JP2009023163A - Fiber-reinforced resin surface material - Google Patents

Fiber-reinforced resin surface material Download PDF

Info

Publication number
JP2009023163A
JP2009023163A JP2007187414A JP2007187414A JP2009023163A JP 2009023163 A JP2009023163 A JP 2009023163A JP 2007187414 A JP2007187414 A JP 2007187414A JP 2007187414 A JP2007187414 A JP 2007187414A JP 2009023163 A JP2009023163 A JP 2009023163A
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
sheet
cfrp
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007187414A
Other languages
Japanese (ja)
Other versions
JP5045285B2 (en
Inventor
Kaoru Inoue
薫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007187414A priority Critical patent/JP5045285B2/en
Publication of JP2009023163A publication Critical patent/JP2009023163A/en
Application granted granted Critical
Publication of JP5045285B2 publication Critical patent/JP5045285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacturing Of Multi-Layer Textile Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced resin surface material which can effectively inhibits the occurrence of burrs in drilling holes. <P>SOLUTION: The fiber-reinforced resin surface material 10A is composed at least of a first fiber bundle group in which a plurality of carbon fiber bundles comprising sheaved carbon fibers are laid in the same direction, presenting a flat surface and a second fiber bundle group in which a plurality of carbon fiber bundles comprising sheaved carbon fibers are laid in a direction different from the first fiber bundle, presenting a flat surface. At least the first and second fiber bundles are united in a laminated manner with a curable resin to form a carbon fiber-reinforced resin base material (CFRP sheet 1). A glass fiber-reinforced surface material (GFRP sheet 2) formed of a glass fiber cloth and a curable resin united together is adhered to the surface of the carbon fiber-reinforced resin base material. Preferably the GFRP sheet 2 is made of warp-knitted or weft-knitted glass fibers. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭素繊維にて強化された樹脂面材に関するものである。   The present invention relates to a resin face material reinforced with carbon fibers.

樹脂に強化用繊維材が混入されてなる繊維強化プラスチック(FRP)は、軽量かつ高強度であることから、自動車産業、建設産業、航空産業等、広い産業分野で使用されている。   Fiber reinforced plastic (FRP) in which a reinforcing fiber material is mixed in a resin is lightweight and has high strength, and is therefore used in a wide range of industries such as the automobile industry, construction industry, and aviation industry.

上記するFRPは、面状に配設された複数の繊維束をその配向方向を変化させて積層し、この姿勢で樹脂が含浸されることで面材を形成しており、例えば特許文献1に開示の繊維マットを従来技術として挙げることができる。   The above-mentioned FRP is formed by laminating a plurality of fiber bundles arranged in a planar shape while changing the orientation direction, and is impregnated with resin in this posture to form a face material. The disclosed fiber mat can be cited as a prior art.

ところで、上記FRPにおいて、強化繊維にカーボンファイバーを使用したものはCFRP(カーボンファイバー強化プラスチック)として一般に知られている。このCFRPからなるシート(面材)は多数のカーボンファイバーの束が同一配向姿勢でマトリックス樹脂にて一体にされており、これを複数用意するとともに各CFRPシートのファイバー配向を異なるように積層させ、ステッチングすることによって、いわゆる多軸基材が製造されている。   By the way, in the above FRP, those using carbon fibers as reinforcing fibers are generally known as CFRP (carbon fiber reinforced plastic). This CFRP sheet (face material) is a bundle of a large number of carbon fibers integrated in a matrix resin in the same orientation posture, and preparing a plurality of them and laminating the fiber orientations of each CFRP sheet differently, A so-called multiaxial substrate is produced by stitching.

この多軸基材の適宜箇所には図6で示すように、別部材との締結用の加工孔b(たとえばボルト孔)が機械加工されるが、表層のCFRPシートaは上記のごとく一方向に配向した繊維束からなるがゆえに機械加工時にドリルに繊維が引っ掛かり、結果としてバリcが生じ易いという課題があった。このバリは、精密なボルト締結にとって大きな障害であり、さらには、バリの生じた状態でボルト留めすることでガタが生じる等、締結部の強度低下に繋がるものである。また、この機械加工時にシート表層にいわゆる口開きが生じた場合には、製品として使用することはできず、したがって従来のCFRPからなる多軸基材においては最終的な孔開け加工によって製造歩留まりが低下するという課題も生じていた。   As shown in FIG. 6, a machining hole b (for example, a bolt hole) for fastening with another member is machined at an appropriate location of the multiaxial substrate, but the CFRP sheet a on the surface layer is unidirectional as described above. Therefore, there is a problem that the fiber is caught on the drill during machining, and as a result, burr c tends to occur. This burr is a big obstacle for precise bolt fastening, and further, the bolt is tightened in the state where the burr is generated, and thus the strength of the fastening portion is reduced. In addition, when a so-called opening occurs in the surface layer of the sheet at the time of machining, it cannot be used as a product. Therefore, in the conventional multiaxial substrate made of CFRP, the manufacturing yield is increased by the final drilling process. There has also been a problem of decline.

したがって、ドリル等による機械加工にて孔開け加工をおこなうに際し、バリの発生を効果的に抑制することのできる繊維強化樹脂面材の開発が切望されていた。   Accordingly, there has been a strong demand for the development of a fiber-reinforced resin face material that can effectively suppress the generation of burrs when drilling is performed by machining with a drill or the like.

特開2005−324473号公報JP 2005-324473 A

本発明は、上記する問題に鑑みてなされたものであり、孔開け加工の際のバリの発生を効果的に抑止できる繊維強化樹脂面材を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a fiber-reinforced resin face material that can effectively suppress the generation of burrs during drilling.

前記目的を達成すべく、本発明による繊維強化樹脂面材は、炭素繊維を束ねてなる炭素繊維束が同一配向を有した姿勢で複数並べられ、面状を呈する第一の繊維束群と、前記第一の繊維束群と異なる方向に配向する炭素繊維束が同一配向を有した姿勢で複数並べられ、面状を呈する第二の繊維束群と、を少なくとも具備し、少なくとも前記第一、第二の繊維束群が積層された姿勢で硬化樹脂にて一体に形成されることで炭素繊維強化樹脂基材を成し、前記炭素繊維強化樹脂基材の表面には、ガラス繊維のクロス材と硬化樹脂とが一体に形成されたガラス繊維強化樹脂表材が固着されていることを特徴とするものである。   In order to achieve the above object, the fiber reinforced resin face material according to the present invention includes a first fiber bundle group in which a plurality of carbon fiber bundles formed by bundling carbon fibers are arranged in a posture having the same orientation, and exhibit a planar shape, A plurality of carbon fiber bundles oriented in different directions from the first fiber bundle group are arranged in a posture having the same orientation, and at least a second fiber bundle group having a planar shape, at least the first, A carbon fiber reinforced resin base material is formed by integrally forming with a cured resin in a posture in which the second fiber bundle group is laminated, and a glass fiber cloth material is formed on the surface of the carbon fiber reinforced resin base material. And a glass fiber reinforced resin surface material integrally formed with a cured resin.

本発明の繊維強化樹脂面材は、炭素繊維束が同一配向を有した姿勢で複数並べられて面状(シート状)を呈する第一の繊維束群と、これと異なる配向の炭素繊維束がやはり複数並べられて面状を呈する第二の繊維束群とがポリエステル等の縫い糸にてステッチングされ、これらにマトリックス樹脂が含浸硬化して炭素繊維強化樹脂基材が形成され、この炭素繊維強化樹脂基材のたとえば両面にガラス繊維のクロス材と硬化樹脂とが一体に形成されたガラス繊維強化樹脂表材が固定された繊維強化樹脂面材である。なお、第三または第四の繊維束群等を有し、3層以上の積層体から炭素繊維強化樹脂基材が形成されてもよいことは勿論のことである。   The fiber-reinforced resin face material of the present invention includes a first fiber bundle group in which a plurality of carbon fiber bundles are arranged in a posture having the same orientation and exhibit a planar shape (sheet shape), and a carbon fiber bundle having a different orientation. A plurality of second fiber bundles that are arranged side by side are stitched together with a sewing thread such as polyester, and a matrix resin is impregnated and cured to form a carbon fiber reinforced resin base material. This carbon fiber reinforced For example, a glass fiber reinforced resin surface material in which a glass fiber cloth material and a cured resin are integrally formed on both surfaces of a resin base material is fixed. Of course, the carbon fiber reinforced resin base material may be formed from a laminate of three or more layers having the third or fourth fiber bundle group.

たとえば、炭素繊維強化樹脂基材を公知のCFRP(カーボンファイバー強化プラスチック)の多軸基材とし、ガラス繊維強化樹脂表材を公知のGFRP(ガラスファイバー強化プラスチック)とすることができる。ここで、繊維束の配向は、通常の平織りの0/90°配向であり、多軸基材では積層される各シートが±45°方向に積層される。   For example, the carbon fiber reinforced resin base material may be a known CFRP (carbon fiber reinforced plastic) multiaxial base material, and the glass fiber reinforced resin surface material may be a known GFRP (glass fiber reinforced plastic). Here, the orientation of the fiber bundle is a normal plain weave 0/90 ° orientation, and in a multiaxial base material, the laminated sheets are laminated in the ± 45 ° direction.

従来は、CFRPシート、GFRPシートがそれぞれ単独で使用されるのが一般的であったが、本発明では、たとえば複数のCFRPシートからなる多軸基材の表面にGFRPシートを固着させることで、上記する従来の課題、すなわち、機械加工による孔開けの際のバリの発生を効果的に抑止することを実現するものである。   Conventionally, the CFRP sheet and the GFRP sheet were generally used alone, but in the present invention, for example, by fixing the GFRP sheet to the surface of the multiaxial substrate composed of a plurality of CFRP sheets, It is intended to effectively suppress the above-described conventional problem, that is, the generation of burrs when drilling by machining.

これにより、従来の多軸基材の場合のバリの除去工程を無くすことができ、また、バリを許容しながら他の部材との間でボルト留めした際の締結部の強度低下といった問題も完全に解消することができる。   This eliminates the process of removing burrs in the case of conventional multi-axis substrates, and also completely eliminates the problem of reduced strength of the fastening part when bolted with other members while allowing burrs. Can be resolved.

さらに、本発明による繊維強化樹脂面材の好ましい実施の形態において、前記ガラス繊維のクロス材は、ガラス繊維を経編みした構造または緯編みした構造のいずれか一方の構造を有していることを特徴とするものである。   Furthermore, in a preferred embodiment of the fiber-reinforced resin face material according to the present invention, the glass fiber cloth material has either a warp knitted structure or a weft knitted structure. It is a feature.

たとえばCFRPの多軸基材表面にGFRPシートが貼付された本発明の繊維強化樹脂面材とすることで、孔開け加工時のバリの発生を抑止できることは上述した。ここで、CFRPの多軸基材表面にGFRPシートを貼付するに際し、多軸基材を構成するCFRPの繊維配向が±45°方向の場合、ガラス繊維が通常の平織りの0/90°配向を呈するGFRPシートをこの方向で貼付しようとすると、CFRPが本来有する繊維配向(±45°)への伸び易さが配向の異なるGFRPシートによって拘束され、繊維強化樹脂面材に要求される所望の伸びを発揮できなくなってしまう。   As described above, for example, the occurrence of burrs during drilling can be suppressed by using the fiber reinforced resin face material of the present invention in which a GFRP sheet is attached to the surface of a multiaxial base material of CFRP. Here, when a GFRP sheet is stuck on the surface of a CFRP multiaxial substrate, when the fiber orientation of the CFRP constituting the multiaxial substrate is ± 45 °, the glass fiber has a normal plain weave 0/90 ° orientation. When attempting to apply the GFRP sheet to be presented in this direction, the ease of elongation to the fiber orientation (± 45 °) inherent to CFRP is constrained by the GFRP sheets having different orientations, and the desired elongation required for the fiber-reinforced resin face material Will not be able to demonstrate.

そこで、GFRPシートもCFRPの多軸基材と同様に±45°方向として当該多軸基材に貼付する方法があるが、この場合には、複数のCFRPの多軸基材を隣り合わせて併設し、この上に所定形状にカットしたGFRPシートをガラス繊維配向を±45°方向として(CFRPの繊維配向と同方向)として貼付する必要が生じ、作業工程が大幅に増大してしまう。なお、CFRPの多軸基材の両面にGFRPシートを貼付し、次いで、所望のカットパターンでカットして繊維強化樹脂面材片を作り、これを所望形状に貼り合わせることで車両ボディー等を製造することになる。   Therefore, there is a method of attaching the GFRP sheet to the multiaxial substrate in the direction of ± 45 ° as in the case of the CFRP multiaxial substrate. In this case, a plurality of CFRP multiaxial substrates are provided side by side. Further, it is necessary to apply a GFRP sheet cut into a predetermined shape on this with the glass fiber orientation set to be ± 45 ° (in the same direction as the CFRP fiber orientation), and the work process is greatly increased. A GFRP sheet is pasted on both sides of a CFRP multiaxial substrate, then cut with a desired cut pattern to create a fiber reinforced resin face piece, and this is bonded to a desired shape to produce a vehicle body and the like. Will do.

上記する作業工程増という課題を解消すべく、本実施の形態では、ガラス繊維が経編みされた構造、または緯編みされた構造のいずれか一方の構造を有するものを使用することで、これらの編み態様のGFRPシートは±45°方向、0,90°方向以外の多様な方向へ同様な伸びを呈することができるため、その方向性を考慮することなくCFRPの多軸基材両面に貼付することが可能となる。すなわち、GFRPシートの繊維配向がCFRPの繊維配向と異なるいずれの配向であっても、CFRP多軸基材の所期の伸びが阻害されることがない。また、方向性を考慮することなく貼付することが可能となるため、作業効率は格段に向上することになる。   In this embodiment, in order to solve the problem of increasing the number of work steps described above, by using a glass fiber having a warp knitted structure or a weft knitted structure, these are used. Since the GFRP sheet in the knitted form can exhibit the same elongation in various directions other than the ± 45 ° direction and the 0,90 ° direction, the GFRP sheet is stuck on both sides of the CFRP multiaxial substrate without considering the directionality. It becomes possible. That is, even if the fiber orientation of the GFRP sheet is different from the fiber orientation of CFRP, the intended elongation of the CFRP multiaxial substrate is not hindered. Moreover, since it becomes possible to affix without considering directionality, work efficiency will be improved significantly.

上記するように、本発明による繊維強化樹脂面材によれば、機械加工時のバリの発生を効果的に抑止でき、したがって製造歩留まりの低下もなく、さらには、CFRP多軸基材に要求される所期の伸びを確保しながら、その製造効率も高めることができる。   As described above, according to the fiber-reinforced resin face material of the present invention, the generation of burrs during machining can be effectively suppressed, and thus the production yield is not reduced, and further, it is required for a CFRP multiaxial substrate. The production efficiency can be increased while securing the expected growth.

以上の説明から理解できるように、本発明の繊維強化樹脂面材によれば、孔開け機械加工時のバリの発生が完全に抑止でき、もって製造歩留まりを向上でき、多軸基材の有する所期の伸び性を満足しながらその製造効率を高めることができる。   As can be understood from the above description, according to the fiber-reinforced resin face material of the present invention, the occurrence of burrs during drilling machining can be completely suppressed, and thus the production yield can be improved, and the multiaxial substrate has The production efficiency can be increased while satisfying the elongation of the period.

以下、図面を参照して本発明の実施の形態を説明する。図1a,b、図2a,bの順に、本発明の繊維強化樹脂面材の一実施の形態の製作工程の概要を説明した図である。図3は繊維強化樹脂面材に加工孔が加工された状態を説明した図である。図4は図4a〜図4cの順に、本発明の繊維強化樹脂面材の他の実施の形態の製作工程の概要を説明した図である。図5aはガラス繊維が経編みされた形態の拡大図であり、図5bはガラス繊維が緯編みされた形態の拡大図である。   Embodiments of the present invention will be described below with reference to the drawings. It is the figure explaining the outline | summary of the manufacturing process of one Embodiment of the fiber reinforced resin face material of this invention in order of FIG. 1a, b and FIG. 2a, b. FIG. 3 is a diagram illustrating a state in which the processing holes are processed in the fiber reinforced resin face material. FIG. 4 is a diagram for explaining the outline of the manufacturing process of another embodiment of the fiber-reinforced resin face material of the present invention in the order of FIGS. 4a to 4c. FIG. 5a is an enlarged view of a form in which glass fibers are warp knitted, and FIG. 5b is an enlarged view of a form in which glass fibers are weft knitted.

図1,2に基づいて本発明の繊維強化樹脂面材の一実施の形態の製作工程を説明する。
まず、図1aのごとく、0/90°に平織りされた繊維束群が並べられた面材2枚を±45°方向に積層してステッチングし、これらの繊維内に熱硬化性のマトリックス樹脂が含浸硬化してなるCFRPシート1を複数用意し、これらを隣り合わせて並べる。
The manufacturing process of one embodiment of the fiber-reinforced resin face material of the present invention will be described based on FIGS.
First, as shown in FIG. 1a, two face materials on which fiber bundle groups plainly woven at 0/90 ° are arranged and stitched in a direction of ± 45 °, and a thermosetting matrix resin is put in these fibers. A plurality of CFRP sheets 1 formed by impregnating and curing are prepared and arranged side by side.

次いで、図1bのごとく、上記CFRPシート1の繊維配向方向と同方向(±45°方向)のGFRPシート2を用意し、これを図2aで示すように隣り合わせて並べられたCFRPシート1,…の両面に貼付する。なお、図示例では一方面にGFRPシート2が貼付されているが、この裏面にも同様にGFRPシート2が貼付されている。   Next, as shown in FIG. 1b, a GFRP sheet 2 in the same direction (± 45 ° direction) as the fiber orientation direction of the CFRP sheet 1 is prepared, and the CFRP sheets 1,... Arranged side by side as shown in FIG. Affix to both sides. In the illustrated example, the GFRP sheet 2 is affixed to one side, but the GFRP sheet 2 is similarly affixed to the back side.

図2aの段階で、CFRPシート1を構成する繊維配向とGFRPシート2を構成する繊維配向はともに同一配向となっており、これにより、CFRPシート1の所期の伸び性を確保することができる。   At the stage of FIG. 2a, the fiber orientation constituting the CFRP sheet 1 and the fiber orientation constituting the GFRP sheet 2 are both the same orientation, whereby the desired elongation of the CFRP sheet 1 can be ensured. .

これをGFRPシート2の形状に沿って切り出し、図2bで示すような繊維強化樹脂面材10が製作される。なお、実際には、図2bのように切り出すことなく、図2aに次いで、CFRPシート1にGFRPシート2が貼付された範囲は繊維強化樹脂面材10を成している。したがってこの範囲内で所望のカットパターンがカットされ、適宜形状のカットパターンを貼り合わせていくことで、最終製造品であるたとえば車両のボディーを形成することになる。   This is cut out along the shape of the GFRP sheet 2 to produce a fiber-reinforced resin face material 10 as shown in FIG. 2b. Actually, the area where the GFRP sheet 2 is pasted on the CFRP sheet 1 forms the fiber reinforced resin face material 10 next to FIG. 2a without cutting out as shown in FIG. 2b. Therefore, a desired cut pattern is cut within this range, and a cut pattern having an appropriate shape is bonded to form a final product, for example, a vehicle body.

図3は、製作された繊維強化樹脂面材10にドリルによる機械加工にて加工孔b(ボルト孔)が加工された状態を示している。図示するように、GFRPシート2がCFRPシート1の表層に形成されていることで、ドリルの押し込みや引抜きの際に当該ドリルがCFRPの繊維にかんでこれを引張ることが抑止され、その結果、加工孔bにはバリが発生しない。   FIG. 3 shows a state in which the machined hole b (bolt hole) is machined on the manufactured fiber-reinforced resin face material 10 by machining with a drill. As shown in the figure, when the GFRP sheet 2 is formed on the surface layer of the CFRP sheet 1, it is possible to prevent the drill from pulling the CFRP fiber with respect to the CFRP fiber when the drill is pushed in or pulled out. No burr is generated in the processed hole b.

次に、図4に基づいて本発明の繊維強化樹脂面材の他の実施の形態の製作工程を説明する。   Next, a manufacturing process of another embodiment of the fiber-reinforced resin face material of the present invention will be described based on FIG.

まず、図4aのごとく、0/90°に平織りされた繊維束群が並べられた面材2枚を±45°方向に積層し、これらの繊維内をマトリックス樹脂が含浸硬化してなるCFRPシート1を用意する。   First, as shown in FIG. 4a, a CFRP sheet formed by laminating two face materials in which fiber bundle groups plainly woven at 0/90 ° are arranged in a direction of ± 45 ° and impregnating and hardening these matrix fibers with a matrix resin. Prepare 1

次いで、図1bの平織り態様とは異なる編み態様のGFRPシート2Aを用意する(図4b参照)。   Next, a GFRP sheet 2A having a knitting form different from the plain weave form shown in FIG. 1b is prepared (see FIG. 4b).

ここで、このGFRPシート2Aは、図5aで示すようなガラス繊維を経編みしてなるもの、もしくは図5bで示すようなガラス繊維を緯編みしてなるもののいずれか一方からなる。   Here, the GFRP sheet 2A is composed of either a warp knitted glass fiber as shown in FIG. 5a or a weft knitted glass fiber as shown in FIG. 5b.

これら経編み態様もしくは緯編み態様のGFRPシート2Aは、繊維が相互に編みこまれたループ領域がシートの可撓性を齎す作用を呈し、したがって、いずれの編み態様のGFRPシートを使用した場合でも、図5a,bの矢印で示すように360°いずれの方向へも伸びることができる。   The GFRP sheet 2A in the warp knitting mode or the weft knitting mode has an effect that the loop region in which the fibers are knitted to each other increases the flexibility of the sheet. Therefore, no matter which GFRP sheet is used, As shown by the arrows in FIGS. 5a and 5b, the film can extend in any direction of 360 °.

このGFRPシート2AをCFRPシート1の両面に貼付することにより、図4cで示すような繊維強化樹脂面材10Aが製作される。   By affixing the GFRP sheet 2A to both surfaces of the CFRP sheet 1, a fiber reinforced resin face material 10A as shown in FIG.

この繊維強化樹脂面材10Aによれば、多様な方向への伸び性を有するGFRPシート2Aを使用していることで、CFRPシート1への貼付に際し、当該CFRPシート1の繊維配向を勘案する(この伸び性を阻害しないように貼付する)必要がなく、よって製造効率は繊維強化樹脂面材10の製作に比して格段に向上する。   According to the fiber-reinforced resin face material 10A, the fiber orientation of the CFRP sheet 1 is taken into account when being applied to the CFRP sheet 1 by using the GFRP sheet 2A having extensibility in various directions ( Therefore, the production efficiency is significantly improved compared to the production of the fiber-reinforced resin face material 10.

なお、CFRPシートとGFRPシートのマトリックス樹脂は、双方の接着性の観点から同一素材の熱硬化性樹脂であるのが好ましく、この熱硬化性樹脂としては、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂等を使用することができる。   Note that the matrix resin of the CFRP sheet and the GFRP sheet is preferably a thermosetting resin of the same material from the viewpoint of adhesiveness, and examples of the thermosetting resin include epoxy resins, vinyl ester resins, and unsaturated polyesters. Resin or the like can be used.

[CFRPシートに貼付されるGFRPシートの目付け量を変化させた場合の、腑形性、機械加工性、積層時間に関する実験とその結果]
本発明者等は、±45°配向の多軸CFRP材(マトリックス樹脂はエポキシ樹脂、目付け量330gsm)と、平織りのガラスクロスおよび経編みGFRP(マトリックス樹脂はエポキシ樹脂)の目付け量を多様に変化させて、その際の腑形性、機械加工性、積層時間の相違を検証した。その結果を以下の表1に示す。なお、表中、○は良好、もしくは時間が許容範囲内(短い)であることを示しており、×は悪い、もしくは時間が許容範囲を満足しない(長い)ことを示している。
[Experiments and results on saddle formability, machinability, and lamination time when the weight of the GFRP sheet affixed to the CFRP sheet is changed]
The inventors varied the basis weight of multi-axis CFRP materials with ± 45 ° orientation (matrix resin is epoxy resin, basis weight 330 gsm), plain weave glass cloth and warp GFRP (matrix resin is epoxy resin) In this case, the differences in shape, machinability, and lamination time were verified. The results are shown in Table 1 below. In the table, ◯ indicates good or the time is within the allowable range (short), and x indicates bad or the time does not satisfy the allowable range (long).

Figure 2009023163
Figure 2009023163

表1より、経編みGFRPは20gsm以上であれば自身の腑形性、機械加工性、積層時間のすべてにおいて良好であるが、繊維強化樹脂面材の軽量化の観点から、200gsm以下であることが好ましい。それに対し、GFRPが平織りクロスの場合は、多軸CFRP材と繊維配向が相違する0/90°配向の場合は腑形性が悪く、その繊維配向が±45°の場合には、既述のごとく多軸CFRP材との積層時間が長時間となり、製造効率が悪化することになる。   From Table 1, warp knitting GFRP is good in all of its own formability, machinability and lamination time if it is 20 gsm or more, but it is 200 gsm or less from the viewpoint of weight reduction of the fiber-reinforced resin face material. Is preferred. On the other hand, when the GFRP is a plain weave cloth, when the fiber orientation is 0/90 °, which is different from the multiaxial CFRP material, the saddle shape is poor, and when the fiber orientation is ± 45 °, As described above, the lamination time with the multiaxial CFRP material becomes long, and the production efficiency is deteriorated.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

(a)、(b)の順に、本発明の繊維強化樹脂面材の一実施の形態の製作工程の概要を説明した図である。It is the figure explaining the outline | summary of the manufacturing process of one Embodiment of the fiber reinforced resin face material of this invention in order of (a) and (b). 図1に続き、(a)、(b)の順に、本発明の繊維強化樹脂面材の一実施の形態の製作工程の概要を説明した図である。It is the figure explaining the outline | summary of the manufacturing process of one Embodiment of the fiber reinforced resin face material of this invention in order of (a) and (b) following FIG. 繊維強化樹脂面材に加工孔が加工された状態を説明した図である。It is the figure explaining the state by which the processing hole was processed in the fiber reinforced resin face material. (a)〜(c)の順に、本発明の繊維強化樹脂面材の他の実施の形態の製作工程の概要を説明した図である。It is the figure explaining the outline | summary of the manufacturing process of other embodiment of the fiber reinforced resin face material of this invention in order of (a)-(c). (a)はガラス繊維が経編みされた形態の拡大図であり、(b)はガラス繊維が緯編みされた形態の拡大図である。(A) is an enlarged view of the form in which the glass fiber was warp knitted, (b) is an enlarged view of the form in which the glass fiber was weft knitted. 従来のCFRP多軸基材への孔開け機械加工の際にバリが生じている状態を説明した図である。It is the figure explaining the state which the burr | flash has arisen in the case of the drilling machining to the conventional CFRP multiaxial base material.

符号の説明Explanation of symbols

1…CFRPシート(炭素繊維強化樹脂基材)、2,2A…GFRPシート(ガラス繊維強化樹脂表材)、10,10A…繊維強化樹脂面材、b…加工孔   DESCRIPTION OF SYMBOLS 1 ... CFRP sheet (carbon fiber reinforced resin base material), 2, 2A ... GFRP sheet (glass fiber reinforced resin surface material) 10, 10A ... Fiber reinforced resin face material, b ... Processing hole

Claims (3)

炭素繊維を束ねてなる炭素繊維束が同一配向を有した姿勢で複数並べられて面状を呈する第一の繊維束群と、
前記第一の繊維束群と異なる方向に配向する炭素繊維束が同一配向を有した姿勢で複数並べられて面状を呈する第二の繊維束群と、を少なくとも具備し、
少なくとも前記第一、第二の繊維束群が積層された姿勢で硬化樹脂にて一体に形成されることで炭素繊維強化樹脂基材を成し、
前記炭素繊維強化樹脂基材の表面には、ガラス繊維のクロス材と硬化樹脂とが一体に形成されたガラス繊維強化樹脂表材が固着されていることを特徴とする、繊維強化樹脂面材。
A first fiber bundle group in which a plurality of carbon fiber bundles formed by bundling carbon fibers are arranged in a posture having the same orientation and have a planar shape;
A plurality of carbon fiber bundles oriented in different directions from the first fiber bundle group, and a plurality of second fiber bundle groups arranged in a posture having the same orientation and exhibiting a planar shape,
A carbon fiber reinforced resin base material is formed by being integrally formed with a cured resin in a posture in which at least the first and second fiber bundle groups are laminated,
A fiber-reinforced resin face material in which a glass fiber-reinforced resin surface material in which a glass fiber cloth material and a cured resin are integrally formed is fixed to a surface of the carbon fiber-reinforced resin base material.
前記ガラス繊維のクロス材は、ガラス繊維を経編みした構造または緯編みした構造のいずれか一方の構造を有していることを特徴とする請求項1に記載の繊維強化樹脂面材。   2. The fiber-reinforced resin face material according to claim 1, wherein the glass fiber cloth material has either a warp knitted structure or a weft knitted structure of glass fibers. 前記炭素繊維強化樹脂基材がCFRP(カーボンファイバー強化プラスチック)からなり、前記ガラス繊維強化樹脂表材がGFRP(ガラスファイバー強化プラスチック)からなることを特徴とする請求項1または2に記載の繊維強化樹脂面材。   The fiber reinforced resin according to claim 1 or 2, wherein the carbon fiber reinforced resin base material is made of CFRP (carbon fiber reinforced plastic), and the glass fiber reinforced resin surface material is made of GFRP (glass fiber reinforced plastic). Resin face material.
JP2007187414A 2007-07-18 2007-07-18 Fabrication method of fiber reinforced resin face material Expired - Fee Related JP5045285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187414A JP5045285B2 (en) 2007-07-18 2007-07-18 Fabrication method of fiber reinforced resin face material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187414A JP5045285B2 (en) 2007-07-18 2007-07-18 Fabrication method of fiber reinforced resin face material

Publications (2)

Publication Number Publication Date
JP2009023163A true JP2009023163A (en) 2009-02-05
JP5045285B2 JP5045285B2 (en) 2012-10-10

Family

ID=40395472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187414A Expired - Fee Related JP5045285B2 (en) 2007-07-18 2007-07-18 Fabrication method of fiber reinforced resin face material

Country Status (1)

Country Link
JP (1) JP5045285B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540608A (en) * 2010-08-13 2013-11-07 ヘクセル コーポレイション Machinable composite materials
JP2013244791A (en) * 2012-05-24 2013-12-09 Toyota Motor Corp Impact absorbing device
WO2018163411A1 (en) * 2017-03-10 2018-09-13 日産自動車株式会社 Composite material member, method for producing composite material member, and molding die for same
WO2019117290A1 (en) * 2017-12-15 2019-06-20 三菱日立パワーシステムズ株式会社 Rotary machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222273A (en) * 1990-12-17 1992-08-12 Maeda Kousen Kk Method for resin finish of woven or knit fabric
JPH0664076A (en) * 1992-08-20 1994-03-08 Tonen Corp Composite plate material and its manufacture
JPH1058571A (en) * 1996-05-16 1998-03-03 Toray Ind Inc Fiber-reinforced plastic reinforcing structure and repairing and reinforcing method for structure
JPH11320729A (en) * 1998-05-19 1999-11-24 Nitto Boseki Co Ltd Unidirectional reinforcing fiber composite base material
JP2005187523A (en) * 2003-12-24 2005-07-14 Nippon Oil Corp Heat-resistant frp member for exhaust apparatus and frp exhaust apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222273A (en) * 1990-12-17 1992-08-12 Maeda Kousen Kk Method for resin finish of woven or knit fabric
JPH0664076A (en) * 1992-08-20 1994-03-08 Tonen Corp Composite plate material and its manufacture
JPH1058571A (en) * 1996-05-16 1998-03-03 Toray Ind Inc Fiber-reinforced plastic reinforcing structure and repairing and reinforcing method for structure
JPH11320729A (en) * 1998-05-19 1999-11-24 Nitto Boseki Co Ltd Unidirectional reinforcing fiber composite base material
JP2005187523A (en) * 2003-12-24 2005-07-14 Nippon Oil Corp Heat-resistant frp member for exhaust apparatus and frp exhaust apparatus using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540608A (en) * 2010-08-13 2013-11-07 ヘクセル コーポレイション Machinable composite materials
JP2013244791A (en) * 2012-05-24 2013-12-09 Toyota Motor Corp Impact absorbing device
WO2018163411A1 (en) * 2017-03-10 2018-09-13 日産自動車株式会社 Composite material member, method for producing composite material member, and molding die for same
JPWO2018163411A1 (en) * 2017-03-10 2020-02-27 日産自動車株式会社 Composite material member, method of manufacturing composite material member, and mold for molding the same
US10864699B2 (en) 2017-03-10 2020-12-15 Nissan Motor Co., Ltd. Composite material member, method for producing composite material member, and molding die for same
WO2019117290A1 (en) * 2017-12-15 2019-06-20 三菱日立パワーシステムズ株式会社 Rotary machine
JP2019108822A (en) * 2017-12-15 2019-07-04 三菱日立パワーシステムズ株式会社 Rotary machine
KR20200072537A (en) * 2017-12-15 2020-06-22 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Spinning machine
CN111386401A (en) * 2017-12-15 2020-07-07 三菱日立电力系统株式会社 Rotary machine
KR102477730B1 (en) * 2017-12-15 2022-12-14 미츠비시 파워 가부시키가이샤 spinning machine

Also Published As

Publication number Publication date
JP5045285B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
US9592650B2 (en) Composite laminate including beta-reinforcing fibers
JP6786256B2 (en) Systems and methods for forming composites
US7964520B2 (en) Method for weaving substrates with integral sidewalls
EP2669077B1 (en) Joint structure for fiber reinforced resin and metal
KR101998538B1 (en) Woven preform, composite, and method of making thereof
US10493657B2 (en) Sheet-like reinforcing fiber base material, preform and fiber-reinforced resin molded product
JP5045285B2 (en) Fabrication method of fiber reinforced resin face material
US20170100884A1 (en) Fiber composite component assembly having at least two plate-shaped composite structures and processes for preparing same
JP2008514458A (en) Thin ply laminate
CN104448877B (en) Filametntary compound fabric including dispersion
US9682519B2 (en) Integral composite bushing system and method
EP2922696B1 (en) Multi-axial fabrics, polymer-fiber laminates, and bodies incorporating same for connecting applications
JP5966969B2 (en) Manufacturing method of prepreg
JP2012096475A (en) Reinforcement fiber base material, preform of reinforcement fiber composite material, and reinforcement fiber composite material
JP4813803B2 (en) Fiber reinforced sheet
JP6196658B2 (en) Sandwich panel, unidirectional prepreg manufacturing method, and sandwich panel manufacturing method
JP2013059949A (en) Composite material structural body, and method for producing the same
JP2007259838A (en) Support for culturing marine product
KR100362739B1 (en) Light weight composite wrist block of double arm robots for loading and unloading LCD panels and double arm robots with the wrist block
JP2022049689A (en) Composite member
JP5550827B2 (en) FRP drawn structure member and manufacturing method thereof
JP2021059043A (en) Core material and composite member
JP2021070180A (en) Mesh sheet and manufacturing method thereof
KR101951629B1 (en) Narrow-width prepreg excellent in abrasion resistance, prepreg fabric using the same, and manufacturing method thereof
JP2005349826A (en) Fiber reinforced composite material member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5045285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees