JP2009024401A - Multistoried building equipped with gravity ventilation passage and ventilation passage structure of the building - Google Patents

Multistoried building equipped with gravity ventilation passage and ventilation passage structure of the building Download PDF

Info

Publication number
JP2009024401A
JP2009024401A JP2007188794A JP2007188794A JP2009024401A JP 2009024401 A JP2009024401 A JP 2009024401A JP 2007188794 A JP2007188794 A JP 2007188794A JP 2007188794 A JP2007188794 A JP 2007188794A JP 2009024401 A JP2009024401 A JP 2009024401A
Authority
JP
Japan
Prior art keywords
building
floor
section
ventilation path
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007188794A
Other languages
Japanese (ja)
Other versions
JP5026178B2 (en
Inventor
Megumi Nishida
恵 西田
Yoshiaki Higuchi
祥明 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2007188794A priority Critical patent/JP5026178B2/en
Publication of JP2009024401A publication Critical patent/JP2009024401A/en
Application granted granted Critical
Publication of JP5026178B2 publication Critical patent/JP5026178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Ventilation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multistoried building equipped with a gravity ventilation passage and a ventilation passage structure of the building capable of preventing air stream from flowing in the reverse direction or reducing unevenness in quantity of ventilation air at each story by partitioning the building into sections in accordance with height, ventilating each section by utilizing gravity or adjusting a ratio of opening area on the upstream side to that on the downstream side in the ventilation passage. <P>SOLUTION: This multistoried building is provided with a vertical hole extended from the lowest story of the building up to a rooftop through many stories and the gravity ventilation passage formed by the vertical hole and a communication port for communicating floors at each story mutually to feed air above the building from each story through the gravity ventilation passage. This building is divided into a plurality of sections constituted by one story or a series of stories, S<SB>1</SB>, S<SB>2</SB>, etc., and the vertical hole 4 is separated into ventilation holes 14 communicating with communication ports 6 at all the stories in each section S<SB>1</SB>, S<SB>2</SB>, etc., and extended upward up to the rooftop by corresponding to each section. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、重力換気路を備えた多層建物(高層建物を含む)に関する。   The present invention relates to a multi-story building (including a high-rise building) having a gravity ventilation path.

高層建築物の省エネルギー型の換気方式として重力換気が知られており、高層建築物の低層階から高層階を経て屋上へ開口する縦の換気路(シャフト)を設け、この換気路内空気が煙突効果により上昇することで、各階の空気が換気路側へ吸引され、建物上方へ排気されるように構成されている(特許文献1)。     Gravity ventilation is known as an energy-saving ventilation system for high-rise buildings, and a vertical ventilation path (shaft) that opens from the lower floor of the high-rise building to the rooftop is provided, and the air in this ventilation path is the chimney By rising due to the effect, the air on each floor is sucked to the ventilation path side and exhausted upward of the building (Patent Document 1).

ところが各階の空気の吸引力は、これら各階と建物上端との高低差の平方根と換気経路の有効面積の積に比例することが知られている。従って建物の低層階に比べて高層階では吸引力が弱く、通風量が小さくなる。こうした建物の階層に応じた通風量のばらつきを小さくするために、各階から換気路(吹き抜け空間)への連通口を下階から上階にいくほど大きくすることが行われている(特許文献2)。
特開2000−213184号 特開2007−2517号 「環境工学教科書」彰国社 1996年3月10日
However, it is known that the air suction force of each floor is proportional to the product of the square root of the height difference between each floor and the upper end of the building and the effective area of the ventilation path. Therefore, the suction force is weaker on the higher floors than on the lower floors of the building, and the amount of ventilation is small. In order to reduce the variation in the amount of ventilation according to the level of the building, the communication port from each floor to the ventilation path (atrium space) is increased from the lower floor to the upper floor (Patent Document 2). ).
JP 2000-213184 A JP 2007-2517 “Environmental Engineering Textbook” Shokokusha March 10, 1996

一般に堅穴内の圧力分布は次の数式2〜4により求まる。但し、Ptopは屋上の圧力(同一高さの大気圧を基準)、Ps(h)は屋上から△hだけ下降した位置の竪穴内の圧力、Po(h)は屋上から△hだけ下降した位置の屋外の圧力、△P(h)は屋上から△hだけ下降した位置の竪穴内と屋外の圧力差、ρsは竪穴内の空気の密度、ρoは屋外の空気の密度、gは重力加速度である。
[数式2] P(h)=Ptop+ρgΔh
[数式3] Po(h)=0−ρogΔh
[数式4] ΔP(h)=Ps(h)−Po(h)=Ptop+(ρs−ρo) gΔh
特許文献2の建物は、全ての階が一つの吹き抜け空間−煙突−を介して連通しているため、数式2を用いて吹き抜け空間内の負圧は図12に示すように高さ方向に直線的に変化する。このために次のような問題が生じていた。
Generally, the pressure distribution in the hard hole is obtained by the following mathematical formulas 2 to 4. However, P top is the pressure on the roof (based on the atmospheric pressure at the same height), P s (h) is the pressure inside the pothole at a position lowered by Δh from the roof, and P o (h) is only Δh from the roof. The outdoor pressure at the lowered position, ΔP (h) is the pressure difference between the inside and outside of the pothole at the position lowered by Δh from the rooftop, ρ s is the air density in the pothole, ρo is the outdoor air density, g is the gravitational acceleration.
[Formula 2] P s (h) = P top + ρ s gΔh
[Formula 3] P o (h) = 0−ρ o gΔh
[Formula 4] ΔP (h) = P s (h) −P o (h) = P top + (ρ s −ρ o ) gΔh
Since all the floors of the building of Patent Document 2 communicate with each other through a single atrium space-chimney-, the negative pressure in the atrium space is linear in the height direction as shown in FIG. Changes. This has caused the following problems.

第1に、建物が高層になると、建物の高層階では建物内部の気圧と吹き抜け空間の気圧とが逆転して、吹き抜け空間側から高層階側へ空気が流入することがあるということである。そうすると、建物の低層階から排気された汚れた空気が高層階の内部へ流入し、悪臭などの弊害を生ずる可能性がある。     First, when the building is high-rise, the air pressure inside the building and the air pressure in the atrium space are reversed on the high floor of the building, and air may flow from the atrium space side to the high-rise floor side. If it does so, the dirty air exhausted from the lower floor of the building may flow into the upper floor and cause harmful effects such as bad odor.

第2に、そうした気圧の逆転を生じなくても、煙突作用による換気作用は上に行くほど小さくなり、外部風がない状態では上層部の換気が不十分となる可能性がある。     Secondly, even if such a reversal of atmospheric pressure does not occur, the ventilation effect due to the chimney effect becomes smaller as it goes upward, and in the absence of external wind, there is a possibility that ventilation of the upper layer part will be insufficient.

本発明の目的は、建物を高さに応じて区画してそれぞれに重力換気を行うこと乃至換気路の上流側及び下流側の開口面積比を調整することで、気流の逆流を防止し、或いは各階の換気量のばらつきを小さくすることができる、重力換気路付きの多層建物及び建物の換気路構造を提供することにある。     An object of the present invention is to prevent the backflow of airflow by partitioning a building according to height and performing gravity ventilation on each, or by adjusting the opening area ratio on the upstream side and downstream side of the ventilation path, or An object of the present invention is to provide a multi-layer building with a gravity ventilation path and a ventilation path structure of the building that can reduce the variation in the ventilation amount of each floor.

第1の手段は、
建物の低層階から高層階を通って屋上へ抜ける堅穴と、この堅穴と各階のフロアとを連通する連通口とで形成する重力換気路を備え、
この重力換気路を経て各階から建物上方へ通風するように設けた多層建物であって、
この建物を、1つの階又は一連の階からなる複数のセクションS1、S2…に分割し、
かつ各セクションに対応して、上記堅穴4を、各セクションS1、S2…内の全ての階の連通口6と連通して屋上まで上方へ延びる通気穴14…に分離している。
The first means is
It has a gravity ventilation path formed by a solid hole that passes from the lower floor of the building through the higher floor to the rooftop, and a communication port that connects this rigid hole and the floor of each floor,
It is a multi-layered building provided to vent the building upward from each floor through this gravity ventilation path,
This building is divided into a plurality of sections S1, S2 ... consisting of one floor or a series of floors,
And corresponding to each section, the said rigid hole 4 is isolate | separated into the vent hole 14 ... which communicates with the communicating port 6 of all the floors in each section S1, S2 ..., and extends upwards to a rooftop.

前述の通り建物の各階を一つの竪穴で連通させてしまうと、上層階と下層階との間の圧力は階数に比例して増大するので、階数が大きくなると、換気量の差が大きくなるとともに上層階での逆流を生じ易くなる。そこで本手段は、多層建物を複数のセクションに分割するとともに、各セクション毎に独立して換気を行うことを提案している。具体的には、建物の各階から建物の屋上へ到る換気用の竪穴を、各セクション毎に分離している。本明細書において「分離」とは、一つの竪穴を仕切って分割することと、予め複数の竪穴を通気穴として形成することとの双方を含むものとする。   As described above, if each floor of the building is connected with a single pit, the pressure between the upper floor and the lower floor increases in proportion to the number of floors. Therefore, as the number of floors increases, the difference in ventilation increases. Backflow on the upper floor is likely to occur. Therefore, this means proposes to divide the multi-layered building into a plurality of sections and to ventilate each section independently. Specifically, the vent holes for ventilation from each floor of the building to the roof of the building are separated for each section. In this specification, “separation” includes both partitioning and dividing a single hole and forming a plurality of holes as ventilation holes in advance.

「多層建物」とは、重力換気を行うのに適しており、かつ無風状態で竪穴から高層部へ空気が逆流する可能性がある高さを有するものをいう。煙突内の空気圧は前述の数式2に従うため、建物の階数よりも高さが問題である。従って2〜3階程度の階数が少ない建物でも、階高が大きければ本願にいう多層建物に該当し得る。     “Multi-layer building” means a building suitable for gravity ventilation and having a height that allows air to flow backward from a pothole to a high-rise part in a windless state. Since the air pressure in the chimney follows the above-described equation 2, the height is higher than the floor number of the building. Therefore, even a building with a small number of floors such as about 2 to 3 can correspond to a multi-layered building as long as the floor height is large.

「セクション」は、建物のうち一つの換気路で換気を行う単位である。各セクション中の最下層と最上層との間に逆流を生じないように設計することが望ましい。建物を複数のセクションに分割することで、換気路内の縦方向の圧力分布は、図3のようになる。この説明については後述する。     A “section” is a unit that ventilates in one ventilation path of a building. It is desirable to design so that no backflow occurs between the lowermost layer and the uppermost layer in each section. By dividing the building into a plurality of sections, the vertical pressure distribution in the ventilation path is as shown in FIG. This description will be described later.

「竪穴」は、建物の屋上に上端開口を有するものをいい、換気路専用として設計されたものに限らない。例えば建物のボイド(光庭)やガス管や給排水管を挿通した縦シャフトと兼用しても構わない。     “Hot hole” refers to the one having an upper end opening on the roof of the building, and is not limited to one designed exclusively for a ventilation path. For example, it may be used also as a vertical shaft through which a void (light garden) of a building, a gas pipe or a water supply / drain pipe is inserted.

第2の手段は、第1の手段を有し、かつ
上記各通気穴14は、一つの堅穴4の内部を仕切り壁18で仕切ることで形成している。
The second means includes the first means, and each of the vent holes 14 is formed by partitioning the inside of one rigid hole 4 with a partition wall 18.

本手段では、一つの竪穴の内部を仕切り壁又は界壁で仕切っている。特に建物の内部に竪穴を設けるときには、ボイドや竪シャフトなどの既知の構成を利用して、それら竪穴の中に通気穴を集約することができる。   In this means, the inside of one pothole is partitioned off by a partition wall or a field wall. In particular, when pit holes are provided in the interior of the building, the vent holes can be concentrated in the pit holes using a known configuration such as a void or a ridge shaft.

後述の図1〜2及び図7〜8の実施形態では、仕切り壁を、各セクションから順次上方へ延びる、多層状(多重筒状を含む)としている。このときの通気穴は、建物の中心を通る縦断面上で、各セクションからボイド内方へ、次に上方へ延びるL次形状に形成される。この構造のものは、規則正しい形をしているので、シミュレーションにより換気効果を予測し易いという利点がある。もっとも図9〜図11の如く、竪穴内に縦筒状の仕切り壁を縦設してもよく、この場合には、材料が少なくてすむので安価に建設することができる。     In the embodiments of FIGS. 1-2 and FIGS. 7-8 described later, the partition wall has a multi-layer shape (including a multi-tubular shape) that sequentially extends upward from each section. The vent hole at this time is formed in an L-order shape extending from each section to the inside of the void and then upward upward on a longitudinal section passing through the center of the building. Since this structure has a regular shape, the ventilation effect can be easily predicted by simulation. However, as shown in FIGS. 9 to 11, a vertical cylindrical partition wall may be provided vertically in the coffin hole, and in this case, since less material is required, it can be constructed at a low cost.

第3の手段は、第1の手段又は第2の手段を有し、かつ
建物の上位の1/3程度を占める上層階を少なくとも一つのセクションとして、それ以外の階層と別に換気するように構成している。
The third means has the first means or the second means, and is configured to ventilate the upper floor occupying about 1/3 of the top of the building as at least one section separately from the other floors. is doing.

建物の高層階では、外部風が強いために、十分な換気ができると思われ勝ちであるが、無風状態のときや風雨が吹き込まないように窓を閉めなければならないときには、別に換気の工夫をしなければならない。ところが、多層建物に重力換気方式を取り入れると、低層階に比べて高層階において快適性に問題を生じやすい。前述の通り換気量が低層階に比べて少ないとともに、竪穴側から居住空間へ空気が逆流する可能性があり、下・中層階から排出されたさまざまな生活臭(料理の臭いなど)が蓄積されて上層階内に流れ込むおそれがある。そこで本手段では、多層建物を低層階エリア・中層階エリア・高層階エリアの3つに分けて、高層階エリアを、少なくとも一つのセクションとして他のエリアから分割している。もちろんこの高層階エリアをさらに細かいく分割することもできる。   On the higher floors of the building, the external winds are strong, so it is likely that sufficient ventilation will be possible. Must. However, if a gravity ventilation system is adopted in a multi-story building, it is more likely to cause a problem in comfort on a higher floor than on a lower floor. As mentioned above, the ventilation volume is small compared to the lower floors, and air may flow backward from the pit to the living space, and various living odors (such as cooking odors) discharged from the lower and middle floors are accumulated. May flow into the upper floors. Therefore, in this means, the multi-layer building is divided into three areas of a low-rise area, a middle-rise area, and a high-rise area, and the high-rise area is divided from other areas as at least one section. Of course, this higher floor area can be further divided.

第4の手段は、第1の手段から第3の手段の何れかを有し、かつ
建物の各セクションに属する階数が、建物の下側から上側へ向かうとともに減少するようにしている。
The fourth means includes any one of the first means to the third means, and the number of floors belonging to each section of the building decreases from the bottom to the top of the building.

前述の通り多層建物の重力換気では、低層階に比べて高層階側が快適性の点で問題を生じやすいので、本手段においては、上に行くほどセクションの区切り方を細かくすることを提案している。ここで階数の減少とは、5・4・3・2のような単調減少だけでなく、4・4・3・3・2…のように全体として減少傾向にあるものも含む。   As mentioned above, in the gravity ventilation of multi-story buildings, the higher floors are more likely to cause problems in terms of comfort than the lower floors. Yes. Here, the decrease in the number of floors includes not only a monotonous decrease such as 5, 4, 3, 2, but also an overall decrease such as 4, 4, 3, 3, 2,.

第5の手段は、第1の手段から第4の手段の何れかを有し、かつ
各セクションS1、S2…に対応する通気穴14の有効開口面積を、下の階に比べて上の階ほど大きくなるようにしている。
The fifth means includes any one of the first means to the fourth means, and the effective opening area of the vent hole 14 corresponding to each section S1, S2,... Is higher than the lower floor. I try to get bigger.

仮に建物の各階を別々の換気路を経由して重力換気したときの換気量算定式は次の通りとなる。ここでQは換気量、αAは、換気路の有効面積、gは重力加速度、ΔHは当該換気路の上下両端の高低差である。また前述の如くρsは竪穴内の空気の密度、ρoは屋外の空気の密度である。
[数式5] Q=αA√{(2/ρ)×(ρo−ρs)×g×ΔH}
建物の上層階で換気量が小さいのは数式3の右辺中のΔHが小さいからである。従って、仮に全ての階を別々のセクションとして個別の換気路を設けたとしても、それだけでは未だ各階の換気量のばらつきのうち相当部分は解消されないことになる。そこで本手段では、各セクション毎に数式3のαAを大きくして、換気量のばらつきを減らすことを提案している。
If each floor of the building is gravity ventilated via a separate ventilation path, the ventilation volume calculation formula is as follows. Here, Q is the ventilation amount, αA is the effective area of the ventilation path, g is the acceleration of gravity, and ΔH is the height difference between the upper and lower ends of the ventilation path. Further, as described above, ρ s is the density of air in the pit and ρ o is the density of outdoor air.
[Formula 5] Q = αA√ {(2 / ρ) × (ρ o −ρ s ) × g × ΔH}
The reason why the ventilation level is small on the upper floor of the building is that ΔH in the right side of Equation 3 is small. Therefore, even if individual ventilation paths are provided with all the floors as separate sections, a significant portion of the variation in the ventilation amount of each floor is not yet eliminated. Therefore, in this means, it is proposed that αA in Formula 3 is increased for each section to reduce the variation in ventilation.

なお、上記数式5の適用において、流路中で流路面積が狭くなった場所(オリフィスという)が複数存在する場合には、従来公知のように有効面積を合成して相当開口面積を求めればよい。例えば有効面積がα、αの2つのオリフィスが直列に並んでいるときには、相当開口面積は、(α1212−2=(α−2+(α−2で与えられる。またそれらオリフィスが並列に並んでいるときの相当開口面積はα1212=α+αとなる(非特許文献1参照)。 In addition, in the application of Equation 5, when there are a plurality of locations (referred to as orifices) where the channel area is narrowed in the channel, the effective area can be obtained by combining the effective areas as conventionally known. Good. For example, when two orifices having an effective area of α 1 A 1 and α 2 A 2 are arranged in series, the equivalent opening area is (α 12 A 12 ) −2 = (α 1 A 1 ) −2 + (α 1 A 1 ) -2 . Further, the equivalent opening area when the orifices are arranged in parallel is α 12 A 12 = α 1 A 1 + α 1 A 1 (see Non-Patent Document 1).

第6の手段は、第1の手段から第5の手段の何れかを有し、かつ
各セクションS、S…に対応する通気穴14の有効開口面積に対して、当該セクションの全ての階の連通口6の開口面積の総和が小さくなるようにしている。
The sixth means includes any one of the first means to the fifth means, and the effective opening area of the vent hole 14 corresponding to each section S 1 , S 2 . The sum of the opening areas of the communication ports 6 on the floor is made small.

本手段では、通気穴内の気流が各階のフロアへ逆流することを抑制する条件を提案している。一般には各階の空気が煙突効果により通気穴内を上昇していくが、連通口に比べて通気穴の上端の開口面積が小さいときには、空気が流れにくくなり、フロア側へ逆流する可能性がある。出願人は、10階建ての建物のモデルを用いてシミュレーションを行い、通気穴の有効開口面積>連通口の面積の総和という条件で、少なくとも5階までは逆流を生じないという結果を得た。   This means proposes a condition for suppressing the airflow in the vent hole from flowing back to the floor of each floor. In general, the air on each floor rises in the ventilation hole due to the chimney effect, but when the opening area at the upper end of the ventilation hole is smaller than the communication opening, the air becomes difficult to flow and may flow back to the floor side. The applicant conducted a simulation using a model of a 10-story building, and obtained a result that no backflow occurred at least up to the 5th floor under the condition that the effective opening area of the ventilation holes> the total area of the communication openings.

第7の手段は、
高層建物の上層部を対象として据え付けられた専用の換気路又は低層建物の全階層を対象とする換気路の構造であって、
その対象階の各階に沿って屋上へ延びる上端開口の通気穴14と、この通気穴と各階のフロアとの間に形成された連通口6とを含み、
上記連通口6の開口面積の合計Σと通気穴14の有効開口面積Aeとの比が次式を満たすように連通口又は換気路の開口面積を調整することを特徴とする。
[数式1] Σ/Ae<Σi (2i−1)0.5 (i=1、2、…n)
但しnは同一堅穴内の総階数である。
The seventh means is
A dedicated ventilation path installed for the upper part of a high-rise building or a ventilation path structure for all levels of a low-rise building,
A vent hole 14 having an upper end opening extending to the roof along each floor of the target floor, and a communication port 6 formed between the vent hole and the floor of each floor,
The opening area of the communication port or the ventilation path is adjusted so that the ratio of the total opening area Σ i A i of the communication port 6 and the effective opening area Ae of the vent hole 14 satisfies the following expression.
[Expression 1] Σ i A i / Ae <Σ i (2i−1) 0.5 (i = 1, 2,... N)
Where n is the total number of floors in the same hole.

本手段では、高層建物の一部又は低層建物の全階層を対象として、連通口の総和と通気穴との面積比を限定することで、気流の逆転を防止することを提案している。好適な一例として高層建物を4階建て以上、低層建物を2〜3階建てとすることができる。なお、Σはiが最小値のときからiが最大値のときまでの各量の総和を表すものとする。例えばΣ=A+A…+Aである。 This means proposes to prevent reversal of the airflow by limiting the area ratio between the sum of the communication openings and the vent holes for a part of the high-rise building or all the floors of the low-rise building. As a suitable example, a high-rise building can be 4 stories or more, and a low-rise building can be 2-3 stories. Note that Σ i represents the sum of each quantity from when i is the minimum value to when i is the maximum value. Such as Σ i A i = A 1 + A 2 ... + A n.

第1の手段に係る発 明によれば次の効果を奏する。
○多層建物を高さ方向に複数のセクションS、S…に分割し、各セクション毎に独自に重力換気することにしたから、各セクション毎の換気量をばらつきが少なくなるように調整することができる。
○各セクション毎の通気穴14は相互に分離されているから、下のセクションからの排気が上のセクション内へ流入することを防止することができる。
The invention according to the first means has the following effects.
○ dividing the multilayer building multiple sections S 1, S 2 ... in the height direction, because it was decided to own gravity ventilation for each section, for adjusting the amount of ventilation per each section so variation is reduced be able to.
The vent holes 14 for each section are separated from each other, so that exhaust from the lower section can be prevented from flowing into the upper section.

第2の手段に係る発明によれば、一つの竪穴4を仕切ることで各セクション毎の通気穴を形成したから、ボイドや縦シャフトなど既存の竪穴を利用して換気を行うことができる。   According to the invention relating to the second means, since the ventilation hole for each section is formed by partitioning one pit hole 4, ventilation can be performed using existing pit holes such as voids and vertical shafts.

第3の手段に係る発明によれば、建物の上層階を少なくとも一つのセクションとしたから、この上層階での気流の逆転の防止や換気量の調整を十分に行うことができる。   According to the invention relating to the third means, since the upper floor of the building is at least one section, it is possible to sufficiently prevent the reversal of the air flow and adjust the ventilation amount on this upper floor.

第4の手段に係る発明によれば、建物の上に行くほど、セクションの区切り方を細かくしたから、気流の逆流を生じやすい上層階側を重点的に換気設備を導入することができ、効率的である。   According to the invention relating to the fourth means, since the section separation method becomes finer as it goes above the building, ventilation equipment can be introduced focusing on the upper floor side where airflow is likely to occur, and efficiency is improved. Is.

第5の手段に係る発明によれば、各セクションS1、S2…に対応する通気穴14の有効開口面積を、下の階に比べて上の階ほど大きくしたから、上層階側の換気量が大きくなるように調整することができる。   According to the fifth aspect of the invention, since the effective opening area of the vent hole 14 corresponding to each section S1, S2,... Is larger in the upper floor than in the lower floor, the ventilation amount on the upper floor side is increased. It can be adjusted to be larger.

第6の手段に係る発明によれば、各セクションS1、S2…に対応する通気穴14の有効開口面積に対して、当該セクションの全ての階の連通口6の開口面積の総和が小さくなるようにしたから、気流の逆転を抑制することができる。   According to the sixth aspect of the invention, the sum of the opening areas of the communication ports 6 of all the floors of the section is reduced with respect to the effective opening area of the vent hole 14 corresponding to each section S1, S2,. Therefore, the reversal of the airflow can be suppressed.

第7の手段に係る発明によれば、連通口6の開口面積の合計Σと通気穴14の有効開口面積Aeとの比がΣ/Ae<Σi (2i−1)0.5を満たすようにしたから、気流の逆転をより確実に防止することができる。 According to the seventh aspect of the invention, the ratio of the total opening area Σ i A i of the communication port 6 to the effective opening area Ae of the vent hole 14 is Σ i A i / Ae <Σ i (2i−1) Since 0.5 is satisfied, the reversal of the airflow can be prevented more reliably.

図1から図3は、本発明の第1実施形態に係る多層建物2を示している。   1 to 3 show a multi-layer building 2 according to a first embodiment of the present invention.

本発明の構成のうち、まず従来公知の事柄について説明すると、上記多層建物2は、上端開口の換気用の堅穴4を有している。   First of all, in the configuration of the present invention, a conventionally known matter will be described. The multilayer building 2 has a rigid hole 4 for ventilation at the upper end opening.

この堅穴4は、建物の最下階から最上階を経て建物の屋上に開口している。図示の堅穴4は、ボイドを兼ねており、上方から見て建物の中心に位置している。堅穴4を形成する建物の内壁8に各階毎に連通口6を開口している。また建物の外壁10には通気用の窓を開口している。図示例では、建物の内外両壁は、四角筒状に形成しているが、その構造は適宜変更することができる。     The hard hole 4 opens from the lowest floor of the building to the top of the building through the top floor. The illustrated hard hole 4 also serves as a void and is located at the center of the building as viewed from above. A communication port 6 is opened for each floor on the inner wall 8 of the building forming the hard hole 4. A ventilation window is opened in the outer wall 10 of the building. In the illustrated example, both the inner and outer walls of the building are formed in a square tube shape, but the structure can be changed as appropriate.

本発明においては、上記多層建物2を、2階ずつのセクションS、S…に分けて各セクションごとに重力換気を行うようにしている。即ち、各セクションに対応して上記堅穴4を複数の通気穴14…に仕切り、各セクションの連通口6と通気穴14とで重力換気路P、P…を形成している。 In the present invention, the multi-layered building 2 is divided into sections S 1 , S 2 ... On the second floor, and gravity ventilation is performed for each section. That is, the rigid hole 4 is partitioned into a plurality of ventilation holes 14 corresponding to the sections, and the communication ports 6 and the ventilation holes 14 of the sections form gravity ventilation paths P 1 , P 2 .

各通気穴14は仕切り壁18によって仕切られている。本実施形態では、これら仕切り壁18は、各セクションの一番下の階の下端部から水平方向内側へ張り出した横壁18aと、横壁内縁から起立する縦筒部18bとで形成している。各仕切り壁の縦筒部は図1に示すように多重筒状に間隔を存して重なっている。   Each vent hole 14 is partitioned by a partition wall 18. In this embodiment, these partition walls 18 are formed by a horizontal wall 18a that protrudes inward in the horizontal direction from the lower end of the lowest floor of each section, and a vertical cylindrical portion 18b that stands from the inner edge of the horizontal wall. As shown in FIG. 1, the vertical cylindrical portions of the partition walls overlap each other in a multi-cylindrical shape.

ここでセクションSに属する各階の連通口の開口面積を下から順番にA11、A21…のように表わし、各連通口と通気穴14の上端との間の高低差をh11、h21…とし、各連通口での空気の密度をρ11、ρ21…とし、通気穴14下端での平均圧力をPmとすると、各連通口から通気穴14の上端へ流れる空気の流量にQ11、Q21…に関して、
[数式6] Q11=αA√[(2/ρ)×{Pm−(ρ−ρ11)gh11}]
[数式7] Q12=αA√[(2/ρ)×{Pm−(ρ−ρ12)gh12}]
が成立し、また2つの連通口から流れる空気の流量の総和QT1に関して
[数式8] QT2=αA√[(2/ρ)×{Pm−(ρ−ρT2)ghT2}]
が成立する。この式を解いてPmを求める。この処理を各セクションに関して行うと図3に示すような圧力分布が得られる。このときの圧力分布は同図に実線で示す如く傾斜しながら、各セクションの境目で不連続的に変化する。このため、仕切り壁を設けない場合の圧力分布(同図に一点鎖線で示す)に比べて、堅穴の上端と下端との間での圧力差が小さくなり、各セクションにおける換気量のばらつきを減少させることができる。
Here, the opening areas of the communication openings of each floor belonging to the section S 1 are expressed as A 11 , A 21 ... In order from the bottom, and the height difference between each communication opening and the upper end of the vent hole 14 is represented by h 11 , h 21, and the density of air at each communication port is ρ 11 , ρ 21 ... And the average pressure at the lower end of the vent hole 14 is Pm. 11 , Q 21 ...
[Formula 6] Q 11 = αA√ [(2 / ρ) × {Pm− (ρ 0 −ρ 11 ) gh 11 }]
[Formula 7] Q 12 = αA√ [(2 / ρ) × {Pm− (ρ 0 −ρ 12 ) gh 12 }]
And the sum of the flow rate of air flowing from the two communication ports Q T1
[Formula 8] Q T2 = αA√ [(2 / ρ) × {Pm− (ρ 0 −ρ T2 ) gh T2 }]
Is established. Solve this equation to find Pm. When this process is performed for each section, a pressure distribution as shown in FIG. 3 is obtained. The pressure distribution at this time changes discontinuously at the boundary of each section while inclining as shown by the solid line in FIG. For this reason, compared with the pressure distribution when no partition wall is provided (indicated by the alternate long and short dash line in the figure), the pressure difference between the upper and lower ends of the hard hole is reduced, resulting in variations in ventilation volume in each section. Can be reduced.

また上記通気穴は、図1に示すように上側のセクションに対応するものほど、通気穴の有効開口面積が大きくなるように設計されている。これによりさらに各セクションの換気量は均等に近づく。   Further, the vent hole is designed so that the effective opening area of the vent hole becomes larger as it corresponds to the upper section as shown in FIG. As a result, the ventilation volume in each section is evenly approached.

次に図1及び図2の構成の多層建物において、堅穴から居住空間への空気の逆流防止の条件を検証するため、表1の条件でシミュレーションを行った。   Next, in the multi-layer building having the configuration shown in FIGS. 1 and 2, a simulation was performed under the conditions shown in Table 1 in order to verify the conditions for preventing the backflow of air from the hard hole to the living space.

Figure 2009024401
Figure 2009024401

図4は、横軸に風量(逆流時の風量を正とする)を、縦軸に階数をとったものである。図4(A)は、ボイド(堅穴)の上部開口の面積が100m 図4(B)は同面積が200m、図4(C)は同面積が300m、図4(D)は同面積が400mの場合をそれぞれ表わしている。この表より上の階ほど逆流が生じやすいこと、及び、換気路の上部開口の面積に対する下部開口(連通口)の面積が大きいほど逆流を生じやすいことが判る。 In FIG. 4, the horizontal axis represents the air volume (the air volume during backflow is positive), and the vertical axis represents the rank. 4A, the area of the upper opening of the void (solid hole) is 100 m 2 , FIG. 4B is the same area of 200 m 2 , FIG. 4C is the same area of 300 m 2 , and FIG. Represents the case where the area is 400 m 2 . It can be seen that the higher the floor than this table, the easier the backflow occurs, and the larger the area of the lower opening (communication opening) relative to the area of the upper opening of the ventilation path, the easier the backflow occurs.

図5は、同じモデルによるシミュレーションの結果を、風量(逆流時の風量を正とする)と換気路の上下開口の面積比とにまとめなおしたものである。図5(A)は10階の状態を、図5(B)は5階の状態を、図5(C)は1階の状態をそれぞれ表わしている。   FIG. 5 is a summary of simulation results based on the same model, with the air volume (the air volume during backflow is positive) and the area ratio of the upper and lower openings of the ventilation path. 5A shows the state of the 10th floor, FIG. 5B shows the state of the 5th floor, and FIG. 5C shows the state of the 1st floor.

10階では、堅穴の上部開口の面積を代えた○、*、△、□の4つのラインが重なり合っている。即ち、10階の風量は、堅穴の上部開口の面積にはあまり関係なく、面積比に依存する。そして開口面積比(面積指数)が0.25以下であればほぼ逆流を生じない。   On the 10th floor, four lines of ○, *, Δ, and □, which change the area of the upper opening of the hard hole, overlap. That is, the air volume on the 10th floor is not so much related to the area of the upper opening of the hard hole, but depends on the area ratio. If the opening area ratio (area index) is 0.25 or less, almost no back flow occurs.

他方5階と1階とは、同じ面積比では堅穴の上部開口の面積が大きいほど、風量はゼロに近づく(逆流しやすくなる)ことが判る。   On the other hand, the fifth floor and the first floor have the same area ratio, and it can be seen that the larger the area of the upper opening of the hard hole, the closer the air volume approaches to zero (the easier it is to flow backward).

以下本発明の実施例及び他の実施形態を説明する。その際既に述べた事柄と同じ構成に関しては同一の符号を付することで説明を省略する。   Examples of the present invention and other embodiments will be described below. In this case, the same components as those already described are denoted by the same reference numerals and description thereof is omitted.

図6は、同じシミュレーションによるのもとで数式6〜8を用いて圧力分布を計算した結果を示すグラフである。●のラインは堅穴(ボイド)を分割しなかった場合、△のラインは堅穴を分割した場合の圧力分布を示す。堅穴の分割により、全体として上の階と下の階との換気量の差が少なくなっているのが判る。   FIG. 6 is a graph showing the result of calculating the pressure distribution using Equations 6 to 8 under the same simulation. The ● line shows the pressure distribution when the hard hole is not divided, and the Δ line shows the pressure distribution when the hard hole is divided. It can be seen that the difference in ventilation between the upper floor and the lower floor is reduced as a whole due to the division of the hard holes.

図7及び図8は、本願第1実施形態の変形例であって、ボイド内部を多重筒状に分割する代わりに、建物の一側部に設けたソーラーチムニーの内部をフラットな層状に分割したものである。この場合にも下方のセクションに対応する通気穴ほど有効開口面積を大きくし、各換気路の換気量が均等に近づくようにしている。   7 and 8 are modifications of the first embodiment of the present application, and instead of dividing the void inside into multiple cylinders, the inside of the solar chimney provided on one side of the building is divided into flat layers. Is. In this case as well, the effective opening area of the ventilation hole corresponding to the lower section is increased so that the ventilation amount of each ventilation path approaches evenly.

図9から図11は、本発明の第2の実施形態である。建物のボイド内面に各セクションS、S…の連通口6から屋上へ至る複数本のダクト20を縦設し、このダクト内を通気穴14としたものである。図示の例ではダクト20の内部のみを通気穴としているが、それらダクト20を除く堅穴部分を一つの通気穴として任意のセクションの換気に利用することもできる。本実施形態も堅穴であるボイドを複数の換気路に分割する例の一態様である。 9 to 11 show a second embodiment of the present invention. A plurality of ducts 20 extending vertically from the communication ports 6 of the sections S 1 , S 2 ... To the roof are provided on the inner surface of the voids of the building, and the insides of the ducts serve as vent holes 14. In the illustrated example, only the inside of the duct 20 is used as a vent hole. However, a rigid hole portion excluding the duct 20 may be used as one vent hole for ventilation of an arbitrary section. This embodiment is also an example of an example in which a void that is a rigid hole is divided into a plurality of ventilation paths.

これに対して建物の外壁面に上記のようなダクトを縦設することもできる。この場合には、一つの堅穴を分割するのではなく、予め分離した複数の堅穴を建物の外表面側に縦設することになる。   On the other hand, the above ducts can be provided vertically on the outer wall surface of the building. In this case, instead of dividing one hard hole, a plurality of hard holes separated in advance are provided vertically on the outer surface side of the building.

更に以上の説明では、10階建ての高層建物を例にとったが、この10階建ての建物のうち10階・9階のセクションの構成を2階建て程度の低層建物に当てはめることができる。屋上からの高低差が同じ程度であれば同じような圧力分布となると期待されるからである。   Further, in the above description, a 10-story high-rise building is taken as an example, but the configuration of the 10th and 9th floor sections of this 10-story building can be applied to a two-story low-rise building. This is because it is expected that the pressure distribution will be the same if the height difference from the roof is the same.

本発明の第1の実施形態に係る多層建物の平面図である。1 is a plan view of a multilayer building according to a first embodiment of the present invention. 図1の多層建物の縦断面図である。It is a longitudinal cross-sectional view of the multilayer building of FIG. 図1の多層建物における圧力分布の説明図である。It is explanatory drawing of the pressure distribution in the multilayer building of FIG. 図1の多層建物における階数と風量の関係をシミュレーションした結果を説明するグラフである。It is a graph explaining the result of having simulated the relationship between the number of floors in the multilayer building of FIG. 図1の多層建物における面積指数と風量との関係をシミュレーションした結果を説明するグラフである。It is a graph explaining the result of having simulated the relationship between the area index and the air volume in the multilayer building of FIG. 図4〜図5のシミュレーションにおける圧力分布を計算した結果を示すグラフである。It is a graph which shows the result of having calculated the pressure distribution in the simulation of FIGS. 図1の建物の変形例の平面図である。It is a top view of the modification of the building of FIG. 図7の建物の縦断面図である。It is a longitudinal cross-sectional view of the building of FIG. 本発明の第2の実施形態に係る多層建物の平面図である。It is a top view of the multilayer building which concerns on the 2nd Embodiment of this invention. 図9のX−X方向の建物の縦断面図である。It is a longitudinal cross-sectional view of the building of the XX direction of FIG. 図9のXI−XI方向の建物の縦断面図である。It is a longitudinal cross-sectional view of the building of the XI-XI direction of FIG. 従来の建物の作用説明図である。It is operation | movement explanatory drawing of the conventional building.

符号の説明Explanation of symbols

2…多層建物 4…竪穴 6…連通口 8…内壁 10…外壁 14…通気穴
18…仕切り壁 18a…横壁 18b…縦筒部 20…ダクト
、S…セクション
、P…重力換気路
2 ... multilayer building 4 ... wells 6 ... communicating port 8 ... inner wall 10 ... outer wall 14 ... vent hole 18 ... partition wall 18a ... lateral wall 18b ... vertical tube portion 20 ... duct S 1, S 2 ... sections P 1, P 2 ... Gravity Ventilation path

Claims (7)

建物の低層階から高層階を通って屋上へ抜ける堅穴と、この堅穴と各階のフロアとを連通する連通口とで形成する重力換気路を備え、
この重力換気路を経て各階から建物上方へ通風するように設けた多層建物であって、
この建物を、1つの階又は一連の階からなる複数のセクションS、S…に分割し、
かつ各セクションに対応して、上記堅穴4を、各セクションS、S…内の全ての階の連通口6と連通して屋上まで上方へ延びる通気穴14…に分離したことを特徴とする、重力換気路を備えた多層建物。
It has a gravity ventilation path formed by a solid hole that passes from the lower floor of the building through the higher floor to the rooftop, and a communication port that connects this rigid hole and the floor of each floor,
It is a multi-layered building provided to vent the building upward from each floor through this gravity ventilation path,
The building is divided into a plurality of sections S 1 , S 2 ... Consisting of one floor or a series of floors,
And corresponding to each section, the above-mentioned rigid hole 4 is separated into vent holes 14 that communicate with the communication ports 6 of all the floors in each section S 1 , S 2 . A multi-story building with gravity ventilation.
上記各通気穴14は、一つの堅穴4の内部を仕切り壁18で仕切ることで形成したことを特徴とする、重力換気路を備えた多層建物。   Each of the vent holes 14 is formed by dividing the inside of one rigid hole 4 by a partition wall 18, and is a multi-layer building having a gravity ventilation path. 建物の上位の1/3程度を占める上層階を少なくとも一つのセクションとして、それ以外の階層と別に換気するように構成したことを特徴とする、請求項1又は請求項2の何れかに記載の重力換気路を備えた多層建物。   The upper floor occupying about 1/3 of the upper part of the building is configured to ventilate separately from other floors as at least one section, according to any one of claims 1 and 2. Multi-story building with gravity ventilation path. 建物の各セクションに属する階数が、建物の下側から上側へ向かうとともに減少するようにしたことを特徴とする、請求項1から請求項3の何れかに記載の重力換気路を備えた多層建物。   4. The multi-layer building with gravity ventilation path according to claim 1, wherein the number of floors belonging to each section of the building decreases from the lower side to the upper side of the building. . 各セクションS、S…に対応する通気穴14の有効開口面積を、下の階に比べて上の階ほど大きくなるようにしたことを特徴とする、請求項1から請求項4の何れかに記載の重力換気路を備えた多層建物。 Any one of claims 1 to 4, wherein an effective opening area of the vent hole 14 corresponding to each section S 1 , S 2 ... is larger in the upper floor than in the lower floor. Multi-story building with gravity ventilation path as described in Crab. 各セクションS、S…に対応する通気穴14の有効開口面積に対して、当該セクションの全ての階の連通口6の開口面積の総和が小さくなるようにしたことを特徴とする、請求項1から請求項5の何れかに記載の重力換気路を備えた多層建物。 The sum of the opening areas of the communication ports 6 of all the floors of the section is made smaller than the effective opening area of the vent hole 14 corresponding to each section S 1 , S 2 . The multilayer building provided with the gravity ventilation path in any one of Claims 1-5. 高層建物の上層部を対象として据え付けられた専用の換気路又は低層建物の全階層を対象とする換気路の構造であって、
その対象階の各階に沿って屋上へ延びる上端開口の通気穴14と、この通気穴と各階のフロアとの間に形成された連通口6とを含み、
上記連通口6の開口面積の合計Σと通気穴14の有効開口面積Aeとの比が次式を満たすように連通口又は換気路の開口面積を調整することを特徴とする、建物の換気路構造。
[数式1] Σ/Ae<Σi (2i−1)0.5 (i=1、2、…n)
但しnは同一堅穴内の総階数とする。
A dedicated ventilation path installed for the upper part of a high-rise building or a ventilation path structure for all levels of a low-rise building,
A vent hole 14 having an upper end opening extending to the roof along each floor of the target floor, and a communication port 6 formed between the vent hole and the floor of each floor,
The building is characterized in that the opening area of the communication opening or the ventilation path is adjusted so that the ratio of the total opening area Σ i A i of the communication opening 6 and the effective opening area Ae of the ventilation hole 14 satisfies the following equation: Ventilation path structure.
[Equation 1] Σ i A i / Ae <Σ i (2i-1) 0.5 (i = 1,2, ... n)
Where n is the total number of floors in the same hole.
JP2007188794A 2007-07-19 2007-07-19 Multi-layer building with gravity ventilation path and ventilation path structure of building Expired - Fee Related JP5026178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188794A JP5026178B2 (en) 2007-07-19 2007-07-19 Multi-layer building with gravity ventilation path and ventilation path structure of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188794A JP5026178B2 (en) 2007-07-19 2007-07-19 Multi-layer building with gravity ventilation path and ventilation path structure of building

Publications (2)

Publication Number Publication Date
JP2009024401A true JP2009024401A (en) 2009-02-05
JP5026178B2 JP5026178B2 (en) 2012-09-12

Family

ID=40396472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188794A Expired - Fee Related JP5026178B2 (en) 2007-07-19 2007-07-19 Multi-layer building with gravity ventilation path and ventilation path structure of building

Country Status (1)

Country Link
JP (1) JP5026178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489095A (en) * 2019-01-02 2019-03-19 贾庆贤 A kind of centralization smoke exhaust ventilator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS484553U (en) * 1971-06-15 1973-01-19
JPS4931139A (en) * 1972-07-19 1974-03-20
JP2006077540A (en) * 2004-09-13 2006-03-23 Toyo Netsu Kogyo Kk Chimney effect reducing system
JP4733440B2 (en) * 2005-06-23 2011-07-27 株式会社竹中工務店 High-rise building

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS484553U (en) * 1971-06-15 1973-01-19
JPS4931139A (en) * 1972-07-19 1974-03-20
JP2006077540A (en) * 2004-09-13 2006-03-23 Toyo Netsu Kogyo Kk Chimney effect reducing system
JP4733440B2 (en) * 2005-06-23 2011-07-27 株式会社竹中工務店 High-rise building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489095A (en) * 2019-01-02 2019-03-19 贾庆贤 A kind of centralization smoke exhaust ventilator

Also Published As

Publication number Publication date
JP5026178B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP2010523860A (en) Multi-story building design
JP5026178B2 (en) Multi-layer building with gravity ventilation path and ventilation path structure of building
JP2015187331A (en) building ventilation structure
CN101575898A (en) Three-section stairs with functions of four-section stairs
CN206289926U (en) Pressure air blowing tubes welding structure when being adjacently positioned two smoke proof staircases in building
JP2004232999A (en) Ventilation system for airtight residence
CN101555724B (en) Method for improving high-rise building safe evacuation scissors staircase and structure thereof
Farea et al. Common configuration of light-well in high-rise residential buildings in Kuala Lumpur
CN206693674U (en) A kind of apratment building Core Walls Structure layout
CN206001653U (en) A kind of air handling system of City Building
JP2009007843A (en) Building
JP5684465B2 (en) Building ventilation structure
JP4921939B2 (en) Building with daylight storage structure
JP7358122B2 (en) Whole building air conditioning system
CN210395909U (en) Evacuation stair under view topography
CN101581154B (en) Design method of residential building with four households on one floor connected in longitudinal direction
CN218571157U (en) Building type cage poultry house
CN206267444U (en) A kind of built-in stair system suitable for box-type room
CN206360290U (en) Substitute the fume extractor of underground garage Ventilator Room
JP4091927B2 (en) Two-story building
CN106016567A (en) Air-conditioning system of civic building
JP5065867B2 (en) Building
JP6374255B2 (en) Ventilation system for data center
JP5133615B2 (en) building
KR20190017321A (en) A house which has expended view and freely designing for independent space

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees