JP2009022928A - Nitrogen oxide decomposition catalyst, nitrogen oxide decomposition apparatus provided with the same, and nitrogen oxide decomposition method using the same - Google Patents

Nitrogen oxide decomposition catalyst, nitrogen oxide decomposition apparatus provided with the same, and nitrogen oxide decomposition method using the same Download PDF

Info

Publication number
JP2009022928A
JP2009022928A JP2007191084A JP2007191084A JP2009022928A JP 2009022928 A JP2009022928 A JP 2009022928A JP 2007191084 A JP2007191084 A JP 2007191084A JP 2007191084 A JP2007191084 A JP 2007191084A JP 2009022928 A JP2009022928 A JP 2009022928A
Authority
JP
Japan
Prior art keywords
nitrogen oxide
catalyst
hydrogen
catalyst component
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007191084A
Other languages
Japanese (ja)
Other versions
JP4535095B2 (en
Inventor
Yoshihisa Tanaka
義久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2007191084A priority Critical patent/JP4535095B2/en
Publication of JP2009022928A publication Critical patent/JP2009022928A/en
Application granted granted Critical
Publication of JP4535095B2 publication Critical patent/JP4535095B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decomposition catalyst which can decompose nitrogen oxide simply at a low cost, a small-sized nitrogen oxide decomposition apparatus provided with the same, and a nitrogen oxide decomposition method using the same. <P>SOLUTION: The nitrogen oxide catalyst comprises a hydrogen oxidation catalyst component and a nitrogen oxide reduction catalyst component both of which are joined with each other to allow electrons to move between the catalyst components, and further are joined with each other with a proton-conductive solid electrolyte allowing protons to move between the catalyst components independently from the above joint, and decomposes nitrogen oxide in the presence of hydrogen. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、人体に有害で、光化学スモッグや酸性雨の原因とされる窒素酸化物(「NOx」ともいう)の分解触媒、それを備える窒素酸化物の分解装置およびそれを用いる窒素酸化物の分解方法に関する。本発明は、ボイラー、ガソリンエンジン、ディーゼルエンジンなどの内燃機関、発電用プラント、工業用プラントなどから大気中に放出される排気ガス中の窒素酸化物の浄化に好適に用いることができる。   The present invention relates to a catalyst for decomposing nitrogen oxide (also referred to as “NOx”), which is harmful to the human body and causes photochemical smog and acid rain, a nitrogen oxide decomposing apparatus including the same, and a nitrogen oxide using the same It relates to a decomposition method. INDUSTRIAL APPLICABILITY The present invention can be suitably used for purifying nitrogen oxides in exhaust gas discharged into the atmosphere from internal combustion engines such as boilers, gasoline engines, and diesel engines, power generation plants, and industrial plants.

近年、地球環境保護と大気汚染防止の観点から、排気ガス中の窒素酸化物が問題とされ、その解決策が検討されている。
しかしながら、排気ガス中には過剰の酸素(O2)が含まれるため、このような酸素過剰雰囲気下で排気ガス中の窒素酸化物を窒素(N2)にまで還元することは極めて難しい。
In recent years, nitrogen oxides in exhaust gas have been a problem from the viewpoint of protecting the global environment and preventing air pollution, and solutions have been studied.
However, since the exhaust gas contains excess oxygen (O 2 ), it is extremely difficult to reduce the nitrogen oxides in the exhaust gas to nitrogen (N 2 ) under such an oxygen-excess atmosphere.

そこで、排気ガス中の窒素酸化物を除去する脱硝技術として、触媒法、湿式吸収法、電子線照射法、プラズマ法などが提案されている。
湿式吸収法、電子線照射法、プラズマ法は、大量のエネルギー消費や吸収液の後処理を伴うことから、コスト的に問題がある。
一方、触媒法は、過剰に存在する酸素と反応せず、エネルギー消費が比較的少ない安価な方式として注目され、その研究が年々活発になっている。触媒法では、アンモニア(NH3)、炭化水素(HC)、水素(H2)など還元剤の存在下で窒素酸化物を選択的に分解する。
Therefore, a catalyst method, a wet absorption method, an electron beam irradiation method, a plasma method, and the like have been proposed as a denitration technique for removing nitrogen oxides in exhaust gas.
The wet absorption method, the electron beam irradiation method, and the plasma method involve a large amount of energy consumption and post-treatment of the absorbing solution, and thus have a problem in cost.
On the other hand, the catalytic method is attracting attention as an inexpensive method that does not react with excess oxygen and consumes relatively little energy, and its research has been active year by year. In the catalytic method, nitrogen oxides are selectively decomposed in the presence of a reducing agent such as ammonia (NH 3 ), hydrocarbon (HC), or hydrogen (H 2 ).

還元剤としてアンモニアを用いる触媒法では、触媒として、例えばV25−TiO2を用いて80%以上の高い窒素酸化物の除去率が得られている。このため工業用プラントなどの大型の固定排気ガス発生源における窒素酸化物の浄化に最も多く適用されている。しかし、毒性を有するアンモニアの取扱いが容易ではなく、設備の大型化や高い維持コストが必要であることから、小型の固定排気ガス発生源に適用することは極めて難しい。なお、この方法における作動温度(触媒温度)は300〜400℃である。 In the catalyst method using ammonia as the reducing agent, a high nitrogen oxide removal rate of 80% or more is obtained using, for example, V 2 O 5 —TiO 2 as the catalyst. For this reason, it is most frequently applied to the purification of nitrogen oxides in large fixed exhaust gas generation sources such as industrial plants. However, it is not easy to handle toxic ammonia, and it is extremely difficult to apply it to a small fixed exhaust gas generation source because the equipment is large in size and requires a high maintenance cost. In addition, the operating temperature (catalyst temperature) in this method is 300-400 degreeC.

還元剤として炭化水素を用いる触媒法では、触媒として、例えばCu−ゼオライトを用いて、酸素共存下、プロパン(C38)などの炭化水素により窒素酸化物を分解するが、その除去率は低く30%程度である。なお、この方法における作動温度は300〜400℃である。 In the catalytic method using a hydrocarbon as a reducing agent, for example, Cu-zeolite is used as a catalyst, and nitrogen oxide is decomposed by hydrocarbons such as propane (C 3 H 8 ) in the presence of oxygen. As low as 30%. In addition, the operating temperature in this method is 300-400 degreeC.

還元剤として水素を用いる触媒法では、触媒として、例えばPtを担持したアルミナ、シリカ、ゼオライトなどを用いて、窒素酸化物を分解する(例えば、特開平5-168856号公報(特許文献1)参照)。しかしながら、この触媒法は、酸素共存下における窒素酸化物の分解の反応速度が遅く、高価な貴金属触媒を大量に必要とし、実用上の性能を有しているとは言い難く、改善の必要がある。なお、この方法における作動温度は150〜300℃である。   In the catalytic method using hydrogen as a reducing agent, nitrogen oxides are decomposed by using, for example, alumina, silica, zeolite or the like carrying Pt as a catalyst (see, for example, JP-A-5-168856 (Patent Document 1)). ). However, this catalytic method has a slow reaction rate for the decomposition of nitrogen oxides in the presence of oxygen, requires a large amount of expensive noble metal catalyst, and cannot be said to have practical performance, and needs to be improved. is there. In addition, the operating temperature in this method is 150-300 degreeC.

また、固体電解質を用いて窒素酸化物を電気化学的に分解する方法も提案されている。例えば、ジルコニア系の酸素イオン導電性の固体電解質(特開2003−265926号公報(特許文献2)参照)およびプロトン導電性の固体電解質(特開平7-136455号公報(特許文献3)参照)を用いた事例がある。
しかしながら、これらの電気化学的な方法には、固体電解質の両面に設けられたアノードとカソードの両電極への通電用に外部電源が必要である。特に前者の場合には、共存酸素の除去が優先して起こるので、窒素酸化物の分解に大量のエネルギーが必要となる。
A method of electrochemically decomposing nitrogen oxide using a solid electrolyte has also been proposed. For example, a zirconia-based oxygen ion conductive solid electrolyte (see Japanese Patent Application Laid-Open No. 2003-265926 (Patent Document 2)) and a proton conductive solid electrolyte (refer to Japanese Patent Application Laid-Open No. 7-136455 (Patent Document 3)). There is an example used.
However, these electrochemical methods require an external power source to energize both the anode and cathode electrodes provided on both sides of the solid electrolyte. In particular, in the former case, removal of the coexisting oxygen occurs preferentially, so that a large amount of energy is required for decomposition of the nitrogen oxides.

さらに、電気化学的な方法では、酸素イオン導電性およびプロトン導電性を発現する固体電解質の作動温度がそれぞれ600〜1000℃および300〜1000℃である。したがって、この温度範囲より低温域にあるディーゼルエンジンなどの排気ガス以外については、外部ヒータなどによる加熱、すなわち大量のエネルギー投入が必要となり、エネルギー効率が低くなる。   Furthermore, in the electrochemical method, the operating temperatures of the solid electrolyte that exhibits oxygen ion conductivity and proton conductivity are 600 to 1000 ° C. and 300 to 1000 ° C., respectively. Therefore, the exhaust gas other than the exhaust gas such as a diesel engine in a lower temperature range than this temperature range needs to be heated by an external heater or the like, that is, a large amount of energy is input, resulting in low energy efficiency.

また、電気化学的な方法では、電極/固体電解質/電極の3層構造体における固体電解質の一面にのみ排気ガスを流通させるので、単位体積当りの窒素酸化物の分解効率が低く、大容量の分解リアクタが必要となり、3層構造体の形成における各層の厚み制御が困難で複雑なリアクタの製造工程が必要となり、その実用化は難しい状況にある。   Further, in the electrochemical method, exhaust gas is circulated only on one surface of the solid electrolyte in the electrode / solid electrolyte / electrode three-layer structure, so that the decomposition efficiency of nitrogen oxide per unit volume is low, and the large capacity A decomposition reactor is required, and it is difficult to control the thickness of each layer in the formation of a three-layer structure, which requires a complicated manufacturing process of the reactor, and its practical use is difficult.

上記先行技術の窒素酸化物の分解方法における作動温度は、ディーゼルエンジン搭載の自動車の全運転領域における排気ガス温度200〜400℃、その排気マフラー入口温度150〜200℃に対して高く、全運転領域の窒素酸化物を分解できていない実状がある。そこで、より低温で窒素酸化物を分解し得る方法が強く望まれている。   The operating temperature in the above prior art method for decomposing nitrogen oxides is higher than the exhaust gas temperature of 200 to 400 ° C. and the exhaust muffler inlet temperature of 150 to 200 ° C. There is the actual situation that the nitrogen oxides of the can not be decomposed. Therefore, a method capable of decomposing nitrogen oxides at a lower temperature is strongly desired.

特開平5-168856号公報JP-A-5-168856 特開2003−265926号公報JP 2003-265926 A 特開平7-136455号公報Japanese Patent Laid-Open No. 7-136455

上記のように、家庭用燃焼機などの小型の固定排気ガス発生源や自動車などの移動排気ガス発生源に対する有用な窒素酸化物の浄化(分解)技術は確立されていない。
したがって、本発明は、簡便かつ低コストで窒素酸化物を分解し得る分解触媒およびそれを備える小型の窒素酸化物の分解装置ならびに前記分解触媒を用いる窒素酸化物の分解方法を提供することを課題とする。
As described above, useful nitrogen oxide purification (decomposition) technology has not been established for small fixed exhaust gas generation sources such as household combustors and mobile exhaust gas generation sources such as automobiles.
Accordingly, it is an object of the present invention to provide a decomposition catalyst that can decompose nitrogen oxides easily and at low cost, a small-sized nitrogen oxide decomposition apparatus including the decomposition catalyst, and a nitrogen oxide decomposition method using the decomposition catalyst. And

本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、水素の酸化触媒成分と窒素酸化物の還元触媒成分とを、電子とプロトンとがそれぞれ別々に移動し得るように接合された触媒が水素の存在下で窒素酸化物を効率よく分解し得ることを見出し、本発明を完成するに到った。   As a result of intensive studies to solve the above problems, the present inventor has joined the hydrogen oxidation catalyst component and the nitrogen oxide reduction catalyst component so that electrons and protons can move separately. The present inventors have found that a catalyst capable of efficiently decomposing nitrogen oxides in the presence of hydrogen has led to the completion of the present invention.

かくして、本発明によれば、水素の酸化触媒成分と窒素酸化物の還元触媒成分とが、両触媒成分間を電子が移動し得るように接合され、かつ前記接合とは別個に両触媒成分間をプロトンが移動し得るプロトン導電性固体電解質で接合されてなることを特徴とする水素の存在下で窒素酸化物を分解する窒素酸化物の分解触媒が提供される。   Thus, according to the present invention, the oxidation catalyst component of hydrogen and the reduction catalyst component of nitrogen oxide are joined so that electrons can move between the two catalyst components, and separately between the two catalyst components. There is provided a nitrogen oxide decomposition catalyst for decomposing nitrogen oxides in the presence of hydrogen, wherein the catalyst is bonded with a proton conductive solid electrolyte capable of transferring protons.

また、本発明によれば、上記の窒素酸化物の分解触媒を含む触媒部、排気ガスを前記触媒部に導入する入口煙道および前記触媒部で処理された前記排気ガスを排出する出口煙道を備えることを特徴とする窒素酸化物の分解装置が提供される。
さらに、本発明によれば、上記の窒素酸化物の分解触媒で排気ガスを処理して、前記排気ガス中の窒素酸化物を分解することを特徴とする窒素酸化物の分解方法が提供される。
In addition, according to the present invention, a catalyst part including the above-described nitrogen oxide decomposition catalyst, an inlet flue for introducing exhaust gas into the catalyst part, and an outlet flue for discharging the exhaust gas treated in the catalyst part An apparatus for decomposing nitrogen oxides is provided.
Furthermore, according to the present invention, there is provided a method for decomposing nitrogen oxides, characterized in that exhaust gas is treated with the above-described nitrogen oxide decomposition catalyst to decompose nitrogen oxides in the exhaust gas. .

本発明によれば、簡便かつ低コストで窒素酸化物を分解し得る分解触媒およびそれを備える小型の窒素酸化物の分解装置ならびに前記分解触媒を用いる窒素酸化物の分解方法を提供することができ、産業上極めて有用である。
特に、本発明によれば、外部電源を必要とせず、200℃以下の低温で効率よく窒素酸化物を分解することができ、Ptのような貴金属のみを用いた方法よりも窒素酸化物の分解効率が高く、貴金属の使用量を低減できるので、低コスト化が可能となる。
ADVANTAGE OF THE INVENTION According to this invention, the decomposition catalyst which can decompose | disassemble nitrogen oxide easily and at low cost, the small-sized nitrogen oxide decomposition | disassembly apparatus provided with the same, and the decomposition | disassembly method of nitrogen oxide using the said decomposition catalyst can be provided. It is extremely useful in industry.
In particular, according to the present invention, nitrogen oxides can be efficiently decomposed at a low temperature of 200 ° C. or less without the need for an external power source, and the decomposition of nitrogen oxides can be achieved more than a method using only a noble metal such as Pt. Since the efficiency is high and the amount of noble metal used can be reduced, the cost can be reduced.

本発明の水素の存在下で窒素酸化物を分解する窒素酸化物の分解触媒は、水素の酸化触媒成分と窒素酸化物の還元触媒成分とが、両触媒成分間を電子が移動し得るように接合され、かつ前記接合とは別個に両触媒成分間をプロトンが移動し得るプロトン導電性固体電解質で接合されてなることを特徴とする。   The nitrogen oxide decomposition catalyst for decomposing nitrogen oxides in the presence of hydrogen of the present invention is such that the hydrogen oxidation catalyst component and the nitrogen oxide reduction catalyst component can transfer electrons between the two catalyst components. In addition to the joining, the joining is performed with a proton conductive solid electrolyte capable of transferring protons between both catalyst components.

本発明の窒素酸化物の分解メカニズムは定かではないが、次式に示すような反応過程によるものと推察される。
アノード:2H2 → 4H+ + 4e-
カソード:2NO + 4H+ + 4e- → N2 + 2H2
すなわち、水素の酸化触媒成分がアノードとして作用して水素をプロトン化し、生成されたプロトンがプロトン導電性固体電解質を介して、生成された電子が導電性物質からなる支持体を介するか、または直接、カソードとして作用する窒素酸化物の還元触媒成分に移動し、吸着している窒素酸化物を還元するものと推察される。
Although the decomposition mechanism of the nitrogen oxide of the present invention is not clear, it is presumed to be due to the reaction process shown in the following formula.
Anode: 2H 2 → 4H + + 4e
Cathode: 2NO + 4H + + 4e - N 2 + 2H 2 O
That is, the oxidation catalyst component of hydrogen acts as an anode to protonate hydrogen, and the generated protons pass through a proton conductive solid electrolyte, and the generated electrons pass through a support made of a conductive material, or directly It is assumed that the nitrogen oxides acting as the cathode move to the reduction catalyst component and reduce the adsorbed nitrogen oxides.

本発明で使用される水素の酸化触媒成分は、Pt、Ru、Rh、PdおよびIrの白金族金属から選択される少なくとも1種の金属またはその化合物であるのが好ましい。   The hydrogen oxidation catalyst component used in the present invention is preferably at least one metal selected from platinum group metals of Pt, Ru, Rh, Pd and Ir, or a compound thereof.

本発明で使用される窒素酸化物の還元触媒成分は、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Cd、Sn、PbおよびZnから選択される少なくとも1種の金属またはその化合物であるのが好ましい。   The reduction catalyst component of nitrogen oxide used in the present invention is at least one metal selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Cd, Sn, Pb and Zn or a compound thereof Is preferred.

本発明で使用される水素の酸化触媒成分と窒素酸化物の還元触媒成分との重量比は、処理対象となる窒素酸化物を含有する排気ガスの濃度や温度、その他の条件により、適宜設定すればよいが、通常、水素の酸化触媒成分1重量部に対して窒素酸化物の還元触媒成分が1〜500重量部であるのが好ましく、5〜200重量部であるのが特に好ましい。
水素の酸化触媒成分1重量部に対して窒素酸化物の還元触媒成分が1重量部未満の場合には、窒素酸化物の除去率が低下することもある。一方、窒素酸化物の還元触媒成分が500重量部を超える場合には、分解触媒を備える装置が大型化することもある。
The weight ratio of the hydrogen oxidation catalyst component and the nitrogen oxide reduction catalyst component used in the present invention is appropriately set depending on the concentration and temperature of the exhaust gas containing the nitrogen oxide to be treated and other conditions. Usually, the reduction catalyst component of nitrogen oxide is preferably 1 to 500 parts by weight, particularly preferably 5 to 200 parts by weight, based on 1 part by weight of the hydrogen oxidation catalyst component.
When the nitrogen oxide reduction catalyst component is less than 1 part by weight with respect to 1 part by weight of the hydrogen oxidation catalyst component, the nitrogen oxide removal rate may decrease. On the other hand, when the reduction catalyst component of nitrogen oxide exceeds 500 parts by weight, the apparatus provided with the decomposition catalyst may be enlarged.

本発明で使用されるプロトン導電性固体電解質は、フッ素樹脂系のプロトン導電性固体高分子(例えば、パーフルオロスルホン酸系ポリマー)および炭化水素系のプロトン導電性固体高分子、ならびにバリウムセリウム系、バリウムジルコニウム系、カルシウムセリウム系、カルシウムジルコニウム系、ジルコニウムストロンチウム系およびセリウムストロンチウム系のペロブスカイト型酸化物から選択される少なくとも1種であるのが好ましい。
フッ素樹脂系のプロトン導電性固体高分子としては、例えばパーフルオロスルホン酸系ポリマー(デュポン社製、Nafion(登録商標))が挙げられ、炭化水素系の固体高分子としては、例えばスルホン酸化ポリイミドが挙げられる。
これらの中でも、低温での分解活性の点でフッ素樹脂系のプロトン導電性固体高分子が特に好ましい。
The proton conductive solid electrolyte used in the present invention includes a fluororesin proton conductive solid polymer (for example, perfluorosulfonic acid polymer) and a hydrocarbon proton conductive solid polymer, and a barium cerium system. It is preferably at least one selected from barium zirconium, calcium cerium, calcium zirconium, zirconium strontium and cerium strontium perovskite oxides.
Examples of the fluororesin proton conductive solid polymer include perfluorosulfonic acid polymer (manufactured by DuPont, Nafion (registered trademark)), and examples of the hydrocarbon solid polymer include sulfonated polyimide. Can be mentioned.
Among these, a fluororesin-based proton conductive solid polymer is particularly preferable from the viewpoint of decomposition activity at low temperatures.

本発明の窒素酸化物の分解触媒において、(1)水素の酸化触媒成分と窒素酸化物の還元触媒成分とが導電性物質からなる支持体の同一平面上に分散配置されているか、または(2)水素の酸化触媒成分が導電性を有する窒素酸化物の還元触媒成分上に分散配置されて、両触媒成分間を電子が移動し得るように接合されているのが好ましい。
図1および2は、それぞれ配置形態(1)および(2)を有する本発明の窒素酸化物の分解触媒の主要構成を示す模式断面図である。図中、1は水素の酸化触媒成分、2は窒素酸化物の還元触媒成分、2(4)は導電性を有する窒素酸化物の還元触媒成分、3はプロトン導電性固体電解質、4は導電性物質からなる支持体を示す。
In the nitrogen oxide decomposition catalyst of the present invention, (1) the hydrogen oxidation catalyst component and the nitrogen oxide reduction catalyst component are dispersed on the same plane of the support made of a conductive material, or (2 It is preferable that the hydrogen oxidation catalyst component is dispersedly arranged on the conductive nitrogen oxide reduction catalyst component and joined so that electrons can move between the two catalyst components.
1 and 2 are schematic cross-sectional views showing the main structure of a nitrogen oxide decomposition catalyst according to the present invention having the arrangement forms (1) and (2), respectively. In the figure, 1 is a hydrogen oxidation catalyst component, 2 is a nitrogen oxide reduction catalyst component, 2 (4) is a conductive nitrogen oxide reduction catalyst component, 3 is a proton conductive solid electrolyte, and 4 is conductive. A support made of a substance is shown.

本発明で使用される導電性物質からなる支持体(担体)は、電気的接続部材としての機能するものであれば特に限定されない。具体的には、カーボンブラック、アセチレンブラック、活性炭、無定形炭素などのカーボン担体が挙げられる。   The support (carrier) made of a conductive material used in the present invention is not particularly limited as long as it functions as an electrical connection member. Specific examples include carbon carriers such as carbon black, acetylene black, activated carbon, and amorphous carbon.

配置形態(1)
水素の酸化触媒成分および窒素酸化物の還元触媒成分とが導電性物質からなる支持体(担体)の同一平面上に分散配置(担持)させる方法としては、含浸法、沈殿法などの公知の方法が挙げられる。一般的には水素の酸化触媒成分および窒素酸化物の還元触媒成分を溶剤に溶解させた溶液を担体に含浸させる含浸法が特に好ましい。
Arrangement form (1)
As a method for dispersing and supporting (supporting) a hydrogen oxidation catalyst component and a nitrogen oxide reduction catalyst component on the same plane of a support (support) made of a conductive material, a known method such as an impregnation method or a precipitation method is used. Is mentioned. In general, an impregnation method in which a carrier is impregnated with a solution obtained by dissolving a hydrogen oxidation catalyst component and a nitrogen oxide reduction catalyst component in a solvent is particularly preferable.

水素の酸化触媒成分を溶剤に溶解させた溶液としては、例えばPtの場合には、ヘキサクロロ白金(IV)酸六水和液、ジニトロジアンミン白金(II)硝酸溶液などが挙げられる。
窒素酸化物の還元触媒成分を溶剤に溶解させた溶液としては、例えばNiの場合には、塩化ニッケル水溶液、硫酸ニッケル水溶液、硝酸ニッケル水溶液などが挙げられる。
Examples of the solution in which the hydrogen oxidation catalyst component is dissolved in a solvent include hexachloroplatinic (IV) acid hexahydrate, dinitrodiammineplatinum (II) nitric acid solution and the like in the case of Pt.
Examples of the solution obtained by dissolving the nitrogen oxide reduction catalyst component in a solvent include nickel chloride aqueous solution, nickel sulfate aqueous solution, nickel nitrate aqueous solution and the like in the case of Ni.

また、これらの溶液には、水素の酸化触媒成分および窒素酸化物の還元触媒成分を支持体上に析出させるために、水素化ホウ素ナトリウム、エチルアルコールのようなアルコールなどの還元剤を添加してもよく、これらの中でも、工業的に入手し易く、取扱いが容易である点でエチルアルコールが特に好ましい。また、還元剤として水素ガスを使用してもよい。   In addition, a reducing agent such as sodium borohydride or alcohol such as ethyl alcohol is added to these solutions in order to deposit a hydrogen oxidation catalyst component and a nitrogen oxide reduction catalyst component on the support. Of these, ethyl alcohol is particularly preferred from the viewpoint of industrial availability and easy handling. Further, hydrogen gas may be used as a reducing agent.

配置形態(2)
水素の酸化触媒成分が導電性を有する窒素酸化物の還元触媒成分上に分散配置(担持)させる方法としては、例えば、水素の酸化触媒成分とプロトン導電性固体電解質の溶液またはスラリーの混合溶液を、導電性を有する窒素酸化物の還元触媒成分上にコーティングする方法が挙げられる。
被コーティング材となる導電性を有する窒素酸化物の還元触媒成分の形状としては、プレート状、ペレット状、ハニカム状、多孔体状などが挙げられ、これらの中でも、排気ガス流通時の圧力損失が低い点で導電性を有する窒素酸化物の還元触媒成分の金属成分材料で一体成形された金属多孔体が好ましい。
また、水素の酸化触媒成分は、金属成分材料の単体でもよく、その金属成分材料をカーボン担体のような導電性を有する支持体に担持したものでもよい。
Arrangement form (2)
Examples of the method for dispersing (supporting) the hydrogen oxidation catalyst component on the conductive nitrogen oxide reduction catalyst component include, for example, a hydrogen oxidation catalyst component and a proton conductive solid electrolyte solution or a mixed solution of a slurry. And a method of coating on a reduction catalyst component of nitrogen oxide having conductivity.
Examples of the shape of the conductive nitrogen oxide reduction catalyst component to be coated include a plate shape, a pellet shape, a honeycomb shape, a porous shape, and the like. Among these, pressure loss during exhaust gas circulation is included. A metal porous body integrally formed with a metal component material of a reduction catalyst component of nitrogen oxide having conductivity at low points is preferable.
Further, the hydrogen oxidation catalyst component may be a single metal component material, or the metal component material may be supported on a conductive support such as a carbon carrier.

本発明の窒素酸化物の分解装置は、本発明の窒素酸化物の分解触媒を含む触媒部、排気ガスを前記触媒部に導入する入口煙道および前記触媒部で処理された前記排気ガスを排出する出口煙道を備えることを特徴とする。   The nitrogen oxide decomposition apparatus according to the present invention exhausts the exhaust gas treated in the catalyst section including the catalyst section including the nitrogen oxide decomposition catalyst of the present invention, an inlet flue for introducing exhaust gas into the catalyst section, and the catalyst section. An exit flue is provided.

図3および図4は、本発明の窒素酸化物の分解装置の主要構成を示す模式図である。図中、11は分解装置、12は入口煙道、13は出口煙道、14は触媒部、15は水素ガス注入装置、Eは排気ガス、Hは水素ガス、矢符はガス気流を示す。   3 and 4 are schematic views showing the main configuration of the nitrogen oxide decomposing apparatus of the present invention. In the figure, 11 is a decomposition device, 12 is an inlet flue, 13 is an outlet flue, 14 is a catalyst unit, 15 is a hydrogen gas injection device, E is exhaust gas, H is hydrogen gas, and arrows indicate gas flow.

本発明により実際の排気ガス中の窒素酸化物を分解する場合には、触媒部は本発明の窒素酸化物の分解触媒が三次元構造体に形成されているのが好ましい。その形成方法としては、例えばコーティングが挙げられる。   When decomposing nitrogen oxides in actual exhaust gas according to the present invention, it is preferable that the catalyst portion is formed of the nitrogen oxide decomposing catalyst of the present invention in a three-dimensional structure. Examples of the forming method include coating.

図5は、本発明の窒素酸化物の分解装置に使用する三次元構造体の触媒部の主要構成を示す模式断面図である。図中、5は三次元構造体(ハニカム担体)、6はセル(ガス流れ空間)、7は格子、8は担体層、9は触媒(図1参照)を示す。   FIG. 5 is a schematic cross-sectional view showing the main configuration of the catalyst portion of the three-dimensional structure used in the nitrogen oxide decomposition apparatus of the present invention. In the figure, 5 is a three-dimensional structure (honeycomb carrier), 6 is a cell (gas flow space), 7 is a lattice, 8 is a carrier layer, and 9 is a catalyst (see FIG. 1).

三次元構造体としては、ペレット状、ハニカム担体などが挙げられ、排気ガス流通時の圧力損失が低い点で一体成形のハニカム担体が好ましい。
ハニカム担体としては、セラミックハニカム担体のようなモノリスハニカム担体、メタルハニカム担体などが挙げられる。
セラミックハニカム担体としては、コージェライト、ムライト、α-アルミナ、ジルコニア、チタニア、炭化けい素などを材料とするハニカム担体が挙げられ、これらの中でも、軽量である点でコージェライトのハニカム担体が特に好ましい。
メタルハニカム担体としては、ステンレス鋼、Fe−Cr−Al合金などの酸化抵抗性の耐熱金属などを材料とする一体構造体が挙げられる。
Examples of the three-dimensional structure include pellets and honeycomb carriers, and an integrally formed honeycomb carrier is preferable from the viewpoint of low pressure loss when exhaust gas flows.
Examples of the honeycomb carrier include a monolith honeycomb carrier such as a ceramic honeycomb carrier and a metal honeycomb carrier.
Examples of the ceramic honeycomb carrier include honeycomb carriers made of cordierite, mullite, α-alumina, zirconia, titania, silicon carbide and the like, and among these, cordierite honeycomb carriers are particularly preferable in terms of light weight. .
Examples of the metal honeycomb carrier include an integral structure made of an oxidation-resistant heat-resistant metal such as stainless steel and Fe—Cr—Al alloy.

ハニカム担体における格子(セル)の形状および大きさは、窒素酸化物を含有する排気ガスの気流を効率よく触媒部に接触させ得るものであれば特に限定されず、窒素酸化物の処理容量などによって適宜設定すればよい。
ハニカム担体におけるセル数は、通常、100〜400セル/(25.4mm)2(100〜400cpsi)程度である。
The shape and size of the lattices (cells) in the honeycomb carrier are not particularly limited as long as the exhaust gas flow containing nitrogen oxides can be efficiently brought into contact with the catalyst part. What is necessary is just to set suitably.
The number of cells in the honeycomb carrier is usually about 100 to 400 cells / (25.4 mm) 2 (100 to 400 cpsi).

コーティング方法としては、例えば以下に示すような方法(a)〜(c)が挙げられるが、本発明の主旨に反しない限り、これらの方法に限定されない。
(a)水素の酸化触媒成分および窒素酸化物の還元触媒成分を担持した支持体の混合溶液を無機酸化物に含浸させ、乾燥し、必要に応じて焼成する。得られた粉体に水などを加えて湿式粉砕してスラリーとし、これを三次元構造体に塗布して乾燥し、必要に応じて焼成する。
(b)無機酸化物に水などを加えて湿式粉砕してスラリーとし、三次元構造体に塗布して乾燥し、必要に応じて焼成する。得られた三次元構造体を、水素の酸化触媒成分および窒素酸化物の還元触媒成分を担持した支持体の混合溶液に含浸させ、乾燥し、必要に応じて焼成する。
(c)水素の酸化触媒成分および窒素酸化物の還元触媒成分を担持した支持体の混合溶液の一部を無機酸化物に含浸させ、乾燥し、必要に応じて焼成する。得られた粉体に水などを加えて湿式粉砕してスラリーとし、三次元構造体に塗布して乾燥し、必要に応じて焼成する。得られた三次元構造体に、水素の酸化触媒成分および窒素酸化物の還元触媒成分を担持した支持体の混合溶液の残りを含浸させ、乾燥し、必要に応じて焼成する。
Examples of the coating method include the following methods (a) to (c), but are not limited to these methods as long as they do not contradict the gist of the present invention.
(A) A mixed solution of a support carrying a hydrogen oxidation catalyst component and a nitrogen oxide reduction catalyst component is impregnated in an inorganic oxide, dried, and calcined as necessary. Water or the like is added to the obtained powder and wet pulverized to form a slurry, which is applied to a three-dimensional structure, dried, and fired as necessary.
(B) Water or the like is added to the inorganic oxide and wet pulverized to form a slurry, which is applied to the three-dimensional structure, dried, and fired as necessary. The obtained three-dimensional structure is impregnated with a mixed solution of a support carrying a hydrogen oxidation catalyst component and a nitrogen oxide reduction catalyst component, dried, and calcined as necessary.
(C) An inorganic oxide is partially impregnated with a mixed solution of a support carrying a hydrogen oxidation catalyst component and a nitrogen oxide reduction catalyst component, dried, and calcined as necessary. Water or the like is added to the obtained powder and wet pulverized to form a slurry, which is applied to a three-dimensional structure, dried, and fired as necessary. The obtained three-dimensional structure is impregnated with the rest of the mixed solution of the support on which the hydrogen oxidation catalyst component and the nitrogen oxide reduction catalyst component are supported, dried, and calcined as necessary.

コーティングに使用される無機酸化物としては、アルミナ、シリカ、チタニア、マグネシア、ジルコニアなどが挙げられ、これらの中でも、小型化の点でアルミナが特に好ましい。方法(a)〜(c)では無機酸化物を使用するが、触媒部が三次元構造体にコーティングされるのであれば、無機酸化物を使用しなくてもよい。   Examples of the inorganic oxide used for coating include alumina, silica, titania, magnesia, zirconia, and among these, alumina is particularly preferable from the viewpoint of miniaturization. In the methods (a) to (c), an inorganic oxide is used. However, if the catalyst part is coated on the three-dimensional structure, the inorganic oxide may not be used.

次いで、水素の酸化触媒成分と窒素酸化物の還元触媒成分とが両触媒成分間をプロトンが移動し得るように、両触媒成分間にプロトン導電性固体電解質を配置する。
具体的には、水素の酸化触媒成分および窒素酸化物の還元触媒成分を担持した支持体をコーティングした三次元構造体に、前記のようなプロトン導電性固体電解質の溶液またはスラリーを塗布して乾燥し、必要に応じて焼成する。
Next, a proton conductive solid electrolyte is disposed between the catalyst components so that the hydrogen oxidation catalyst component and the nitrogen oxide reduction catalyst component can move protons between the catalyst components.
Specifically, a proton conductive solid electrolyte solution or slurry as described above is applied to a three-dimensional structure coated with a support carrying a hydrogen oxidation catalyst component and a nitrogen oxide reduction catalyst component and dried. And firing as necessary.

上記の方法では、プロトン導電性固体電解質を最終工程において形成したが、その形成手順は本発明の主旨に反しない限り、特に限定されない。例えば、水素の酸化触媒成分および窒素酸化物の還元触媒成分を担持した支持体に、プロトン導電性固体電解質の溶液またはスラリーを含浸させ、乾燥し、必要に応じて焼成したものを、三次元構造体にコーティングしてもよい。   In the above method, the proton conductive solid electrolyte was formed in the final step, but the formation procedure is not particularly limited as long as it does not contradict the gist of the present invention. For example, a support carrying a hydrogen oxidation catalyst component and a nitrogen oxide reduction catalyst component impregnated with a solution or slurry of a proton conductive solid electrolyte, dried, and calcined as necessary, has a three-dimensional structure. It may be coated on the body.

本発明の窒素酸化物の分解装置における入口煙道は、例えば、ボイラー、ガソリンエンジン、ディーゼルエンジンなどの内燃機関、発電用プラント、工業用プラント、家庭用燃焼機などの小型の固定排気ガス発生源、自動車などの移動排気ガス発生源に接続され、触媒部に排気ガスを導入する。
また、出口煙道は、触媒部で処理された排気ガス、すなわち窒素酸化物を分解した後の残留ガスを分解装置の外に排出する。
The inlet flue in the nitrogen oxide decomposition apparatus of the present invention is a small fixed exhaust gas generation source such as an internal combustion engine such as a boiler, a gasoline engine, or a diesel engine, a power generation plant, an industrial plant, or a household combustor. The exhaust gas is connected to a moving exhaust gas generation source such as an automobile and introduced into the catalyst unit.
The outlet flue discharges the exhaust gas treated in the catalyst portion, that is, the residual gas after decomposing nitrogen oxides, to the outside of the decomposition apparatus.

これらの入口煙道および出口煙道は、それぞれ排気ガスの気流を効率よく触媒部に導入し得るものおよび触媒部で処理された排気ガスを効率よく分解装置の外に排出し得るものであれば特に限定されず、材質や形状は窒素酸化物の処理容量などによって適宜設定すればよい。   As long as these inlet flues and outlet flues are capable of efficiently introducing an exhaust gas flow into the catalyst unit and exhausting the exhaust gas treated in the catalyst unit out of the decomposition device, respectively. There is no particular limitation, and the material and shape may be set as appropriate depending on the processing capacity of nitrogen oxides.

本発明の窒素酸化物の分解方法は、水素を還元剤として本発明の窒素酸化物の分解触媒で排気ガスを処理して、前記排気ガス中の窒素酸化物を分解することを特徴とする。   The nitrogen oxide decomposition method of the present invention is characterized in that exhaust gas is treated with the nitrogen oxide decomposition catalyst of the present invention using hydrogen as a reducing agent to decompose the nitrogen oxide in the exhaust gas.

排気ガスとしては、上記のように窒素酸化物を含有するガスであれば特に限定されず、例えば、ボイラー、ガソリンエンジン、ディーゼルエンジンなどの内燃機関、発電用プラント、工業用プラントなどから大気中に放出される排気ガス、家庭用燃焼機などの小型の固定排気ガス発生源や自動車などの移動排気ガス発生源などから大気中に放出される排気ガスが挙げられる。   The exhaust gas is not particularly limited as long as it contains a nitrogen oxide as described above. For example, the exhaust gas is introduced into the atmosphere from an internal combustion engine such as a boiler, a gasoline engine, a diesel engine, a power generation plant, an industrial plant, or the like. Exhaust gas emitted into the atmosphere from a small fixed exhaust gas generation source such as a household combustor or a mobile exhaust gas generation source such as an automobile.

本発明の方法では、水素を還元剤として使用する。
処理対象となる排気ガスが、水蒸気改質された燃料や一酸化炭素の水性ガスシフト反応などにより改質された燃料を燃焼させたガス、通常の空燃比よりも燃料過剰(リッチ)で燃焼させたガスのように、窒素酸化物と共に適量の水素を含有する場合には排気ガスのみを本発明の方法で処理すればよい。
しかし、処理対象となる排気ガスが窒素酸化物と共に適量の水素を含有しない場合には、処理前の排気ガスに還元剤として水素を注入すればよい。
In the method of the present invention, hydrogen is used as a reducing agent.
Exhaust gas to be treated was burned with a fuel that was steam reformed or a fuel that was burned with a fuel that was reformed by a water gas shift reaction of carbon monoxide, etc., with an excess of fuel (rich) than the normal air-fuel ratio When an appropriate amount of hydrogen is contained together with nitrogen oxides such as gas, only the exhaust gas may be treated by the method of the present invention.
However, when the exhaust gas to be treated does not contain an appropriate amount of hydrogen together with nitrogen oxides, hydrogen may be injected as a reducing agent into the exhaust gas before treatment.

排気ガス中の水素の量は、窒素酸化物の濃度や排気ガスの温度、その他の条件により、適宜設定すればよいが、通常、排気ガス中の水素濃度が爆発下限界の4%未満で、窒素酸化物に対して1〜100倍の範囲であればよい。
したがって、排気ガス中の水素の量が窒素酸化物に対して1倍未満の場合には、分解装置の大きさやコストの面から分解効率の向上を図るために処理前の排気ガスに還元剤として水素を注入すればよい。
すなわち、分解装置には、図4に示すように入口煙道12と触媒部14との間に水素含有ガスを注入する水素ガス注入装置15が付帯されていてもよい。
ここで、水素含有ガスとは、水素ガスの他に、窒素ガス、不活性ガス(例えば、ヘリウム、アルゴン)などで水素ガスを希釈した混合ガスを意味する。
The amount of hydrogen in the exhaust gas may be appropriately set depending on the concentration of nitrogen oxides, the temperature of the exhaust gas, and other conditions. Usually, the hydrogen concentration in the exhaust gas is less than 4% of the lower explosion limit, It may be in the range of 1 to 100 times the nitrogen oxide.
Therefore, when the amount of hydrogen in the exhaust gas is less than 1 times that of nitrogen oxides, the reducing gas is used as a reducing agent in the exhaust gas before treatment in order to improve the decomposition efficiency in terms of the size and cost of the decomposition apparatus Hydrogen may be injected.
That is, as shown in FIG. 4, the decomposition apparatus may be accompanied by a hydrogen gas injection device 15 that injects a hydrogen-containing gas between the inlet flue 12 and the catalyst unit 14.
Here, the hydrogen-containing gas means a mixed gas obtained by diluting the hydrogen gas with a nitrogen gas, an inert gas (for example, helium, argon) or the like in addition to the hydrogen gas.

水素ガス注入装置は、例えばボンベやタンクなどの水素貯蔵設備、触媒を用いた都市ガスまたはメタノールなどの改質により水素を生成する水素発生装置、プロトン導電性固体電解質を用いた水または水蒸気の電気分解により水素を生成する水素発生装置を備えていればよい。   Hydrogen gas injection devices are, for example, hydrogen storage facilities such as cylinders and tanks, hydrogen generators that generate hydrogen by reforming city gas or methanol using a catalyst, water or steam electricity using proton conductive solid electrolyte What is necessary is just to provide the hydrogen generator which produces | generates hydrogen by decomposition | disassembly.

触媒部への水素ガスを含む排気ガスの導入量は、触媒部の窒素酸化物の処理能力により適宜設定すればよい。   What is necessary is just to set suitably the introduction amount of the exhaust gas containing hydrogen gas to a catalyst part with the processing capacity of the nitrogen oxide of a catalyst part.

本発明の方法は、排気ガス中に窒素酸化物と共存する酸素との反応活性が低く、作動温度は、200℃以下の低温雰囲気下であることが好ましく、50〜100℃が特に好ましい。   The method of the present invention has a low reaction activity with oxygen coexisting with nitrogen oxides in the exhaust gas, and the operating temperature is preferably in a low-temperature atmosphere of 200 ° C. or less, particularly preferably 50 to 100 ° C.

本発明を実施例および比較例により具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   The present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

(実施例1)
図1に示すような水素の酸化触媒成分、窒素酸化物の還元触媒成分および導電性物質からなる支持体の構造を有する触媒部を作製した。
1.5wt%のPtを含有するジニトロジアミン白金(II)硝酸溶液300gに、導電性物質からなる支持体としてのカーボンブラック(ライオン株式会社製、商品名:ケッチェンブラックEC−600JD)10gを加えて攪拌混合した。得られた混合溶液に、還元剤としてエチルアルコール100mlを加えて、エチルアルコールの沸点(78℃)程度で約5時間撹拌混合した。次いで、得られた混合溶液を濾過し、60℃で乾燥させ、導電性物質からなる支持体(カーボン)上に水素の酸化触媒成分(Pt)を担持させた。
Example 1
A catalyst part having a support structure composed of a hydrogen oxidation catalyst component, a nitrogen oxide reduction catalyst component, and a conductive material as shown in FIG. 1 was prepared.
To 300 g of dinitrodiamine platinum (II) nitric acid solution containing 1.5 wt% of Pt, 10 g of carbon black (made by Lion Corporation, trade name: Ketjen Black EC-600JD) as a support made of a conductive material is added. And mixed with stirring. To the obtained mixed solution, 100 ml of ethyl alcohol was added as a reducing agent, and the mixture was stirred and mixed at about the boiling point (78 ° C.) of ethyl alcohol for about 5 hours. Next, the obtained mixed solution was filtered, dried at 60 ° C., and a hydrogen oxidation catalyst component (Pt) was supported on a support (carbon) made of a conductive material.

次に、8wt%のNiを含有する塩化ニッケル溶液30gに、得られたPt担持カーボン5gを加えて撹拌混合した。得られた混合溶液に、エチルアルコール100mlを加えて、エチルアルコールの沸点(78℃)程度で約5時間撹拌混合した。次いで、得られた混合溶液を濾過し、60℃で乾燥させ、水素の酸化触媒成分(Pt)と同様に、導電性物質からなる支持体(カーボン)上に窒素酸化物の還元触媒成分(Ni)を担持させた。なお、支持体上の水素の酸化触媒成分(Pt)と窒素酸化物の還元触媒成分(Ni)との重量比率は、1:5であった。   Next, 5 g of the obtained Pt-supported carbon was added to 30 g of nickel chloride solution containing 8 wt% Ni and mixed with stirring. 100 ml of ethyl alcohol was added to the obtained mixed solution, and the mixture was stirred and mixed at the boiling point (78 ° C.) of ethyl alcohol for about 5 hours. Next, the obtained mixed solution is filtered, dried at 60 ° C., and a nitrogen oxide reduction catalyst component (Ni) is formed on a support (carbon) made of a conductive material in the same manner as the hydrogen oxidation catalyst component (Pt). ) Was supported. The weight ratio of the hydrogen oxidation catalyst component (Pt) to the nitrogen oxide reduction catalyst component (Ni) on the support was 1: 5.

水素の酸化触媒成分(Pt)と窒素酸化物の還元触媒成分(Ni)を分散担持した支持体(カーボン)2g、アルミナ2g、水5gを磁性ボールミルに投入し、1時間撹拌混合してスラリーを得た。得られたスラリーをコージェライト質のハニカム担体に塗布し、空気流で余分なスラリーを吹き飛ばし、130℃で2時間乾燥し、さらに400℃で1時間焼成して、ハニカム担体を得た。なお、ハニカム担体は、セル数400セル/(25.4mm)2(400cpsi)、体積4.8cm3であった。
次に、得られたハニカム担体に、5wt%のパーフルオロスルホン酸系ポリマー(デュポン社製、Nafion(登録商標):プロトン導電性固体電解質)を含有する溶液を塗布し、空気流で余分な溶液を吹き飛ばし、100℃で1時間乾燥して、窒素酸化物を分解する触媒部を得た。
A support (carbon) 2 g, 2 g of alumina, and 5 g of water on which a hydrogen oxidation catalyst component (Pt) and a nitrogen oxide reduction catalyst component (Ni) are dispersedly supported are placed in a magnetic ball mill, and stirred for 1 hour to mix the slurry. Obtained. The obtained slurry was applied to a cordierite honeycomb carrier, excess slurry was blown off with an air stream, dried at 130 ° C. for 2 hours, and further fired at 400 ° C. for 1 hour to obtain a honeycomb carrier. The honeycomb carrier had 400 cells / (25.4 mm) 2 (400 cpsi) and a volume of 4.8 cm 3 .
Next, a solution containing 5 wt% of a perfluorosulfonic acid polymer (manufactured by DuPont, Nafion (registered trademark): proton conductive solid electrolyte) is applied to the obtained honeycomb carrier, and an excess solution is applied by an air flow. The catalyst part which decomposes | disassembles nitrogen oxide was obtained by blowing off and drying at 100 degreeC for 1 hour.

(実施例2)
図2に示すような水素の酸化触媒成分および導電性を有する窒素酸化物の還元触媒成分の構造を有する触媒部を作製した。
市販の50wt%Pt担持カーボン0.5g(田中貴金属工業株式会社製、品番:TEC10E50E)に、プロトン導電性固体電解質として5wt%のパーフルオロスルホン酸系ポリマーを含有する溶液1g、水8gを加え、攪拌混合してスラリーを得た。得られたスラリーにNiを主な組成とする金属多孔体(住友電気工業株式会社製、セルメット(登録商標))を浸漬し、金属多孔体にスラリーを付着させた後、空気流で余分なスラリーを吹き飛ばし、100℃で1時間乾燥して、窒素酸化物を分解する触媒部を得た。なお、水素の酸化触媒成分(Pt)と導電性を有する窒素酸化物の還元触媒成分(Ni)との重量比率は、1:150であった。
(Example 2)
A catalyst part having a structure of a hydrogen oxidation catalyst component and a conductive nitrogen oxide reduction catalyst component as shown in FIG. 2 was produced.
1 g of a solution containing 5 wt% of a perfluorosulfonic acid polymer as a proton conductive solid electrolyte and 8 g of water are added to 0.5 g of commercially available 50 wt% Pt-supported carbon (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., product number: TEC10E50E), A slurry was obtained by stirring and mixing. A metal porous body containing Ni as a main composition (Celmet (registered trademark), manufactured by Sumitomo Electric Industries, Ltd.) is immersed in the obtained slurry, and the slurry is attached to the metal porous body, and then excess slurry is added by an air flow. The catalyst part which decomposes | disassembles nitrogen oxide was obtained by blowing off and drying at 100 degreeC for 1 hour. The weight ratio of the hydrogen oxidation catalyst component (Pt) to the conductive nitrogen oxide reduction catalyst component (Ni) was 1: 150.

(比較例)
プロトン導電性固体電解質としての5wt%のパーフルオロスルホン酸系ポリマーを含有する溶液の代わりに、5wt%ポリビニルアルコール溶液を用いること以外は実施例2と同様にして、窒素酸化物を分解する触媒部を得た。なお、水素の酸化触媒成分(Pt)と導電性を有する窒素酸化物の還元触媒成分(Ni)との重量比率は、1:150であった。
(Comparative example)
A catalyst part for decomposing nitrogen oxides in the same manner as in Example 2 except that a 5 wt% polyvinyl alcohol solution is used instead of a solution containing 5 wt% perfluorosulfonic acid polymer as a proton conductive solid electrolyte. Got. The weight ratio of the hydrogen oxidation catalyst component (Pt) to the conductive nitrogen oxide reduction catalyst component (Ni) was 1: 150.

(性能評価試験)
実施例1および2、比較例1で得られた触媒部をそれぞれ固定式流通反応装置に取り付け、下記のディーゼルエンジンからの排気ガスを想定したガス組成の模擬ガスを下記の流通条件で10時間流通させて、1時間毎に処理前後の窒素酸化物濃度を測定し、その除去率を算出した。
得られた結果を図6に示す(●:実施例1、▲:実施例2、比較例:×)。
(Performance evaluation test)
The catalyst parts obtained in Examples 1 and 2 and Comparative Example 1 were each attached to a stationary flow reactor, and a simulated gas having a gas composition assuming exhaust gas from the following diesel engine was flown for 10 hours under the flow conditions below. The nitrogen oxide concentration before and after the treatment was measured every hour, and the removal rate was calculated.
The obtained results are shown in FIG. 6 (●: Example 1, ▲: Example 2, Comparative Example: ×).

ガス組成 NOx:200ppm
2 :19%
2 :0.2%
2 :残部
SV(空間速度): 10000Hr-1
反応装置温度 :80℃
Gas composition NOx: 200ppm
O 2 : 19%
H 2 : 0.2%
N 2 : balance
SV (space velocity): 10,000 Hr −1
Reactor temperature: 80 ° C

処理前後の窒素酸化物濃度を燃焼排ガス用NOx−O2測定装置(株式会社島津製作所製、型式:NOA−7000)を用いて測定した。
窒素酸化物(NOx)の除去率を下記式により算出した。
NOxの除去率(%)
=[(処理前のNOx濃度)−(処理後のNOx濃度)]/(処理前のNOx濃度)×100
The nitrogen oxide concentration before and after the treatment was measured using a NOx-O 2 measuring device for combustion exhaust gas (manufactured by Shimadzu Corporation, model: NOA-7000).
The removal rate of nitrogen oxides (NOx) was calculated by the following formula.
NOx removal rate (%)
= [(NOx concentration before treatment) − (NOx concentration after treatment)] / (NOx concentration before treatment) × 100

図6の結果から、本発明の窒素酸化物の分解触媒を含む触媒部、すなわち「水素の酸化触媒成分と窒素酸化物の還元触媒成分とが導電性物質からなる支持体の同一平面上に分散配置されて、両触媒成分間を電子が移動し得るように接合され、かつ前記接合とは別個に両触媒成分間をプロトンが移動し得るプロトン導電性固体電解質で接合されてなる窒素酸化物の分解触媒を含む触媒部」を用いた実施例1および「水素の酸化触媒成分が導電性を有する窒素酸化物の還元触媒成分上に分散配置されて、両触媒成分間を電子が移動し得るように接合され、かつ前記接合とは別個に両触媒成分間をプロトンが移動し得るプロトン導電性固体電解質で接合されてなる窒素酸化物の分解触媒を含む触媒部」を用いた実施例2の窒素酸化物の除去率は、「水素の酸化触媒成分および窒素酸化物の還元触媒成分からなる触媒部」を用いた比較例の5.5〜7倍程度であり、優れた窒素酸化物の除去効果を有することがわかる。   From the result of FIG. 6, the catalyst part containing the nitrogen oxide decomposition catalyst of the present invention, that is, “the hydrogen oxidation catalyst component and the nitrogen oxide reduction catalyst component are dispersed on the same plane of the support made of a conductive material. Of the nitrogen oxide formed by joining the catalyst components such that electrons can move between the two catalyst components, and joined by a proton conductive solid electrolyte capable of transferring protons between the two catalyst components separately from the junction. Example 1 using "catalyst portion including cracking catalyst" and "the oxidation catalyst component of hydrogen is dispersedly disposed on the reduction catalyst component of conductive nitrogen oxide so that electrons can move between the two catalyst components." Of Example 2 using a "catalyst portion comprising a decomposition catalyst for nitrogen oxides joined to a proton conductive solid electrolyte which is joined to the catalyst component and is joined with a proton conductive solid electrolyte capable of transferring protons between both catalyst components separately from the joining" The oxide removal rate is A 5.5 to 7 times of Comparative Example using the catalyst unit "consisting of reduction catalyst component of the oxidation catalyst component and nitrogen oxides-containing found to have a removal effect superior nitrogen oxides.

本発明の窒素酸化物の分解触媒の主要構成(配置形態(1))を示す模式断面図である。It is a schematic cross section which shows the main structures (arrangement form (1)) of the decomposition catalyst of the nitrogen oxide of this invention. 本発明の窒素酸化物の分解触媒の主要構成(配置形態(2))を示す模式断面図である。It is a schematic cross section which shows the main structures (arrangement form (2)) of the decomposition | disassembly catalyst of the nitrogen oxide of this invention. 本発明の窒素酸化物の分解装置の主要構成を示す模式図である。It is a schematic diagram which shows the main structures of the decomposition | disassembly apparatus of the nitrogen oxide of this invention. 本発明の窒素酸化物の分解装置の主要構成を示す模式図である。It is a schematic diagram which shows the main structures of the decomposition | disassembly apparatus of the nitrogen oxide of this invention. 本発明の窒素酸化物の分解装置における三次元構造体の触媒部の主要構成を示す模式断面図である。It is a schematic cross section which shows the main structures of the catalyst part of the three-dimensional structure in the decomposition | disassembly apparatus of the nitrogen oxide of this invention. 本発明の窒素酸化物の分解方法における経過時間(時間)とNOx除去率(%)との関係を示す図である。It is a figure which shows the relationship between the elapsed time (time) and the NOx removal rate (%) in the decomposition | disassembly method of the nitrogen oxide of this invention.

符号の説明Explanation of symbols

1 水素の酸化触媒成分
2 窒素酸化物の還元触媒成分
2(4) 導電性を有する窒素酸化物の還元触媒成分
3 プロトン導電性固体電解質
4 導電性物質からなる支持体
DESCRIPTION OF SYMBOLS 1 Hydrogen oxidation catalyst component 2 Nitrogen oxide reduction catalyst component 2 (4) Conductive nitrogen oxide reduction catalyst component 3 Proton conductive solid electrolyte 4 Support comprising conductive material

5 三次元構造体(ハニカム担体)
6 セル(ガス流れ空間)
7 格子
8 担体層
9 触媒
5 Three-dimensional structure (honeycomb carrier)
6 cells (gas flow space)
7 Lattice 8 Support layer 9 Catalyst

11 分解装置
12 入口煙道
13 出口煙道
14 触媒部
15 水素ガス注入装置
E 排気ガス
H 水素ガス
DESCRIPTION OF SYMBOLS 11 Decomposition apparatus 12 Inlet flue 13 Outlet flue 14 Catalyst part 15 Hydrogen gas injection apparatus E Exhaust gas H Hydrogen gas

Claims (9)

水素の酸化触媒成分と窒素酸化物の還元触媒成分とが、両触媒成分間を電子が移動し得るように接合され、かつ前記接合とは別個に両触媒成分間をプロトンが移動し得るプロトン導電性固体電解質で接合されてなることを特徴とする水素の存在下で窒素酸化物を分解する窒素酸化物の分解触媒。   Proton conductivity in which an oxidation catalyst component of hydrogen and a reduction catalyst component of nitrogen oxide are joined so that electrons can move between the two catalyst components, and protons can move between the two catalyst components separately from the junction. A nitrogen oxide decomposition catalyst for decomposing nitrogen oxides in the presence of hydrogen, characterized by being bonded with a conductive solid electrolyte. 前記水素の酸化触媒成分が、Pt、Ru、Rh、PdおよびIrの白金族金属から選択される少なくとも1種の金属またはその化合物である請求項1に記載の窒素酸化物の分解触媒。   2. The nitrogen oxide decomposition catalyst according to claim 1, wherein the hydrogen oxidation catalyst component is at least one metal selected from platinum group metals of Pt, Ru, Rh, Pd and Ir, or a compound thereof. 前記窒素酸化物の還元触媒成分が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Cd、Sn、PbおよびZnから選択される少なくとも1種の金属またはその化合物である請求項1または2に記載の窒素酸化物の分解触媒。   2. The reduction catalyst component of the nitrogen oxide is at least one metal selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Cd, Sn, Pb and Zn or a compound thereof. Or the nitrogen oxide decomposition catalyst according to 2; 前記プロトン導電性固体電解質が、フッ素樹脂系および炭化水素系のプロトン導電性固体高分子、ならびにバリウムセリウム系、バリウムジルコニウム系、カルシウムセリウム系、カルシウムジルコニウム系、ジルコニウムストロンチウム系およびセリウムストロンチウム系のペロブスカイト型酸化物から選択される少なくとも1種である請求項1〜3のいずれか1つに記載の窒素酸化物の分解触媒。   The proton conductive solid electrolyte is a fluororesin-based or hydrocarbon-based proton conductive solid polymer, and a perovskite type of barium cerium, barium zirconium, calcium cerium, calcium zirconium, zirconium strontium and cerium strontium The decomposition catalyst for nitrogen oxide according to any one of claims 1 to 3, which is at least one selected from oxides. 前記水素の酸化触媒成分1重量部に対して前記窒素酸化物の還元触媒成分が1〜500重量部である請求項1〜4のいずれか1つに記載の窒素酸化物の分解触媒。   The decomposition catalyst for nitrogen oxides according to any one of claims 1 to 4, wherein the reduction catalyst component for nitrogen oxides is 1 to 500 parts by weight with respect to 1 part by weight of the oxidation catalyst component for hydrogen. 前記水素の酸化触媒成分と前記窒素酸化物の還元触媒成分とが導電性物質からなる支持体の同一平面上に分散配置されているか、または前記水素の酸化触媒成分が導電性を有する前記窒素酸化物の還元触媒成分上に分散配置されて、両触媒成分間を電子が移動し得るように接合されている請求項1〜5のいずれか1つに記載の窒素酸化物の分解触媒。   The hydrogen oxidation catalyst component and the nitrogen oxide reduction catalyst component are dispersed on the same plane of a support made of a conductive material, or the hydrogen oxidation catalyst component has conductivity. The nitrogen oxide decomposition catalyst according to any one of claims 1 to 5, wherein the catalyst is dispersedly disposed on a reduction catalyst component of the product and joined so that electrons can move between the two catalyst components. 請求項1〜6のいずれか1つに記載の窒素酸化物の分解触媒を含む触媒部、排気ガスを前記触媒部に導入する入口煙道および前記触媒部で処理された前記排気ガスを排出する出口煙道を備えることを特徴とする窒素酸化物の分解装置。   A catalyst part including the nitrogen oxide decomposition catalyst according to any one of claims 1 to 6, an inlet flue for introducing exhaust gas into the catalyst part, and the exhaust gas treated in the catalyst part are discharged. An apparatus for decomposing nitrogen oxides, comprising an exit flue. 前記入口煙道と前記触媒部との間に水素含有ガスを注入する水素ガス注入装置をさらに備える請求項7に記載の窒素酸化物の分解装置。   The nitrogen oxide decomposition apparatus according to claim 7, further comprising a hydrogen gas injection device that injects a hydrogen-containing gas between the inlet flue and the catalyst unit. 水素を還元剤として請求項1〜6のいずれか1つに記載の窒素酸化物の分解触媒で排気ガスを処理して、前記排気ガス中の窒素酸化物を分解することを特徴とする窒素酸化物の分解方法。   Nitrogen oxidation, characterized in that exhaust gas is treated with a nitrogen oxide decomposition catalyst according to any one of claims 1 to 6 using hydrogen as a reducing agent to decompose nitrogen oxide in the exhaust gas. Decomposition method.
JP2007191084A 2007-07-23 2007-07-23 Nitrogen oxide decomposition catalyst, nitrogen oxide decomposition apparatus including the same, and nitrogen oxide decomposition method using the same Expired - Fee Related JP4535095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191084A JP4535095B2 (en) 2007-07-23 2007-07-23 Nitrogen oxide decomposition catalyst, nitrogen oxide decomposition apparatus including the same, and nitrogen oxide decomposition method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191084A JP4535095B2 (en) 2007-07-23 2007-07-23 Nitrogen oxide decomposition catalyst, nitrogen oxide decomposition apparatus including the same, and nitrogen oxide decomposition method using the same

Publications (2)

Publication Number Publication Date
JP2009022928A true JP2009022928A (en) 2009-02-05
JP4535095B2 JP4535095B2 (en) 2010-09-01

Family

ID=40395261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191084A Expired - Fee Related JP4535095B2 (en) 2007-07-23 2007-07-23 Nitrogen oxide decomposition catalyst, nitrogen oxide decomposition apparatus including the same, and nitrogen oxide decomposition method using the same

Country Status (1)

Country Link
JP (1) JP4535095B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203209A (en) * 2020-03-04 2020-05-29 中国科学院过程工程研究所 Embedded catalyst, preparation method thereof and reactor
KR20210000369A (en) * 2019-06-25 2021-01-05 한국화학연구원 IR-BASED CATALYST IMPROVED IN NOx REDUCTION PERFORMANCE BY H2 TREATMENT, NOx REDUCTION APPARATUS AND REDUCTION METHOD USING IR-BASED CATALYST IMPROVED IN NOx REDUCTION PERFORMANCE BY H2 TREATMENT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067642A (en) * 1992-04-14 1994-01-18 Toyota Central Res & Dev Lab Inc Method for removing nitrogen oxide
JP2000131273A (en) * 1998-10-22 2000-05-12 Tokyo Yogyo Co Ltd Hydrogen gas sensor
JP2001145820A (en) * 1999-11-22 2001-05-29 Mitsubishi Electric Corp Exhaust gas purifying device and exhaust gas purifying method
JP2002045699A (en) * 2000-08-08 2002-02-12 Mitsubishi Electric Corp Layer-structured electrochemical catalyst for exhaust gas cleaning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067642A (en) * 1992-04-14 1994-01-18 Toyota Central Res & Dev Lab Inc Method for removing nitrogen oxide
JP2000131273A (en) * 1998-10-22 2000-05-12 Tokyo Yogyo Co Ltd Hydrogen gas sensor
JP2001145820A (en) * 1999-11-22 2001-05-29 Mitsubishi Electric Corp Exhaust gas purifying device and exhaust gas purifying method
JP2002045699A (en) * 2000-08-08 2002-02-12 Mitsubishi Electric Corp Layer-structured electrochemical catalyst for exhaust gas cleaning

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210000369A (en) * 2019-06-25 2021-01-05 한국화학연구원 IR-BASED CATALYST IMPROVED IN NOx REDUCTION PERFORMANCE BY H2 TREATMENT, NOx REDUCTION APPARATUS AND REDUCTION METHOD USING IR-BASED CATALYST IMPROVED IN NOx REDUCTION PERFORMANCE BY H2 TREATMENT
KR102243898B1 (en) * 2019-06-25 2021-04-23 한국화학연구원 IR-BASED CATALYST IMPROVED IN NOx REDUCTION PERFORMANCE BY H2 TREATMENT, NOx REDUCTION APPARATUS AND REDUCTION METHOD USING IR-BASED CATALYST IMPROVED IN NOx REDUCTION PERFORMANCE BY H2 TREATMENT
CN111203209A (en) * 2020-03-04 2020-05-29 中国科学院过程工程研究所 Embedded catalyst, preparation method thereof and reactor
CN111203209B (en) * 2020-03-04 2021-12-14 中国科学院过程工程研究所 Embedded catalyst, preparation method thereof and reactor

Also Published As

Publication number Publication date
JP4535095B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
USRE39720E1 (en) Catalytic reduction of emissions from internal combustion engines
JP5614521B2 (en) Solid carbon decomposition type ceramic chemical reactor
KR101883088B1 (en) Method for exhaust gas aftertreatment and combustion system
JP5134132B2 (en) Electrochemical catalytic converter for controlling exhaust emissions
CN105102782A (en) On-site regeneration method for denitrification catalyst in exhaust gas purification systems
EP2231310A1 (en) Methods and systems including co oxidation catalyst with low no to no2 conversion
JP2009022929A (en) Nitrous oxide decomposition catalyst, nitrous oxide decomposition apparatus provided with the same, and nitrous oxide decomposition method using the same
JP2009125622A (en) Exhaust gas purification apparatus
Huang et al. Electrochemical enhancement of nitric oxide removal from simulated lean-burn engine exhaust via solid oxide fuel cells
JP2001170454A (en) Exhaust gas cleaning system and exhaust gas cleaning catalyst
TWI390104B (en) Thermally activated electrochemical-catalytic converter for exhaust emission control with power generation
JP4535095B2 (en) Nitrogen oxide decomposition catalyst, nitrogen oxide decomposition apparatus including the same, and nitrogen oxide decomposition method using the same
Huang et al. NOx emission control for automotive lean-burn engines by electro-catalytic honeycomb cells
JP6637724B2 (en) Engine system and method of operating engine system
JP3943300B2 (en) Exhaust gas purification apparatus and exhaust gas purification method
JP4704964B2 (en) NOx purification system and NOx purification method
JPH1085586A (en) Functional material, oxidizing catalyst, combustion catalyst, methanol modified catalyst and electrode catalyst
JP3948170B2 (en) Electrochemical catalyst for exhaust gas purification
WO2003078031A1 (en) Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide
Morgan 40 Years of Cleaner Air: The evolution of the autocatalyst
JPH10309462A (en) Nmhc oxidation catalyst in combustion waste gas and removing method thereof
JP2002121007A (en) Hydrogen generating device
RU2491993C1 (en) Catalytic block based on nickel foam and alloys thereof for purifying gases from organic compounds, including benzpyrenes, dioxins, nitrogen oxides, ammonia, carbon and ozone
JP3780763B2 (en) Electrochemical catalyst for exhaust gas purification
JP4521515B2 (en) Catalytic electrochemical reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees