable. If it is such, since an analysis part will penetrate in a vacuum vessel, the effect that the distance of an analysis part and a sample can be shortened can also be show | played.

気密容器やその周辺機器に干渉しにくく、コンパクト化に寄与できる構成としては、前記ベース板が、気密容器よりも外方に延出するものであり、前記支持構造体が、前記ベース板の延出部分から起立する起立部材と、その起立部材の上端部に片持ち支持されて前記気密容器の上方に延伸する梁部材と、を備えており、前記分析部が、前記梁部材の先端部に取り付けられて気密容器の頂部壁体を貫通しているものを挙げることができる。   As a configuration that is unlikely to interfere with the hermetic container and its peripheral devices and can contribute to downsizing, the base plate extends outward from the hermetic container, and the support structure extends the base plate. And a beam member that is cantilevered at the upper end of the standing member and extends above the hermetic container, and the analysis unit is provided at the tip of the beam member. Mention may be made of being attached and penetrating the top wall of the hermetic container.

具体的に、前記気密容器が、正面側に開口部を設けた容器本体と、その開口部を閉止するための蓋体と、前記容器本体の側方に設けられ、前記蓋体を開閉移動可能に支持する案内支持機構と、を備えたものにおいては、側面側には案内支持機構があり正面側には開口部があるため、特別な構造が存在しない背面側に前記起立部材を起立するとともに、前記梁部材を容器本体の背面側から正面側に向かって延伸するように構成しておくことが、コンパクト化や部材同士の干渉を防止するうえで好ましいものとなる。   Specifically, the hermetic container is provided with a container body having an opening on the front side, a lid for closing the opening, and a side of the container body, and the lid can be opened and closed. Since the guide support mechanism is provided on the side surface, the guide support mechanism is provided on the side surface and the opening is provided on the front surface side. Therefore, the upright member is erected on the back side where no special structure exists. It is preferable that the beam member is configured to extend from the back side to the front side of the container body in order to reduce the size and prevent interference between members.

もちろん、そのような構造上の制限がない場合は、梁部材を両持ちにするなどして、分析部の保持安定性を向上させればよい。   Of course, if there is no such structural limitation, the holding stability of the analysis unit may be improved by, for example, holding both beam members.

本発明の効果が特に顕著となるものとしては、前記開口部が斜め上向きに開口する場合を挙げることができる。開口部が斜め上向きの分だけ、頂部壁体の大きさ、つまり強度が減少し、歪みが大きくなるところ、本発明によればその影響をほとんど受けないからである。   A case where the effect of the present invention is particularly remarkable includes a case where the opening opens obliquely upward. This is because the size of the top wall body, that is, the strength is reduced and the distortion is increased by the amount of the opening portion obliquely upward, but according to the present invention, it is hardly affected.

具体的実施態様としては、前記分析部が、気密容器の内部空間に連通する筐体と、その筐体内を通ってサンプルに収斂照射されるエネルギ線源と、を備えたものを挙げることができる。   As a specific embodiment, the analysis unit may include a housing that communicates with the internal space of the hermetic container and an energy ray source that converges and irradiates the sample through the housing. .

以上に述べたように、本発明によれば、分析部を支持する支持構造体が気密容器とは別に配設されており、しかも、その分析部は気密容器に対して固定されず、気密状態を保ったまま相対移動可能に構成されているため、気密容器の歪み影響を受けることなく、分析部を一定の位置に保持することができる。つまり、気密容器に強度上の構造的、材料的な制限を加えることなく、エネルギ線源等を一定の位置に保持できて、精度良い分析が可能となる。   As described above, according to the present invention, the support structure that supports the analysis unit is disposed separately from the airtight container, and the analysis unit is not fixed to the airtight container and is in an airtight state. Therefore, the analyzer can be held at a fixed position without being affected by the distortion of the hermetic container. In other words, the energy ray source or the like can be held at a fixed position without any structural or material restrictions on the strength of the hermetic container, and an accurate analysis is possible.

以下、本発明の一実施形態を、図面を参照して説明する。
本実施形態に係る分析装置100は、模式的な全体斜視図を図1、内部構造を示す模式的断面図を図2に示すように、サンプルSを内部に収容する気密容器である真空容器1と、その真空容器1の内部のサンプルSを分析するための分析部2と、その分析部2を支持する支持構造体3と、前記分析部2及び真空容器1を気密に接続する接続機構5とを備えたものであり、サンプルSの定性・定量分析に用いられる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The analysis apparatus 100 according to the present embodiment is a vacuum container 1 that is an airtight container for accommodating a sample S, as shown in FIG. 1 as a schematic overall perspective view and as shown in FIG. 2 as a schematic cross-sectional view showing an internal structure. And an analysis unit 2 for analyzing the sample S inside the vacuum vessel 1, a support structure 3 that supports the analysis unit 2, and a connection mechanism 5 that hermetically connects the analysis unit 2 and the vacuum vessel 1. And used for qualitative and quantitative analysis of the sample S.

各部を説明する。真空容器1は、図2等に示すように、当該真空容器1の底板も兼ねる、等厚平板状をなすベース板112上に支持されたものであり、サンプルSの搬出入のための開口部1aを有した容器本体11と、その開口部1aを閉止するための蓋体12と、その蓋体12を開閉可能に支持する案内支持機構4と、を有している。   Each part will be described. As shown in FIG. 2 and the like, the vacuum vessel 1 is supported on a base plate 112 having an equal thickness plate that also serves as a bottom plate of the vacuum vessel 1, and an opening for loading and unloading the sample S The container main body 11 having 1a, a lid 12 for closing the opening 1a, and a guide support mechanism 4 for supporting the lid 12 so as to be opened and closed are provided.

前記容器本体11は、図2に示すように、中空直方体の上部を、一辺に沿って斜めに切り取った形状を概略なすアルミニウム製のものであり、その切り取った斜めの部分を開口部1aとしている。そして、水平に倒した概略直角三角柱状をなすアルミニウム製中空の蓋体12により、この開口部1aが閉止されるように構成している。蓋体12と開口部1aとの間には、弾性シール部材たる樹脂製のOリングO3を介在させており、閉止状態での容器内部空間の気密性を確保できるように構成している。なお、以下の説明では、開口部1aが設けられている側を正面、すなわち前として説明するが、これはあくまで説明の便宜上のことであり、絶対的な方向を示すものではない。また、この容器本体11の内部には、XYZ方向に移動可能な可動ステージAが設けてあり、その可動ステージA上に前記サンプルSが載置される。   As shown in FIG. 2, the container body 11 is made of aluminum and has an outline of a shape obtained by obliquely cutting an upper portion of a hollow rectangular parallelepiped along one side, and the cut oblique portion is an opening 1a. . The opening 1a is closed by an aluminum hollow lid 12 having a substantially right triangular prism shape that is horizontally tilted. Between the lid body 12 and the opening 1a, an O-ring O3 made of resin, which is an elastic seal member, is interposed so as to ensure airtightness of the internal space of the container in the closed state. In the following description, the side on which the opening 1a is provided is described as the front, that is, the front, but this is merely for convenience of description and does not indicate an absolute direction. In addition, a movable stage A movable in the XYZ directions is provided inside the container main body 11, and the sample S is placed on the movable stage A.

前記案内支持機構4は、前記蓋体12を、図3に示す閉止位置とその閉止位置から前方かつ下方の図4に示す開放位置との間で所定軌道に沿って開閉移動させるものである。具体的にこの案内支持機構4は、容器本体11の側面に水平スライドのみ可能に支持された一対のブラケット41と、そのブラケット41に基端部を回転可能に取り付けられ、先端部で前記蓋体12の各側部をそれぞれ支持する一対のアーム42と、そのアーム42の動きを規制することにより蓋体12の動きを前記所定軌道に限定する軌道規制部43と、を具備している。この軌道規制部43は、例えば、前記アーム42の回転中心から偏位した部位に設けられて内側方に突出する円柱状の凸部431と、前記容器本体11に取り付けられたレール部材Rの外側面に形成した係合溝432とを具備したものであり、凸部431が係合溝432に係合し、その係合溝432の延伸方向に沿って移動することによりアーム42の挙動を規制する。   The guide support mechanism 4 opens and closes the lid body 12 along a predetermined track between a closed position shown in FIG. 3 and an open position shown in FIG. 4 forward and downward from the closed position. Specifically, the guide support mechanism 4 includes a pair of brackets 41 supported on the side surface of the container body 11 so that only horizontal sliding is possible, and a base end portion rotatably attached to the bracket 41. 12 includes a pair of arms 42 that respectively support the respective side portions 12 and a trajectory restricting portion 43 that restricts the movement of the lid 12 to the predetermined trajectory by restricting the movement of the arms 42. The track restricting portion 43 is, for example, a columnar convex portion 431 provided at a position deviated from the rotation center of the arm 42 and protruding inward, and an outer side of the rail member R attached to the container body 11. The engaging groove 432 formed on the side surface is provided, and the convex portion 431 engages with the engaging groove 432 and moves along the extending direction of the engaging groove 432, thereby regulating the behavior of the arm 42. To do.

分析部2は、図2、図5等に示すように、前記サンプルSの直上に設けられたものであり、分析部本体(図示しない)とその分析部本体を収容保持する筐体22とを備えている。   As shown in FIG. 2, FIG. 5, etc., the analysis unit 2 is provided immediately above the sample S, and includes an analysis unit main body (not shown) and a housing 22 that accommodates and holds the analysis unit main body. I have.

分析部本体は、エネルギ線たる一次X線を射出するX線源(図示しない)と、その一次X線を微少スポット径に集光してサンプルSに照射するX線集光導管(図示しない)と、一次X線を照射されたサンプルSから発生する蛍光X線等を検出する検出器(図示しない)とを備え、その検出器での検出結果からサンプルS中に含まれる元素の分析を行うことができるようにしたものである。   The analysis unit main body includes an X-ray source (not shown) that emits primary X-rays as energy rays, and an X-ray condensing conduit (not shown) that focuses the primary X-rays on a small spot diameter and irradiates the sample S. And a detector (not shown) that detects fluorescent X-rays and the like generated from the sample S irradiated with the primary X-ray, and analyzes the elements contained in the sample S from the detection result of the detector. It is something that can be done.

筐体22は、図2、図5、図6に示すように、X線照射のための開口部22aを下面に有する中空のものである。   As shown in FIGS. 2, 5, and 6, the housing 22 is a hollow one having an opening 22 a for X-ray irradiation on the lower surface.

支持構造体3は、図2、図6に示すように、前記ベース板112における真空容器1よりも後方に延出した延出部分112aに固定したもので、前記延出部分112aから起立する起立部材31と、その起立部材31の上端部に片持ち支持されて前記真空容器1の上方に延伸する梁部材32と、を備えている。より具体的に説明すると、前記起立部材31は、例えば、前記ベース板延出部分112aの各側部からそれぞれ起立させた一対の支柱311と、その支柱の上端部間に架け渡した横架材312とからなる。梁部材32は、例えば平行に配置した2本の梁要素321からなるもので、前記横架材312の中央から前方に向かって伸び、先端部が真空容器1の中央付近上方に位置するように構成されている。そして、この梁部材32の先端部に前記分析部2の筐体22が取り付けられている。   As shown in FIGS. 2 and 6, the support structure 3 is fixed to an extension portion 112 a that extends rearward from the vacuum vessel 1 in the base plate 112, and stands upright from the extension portion 112 a. A member 31 and a beam member 32 that is cantilevered at the upper end of the upright member 31 and extends above the vacuum vessel 1 are provided. More specifically, the upright member 31 includes, for example, a pair of support columns 311 erected from the respective side portions of the base plate extension portion 112a and a horizontal member spanned between the upper end portions of the support columns. 312. The beam member 32 is composed of, for example, two beam elements 321 arranged in parallel. The beam member 32 extends from the center of the horizontal member 312 toward the front, and the tip is positioned above the vicinity of the center of the vacuum vessel 1. It is configured. And the housing | casing 22 of the said analysis part 2 is attached to the front-end | tip part of this beam member 32. FIG.

接続機構5は、容器本体11の頂部壁体111に垂直に、すなわち鉛直に開けた貫通孔51と、その貫通孔51に嵌合する筐体22の外周面52とを、シール構造7を介して隙間なく気密に密着させてなるものであり、この接続機構5によって、真空容器1の内部空間と当該筐体22の内部空間とが連通する。前述したシール構造7とは、ここでは、筐体外周面52に周回させて設けた溝52aと、その溝52aに一部が突出するように嵌め込んだ弾性シール部材たるOリングO1とからなるものであり、筐体22を貫通孔51に嵌合させることで、前記OリングO1が溝52aと貫通孔51の内周面との間で押圧されて変形するとともに密着し、外部に対する気密性を確保する。しかして、この構成から明らかなように、このシール構造7は、気密性を維持しながら筐体22と貫通孔51との所定範囲内での相対スライド移動を許容する。   The connection mechanism 5 includes a through hole 51 that is perpendicular to the top wall body 111 of the container body 11, that is, a vertical hole, and an outer peripheral surface 52 of the housing 22 that fits into the through hole 51 via the seal structure 7. The connection mechanism 5 allows the internal space of the vacuum vessel 1 and the internal space of the housing 22 to communicate with each other. Here, the seal structure 7 includes a groove 52a provided around the outer peripheral surface 52 of the casing and an O-ring O1 which is an elastic seal member fitted so as to partially protrude into the groove 52a. By fitting the housing 22 into the through hole 51, the O-ring O1 is pressed and deformed between the groove 52a and the inner peripheral surface of the through hole 51, and is tightly sealed to the outside. Secure. Thus, as is clear from this configuration, the seal structure 7 allows relative sliding movement of the housing 22 and the through hole 51 within a predetermined range while maintaining airtightness.

このような構成の下、真空容器1内を真空にすると、図2、図6の二点鎖線で示すように、大気圧による圧縮作用で壁体が内向きに歪み、例えば頂部壁体111は下方に移動することとなる。一方、分析部2を支持する支持構造体3が真空容器1とは別に配設されていることから、分析部2は同位置に保持され、頂部壁体111のみが分析部2に対してスライドして下方に移動する。したがって、分析部2とサンプルSとの距離が一定に保たれ、X線の集光スポット径が初期設定通りに維持されて精度良い測定が可能となる。また、分析部2と頂部壁体111との間でスライドが生じても、シール構造7によって真空状態を保つことができる。   When the inside of the vacuum vessel 1 is evacuated under such a configuration, as shown by the two-dot chain line in FIGS. 2 and 6, the wall body is distorted inward by the compression action by the atmospheric pressure. For example, the top wall body 111 is It will move downward. On the other hand, since the support structure 3 that supports the analysis unit 2 is disposed separately from the vacuum vessel 1, the analysis unit 2 is held at the same position, and only the top wall body 111 slides with respect to the analysis unit 2. And move downward. Therefore, the distance between the analysis unit 2 and the sample S is kept constant, the focused spot diameter of the X-ray is maintained as initially set, and accurate measurement is possible. Further, even if a slide occurs between the analysis unit 2 and the top wall body 111, a vacuum state can be maintained by the seal structure 7.

さらに、このように真空容器1の変形を許容し得る構造であるため、逆に言えば、真空容器1の剛性を従来よりも小さく設定でき、その設計自由度を大きく拡げることが可能となる。例えばこの実施形態では、容器本体11をアルミニウム製にして、従来ではなしえなかった軽量化を図っている。   Furthermore, since the structure can permit the deformation of the vacuum vessel 1 in this way, in other words, the rigidity of the vacuum vessel 1 can be set smaller than that of the conventional case, and the design flexibility can be greatly expanded. For example, in this embodiment, the container main body 11 is made of aluminum so as to reduce the weight that could not be achieved in the past.

加えて、この実施形態では、支持構造体3が、真空容器1の背面側に起立する起立部材31と、その起立部材31に片持ち支持されて正面側に延伸する梁部材32とからなり、正面や側方に及ぶものではないため、正面側に存在する蓋体12や側方に存在する案内機構等の構成や動きなどの自由度を担保できる。   In addition, in this embodiment, the support structure 3 includes a standing member 31 that stands on the back side of the vacuum vessel 1 and a beam member 32 that is cantilevered by the standing member 31 and extends to the front side. Since it does not extend to the front or the side, it is possible to ensure the degree of freedom of the configuration and movement of the lid 12 existing on the front side and the guide mechanism existing on the side.

なお、本発明は前記実施形態に限られるものではない。
例えば、支持構造体(起立部材)が起立する位置は、背面側に限られず、真空容器の正面、側面、角部などでも構わないし、ベース板の側面や裏面に支持構造体を取り付けてもよい。その場合、ベース板を真空容器と平面視同形状にしてもよく、外方に延出する必要は必ずしもない。また、ベース板に保持された外枠やケーシングに支持構造体としての機能を担わせても、前記実施形態と同様の作用効果を奏し得る。さらに全体構成が許せば、梁部材を両持ちにするなどして、分析部の保持安定性を向上させてもよい。
The present invention is not limited to the above embodiment.
For example, the position where the support structure (standing member) stands is not limited to the back side, and may be the front, side, corners, etc. of the vacuum vessel, or the support structure may be attached to the side or back of the base plate. . In that case, the base plate may have the same shape as that of the vacuum container in plan view, and it is not always necessary to extend outward. Moreover, even if the outer frame or casing held by the base plate has a function as a support structure, the same effect as that of the above embodiment can be obtained. Furthermore, if the entire configuration permits, the holding stability of the analysis unit may be improved by, for example, using both beam members.

また、貫通孔は、頂部壁体のみならず、側部壁体などに形成して構わないし、分析部が複数あるのであれば、それに応じて貫通孔を複数設けても良い。
前記実施形態では、真空容器を支持するベース板に支持構造体を固定していたが、真空容器と完全に分離しても構わない。
Further, the through hole may be formed not only on the top wall body but also on the side wall body. If there are a plurality of analysis parts, a plurality of through holes may be provided accordingly.
In the above embodiment, the support structure is fixed to the base plate that supports the vacuum vessel. However, the support structure may be completely separated from the vacuum vessel.

また、接続機構として、ベローズなどを用いて分析部と真空容器とを接続するようにしてもよい。さらに、シール構造として、溝を分析部の筐体に設けてそこにOリングを嵌め込むようにしていたが、その逆、つまり貫通孔の内周面に溝を切ってOリングを嵌め込むようにしても良い。真空容器以外の、例えば加圧して用いる加圧容器でも本発明は適用可能であるし、その形状も、円筒状や球状など、種々のもので構わない。   Moreover, you may make it connect an analysis part and a vacuum vessel using a bellows etc. as a connection mechanism. Further, as the seal structure, a groove is provided in the housing of the analysis unit and the O-ring is fitted therein, but conversely, that is, a groove may be cut in the inner peripheral surface of the through hole and the O-ring may be fitted. . The present invention can also be applied to a pressurized container other than a vacuum container, for example, a pressurized container, and the shape thereof may be various, such as a cylindrical shape or a spherical shape.

その他、本発明は前記実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々変更可能である。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の一実施形態に係る分析装置の全体斜視図。1 is an overall perspective view of an analyzer according to an embodiment of the present invention. 同実施形態における分析装置の内部構造を示す縦断面図。The longitudinal cross-sectional view which shows the internal structure of the analyzer in the same embodiment. 同実施形態における案内支持機構を示し、蓋体が閉止位置にある状態を示した側面図。The side view which showed the guidance support mechanism in the embodiment, and showed the state which has a cover body in a closed position. 同実施形態における案内支持機構を示し、蓋体が開放位置にある状態を示した側面図。The side view which showed the guidance support mechanism in the same embodiment, and showed the state which has a cover body in an open position. 同実施形態における分析部及び支持構造体を示す斜視図。The perspective view which shows the analysis part and support structure in the embodiment. 同実施形態における分析部の内部構造を一部示した拡大部分断面図。The expanded partial sectional view which showed a part of internal structure of the analysis part in the embodiment.

符号の説明Explanation of symbols

100・・・分析装置
S・・・サンプル
1・・・真空容器
11・・・容器本体
111・・・壁体(頂部壁体)
112・・・ベース板
112a・・・延出部分
11a・・・貫通孔
1a・・・開口部
12・・・蓋体
2・・・分析部
22・・・筐体
3・・・支持構造体
31・・・起立部材
32・・・梁部材
4・・・案内支持機構
5・・・接続機構
7・・・シール構造
DESCRIPTION OF SYMBOLS 100 ... Analyzer S ... Sample 1 ... Vacuum container 11 ... Container main body 111 ... Wall body (top wall body)
DESCRIPTION OF SYMBOLS 112 ... Base board 112a ... Extension part 11a ... Through-hole 1a ... Opening part 12 ... Cover body 2 ... Analysis part 22 ... Housing | casing 3 ... Support structure 31 ... Standing member 32 ... Beam member 4 ... Guide support mechanism 5 ... Connection mechanism 7 ... Seal structure

Claims (6)

サンプルを内部空間の所定位置に収容する気密容器と、
前記サンプルの分析を行う分析部と、
前記気密容器を支持するベース板と、
前記ベース板に固定されるものであって、前記分析部を前記サンプルから所定距離離間した位置に支持する支持構造体と、
ガス導出入に伴う気密容器の変形による、当該気密容器と前記分析部との相対移動を許容しながら、この分析部と気密容器とを気密に接続する接続機構と、を備えている分析装置。
An airtight container for storing the sample in a predetermined position in the internal space;
An analysis unit for analyzing the sample;
A base plate for supporting the airtight container;
A support structure that is fixed to the base plate and supports the analysis unit at a position spaced apart from the sample by a predetermined distance;
An analysis apparatus comprising: a connection mechanism that hermetically connects the analysis unit and the hermetic container while allowing relative movement between the hermetic container and the analysis unit due to deformation of the hermetic container accompanying gas introduction / extraction.
前記接続機構が、気密容器の壁体に略垂直に貫通させた貫通孔と、この貫通孔にスライド可能に嵌合する分析部の外周面と、それらの間に設けられたシール構造と、からなるものである請求項1記載の分析装置。   The connection mechanism includes a through-hole penetrating substantially perpendicularly to the wall of the hermetic container, an outer peripheral surface of the analysis unit slidably fitted in the through-hole, and a seal structure provided therebetween. The analyzer according to claim 1. 前記ベース板が、気密容器よりも外方に延出するものであり、
前記支持構造体が、前記ベース板の延出部分から起立する起立部材と、その起立部材の上端部に片持ち支持されて前記気密容器の上方に延伸する梁部材と、を備えており、
前記分析部が、前記梁部材の先端部に取り付けられて気密容器の頂部壁体を貫通している請求項1又は2記載の分析装置。
The base plate extends outward from the airtight container;
The support structure includes a standing member that stands up from an extending portion of the base plate, and a beam member that is cantilevered at the upper end of the standing member and extends above the airtight container;
The analysis apparatus according to claim 1, wherein the analysis unit is attached to a distal end portion of the beam member and passes through a top wall body of an airtight container.
前記気密容器が、正面側に開口部を設けた容器本体と、その開口部を閉止するための蓋体と、前記容器本体の側方に設けられ、前記蓋体を開閉移動可能に支持する案内支持機構と、を備えたものであり、
前記起立部材が容器本体の背面側に起立するとともに、前記梁部材が容器本体の背面側から正面側に向かって延伸するように構成されている請求項3記載の分析装置。
The airtight container is provided with a container body having an opening on the front side, a lid for closing the opening, and a guide that is provided on a side of the container body and supports the lid so as to be opened and closed. And a support mechanism,
The analyzer according to claim 3, wherein the standing member stands on the back side of the container body, and the beam member extends from the back side to the front side of the container body.
前記開口部が斜め上向きに開口するものである請求項1乃至4いずれか記載の分析装置。   The analyzer according to claim 1, wherein the opening is opened obliquely upward. 前記分析部が、気密容器の内部空間に連通する筐体と、その筐体内を通ってサンプルに収斂照射されるエネルギ線源と、を備えたものである請求項1乃至5いずれか記載の分析装置。   The analysis according to any one of claims 1 to 5, wherein the analysis unit includes a casing communicating with the internal space of the hermetic container, and an energy ray source that converges and irradiates the sample through the casing. apparatus.
JP2007191620A 2007-07-24 2007-07-24 Analysis equipment Expired - Fee Related JP4950792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191620A JP4950792B2 (en) 2007-07-24 2007-07-24 Analysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191620A JP4950792B2 (en) 2007-07-24 2007-07-24 Analysis equipment

Publications (2)

Publication Number Publication Date
JP2009025266A true JP2009025266A (en) 2009-02-05
JP4950792B2 JP4950792B2 (en) 2012-06-13

Family

ID=40397193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191620A Expired - Fee Related JP4950792B2 (en) 2007-07-24 2007-07-24 Analysis equipment

Country Status (1)

Country Link
JP (1) JP4950792B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054045A (en) * 2010-08-31 2012-03-15 Hamamatsu Photonics Kk X-ray irradiation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260566A (en) * 2001-02-27 2002-09-13 Kyocera Corp Charged beam device
JP2009024854A (en) * 2007-07-23 2009-02-05 Horiba Ltd Analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260566A (en) * 2001-02-27 2002-09-13 Kyocera Corp Charged beam device
JP2009024854A (en) * 2007-07-23 2009-02-05 Horiba Ltd Analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054045A (en) * 2010-08-31 2012-03-15 Hamamatsu Photonics Kk X-ray irradiation device

Also Published As

Publication number Publication date
JP4950792B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
KR101390112B1 (en) Charged particle beam apparatus
JP5422416B2 (en) Sample transport device
US8530856B2 (en) Beam device system comprising a particle beam device and an optical microscope
JP5317120B2 (en) Sample storage cell for X-ray microscope, X-ray microscope, and observation method of X-ray microscope image
US9418818B2 (en) Charged particle beam device and sample observation method
US20060284108A1 (en) Apparatus for evacuating a sample
CN103858204A (en) Inspection or observation device and specimen inspection or observation method
JP4950792B2 (en) Analysis equipment
JP4581824B2 (en) Particle beam microscope and member moving mechanism for vacuum analyzer
JP2011203102A (en) Sample holder and sample analysis method
JP5182864B2 (en) Sample holder for electron microscope and electron microscope
JP6326341B2 (en) Sample holder and electron microscope
JP2008210715A (en) Charged particle beam device, and sample surface observation method using the same
JPWO2020044399A1 (en) X-ray analyzer
EP2116842A1 (en) An X-ray fluorescence analyzer with gas-filled chamber
RU78576U1 (en) X-RAY FLUORESCENT ANALYZER OF LIGHT ELEMENTS
JP2007287546A (en) Vacuum container and electron beam device
JP4079503B2 (en) Analytical electron microscope
TWI644179B (en) Charged particle lithography system with sensor assembly
JP3187413U (en) X-ray fluorescence analyzer
JP5750763B2 (en) Sample storage cell for X-ray microscope and observation method of X-ray microscope image
JP2022082165A (en) Charged particle beam irradiation device
JP7210761B2 (en) Specimen holder, inter-membrane distance adjustment mechanism, and charged particle beam device
CN213254489U (en) Physical examination test tube storage box
JP3523444B2 (en) Vacuum chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees