JP2009025242A - Power supply device for energizing cable fault point measuring device - Google Patents

Power supply device for energizing cable fault point measuring device Download PDF

Info

Publication number
JP2009025242A
JP2009025242A JP2007191157A JP2007191157A JP2009025242A JP 2009025242 A JP2009025242 A JP 2009025242A JP 2007191157 A JP2007191157 A JP 2007191157A JP 2007191157 A JP2007191157 A JP 2007191157A JP 2009025242 A JP2009025242 A JP 2009025242A
Authority
JP
Japan
Prior art keywords
cable
fault point
power supply
voltage
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007191157A
Other languages
Japanese (ja)
Other versions
JP5026179B2 (en
Inventor
Hiroyuki Yamada
浩之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2007191157A priority Critical patent/JP5026179B2/en
Publication of JP2009025242A publication Critical patent/JP2009025242A/en
Application granted granted Critical
Publication of JP5026179B2 publication Critical patent/JP5026179B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply device for energizing fault point measuring device, capable of stably measuring a fault point, by using commercial power supply for a DC power supply of the cable fault point measurement device, at all times. <P>SOLUTION: The power supply device 30 for energizing the cable fault point measuring device equipped with an AC/DC converter 32 generated from the AC commercial power supply 31 a DC voltage applied to the cable as a fault point measurement object includes a power supply protection circuit 40 for blocking inductive current by a live cable, other than the fault point measurement object flowing backward to the AC/DC converter 32 and a load resistive circuit 50 consuming the inductive current blocked by the power supply protection circuit 40, wherein a voltage limiter circuit 60 limits the abnormal rise in the output DC voltage of the AC/DC converter 32 due to the effect of the induction voltage and protects the fault point measuring device 20, thereby stabilizing the fault point measurement operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、三相交流の地中送電ケーブルなどの絶縁被覆を有するケーブルに発生した地絡事故点の位置を測定する事故点測定器に用いる直流電源装置に関する。   The present invention relates to a DC power supply device used for an accident point measuring device that measures the position of a ground fault point that occurs in a cable having an insulation coating such as a three-phase AC underground power transmission cable.

発電所や変電所に敷設される三相交流の地中送電ケーブルなどの絶縁被覆を有する電力用ケーブルは、絶縁被覆の破損、劣化による地絡事故が発生することがある。三相交流の地中送電ケーブルは、三相3線の1セットが地中のケーブル管路に並置される。この場合、三相3線の各ケーブルをそれぞれ単独に地中に並置するか、或いは、三相3線の各ケーブルを1本のケーブルにまとめた一体化ケーブルとして地中に並置される。また、通常の場合、ケーブル管路には他の複数セットの地中送電ケーブルや、通信用ケーブルなどのケーブルが並置され、これらケーブルは事故点測定対象のケーブルの事故点測定時においては活線状態にある。三相1セットの地中送電ケーブルの内のいずれか一相でも地絡事故が発生すると、三相3線1セットの地中送電ケーブルは送電できなくなる。このように地絡事故が発生すると地中送電ケーブルは地下に埋設されていることから、地絡事故が発生した場所を見付けるには、通常は地上より測定器を使用して事故相ケーブルの地絡事故の位置の測定が行われる。   A power cable having an insulation coating such as a three-phase AC underground power transmission cable laid in a power plant or substation may cause a ground fault due to breakage or deterioration of the insulation coating. The three-phase AC underground power transmission cable has one set of three-phase three-wires juxtaposed in the underground cable conduit. In this case, the three-phase three-wire cables are individually juxtaposed in the ground, or the three-phase three-wire cables are juxtaposed in the ground as an integrated cable combined into one cable. In addition, normally, multiple other sets of underground power transmission cables and communication cables are juxtaposed in the cable conduit, and these cables are live when measuring the fault point of the cable subject to the fault point measurement. Is in a state. If a ground fault occurs in any one of the three-phase one set of underground transmission cables, the three-phase three-wire one set of underground transmission cables cannot transmit power. When a ground fault occurs in this way, the underground power transmission cable is buried underground.To find the location where the ground fault occurred, it is usually necessary to use a measuring instrument from the ground to ground the accident phase cable. The location of the fault is measured.

三相交流の地中送電ケーブルにおける事故相ケーブルの事故点測定方法に、ケーブルの導体抵抗を利用したマーレーループ法がある。マーレーループ法は、事故相ケーブルと地絡事故が発生していない健全な一相のケーブル(健全相ケーブル)でループ回路を構成し、ループ回路に直流電圧を印加して事故相ケーブルの地絡事故点の位置を測定する。マーレーループ法によるケーブル事故点測定装置として、蓄電池の直流定電圧を電源電圧に使用した事故点測定器がある(例えば、特許文献1参照)。この事故点測定器の概要を、図3を参照して説明する。   There is a Murray loop method using the conductor resistance of the cable as a method of measuring the fault point of the fault phase cable in the three-phase AC underground transmission cable. In the Murray loop method, a fault circuit cable and a healthy one-phase cable that does not cause a ground fault (sound phase cable) constitute a loop circuit, and a DC voltage is applied to the loop circuit to cause a fault in the fault phase cable. Measure the location of the accident point. As a cable fault point measuring device based on the Murray loop method, there is an fault point measuring device using a DC constant voltage of a storage battery as a power supply voltage (for example, see Patent Document 1). The outline of this accident point measuring instrument will be described with reference to FIG.

図3に示す事故点測定器20は、自動車のバッテリーなどに適用される鉛蓄電池と同様な6Vの蓄電池10を電源に使用する。図3に示すケーブル1a、1bは、三相交流の三相3線1セットの内の2線で、一方が地絡事故を起こしていない健全相ケーブル1aであり、他方が地絡事故を起こしている事故相ケーブル1bである。健全相ケーブル1aと事故相ケーブル1bは同一構造の2線で、それぞれ導体2a、2bを絶縁層3a、3bで絶縁被覆し、絶縁層3a、3bの外周を金属製のシース4a、4bで保護している。各ケーブル1a、1bのシース4a、4bは接地されている。事故相ケーブル1bに示す事故点Pは、絶縁破壊による地絡事故が発生した箇所である。事故相ケーブル1bは、導体2bとシース4bの間の絶縁抵抗が事故点Pで急減することから特定される。事故相ケーブル1bの特定で、三相3線1セットの送電が停止され、事故相ケーブル1bの事故点Pの位置の測定が、次のように行われる。   The accident point measuring instrument 20 shown in FIG. 3 uses a 6V storage battery 10 similar to a lead storage battery applied to a battery of an automobile as a power source. The cables 1a and 1b shown in FIG. 3 are two-phase three-phase three-wire one set of three-phase AC, one of which is a healthy phase cable 1a that has not caused a ground fault, and the other that has caused a ground fault. The accident phase cable 1b. The sound phase cable 1a and the accident phase cable 1b are two wires having the same structure, and the conductors 2a and 2b are respectively covered with insulating layers 3a and 3b, and the outer peripheries of the insulating layers 3a and 3b are protected by metal sheaths 4a and 4b. is doing. The sheaths 4a and 4b of the cables 1a and 1b are grounded. The accident point P shown in the accident phase cable 1b is a location where a ground fault has occurred due to dielectric breakdown. The accident phase cable 1b is specified because the insulation resistance between the conductor 2b and the sheath 4b rapidly decreases at the accident point P. By specifying the accident phase cable 1b, power transmission of the three-phase three-wire one set is stopped, and the position of the accident point P of the accident phase cable 1b is measured as follows.

事故相ケーブル1bの一相と、他の二相の内のいずれか一相である健全相ケーブル1aの片端(遠端)同士をジャンパー線5で接続してループ回路を構成する。事故点測定器20を使用して蓄電池10の6Vの直流電圧Eを健全相ケーブル1aと事故相ケーブル1bの他端に印加して、2線のループ回路にループ電流を流す。また、事故点測定器20の極性反転スイッチ21を操作して、各ケーブル1a、1bに印加する直流電圧Eの極性を反転させる。各ケーブル1a、1bのループ回路にループ電流を流す毎に、第一電圧計6で健全相ケーブル1aの導体2aの対地電圧V1を測定し、第二電圧計7で事故相ケーブル1bの導体2bの対地電圧V2を測定する。各ケーブル1a、1bが同じ長さとして、そのケーブル長をLとする。また、事故相ケーブル1bの直流電圧Eが印加される他端から事故点Pまでの距離をXとすると、次式で距離Xが算出される。   A loop circuit is configured by connecting one end of the accident phase cable 1b and one end (far end) of the healthy phase cable 1a, which is one of the other two phases, with a jumper wire 5. The fault voltage measuring device 20 is used to apply the 6V DC voltage E of the storage battery 10 to the other ends of the healthy phase cable 1a and the accident phase cable 1b, and a loop current is passed through the two-wire loop circuit. Further, the polarity reversing switch 21 of the accident point measuring instrument 20 is operated to reverse the polarity of the DC voltage E applied to each cable 1a, 1b. Each time a loop current is passed through the loop circuit of each cable 1a, 1b, the ground voltage V1 of the conductor 2a of the sound phase cable 1a is measured by the first voltmeter 6, and the conductor 2b of the accident phase cable 1b is measured by the second voltmeter 7. The ground voltage V2 is measured. The cables 1a and 1b have the same length, and the cable length is L. Moreover, when the distance from the other end where the DC voltage E of the accident phase cable 1b is applied to the accident point P is X, the distance X is calculated by the following equation.

[X/L]=[2×V1]/[V1+V2]   [X / L] = [2 × V1] / [V1 + V2]

以上の事故点距離Xの測定は、同じ条件下で複数回繰り返し行われる。複数回測定した距離の平均値を距離Xとして特定する。距離Xが特定されると、各ケーブル1a、1bからジャンパー線5と事故点測定器20が取り外される。その後、事故点Pのあるケーブルの交換が行われて、三相交流の3線1セットによる送電が再開される。
特開昭57−184983号公報
The above measurement of the accident point distance X is repeated a plurality of times under the same conditions. The average value of the distances measured a plurality of times is specified as the distance X. When the distance X is specified, the jumper wire 5 and the accident point measuring instrument 20 are removed from the cables 1a and 1b. After that, the cable with the accident point P is exchanged, and the power transmission by the three-phase AC three-wire one set is resumed.
JP-A-57-184983

上記のような事故点測定器とその通電用電源装置である蓄電池は、様々なケーブル事故点測定の現場に持ち運びが容易にできる大きさ、重量に設計される。三相交流の地中送電ケーブルにおいては、地絡故障が発生する時期と時間帯は不定であり、発生する率は1年に1回有るか無いかの極僅かである。そのため、ケーブル事故点測定を行う電力会社では、事故点測定器の電源である蓄電池の自然放電を見越して常に充電しておく必要があり、メンテナンス性に問題があった。   The above-mentioned accident point measuring instrument and the storage battery, which is a power supply device for energizing the same, are designed to have a size and weight that can be easily carried to various cable accident point measurement sites. In a three-phase AC underground power transmission cable, the time and time zone when a ground fault occurs are indefinite, and the rate of occurrence is negligible, once a year. For this reason, an electric power company that performs cable fault point measurement needs to be charged constantly in anticipation of spontaneous discharge of the storage battery that is the power source of the fault point measuring device, which has a problem in maintainability.

また、蓄電池から事故点測定の対象となるケーブルに流す通電電流(ループ電流)は、ケーブルの太さと長さで決まる導体抵抗に依存される。そのため、例えば77kV以上の超高圧地中送電線路のケーブル事故点測定器の直流電源に蓄電池を使用する場合、線路条件によっては数ボルトの直流電圧で数10アンペア以上の大電流が流れて、測定中に蓄電池に大幅な電圧降下が発生し、事故点測定結果に悪影響を及ぼすことがある。さらに、蓄電池10は常に充電しておいても、経年変化で性能が劣化し、複数回の事故点測定の作業中に電圧降下が生じて、高精度な事故点測定が難しくなることがある。   Further, the energization current (loop current) that flows from the storage battery to the cable that is the target of the accident point measurement depends on the conductor resistance determined by the thickness and length of the cable. Therefore, for example, when a storage battery is used as a DC power source for a cable fault point measuring device for an ultra-high voltage underground transmission line of 77 kV or higher, a large current of several tens of amperes or more flows with a DC voltage of several volts depending on the line conditions. A large voltage drop may occur in the storage battery, which may adversely affect the accident point measurement results. Furthermore, even if the storage battery 10 is always charged, the performance deteriorates with aging, and a voltage drop may occur during a plurality of accident point measurement operations, making it difficult to measure the accident point with high accuracy.

なお、上記事故点測定器の直流電源として交流商用電源を直流変換した直流電源を使用することが考えられる。しかし、これには次の問題がある。   Note that it is conceivable to use a DC power source obtained by converting an AC commercial power source into a DC power source as the DC power source for the accident point measuring instrument. However, this has the following problems.

三相交流の地中送電ケーブルの場合、事故点測定対象のケーブルの近くに、他の地中送電ケーブルや通信用ケーブルのような活線ケーブルが並置されているのが通常である。そのため、事故点測定対象のケーブルの事故点測定作業中に、近くの活線ケーブルにより事故点測定対象のケーブルに誘導電圧が誘起され、誘導電流が流れる。この誘導電流は、事故点測定器の直流電源である蓄電池に流入して蓄電されるので問題は少ない。しかし、事故点測定器の直流電源として交流商用電源を直流変換した直流電源を使用すると、この直流電源が誘導電流の影響で出力電圧に変動を起こし、安定したケーブル事故点の測定が難しくなる。このような誘導電流による影響力は、三相3線の地中送電ケーブルを単独に地中に並置したケーブルにおいて大きい。   In the case of a three-phase AC underground power transmission cable, normally, a live cable such as another underground power transmission cable or communication cable is juxtaposed in the vicinity of the cable to be measured at the fault point. For this reason, during an accident point measurement operation for the cable subject to the accident point measurement, an induced voltage is induced in the cable subject to the accident point measurement by a nearby live cable, and an induced current flows. Since this induced current flows into a storage battery that is a DC power source of the accident point measuring instrument and is stored, there are few problems. However, if a DC power source obtained by converting an AC commercial power source is used as the DC power source of the fault point measuring instrument, the DC power source causes fluctuations in the output voltage due to the influence of the induced current, making it difficult to measure a stable cable fault point. The influence of such an induced current is large in a cable in which three-phase three-wire underground power transmission cables are singly arranged in the ground.

本発明は、斯かる実情に鑑みてなされたもので、目的とするところは、ケーブル事故点測定器の直流電源に交流商用電源を使用して、常に安定したケーブル事故点測定ができる通電用電源装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to use an AC commercial power source as a DC power source of a cable fault point measuring instrument, and to always perform stable cable fault point measurement. To provide an apparatus.

本発明は上記目的を達成するため、並置された一対のケーブルそれぞれの片端同士を接続し、一対のケーブルの他端に直流電圧を印加して一対のケーブルの一方に発生した地絡事故の事故点を測定する事故点測定器の通電用電源装置であって、ケーブルに印加する直流電圧を交流商用電源から生成するAC/DCコンバータと、事故点測定器の作動時にケーブルに当該ケーブルと別位置に敷設された他の活線状態にあるケーブルにより誘起された誘導電流がAC/DCコンバータに逆流するのを阻止する電源保護回路と、電源保護回路で阻止された誘導電流を消費する負荷抵抗回路を具備したことを特徴とする。この電源装置においては、誘導電流によるAC/DCコンバータの出力直流電圧の上限を事故点測定器の定格電圧に基づいて規制する電圧リミッタ回路を付設することができる。   In order to achieve the above object, the present invention connects one end of each of a pair of cables juxtaposed to each other and applies a DC voltage to the other end of the pair of cables to cause a ground fault accident that occurred in one of the pair of cables. A power supply for energizing an accident point measuring instrument that measures points, an AC / DC converter that generates a DC voltage to be applied to a cable from an AC commercial power supply, and a cable that is separate from the cable when the accident point measuring instrument is in operation A power protection circuit for preventing an induced current induced by another live line cable laid on the AC / DC converter and a load resistance circuit for consuming the induced current blocked by the power protection circuit It is characterized by comprising. In this power supply device, a voltage limiter circuit for regulating the upper limit of the output DC voltage of the AC / DC converter due to the induced current based on the rated voltage of the accident point measuring device can be attached.

ここで、事故点測定対象のケーブルは、三相交流で3線1セットの地中送電ケーブルや海中ケーブルのような絶縁被覆を有するケーブルである。このケーブルの絶縁破壊に基づく地絡事故点を事故点測定器で測定(特定)する。事故点測定器は、ループ化された事故点測定対象の一対のケーブルに直流電圧を印加してループ電流を流し、地絡事故発生のケーブルの事故点の位置を測定するもので、既存品が適用できる。この事故点測定器の直流電源として、100Vの交流商用電圧を例えば6Vの直流電圧に変換するAC/DCコンバータを適用する。ここでのAC/DCコンバータ自体は、市販品が適用できる。電源保護回路は、事故点測定対象のケーブルからAC/DCコンバータへと逆流しようとする誘導電流を阻止する保護ダイオード回路が適用できる。負荷抵抗回路は、電源保護回路で阻止された誘導電流を流して発熱により消費する抵抗回路が適用できる。電源保護回路で誘導電流の逆流を阻止し、阻止された誘導電流を負荷抵抗回路で消費することで、AC/DCコンバータの出力直流電圧が安定し、常に安定したケーブル事故点測定ができる。   Here, the cable to be measured for the accident point is a cable having an insulation coating such as a three-wire AC and three-wire one-set underground transmission cable or a submarine cable. Measure (specify) the ground fault point based on the insulation breakdown of this cable with the fault point measuring instrument. An accident point measuring instrument is a device that applies a DC voltage to a pair of cables that are subject to loop fault point measurement to cause a loop current to flow, and measures the position of the fault point of the cable that caused the ground fault. Applicable. An AC / DC converter that converts an AC commercial voltage of 100 V into, for example, a DC voltage of 6 V is applied as a DC power source for this accident point measuring instrument. As the AC / DC converter itself, a commercially available product can be applied. As the power source protection circuit, a protection diode circuit that prevents an induced current from flowing back from the cable to be measured to the AC / DC converter can be applied. As the load resistance circuit, a resistance circuit that uses an induced current blocked by the power supply protection circuit and consumes it by heat generation can be applied. By preventing the backflow of the induced current with the power supply protection circuit and consuming the blocked induced current with the load resistance circuit, the output DC voltage of the AC / DC converter is stabilized, and the cable fault point can always be measured stably.

また、誘導電流の影響でAC/DCコンバータの出力直流電圧が異常上昇するのを防止するため、AC/DCコンバータにその出力直流電圧の上限を事故点測定器の定格電圧に基づいて規制する電圧リミッタ回路を付設することが望ましい。AC/DCコンバータの出力定格電圧が例えば6Vの場合、電圧リミッタ回路で出力直流電圧の上限を例えば8Vに規制するようにすると、出力直流電圧の異常上昇が防止され、電源電圧異常上昇による事故点測定器の誤作動、故障が回避でき、安定したケーブル事故点測定ができる。   Also, in order to prevent the output DC voltage of the AC / DC converter from rising abnormally due to the influence of the induction current, the AC / DC converter regulates the upper limit of the output DC voltage based on the rated voltage of the fault point measuring instrument. It is desirable to provide a limiter circuit. When the rated output voltage of the AC / DC converter is, for example, 6V, if the upper limit of the output DC voltage is regulated to, for example, 8V by the voltage limiter circuit, the abnormal increase of the output DC voltage is prevented, and the accident point due to the abnormal increase of the power supply voltage is prevented. The malfunction and failure of the measuring instrument can be avoided, and stable cable fault point measurement can be performed.

また、本発明においては、AC/DCコンバータに、当該AC/DCコンバータから事故点測定器に出力される直流電流の上限を事故点測定器の定格電流に基づいて規制する定電流回路を付設することができる。ここでの定電流回路は、AC/DCコンバータの出力直流電流を検出し、検出した出力直流電流が事故点測定器の定格電流を超えて異常上昇すると、この異常上昇を事故点測定器の定格電流で決まる上限値に規制する。この規制で、AC/DCコンバータの出力直流電流の異常上昇が防止され、事故点測定器が保護されて、常に安定したケーブル事故点測定ができるようになる。   In the present invention, the AC / DC converter is provided with a constant current circuit that regulates the upper limit of the direct current output from the AC / DC converter to the fault point measuring device based on the rated current of the fault point measuring device. be able to. The constant current circuit here detects the output DC current of the AC / DC converter, and when the detected output DC current exceeds the rated current of the fault point measuring device and rises abnormally, this abnormal rise is rated for the fault point measuring device. Restrict to the upper limit determined by the current. This regulation prevents an abnormal increase in the output DC current of the AC / DC converter, protects the accident point measuring instrument, and makes it possible to always perform stable cable fault point measurement.

本発明によれば、ケーブルに直流電圧を印加してケーブルの地絡事故点を測定する事故点測定器の直流電源に交流商用電源を使用したので、常に安定した直流電圧でもってケーブル事故点測定ができ、従来のような蓄電池を常時充電しておくといったメンテナンスが不要になる。また、地中送電ケーブルのようなケーブルの事故点測定時に、事故点測定対象のケーブルに他の活線ケーブルにより誘起されて誘導電流が流れ、AC/DCコンバータに逆流しようとしても、電源保護回路で誘導電流の逆流が阻止され、阻止された誘導電流が負荷抵抗回路で消費されるので、AC/DCコンバータの出力直流電圧が安定し、常に安定したケーブル事故点測定ができるという優れた効果を奏し得る。このような効果の有効性は、特に誘導電流による影響を受けやすい三相3線のケーブルをそれぞれ単独に地中に並置した地中送電ケーブルにおいて大きい。   According to the present invention, since the AC commercial power source is used as the DC power source of the fault point measuring device that applies a DC voltage to the cable and measures the ground fault point of the cable, the cable fault point measurement is always performed with a stable DC voltage. This eliminates the need for maintenance such as always charging a conventional storage battery. In addition, when measuring the fault point of a cable such as an underground power transmission cable, even if an induced current flows through the cable subject to the fault point measurement by another live wire cable and tries to flow backward to the AC / DC converter, the power protection circuit This prevents the backflow of the induced current, and the blocked induced current is consumed by the load resistor circuit, so that the output DC voltage of the AC / DC converter is stable, and the cable fault point can always be measured stably. Can play. The effectiveness of such an effect is particularly great in underground transmission cables in which three-phase three-wire cables that are easily affected by induced currents are individually juxtaposed in the ground.

以下、本発明の実施の形態を図1および図2を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1に本発明に係る電源装置30の回路構成を示す。図2は、電源装置30を図3に示す事故点測定器20の直流電源として使用したときの回路図である。なお、図2における図3と同一または相当部分に同一符号を付して、説明の重複を避ける。   FIG. 1 shows a circuit configuration of a power supply device 30 according to the present invention. FIG. 2 is a circuit diagram when the power supply device 30 is used as a DC power source of the fault point measuring device 20 shown in FIG. 2 that are the same as or equivalent to those in FIG.

図1の電源装置30は、事故点測定対象の一対のケーブル1a、1bに印加する直流電圧Eを交流商用電源31から生成するAC/DCコンバータ32を備える。AC/DCコンバータ32は、AC100Vの交流商用電圧を例えば6Vの直流電圧Eに変換して、直流電圧Eを事故点測定器20に出力する。AC/DCコンバータ32と事故点測定器20の間に、事故点測定器20の作動時に事故点測定対象のケーブル1a、1bから流入する誘導電流に対処する電源保護回路40と負荷抵抗回路50および電圧リミッタ回路60が設置される。また、AC/DCコンバータ32に定電流回路70が付設される。   A power supply device 30 in FIG. 1 includes an AC / DC converter 32 that generates a DC voltage E to be applied to a pair of cables 1 a and 1 b to be measured at an accident point from an AC commercial power supply 31. The AC / DC converter 32 converts the AC commercial voltage of AC 100V into a DC voltage E of 6V, for example, and outputs the DC voltage E to the accident point measuring instrument 20. Between the AC / DC converter 32 and the accident point measuring device 20, a power protection circuit 40, a load resistance circuit 50, and a load resistance circuit 50 for dealing with an induced current flowing from the cables 1a and 1b to be measured when the accident point measuring device 20 operates. A voltage limiter circuit 60 is installed. A constant current circuit 70 is attached to the AC / DC converter 32.

AC/DCコンバータ32は品質の安定した市販品を使用すればよい。このようなAC/DCコンバータ32の入力回路33に交流商用電源31で動作する冷却ファン34を配線する。冷却ファン34は、負荷抵抗回路50の空冷に使用される。AC/DCコンバータ32の6Vの出力直流電圧Eが事故点測定器20の入力電圧になり、事故点測定器20が図3の場合と同様の作動をして事故相ケーブル1bの事故点測定を行う。この事故点測定の動作時に、事故点測定対象の各ケーブル1a、1bの近くに別の地中送電ケーブルなどの活線状態にあるケーブル(図示せず)から事故点測定対象のケーブル1a、1bに電磁誘導によって誘導電圧が誘起され、誘導電流が流れる。この誘導電流は、事故点測定器20を介してAC/DCコンバータ32へと流入する方向に逆流する。AC/DCコンバータ32に誘導電流が逆流すると、その出力直流電圧Eが上昇する方向に変動して、事故点測定精度に影響を及ぼすことがある。   The AC / DC converter 32 may be a commercially available product with stable quality. A cooling fan 34 that operates with the AC commercial power supply 31 is wired to the input circuit 33 of the AC / DC converter 32. The cooling fan 34 is used for air cooling of the load resistance circuit 50. The 6V output DC voltage E of the AC / DC converter 32 becomes the input voltage of the accident point measuring device 20, and the accident point measuring device 20 operates in the same manner as in FIG. 3 to measure the accident point of the accident phase cable 1b. Do. During this accident point measurement operation, the cable 1a, 1b to be measured from the cable (not shown) in a live state such as another underground power transmission cable near the cables 1a, 1b to be measured. Inductive voltage is induced by electromagnetic induction and induced current flows. This induced current flows backward in the direction of flowing into the AC / DC converter 32 via the fault point measuring device 20. When the induced current flows backward to the AC / DC converter 32, the output DC voltage E may fluctuate in an increasing direction, which may affect the fault point measurement accuracy.

この誘導電流の逆流を防止するのが電源保護回路40である。電源保護回路40は、AC/DCコンバータ32に逆流しようとする交流の誘導電流を阻止する逆流防止ダイオード41、42を備えた保護ダイオード回路である。電源保護回路40で阻止された誘導電流は、負荷抵抗回路50の複数の抵抗素子51を流れ、抵抗素子51が発熱して誘導電流が消費される。電源保護回路40と負荷抵抗回路50の作用により、誘導電流によるAC/DCコンバータ32の影響が軽減され、出力直流電圧Eの変動が抑制されて、事故点測定器20の事故点測定精度が安定する。   The power supply protection circuit 40 prevents the backflow of the induced current. The power supply protection circuit 40 is a protection diode circuit including backflow prevention diodes 41 and 42 that block an AC induced current that attempts to flow back to the AC / DC converter 32. The induced current blocked by the power supply protection circuit 40 flows through the plurality of resistance elements 51 of the load resistance circuit 50, and the resistance elements 51 generate heat to consume the induced current. By the action of the power source protection circuit 40 and the load resistance circuit 50, the influence of the AC / DC converter 32 due to the induced current is reduced, the fluctuation of the output DC voltage E is suppressed, and the fault point measurement accuracy of the fault point measuring device 20 is stable. To do.

また、事故点測定対象ケーブルの線路状況によっては、AC/DCコンバータ32の出力直流電圧Eが誘導電圧の影響で異常上昇することがある。そこで、この異常上昇を電圧リミッタ回路60で防止する。電圧リミッタ回路60は、AC/DCコンバータ32の出力定格電圧が6Vの場合、電圧リミッタ回路60で出力直流電圧Eの上限を事故点測定器20の定格電圧に基づいて例えば8Vに制限する。このようにすると、出力直流電圧Eの異常上昇が防止され、事故点測定器20の破損、故障が回避され、測定精度が安定する。   In addition, depending on the line condition of the fault point measurement target cable, the output DC voltage E of the AC / DC converter 32 may abnormally rise due to the influence of the induced voltage. Therefore, this abnormal rise is prevented by the voltage limiter circuit 60. When the rated output voltage of the AC / DC converter 32 is 6V, the voltage limiter circuit 60 limits the upper limit of the output DC voltage E to, for example, 8V based on the rated voltage of the accident point measuring device 20 by the voltage limiter circuit 60. In this way, an abnormal increase in the output DC voltage E is prevented, damage and failure of the accident point measuring instrument 20 are avoided, and measurement accuracy is stabilized.

また、事故点測定対象ケーブルの線路状況によっては、AC/DCコンバータ32の出力直流電流が誘導電流の作用などで異常上昇することがある。そこで、AC/DCコンバータ32に、事故点測定器20に出力される直流電流の上限を事故点測定器20の定格電流に基づいて規制する定電流回路70を付設する。定電流回路70は、AC/DCコンバータの出力直流電流を検出するシャント抵抗71を備える。シャント抵抗71が検出した出力直流電流が事故点測定器20の定格電流を超えて異常上昇すると、この異常上昇を事故点測定器20の定格電流で決まる上限値に規制する。このようにすることで、AC/DCコンバータ32の出力直流電流の異常上昇が防止され、事故点測定器20が保護されて、常に安定したケーブル事故点測定ができ、事故点測定精度が安定する。   In addition, depending on the line condition of the fault point measurement target cable, the output DC current of the AC / DC converter 32 may abnormally rise due to the action of an induced current or the like. Therefore, the AC / DC converter 32 is provided with a constant current circuit 70 that regulates the upper limit of the direct current output to the accident point measuring device 20 based on the rated current of the accident point measuring device 20. The constant current circuit 70 includes a shunt resistor 71 that detects an output direct current of the AC / DC converter. When the output DC current detected by the shunt resistor 71 exceeds the rated current of the accident point measuring device 20 and rises abnormally, the abnormal rise is restricted to an upper limit value determined by the rated current of the accident point measuring device 20. By doing so, an abnormal increase in the output direct current of the AC / DC converter 32 is prevented, the fault point measuring device 20 is protected, and stable cable fault point measurement can always be performed, and the fault point measurement accuracy is stabilized. .

なお、本発明は上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

本発明に係る電源装置の実施の形態を示す回路図である。It is a circuit diagram which shows embodiment of the power supply device which concerns on this invention. 図1の電源装置を使用したケーブル事故点測定器の回路図である。It is a circuit diagram of the cable fault point measuring device using the power supply device of FIG. 従来のケーブル事故点測定器の回路図である。It is a circuit diagram of the conventional cable fault point measuring device.

符号の説明Explanation of symbols

1a ケーブル(健全相ケーブル)
1b ケーブル(事故相ケーブル)
20 事故点測定器
30 電源装置
31 交流商用電源
32 AC/DCコンバータ
40 電源保護回路
41、42 逆流防止ダイオード
50 負荷抵抗回路
60 電圧リミッタ回路
70 定電流回路
71 シャント抵抗
E 直流電圧
P 事故点
1a cable (healthy phase cable)
1b Cable (Accident phase cable)
20 Accident point measuring device 30 Power supply device 31 AC commercial power supply 32 AC / DC converter 40 Power supply protection circuit 41, 42 Backflow prevention diode 50 Load resistance circuit 60 Voltage limiter circuit 70 Constant current circuit 71 Shunt resistance E DC voltage P Accident point

Claims (4)

並置された一対のケーブルそれぞれの片端を接続し、前記一対のケーブルの他端に直流電圧を印加して前記一対のケーブルの一方に発生した地絡事故点を測定する事故点測定器の通電用電源装置であって、
前記直流電圧を交流商用電源から生成するAC/DCコンバータと、前記事故点測定器の作動時に前記ケーブルに当該ケーブルと別位置に敷設された他の活線状態にあるケーブルにより誘起された誘導電流が前記AC/DCコンバータに流入するのを阻止する電源保護回路と、前記電源保護回路で阻止された前記誘導電流を消費する負荷抵抗回路を具備したことを特徴とするケーブル事故点測定器通電用電源装置。
For connecting the one end of each of the pair of cables arranged side by side, applying a DC voltage to the other end of the pair of cables, and measuring the ground fault point generated in one of the pair of cables A power supply unit,
Inductive current induced by an AC / DC converter that generates the DC voltage from an AC commercial power source, and a cable in another live state installed on the cable at a position different from the cable when the accident point measuring device is operated And a load resistance circuit for consuming the induced current blocked by the power supply protection circuit. Power supply.
前記誘導電流による前記AC/DCコンバータの出力直流電圧の上限を前記事故点測定器の定格電圧に基づいて規制する電圧リミッタ回路を付設したことを特徴とする請求項1に記載のケーブル事故点測定器通電用電源装置。   The cable fault point measurement according to claim 1, further comprising a voltage limiter circuit that regulates an upper limit of an output DC voltage of the AC / DC converter by the induced current based on a rated voltage of the fault point measuring device. Power supply unit 前記AC/DCコンバータに、当該AC/DCコンバータの出力直流電流の上限を前記事故点測定器の定格電流に基づいて規制する定電流回路を付設したことを特徴とする請求項1または2に記載のケーブル事故点測定器通電用電源装置。   The constant current circuit which regulates the upper limit of the output direct current of the AC / DC converter based on the rated current of the fault point measuring device is attached to the AC / DC converter. Power supply device for energization of cable fault point measuring instrument. 前記ケーブルは、それぞれが単独に地中に並置される三相交流の地中送電ケーブルであることを特徴とする請求項1〜3のいずれか1記載のケーブル事故点測定器通電用電源装置。   The cable fault point measuring instrument energizing power supply device according to any one of claims 1 to 3, wherein each of the cables is a three-phase AC underground power transmission cable that is independently juxtaposed in the ground.
JP2007191157A 2007-07-23 2007-07-23 Cable fault point measuring instrument Expired - Fee Related JP5026179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191157A JP5026179B2 (en) 2007-07-23 2007-07-23 Cable fault point measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191157A JP5026179B2 (en) 2007-07-23 2007-07-23 Cable fault point measuring instrument

Publications (2)

Publication Number Publication Date
JP2009025242A true JP2009025242A (en) 2009-02-05
JP5026179B2 JP5026179B2 (en) 2012-09-12

Family

ID=40397170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191157A Expired - Fee Related JP5026179B2 (en) 2007-07-23 2007-07-23 Cable fault point measuring instrument

Country Status (1)

Country Link
JP (1) JP5026179B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033722A (en) * 2011-09-29 2013-04-10 本德尔有限两合公司 Insulated fault positioner and apparatus performing insulated fault positioning in ungrounded power-supply network
CN105738787A (en) * 2016-04-19 2016-07-06 国网辽宁省电力有限公司鞍山供电公司 Insulated breakdown passive alarming and monitoring device for 10-kv lightning arrester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454557B (en) * 2013-08-29 2016-06-22 华为技术有限公司 The detection method of a kind of cable fault and detecting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179762A (en) * 1981-04-30 1982-11-05 Toshiba Corp Surge receiving type fault point orienting device
JP2006267002A (en) * 2005-03-25 2006-10-05 Tokyo Electric Power Co Inc:The Insulation deterioration position locating device and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179762A (en) * 1981-04-30 1982-11-05 Toshiba Corp Surge receiving type fault point orienting device
JP2006267002A (en) * 2005-03-25 2006-10-05 Tokyo Electric Power Co Inc:The Insulation deterioration position locating device and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033722A (en) * 2011-09-29 2013-04-10 本德尔有限两合公司 Insulated fault positioner and apparatus performing insulated fault positioning in ungrounded power-supply network
CN105738787A (en) * 2016-04-19 2016-07-06 国网辽宁省电力有限公司鞍山供电公司 Insulated breakdown passive alarming and monitoring device for 10-kv lightning arrester

Also Published As

Publication number Publication date
JP5026179B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
US9496702B2 (en) Method and system for control and protection of direct current subsea power systems
KR100943438B1 (en) Fault management of HTS power cable
Kim et al. An application of dynamic thermal line rating control system to up-rate the ampacity of overhead transmission lines
US7898778B2 (en) Superconducting coil quench detection method and device, and superconducting power storage unit
EP1306965B1 (en) Power supply unit
JP2007166836A (en) Snow and ice falling-off prevention device
US11506546B2 (en) Systems and methods for measuring internal transformer temperatures
US20110080679A1 (en) Protecting apparatus
JP5026179B2 (en) Cable fault point measuring instrument
US9520714B2 (en) Protecting an operation control unit connected to an electric machine via a long cable
US20210111561A1 (en) Systems and methods for regulating voltage along a distribution bus
US8755160B2 (en) Measuring transient electrical activity in aircraft power distribution systems
US8928269B2 (en) Power system having short circuit protection controller
KR20200098359A (en) Systems and methods for power monitoring and control
US20130284490A1 (en) Electrical wiring system and method
KR101066965B1 (en) Protective device and method for super conductor cable
JP2005261178A (en) Sheath current suppressing device for underground cable
US20140347791A1 (en) Electrical Power Distribution and Conversion Assembly Suitable For Portable Work Platforms
JP7444002B2 (en) Judgment device and program
JP2010200463A (en) Power transmission system using superconductive cable
EP2875513B1 (en) Method and apparatus of sensing and indicating an open current transformer secondary
EP2328246A1 (en) Electricity distribution system and method for adapting a TT electricity distribution network
KR100332839B1 (en) Regulated voltage generator using magnetic flux
KR100983473B1 (en) Apparatus for providing power to electric device used in distribution system using cable sheath and installation method thereof
EP4089869A1 (en) Electrical assembly

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5026179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees