JP2009022487A - Clothes dryer - Google Patents

Clothes dryer Download PDF

Info

Publication number
JP2009022487A
JP2009022487A JP2007187906A JP2007187906A JP2009022487A JP 2009022487 A JP2009022487 A JP 2009022487A JP 2007187906 A JP2007187906 A JP 2007187906A JP 2007187906 A JP2007187906 A JP 2007187906A JP 2009022487 A JP2009022487 A JP 2009022487A
Authority
JP
Japan
Prior art keywords
air
drying
humidifying
waterproof
clothes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007187906A
Other languages
Japanese (ja)
Inventor
Kunihiro Tsuruta
邦弘 鶴田
Hiromi Hirota
弘美 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007187906A priority Critical patent/JP2009022487A/en
Publication of JP2009022487A publication Critical patent/JP2009022487A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the finish of drying of clothes by inhibiting the static electricity and fixed creases. <P>SOLUTION: The clothes dryer has a humidifying means 18 for humidifying hot air to be fed into an inner tub 10. The humidifying means has a waterproof moisture-permeable film 20 with steam permeability to humidify drying air flowing in a hot-air channel through the waterproof moisture-permeable film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、衣類の静電気やシワ固着を抑え仕上がりを良くして乾燥を行う衣類乾燥機に関するものである。   The present invention relates to a clothes drier that performs drying by suppressing static electricity and wrinkle adhesion of clothes and improving the finish.

衣類乾燥機は、乾燥工程の進行中に被乾燥物に水蒸気を付与する構成が提案されており、図9はその概略を示す斜視図である(例えば、特許文献1参照)。筺体1の内部に、被乾燥物を収納する乾燥室2が回転軸を水平にして回転自在に配置されている。乾燥室2内に被乾燥物としての衣類が入れられた状態で運転を開始すると、モータ(図示せず)の回転により乾燥室2が正逆回転を繰り返して回転する。同時に、温風経路3を経由した後にヒータ4で加熱された温風が、送風機5により温風吹出口5aから、乾燥室2内の衣類に吹き出されて乾燥が行なわれる。   As for the clothes dryer, the structure which provides water vapor | steam to a to-be-dried object during progress of a drying process is proposed, and FIG. 9 is a perspective view which shows the outline (for example, refer patent document 1). Inside the housing 1, a drying chamber 2 for storing an object to be dried is disposed so as to be rotatable with the rotation axis being horizontal. When the operation is started in a state where clothes to be dried are put in the drying chamber 2, the drying chamber 2 is rotated in the forward and reverse rotations by the rotation of a motor (not shown). At the same time, the warm air heated by the heater 4 after passing through the warm air path 3 is blown out by the blower 5 from the warm air outlet 5a to the clothes in the drying chamber 2 for drying.

そして、衣類の水分を含んだ空気は、除湿機構6で冷却除湿された後、温風経路3を経由して再びヒータ4で加熱され乾燥室2に再び送り込まれる過程を繰り返して、乾燥が進行する。また、乾燥率が95%近くになると湿気供給手段7が動作して、霧状の水分が噴霧口7aから乾燥室2内の衣類に付与され、湿気を与えた状態で乾燥を進めることで、衣類の静電気やシワ固着を抑制し、乾燥終了後の仕上がり状態を良くしている。   The air containing the moisture of the clothes is cooled and dehumidified by the dehumidifying mechanism 6 and then heated again by the heater 4 via the hot air path 3 and sent again to the drying chamber 2 to dry the clothes. To do. Further, when the drying rate becomes close to 95%, the moisture supply means 7 operates, and mist-like moisture is applied to the clothes in the drying chamber 2 from the spraying port 7a, and by proceeding with drying in a state where moisture is applied, Static electricity and wrinkle sticking of clothing are suppressed, and the finished state after drying is improved.

湿気供給手段7は、超音波の高周波発信器を用いて振動子を振動させ霧の粒子を発生させる装置、或いは、水を吸い込むフィルターに空気を送風して水を自然蒸発させて霧の粒子を発生させる装置、或いは、ポンプにより拡散された水を壁に衝突させて霧の粒子を発生させる装置、或いは、加熱した熱板に水を滴下させて霧の粒子を発生させる装置などが考えられる。これらの装置は、超音波式、自然蒸発式、水スプレー式、伝熱式などに大別され、発生する霧の水蒸気径は、数10〜100μmで、特別に構成等を工夫すると数μmまで低減すると言われている。
特開2003−311098号公報
The moisture supply means 7 is a device that vibrates a vibrator using an ultrasonic high-frequency transmitter to generate mist particles, or air is blown to a filter that sucks water to naturally evaporate the water. A device that generates water, a device that causes water diffused by a pump to collide with a wall to generate mist particles, a device that drops water on a heated hot plate, and generates mist particles are considered. These devices are roughly classified into ultrasonic, natural evaporation, water spray, heat transfer, etc. The water vapor diameter of the generated mist is from several tens to 100 μm, and up to several μm if the configuration is specially devised. It is said to reduce.
JP 2003-311098 A

従来の衣類乾燥機は、ドラム内に収納された衣類に、湿気供給手段を用いて湿度を高めた温風を吹き付けて衣類を乾燥させ、衣類の静電気やシワ固着を抑え肌触りを良くしているが、その仕上がり特性の更なる向上が求められていた。衣類乾燥機においてその仕上がり特性を更に向上させるには、大風量(数m/分)の温風に多量の水蒸気を均一に分散させる必要があり、しかもランニングコストが安いうえに炭酸カルシウム等の微粉末の飛散がなく、得られる水蒸気は衣類への浸透力の高い0.数ミクロン〜ナノサイズ径が好ましく、これを実現できる湿気供給手段が求められる。 Conventional clothes dryers dry clothes by blowing hot air with increased humidity using moisture supply means on the clothes stored in the drum, thereby reducing the static electricity and wrinkle sticking of the clothes to improve the touch. However, further improvement in the finished characteristics has been demanded. In order to further improve the finishing characteristics of clothes dryers, it is necessary to uniformly disperse a large amount of water vapor in hot air with a large air volume (several m 3 / min), and the running cost is low and calcium carbonate, etc. There is no scattering of fine powder, and the resulting water vapor has a high osmotic power into clothing. A diameter of several microns to a nano size is preferable, and a moisture supply means capable of realizing this is required.

従来の湿気供給手段は、超音波式はイニシャルコストが嵩むうえに水中の雑菌が飛散し易い、自然蒸発式は加湿能力が小さい、水スプレー式は加湿効率が低く大型になる、伝熱式は電気代のランニングコストが嵩むうえに炭酸カルシウム等の微粉末が飛散する等の課題がある。また、これらどの方式も、大規模で複雑な装置を使用しないと多量の水蒸気を温風内に均一に分散できない問題がある。そのため、これら課題を解決した衣類乾燥機用の湿気供給手段が求められていた。   The conventional moisture supply means is that the ultrasonic method has high initial cost and is easy to disperse germs in the water, the natural evaporation method has a small humidification capacity, the water spray method has a low humidification efficiency and a large size, the heat transfer method There are problems such as increased running costs for electricity bills and scattering of fine powders such as calcium carbonate. In addition, any of these methods has a problem that a large amount of water vapor cannot be uniformly dispersed in the hot air unless a large-scale and complicated apparatus is used. Therefore, there has been a demand for moisture supply means for clothes dryers that solves these problems.

本発明は、前記課題を解決するもので、簡単な構成の加湿手段により、衣類の静電気やシワ固着を抑えて仕上がり性を良くすることを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described problems, and an object of the present invention is to improve the finish by suppressing static electricity and wrinkle adhesion of clothing by a humidifying means having a simple configuration.

前記従来の課題を解決するために、本発明の衣類乾燥機は、内槽へ供給する温風を加湿する加湿手段を備え、前記加湿手段は、水蒸気透過性を有する防水透湿性膜を有し、前記防水透湿性膜を通して前記内槽へ供給される乾燥用空気を加湿するようにしたものである。   In order to solve the conventional problem, the clothes dryer of the present invention includes a humidifying means for humidifying the warm air supplied to the inner tub, and the humidifying means has a waterproof moisture-permeable membrane having water vapor permeability. The drying air supplied to the inner tank through the waterproof and moisture permeable membrane is humidified.

これによって、防水透湿性膜は、0.数ミクロン〜ナノサイズの微細貫通孔が無数に設けられた多孔膜であり、両側の蒸気圧差によって水蒸気のみが微細貫通孔を経由して低蒸気圧側へ移動することにより、温風に0.数ミクロン〜ナノサイズの水蒸気を含ませることができるものである。このため、この水蒸気を含む温風を衣類に送風すると、浸透力の高い0.数ミクロン〜ナノサイズの水蒸気が衣類繊維束の内部まで浸透でき、衣類の静電気やシワ固着を更に抑え仕上がり性を一層良くすることができる。   As a result, the waterproof and moisture permeable membrane has a thickness of 0. 0. It is a porous film provided with an infinite number of fine through-holes of several microns to nano-size, and only water vapor moves to the low vapor pressure side via the fine through-holes due to the vapor pressure difference on both sides, so It can contain water vapor of several microns to nano size. For this reason, when this warm air containing water vapor is blown to the clothing, the osmotic force is high. Water vapor of several microns to nano size can penetrate into the inside of the clothing fiber bundle, and can further improve the finishing performance by further suppressing static electricity and wrinkle fixation of the clothing.

また、加湿手段は、防水透湿性膜を用いた自然蒸発式であるので接水面積を広くした簡単な構成とすることができ、このことで、加湿能力を高くできるうえに、大規模な装置を必要せずに0.数ミクロンからナノサイズの多量の水蒸気を温風内に均一に分散することが簡単にできしかも、雑菌や炭酸カルシウムの飛散がなくて清潔であり加湿に要するランニングコストも他手段より安くなる。   In addition, the humidifying means is a natural evaporation type using a waterproof and moisture permeable membrane, so it can have a simple structure with a wide water contact area. 0 is not required. A large amount of water vapor of several microns to nano size can be easily dispersed uniformly in the warm air, and it is clean and free of running bacteria and calcium carbonate, and the running cost required for humidification is lower than other means.

本発明の衣類乾燥機は、衣類の静電気やシワ固着を抑えて、仕上がり性を良くすることができる。   The clothes dryer of the present invention can improve the finish by suppressing static electricity and wrinkle sticking of clothes.

第1の発明は、筐体と、前記筐体内に配置されその内部空間に衣類を収容する内槽と、前記内槽を回転させる駆動装置と、乾燥用空気の除湿を行う除湿手段と、前記除湿手段で除湿した空気を加熱する加熱手段と、前記除湿手段の下流側に配置し前記内槽へ供給する温風を加湿する加湿手段と、前記内槽から前記除湿手段および加熱手段を経て前記内槽へ乾燥用空気を循環させる送風ダクトと、前記送風ダクト内に乾燥用空気を送風する送風手段と、前記加湿手段を制御する制御手段とを備え、前記加湿手段は、水蒸気透過性を有する防水透湿性膜を有し、前記防水透湿性膜を通して前記内槽へ供給される乾燥用空気を加湿するようにしたものである。防水透湿性膜は、0.数ミクロン〜ナノサイズの微細貫通孔が無数に設けられた多孔膜であり、両側の蒸気圧差によって水蒸気のみが微細貫通孔を経由して低蒸気圧側へ移動することにより、温風に0.数ミクロン〜ナノサイズの水蒸気を含ませることができる材料である。このため、この水蒸気を含む温風を衣類に送風することで、浸透力の高い0.数ミクロン〜ナノサイズの水蒸気が衣類繊維束の内部まで浸透でき、衣類の静電気やシワ固着を更に抑え仕上がり性を一層良くすることができる。   According to a first aspect of the present invention, there is provided a housing, an inner tub disposed in the housing and housing clothing in the interior space, a driving device for rotating the inner tub, dehumidifying means for dehumidifying drying air, Heating means for heating the air dehumidified by the dehumidifying means, humidifying means for humidifying the warm air supplied to the inner tank disposed downstream of the dehumidifying means, the dehumidifying means and the heating means from the inner tank, An air duct that circulates drying air to the inner tank; an air blowing means that blows the air for drying into the air duct; and a control means that controls the humidifying means, the humidifying means having water vapor permeability. A waterproof and moisture permeable membrane is provided, and the drying air supplied to the inner tank through the waterproof and moisture permeable membrane is humidified. The waterproof and breathable membrane is 0. It is a porous film provided with an infinite number of fine through-holes of several microns to nano-size, and only water vapor moves to the low vapor pressure side via the fine through-holes due to the vapor pressure difference on both sides, so It is a material that can contain water vapor of several microns to nano size. For this reason, by sending warm air containing water vapor to clothing, it has a high penetrating power of 0. 0. Water vapor of several microns to nano size can penetrate into the inside of the clothing fiber bundle, and can further improve the finishing performance by further suppressing static electricity and wrinkle fixation of the clothing.

第2の発明は、特に、第1の発明の加湿手段は、水蒸気透過性を有する防水透湿性膜と、前記防水透湿性膜の片面側に設けて送風ダクトと連通する温風流路と、前記防水透湿性膜によって分離された他面側に設けた水流路を有し、前記水流路を流れる水から前記防水透湿性膜を通して温風流路を流れる乾燥用空気を加湿するようにしたものである。加湿手段は、防水透湿性膜を用いた自然蒸発式であるので接水面積を広くした簡単な構成とすることができこのことで、加湿能力を高くできるうえに、大規模な装置を必要せずに0.数ミクロンからナノサイズの水蒸気を温風内に均一に分散することが簡単にできしかも、雑菌や炭酸カルシウムの飛散がなくて清潔であり加湿に要するランニングコストも他手段より安くなる。   In the second invention, in particular, the humidifying means of the first invention comprises a waterproof and moisture permeable membrane having water vapor permeability, a hot air flow path provided on one side of the waterproof and moisture permeable membrane and communicating with the air duct, It has a water channel provided on the other side separated by a waterproof and moisture permeable membrane, and humidifies the drying air flowing through the warm air channel through the waterproof and moisture permeable membrane from the water flowing through the water channel. . Since the humidifying means is a natural evaporation type using a waterproof and moisture permeable membrane, it can have a simple configuration with a wide water contact area, which can increase the humidifying capacity and requires a large-scale device. 0. It is easy to uniformly disperse water vapor of several micron to nano size in the hot air, and it is clean and free of running bacteria and calcium carbonate, and the running cost required for humidification is lower than other means.

第3の発明は、特に、第2の発明の加湿手段は、水流路を流れる水と、温風流路を流れる乾燥用空気が防水透湿性膜の表面に沿って流れるようにしたことにより、水と乾燥用空気が防水透湿性膜と接触する面積を広くでき加湿能力を高めることができる。   According to a third aspect of the invention, in particular, the humidifying means according to the second aspect of the invention is characterized in that the water flowing through the water flow path and the drying air flowing through the hot air flow path flow along the surface of the waterproof and moisture permeable membrane. In addition, it is possible to widen the area where the drying air comes into contact with the waterproof and moisture permeable membrane, and to increase the humidifying ability.

第4の発明は、特に、第2または第3の発明の加湿手段は、水流路を流れる流水方向を、温風流路を流れる乾燥用空気の送風方向と逆方向に設定したことにより、乾燥用空気への加湿能力を高めることができる。   According to a fourth aspect of the invention, in particular, the humidifying means of the second or third aspect of the invention is for drying by setting the flow direction of the water flowing through the water flow path to a direction opposite to the blowing direction of the drying air flowing through the hot air flow path. The ability to humidify the air can be increased.

第5の発明は、特に、第1の発明の制御手段は、加湿手段の動作時に除湿手段の除湿能力を低下または動作を停止させるようにしたことにより、温風に含まれる水蒸気量が増加し、加湿手段から発生する水蒸気量が少なくてすむ。そのため、これを構成する防水透湿性膜の表面積が小さくてすみ、加湿手段が小型化できる。   In the fifth invention, in particular, the control means of the first invention reduces the dehumidifying capacity of the dehumidifying means during operation of the humidifying means or stops the operation, so that the amount of water vapor contained in the hot air increases. The amount of water vapor generated from the humidifying means can be reduced. Therefore, the surface area of the waterproof and moisture permeable membrane constituting this can be small, and the humidifying means can be miniaturized.

第6の発明は、特に、第1の発明の除湿手段の上流側と下流側の送風ダクトを接続するバイパス送風ダクトと、前記除湿手段の上流側で前記送風ダクトと前記バイパス送風ダクトの分岐部に設けた流路切替手段を設け、制御手段は、加湿手段の動作時に内槽から出た乾燥用空気を前記バイパス送風ダクトへ流すようにしたことにより、内槽から出た湿度の高い乾燥用空気を除湿することなく加湿手段への供給することができるので、内槽へ供給する乾燥用空気の水蒸気量を多くすることができる。   In particular, the sixth invention relates to a bypass air duct that connects the upstream and downstream air ducts of the dehumidifying means of the first invention, and a branch portion between the air duct and the bypass air duct on the upstream side of the dehumidifying means. The flow path switching means provided in the control unit is configured to flow the drying air that has been discharged from the inner tank to the bypass air duct when the humidifying means is in operation. Since the air can be supplied to the humidifying means without dehumidifying, the amount of water vapor in the drying air supplied to the inner tank can be increased.

以下、本発明の実施の形態を、図面を参照しながら説明する。なお、本発明の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by the form of this invention.

(実施の形態1)
図1は、本発明の第1の実施の形態における衣類乾燥機の断面図、図2は、加湿手段の断面図である。衣類乾燥機は、筐体9内に衣類を収納する内槽10が配置されており、駆動装置11により回転自在に駆動するように支持されている。また、内槽10には送風ダクト12が設けられており、その入口部13から、加熱手段14により加熱された約70℃の温風を送風手段15により供給して衣類等の乾燥をおこない、その出口部16から、衣類からの水分を含んだ排気空気を流出して、除湿手段17で除湿して再び、加熱手段14と送風手段15で再加熱風を送風して内槽10に流入させる循環流路を形成している。除湿手段17の下流側には、衣類に送風する温風を加湿する加湿手段18が配置されており、制御手段19により、加湿手段18の加湿動作を制御している。
(Embodiment 1)
FIG. 1 is a sectional view of a clothes dryer according to the first embodiment of the present invention, and FIG. 2 is a sectional view of a humidifying means. In the clothes dryer, an inner tub 10 for storing clothes is disposed in a housing 9 and is supported by a drive device 11 so as to be rotatably driven. Also, the inner tub 10 is provided with a blower duct 12, and from the inlet portion 13, hot air of about 70 ° C. heated by the heating means 14 is supplied by the blower means 15 to dry clothes and the like, Exhaust air containing moisture from the clothes flows out from the outlet portion 16, dehumidifies by the dehumidifying means 17, and reheated air is blown again by the heating means 14 and the blowing means 15 to flow into the inner tank 10. A circulation channel is formed. On the downstream side of the dehumidifying means 17, a humidifying means 18 for humidifying the warm air blown to the clothing is arranged, and the humidifying operation of the humidifying means 18 is controlled by the control means 19.

次に、加湿手段18の構成について図2で説明する。加湿手段18は、防水性と水蒸気透過性を有する防水透湿性膜20を介して、その片面側に送風ダクト12の温風が通過する温風流路21を設け、他面側に水が流れる水流路22を各々配置した構造体である。制御手段19からの指令により水流路開閉手段23が開くと、水が水流路22に流入し防水透湿性膜20を介して水蒸気が温風流路21を流れる温風に移動して、温風の加湿をおこなう。この様にして加湿された温風は、内槽10へ供給され収納した衣類の加湿をおこなう。   Next, the configuration of the humidifying means 18 will be described with reference to FIG. The humidifying means 18 is provided with a warm air flow passage 21 through which the warm air of the blower duct 12 passes on one side thereof through a waterproof and moisture permeable membrane 20 having waterproofness and water vapor permeability, and a water flow in which water flows on the other side. This is a structure in which the paths 22 are arranged. When the water flow path opening / closing means 23 is opened by a command from the control means 19, water flows into the water flow path 22 and the water vapor moves to the warm air flowing through the warm air flow path 21 via the waterproof moisture permeable membrane 20, Humidify. The warm air humidified in this manner humidifies the clothes supplied to and stored in the inner tub 10.

加湿動作を停止する場合は、制御手段19から水流路開閉手段23を閉じる指令により水が水流路22に流入を停止する。水流路22に水がなくなることで水蒸気が温風流路21に移動せず加湿が停止する。この動作を円滑に推進するため、水流路22は垂直もしくは斜めとした構造が望ましく、流入した水を速やかに水流路22外に移動させて加湿を停止する。   When stopping the humidification operation, water stops flowing into the water flow path 22 by a command from the control means 19 to close the water flow path opening / closing means 23. As the water flow path 22 runs out of water, the steam does not move to the hot air flow path 21 and humidification stops. In order to smoothly promote this operation, the water channel 22 is preferably a vertical or oblique structure, and the inflowing water is quickly moved out of the water channel 22 to stop humidification.

また、水流路22を流れる水を加熱した温水にすると、防水透湿性膜20を介して温風流路21側に移動する水蒸気の量が増加し、加湿量の増大が図れる。また、この構造体を多数組み合わせて防水透湿性膜20の表面積を増大させ、温風流路21側に移動する水蒸気の量を増加させる構成としても良い。なお、防水透湿性膜20は、その周囲をゴムなどの弾性材料20aで気密シールして加湿手段18の構造体に収納されている。   Moreover, when the water flowing through the water flow path 22 is heated to heated water, the amount of water vapor that moves to the warm air flow path 21 side through the waterproof and moisture permeable membrane 20 increases, and the amount of humidification can be increased. Moreover, it is good also as a structure which increases the amount of the water vapor | steam moving to the warm air flow path 21 side by combining many structures and increasing the surface area of the waterproof moisture-permeable film 20 side. The waterproof and moisture permeable membrane 20 is housed in the structure of the humidifying means 18 with its periphery sealed with an elastic material 20a such as rubber.

また、加湿手段18は、水流路22を流れる水と、温風流路21を流れる乾燥用空気が防水透湿性膜20の表面に沿って流れるようにしており、水と乾燥用空気が防水透湿性膜20と接触する面積を広くでき加湿能力を高めることができる。   Further, the humidifying means 18 is configured such that the water flowing through the water flow path 22 and the drying air flowing through the hot air flow path 21 flow along the surface of the waterproof and moisture permeable membrane 20 so that the water and the drying air are waterproof and moisture permeable. The area in contact with the membrane 20 can be widened, and the humidification ability can be increased.

また、加湿手段18は、水流路22を流れる流水方向を、温風流路21を流れる乾燥用空気の送風方向と逆方向となるように設定しており、流速を加速させて乾燥用空気への加湿能力を高めることができる。   Further, the humidifying means 18 is set so that the flowing water direction through the water flow path 22 is opposite to the blowing direction of the drying air flowing through the hot air flow path 21, and the flow velocity is accelerated to the drying air. Humidification ability can be increased.

防水透湿性膜20は、水不透過で水蒸気透過性の膜であることが必要で、加湿用水は透過させないが、水蒸気を透過して温風を加湿するものであれば使用できる。例えば、無孔質透湿性樹脂膜、疎水性多孔質膜、高分子多孔質膜に無孔質透湿性樹脂を含浸させたもの、高分子多孔質膜に無孔質透湿性樹脂を積層させたもの、繊維等の基材に形状記憶ポリマーを含浸または積層されたもの、高分子多孔質膜の多孔質体骨格表面を撥水性および撥油性を有する有機ポリマーで被覆しかつ連続孔を残したもの等を使用することができる。   The waterproof and moisture permeable membrane 20 needs to be a water-impermeable and water-vapor permeable membrane, and does not allow the humidification water to pass through, but can be used as long as it transmits water vapor and humidifies warm air. For example, a nonporous moisture-permeable resin film, a hydrophobic porous film, a polymer porous film impregnated with a nonporous moisture-permeable resin, or a nonporous moisture-permeable resin laminated on a polymer porous film , Fibers and other base materials impregnated or laminated with shape memory polymer, porous polymer skeleton surface of porous polymer membrane is covered with water- and oil-repellent organic polymer, leaving continuous pores Etc. can be used.

このような防水性透湿性膜の具体例は、疎水多孔質膜あるいは高分子多孔質膜の材質としてはポリテトラフルオロエチレン(PTFE)が好ましい。無孔質透湿性樹脂としてはポリウレタンが好ましい。撥水性および撥油性を有する有機ポリマーとしては、フルオロアルキルアクリレート、フルオロアルキルメタクリレート、フルオロアクリレート/テトラフルオロエチレン共重合体、フルオロアクリレート/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体、また4Fポリマー(デュポン社)、サイトップ(旭硝子社)等を用いることができる。防水透湿性膜の透湿度は2千〜15万g/m・day、より好ましくは5千〜1万5千g/m・day程度あった方がよい。 In a specific example of such a waterproof moisture-permeable membrane, polytetrafluoroethylene (PTFE) is preferable as the material of the hydrophobic porous membrane or the polymer porous membrane. Polyurethane is preferable as the nonporous moisture-permeable resin. Examples of the organic polymer having water repellency and oil repellency include fluoroalkyl acrylate, fluoroalkyl methacrylate, fluoroacrylate / tetrafluoroethylene copolymer, fluoroacrylate / hexafluoropropylene / tetrafluoroethylene copolymer, and 4F polymer (DuPont). ), Cytop (Asahi Glass Co., Ltd.) and the like can be used. The moisture permeability of the waterproof and moisture permeable membrane should be about 2,000 to 150,000 g / m 2 · day, more preferably about 5,000 to 15,000 g / m 2 · day.

加湿手段18の種別がシワ固着に及ぼす影響を検討した。その結果を(表1)に示す。   The effect of the type of humidifying means 18 on wrinkle fixation was examined. The results are shown in (Table 1).

Figure 2009022487
Figure 2009022487

本発明の様に防水透湿性膜20を用いて微少サイズ(径が0.数ミクロン)の水蒸気を温風に含ませる方が、従来の様に大サイズ(径が数10ミクロン)の霧の粒子を発生させるより、シワ固着が少なかった。また、本発明の様に防水透湿性膜20を用いた加湿手段18は、従来と比較して、雑菌や炭酸カルシウムの飛散がなくて清潔であり、ランニングコストも安い手段である。   As in the present invention, the use of a waterproof / breathable membrane 20 to contain water vapor of a small size (diameter of several microns) in hot air is more effective than conventional mist of large size (diameters of several tens of microns). There was less wrinkle sticking than generating particles. In addition, the humidifying means 18 using the waterproof and moisture permeable membrane 20 as in the present invention is a means that is free from scattering of germs and calcium carbonate and is low in running cost, as compared with the prior art.

この理由は、次の様に考えられる。綿衣類を構成するセルロース系繊維に対し、微少サイズの水蒸気処理を施すと、水蒸気がセルロース系繊維の表面から内部まで浸透し、セルロース系繊維の非結晶部位もしくは擬結晶部位のセルロース分子に存在しているファンデルワールス力や水素結合といった分子間および分子内の相互作用が一時的に切断されるため、分子間および分子内の歪みが一旦緩和される。またこれら歪みの緩和と同時に、水蒸気によるエネルギー付与により、セルロース系繊維の非結晶部位もしくは擬結晶部位の結晶化が進行するので、繊維が持っていた歪み(シワ)を除去でき、歪みのない(シワのない)構造を保持するためと思われる。   The reason is considered as follows. When cellulose-based fibers that make up cotton garments are subjected to water vapor treatment of minute size, water vapor penetrates from the surface to the inside of the cellulosic fibers and is present in the cellulose molecules at the non-crystalline or pseudo-crystalline sites of the cellulosic fibers. Intermolecular and intramolecular interactions such as van der Waals forces and hydrogen bonds are temporarily broken, so that intermolecular and intramolecular strains are once relaxed. Simultaneously with the relaxation of these strains, the application of energy by water vapor promotes the crystallization of the non-crystalline or pseudo-crystalline parts of the cellulosic fibers, so that the strains (wrinkles) that the fibers have can be removed and there is no distortion ( It seems to preserve the structure without wrinkles.

一方、水蒸気のサイズが大きいと、水蒸気がセルロース系繊維の表面から内部まで浸透しないので、分子間および分子内の歪みが緩和され難いうえに、セルロース系繊維の非結晶部位もしくは擬結晶部位の結晶化が進行し難いので、繊維が持っていた歪み(シワ)を除去し難く、歪みが付いた(シワが付いた)構造をそのまま保持するためと思われる。   On the other hand, if the size of the water vapor is large, the water vapor does not penetrate from the surface to the inside of the cellulosic fiber, so that distortion between molecules and within the molecule is difficult to relax, and crystals in the non-crystalline part or pseudo-crystal part of the cellulosic fiber. It is difficult to remove the strain (wrinkles) that the fiber had because it was difficult to progress, and it seems to retain the strained (wrinkled) structure as it is.

加熱手段14は電気ヒータ、送風手段15は送風ファン、除湿手段17は空気冷却ファンや水冷熱交換器などを使用する。また、ヒートポンプを用いて放熱側熱交換器と吸熱側熱交換器を加熱手段14と除湿手段17として使用してもよい。   The heating means 14 uses an electric heater, the blowing means 15 uses a blowing fan, and the dehumidifying means 17 uses an air cooling fan or a water-cooled heat exchanger. Moreover, you may use the thermal radiation side heat exchanger and the thermal absorption side heat exchanger as the heating means 14 and the dehumidification means 17 using a heat pump.

内槽10は、例えば47rpm等の一定回転数で正転および逆転を略同等時間ずつ繰り返す回転シーケンスで回転して乾燥をおこなったが、これ以外の回転形態でも良好な衣類静電気やシワの低減効果が得られており、例えば、内槽10に衣類を投入してその外周最下部を起点と設定し、この設定起点が外周最下部から左右に各々30〜60度移動する正回転と逆回転が多数繰り返されるシーケンスでも、優れた衣類静電気やシワの低減効果が得られた。   The inner tub 10 is dried by rotating in a rotation sequence that repeats forward rotation and reverse rotation at a constant rotation speed, such as 47 rpm, for approximately the same time period. However, even in other rotation modes, the clothes static electricity and wrinkle can be reduced effectively. For example, the clothes are put into the inner tub 10 and the lowermost part of the outer periphery is set as a starting point, and the set starting point is moved forward and backward by 30 to 60 degrees from the lowermost part of the outer periphery to the left and right. Even with a large number of repeated sequences, excellent static electricity and wrinkle reduction effects were obtained.

(実施の形態2)
第2の実施の形態は、加湿手段18の動作時に除湿手段17の除湿能力を低下または動作を停止させるようにしたものである。他の構成は実施の形態1と同じであり、説明を省略する。この構成によれば、除湿手段17による除湿量が低減、あるいは、除湿しなくなるので、温風に含まれる水蒸気量が増加し、加湿手段18から発生する水蒸気量が少なくてすむ。そのため、これを構成する防水透湿性膜20の表面積が小さくてすみ、加湿手段が小型化できる。
(Embodiment 2)
In the second embodiment, the dehumidifying capability of the dehumidifying means 17 is reduced or the operation is stopped when the humidifying means 18 is operated. Other configurations are the same as those of the first embodiment, and the description thereof is omitted. According to this configuration, the amount of dehumidification by the dehumidifying unit 17 is reduced or no dehumidification is performed, so that the amount of water vapor contained in the hot air increases and the amount of water vapor generated from the humidifying unit 18 can be reduced. Therefore, the surface area of the waterproof and moisture permeable membrane 20 constituting this can be small, and the humidifying means can be miniaturized.

(実施の形態3)
図3は、第3の実施の形態における衣類乾燥機の断面図である。除湿手段17の上流側と下流側の送風ダクト12を接続して非除湿空気を流すバイパス送風ダクト24を設けたものである。送風ダクト12とバイパス送風ダクト24の分岐部にその送風量を調整する流路切替手段25を配置している。加湿手段18が加湿動作している時は、流路切替手段25を動作させて内槽10から出た乾燥用空気をバイパス送風ダクト24へと流し、除湿手段17で除湿されていない非除湿空気を加湿手段18へ流して加湿温風を衣類に送風するようにしている。
(Embodiment 3)
FIG. 3 is a cross-sectional view of a clothes dryer according to the third embodiment. A bypass air duct 24 is provided in which the upstream and downstream air ducts 12 of the dehumidifying means 17 are connected to flow non-dehumidified air. A flow path switching means 25 for adjusting the amount of air flow is disposed at a branch portion between the air duct 12 and the bypass air duct 24. When the humidifying means 18 is performing a humidifying operation, the flow path switching means 25 is operated so that the drying air that has flowed out of the inner tub 10 flows into the bypass air duct 24 and is not dehumidified by the dehumidifying means 17. Is sent to the humidifying means 18 so that the humidified warm air is blown to the clothing.

この構成よれば、除湿量が低減するので温風に含まれる水蒸気量が増加し、加湿手段18から発生する水蒸気量が少なくてすむ。そのため、これを構成する防水透湿性膜20の表面積が小さくてすみ、加湿手段18が小型化できる。   According to this configuration, since the dehumidifying amount is reduced, the amount of water vapor contained in the warm air is increased, and the amount of water vapor generated from the humidifying means 18 can be reduced. Therefore, the surface area of the waterproof and moisture permeable membrane 20 constituting this can be small, and the humidifying means 18 can be miniaturized.

(実施の形態4)
図4は、第4の実施の形態における加湿手段の動作を示すタイムチャート、図5は、そのフローチャートを示したものである。
(Embodiment 4)
FIG. 4 is a time chart showing the operation of the humidifying means in the fourth embodiment, and FIG. 5 is a flowchart thereof.

内槽10に収納された衣類の布量を検知する布量検知手段26により、運転開始時に布量を検知する。布量検知手段26の出力に基いて衣類乾燥率(X1〜X2)に対応する乾燥到達時間(T1〜T2)が設定されており、制御手段19は、乾燥運転を開始してから乾燥到達時間(T1〜T2)が経過したときに、除湿手段17の下流側に配置した加湿手段19を動作させ、送風ダクト12を循環する乾燥用空気を加湿して内槽10へ送風する。なお、乾燥が終了した衣類は、開閉自在のドアから取り出され、新たに乾燥をおこなう場合は、ドアを開いて衣類が内槽10に収納される。   The cloth amount is detected at the start of operation by the cloth amount detecting means 26 for detecting the cloth amount of the clothes stored in the inner tub 10. The drying arrival time (T1 to T2) corresponding to the clothes drying rate (X1 to X2) is set based on the output of the cloth amount detection means 26, and the control means 19 starts the drying operation and then reaches the drying arrival time. When (T1 to T2) has elapsed, the humidifying means 19 disposed on the downstream side of the dehumidifying means 17 is operated to humidify the drying air circulating in the blower duct 12 and blow it to the inner tank 10. The clothes that have been dried are taken out from the door that can be freely opened and closed. When drying is newly performed, the doors are opened and the clothes are stored in the inner tub 10.

駆動装置11に布量検知手段26を設けた衣類乾燥機の加湿動作を図5に示したフローチャートで説明する。衣類を内槽10内に収納してドアを閉じ、電源を投入すると、動作プログラムがスタートする。最初のS1において、布量検知手段26が作動し、S2では、乾燥運転の開始前に駆動装置11を作動させて内槽10を短時間回転させ、布量検知手段26によりその回転度合いに関する電気信号(例えば、モータ回転速度、発生トルク、回転角度、モータ電流等)から、衣類の布量を検知する。次に、S3に進み、予め実験で得た、衣類布量と設定乾燥率到達時間(低乾燥率X1の到達時間T1、高乾燥率X2の到達時間T2)の関係式が呼び出される。そして、S4で低乾燥率X1の到達時間T1と、高乾燥率X2の到達時間T2が決定される。   The humidifying operation of the clothes dryer provided with the cloth amount detecting means 26 in the driving device 11 will be described with reference to the flowchart shown in FIG. When the clothes are stored in the inner tub 10 and the door is closed and the power is turned on, the operation program starts. In the first S1, the cloth amount detecting means 26 is operated, and in S2, the driving device 11 is operated before the drying operation is started to rotate the inner tub 10 for a short time. The amount of clothes is detected from a signal (for example, motor rotation speed, generated torque, rotation angle, motor current, etc.). Next, the process proceeds to S3, and a relational expression between the amount of clothing cloth and the set drying rate arrival time (arrival time T1 of the low drying rate X1, arrival time T2 of the high drying rate X2) obtained in advance by an experiment is called. In S4, the arrival time T1 of the low drying rate X1 and the arrival time T2 of the high drying rate X2 are determined.

この到達時間T1およびT2の決定が行なわれると、S5に進んで乾燥経過時間Tを計測する時計が作動し、同時にS6に進んで、乾燥運転が行なわれる。乾燥運転は、通常は、回転する内槽10に、送風ダクト12の入口部13から、加熱手段14と送風手段15により加熱された約70℃の温風を供給している。そして、内槽10の出口部16から、衣類からの水分を含んだ排気空気を流出し、除湿手段17で除湿して再び加熱手段14と送風手段15に戻して温風を送風して、衣類の乾燥をおこなっている。   When the arrival times T1 and T2 are determined, the process proceeds to S5 to operate the timepiece for measuring the elapsed drying time T, and simultaneously proceeds to S6 to perform the drying operation. In the drying operation, normally, hot air of about 70 ° C. heated by the heating means 14 and the air blowing means 15 is supplied to the rotating inner tank 10 from the inlet portion 13 of the air duct 12. Then, exhaust air containing moisture from the clothes flows out from the outlet portion 16 of the inner tub 10, dehumidifies by the dehumidifying means 17, is returned to the heating means 14 and the blowing means 15, and blows warm air. Is drying.

衣類の乾燥が行なわれるとS7に進み、乾燥経過時間Tと低乾燥率X1の到達時間T1の比較が行なわれる。そして、乾燥経過時間Tが、低乾燥率X1の到達時間T1と等しいもしくは大きくなるとS8に進み、加湿手段18が動作して、加湿温風が衣類に送風される。そして同時にS9に進み、乾燥経過時間Tと高乾燥率X2の到達時間T2の比較が行なわれる。そして、乾燥経過時間Tが、高乾燥率X2の到達時間T2と等しいもしくは大きくなるとS10に進み、加湿手段18の動作が停止して、温風のみが衣類に送風される。そして最後はS11に進み、送風ダクト12の内部空間に配置した温度センサ(温度検知手段)27からの出力によって、乾燥が終了したと判断されるとさらにS12に進み、乾燥運転が停止する。   When the clothes are dried, the process proceeds to S7, where the drying elapsed time T and the arrival time T1 of the low drying rate X1 are compared. When the drying elapsed time T is equal to or longer than the arrival time T1 of the low drying rate X1, the process proceeds to S8, the humidifying means 18 operates, and the humidified warm air is blown to the clothing. At the same time, the process proceeds to S9, where the elapsed drying time T and the arrival time T2 of the high drying rate X2 are compared. When the elapsed drying time T is equal to or longer than the arrival time T2 of the high drying rate X2, the process proceeds to S10, the operation of the humidifying means 18 is stopped, and only warm air is blown to the clothing. Finally, the process proceeds to S11, and if it is determined that the drying is completed by the output from the temperature sensor (temperature detection means) 27 disposed in the internal space of the air duct 12, the process further proceeds to S12, and the drying operation is stopped.

以上のように制御手段19は、乾燥運転の開始前に駆動装置11により内槽10を回転させた際の回転度合いを基にして、布量検知手段26が検知した衣類の布量から各々の衣類乾燥率に対応する乾燥到達時間(乾燥率到達時間)を算出するようにしたものである。   As described above, the control means 19 determines each of the cloth amounts detected by the cloth amount detection means 26 based on the degree of rotation when the inner tub 10 is rotated by the driving device 11 before the drying operation is started. The drying arrival time (drying rate arrival time) corresponding to the clothes drying rate is calculated.

以下、その詳細について説明する。検討は、衣類乾燥率を80%および98%に設定した事例でおこなった。内槽10に綿衣類3kgを収納して乾燥をおこなった効果特性を図6に示す。図6(a)は、加湿温風を衣類に送風しない通常の乾燥(温風のみを送風)において、乾燥経過時間と衣類乾燥率の関係を測定した結果である。時間が経過すると衣類乾燥率が高くなり、乾燥が進んでいることがわかる。また、この乾燥経過時間と衣類乾燥率の関係を基にして、所定の乾燥率に対応する乾燥到達時間を予め求めた。   The details will be described below. The examination was conducted in the case where the clothes drying rate was set to 80% and 98%. FIG. 6 shows effect characteristics obtained by storing 3 kg of cotton clothes in the inner tub 10 and drying. FIG. 6A shows the result of measuring the relationship between the drying time and the clothes drying rate in normal drying (only hot air is blown) in which humidified warm air is not blown to the clothes. It can be seen that the drying rate of clothes increases with time, and the drying is progressing. Further, based on the relationship between the drying elapsed time and the clothing drying rate, a dry arrival time corresponding to a predetermined drying rate was obtained in advance.

図6(b)は、布量検知手段26が乾燥開始前に駆動装置11を作動させて、衣類を収納した内槽10を短時間回転させた際の電気信号(布量検出手段の検出信号)と、衣類の布量(重量)の相関特性である。布量検知手段26が検出する信号は、回転度合いに関する電気信号であり、例えば、モータ回転速度、発生トルク、回転角度、モータ電流等であるが、いずれも衣類の布量(重量)と良好な相関特性にあり、これら布量検知手段26が検出する信号を用いると、内槽10に収納した衣類の布量(重量)が判明することがわかる。   FIG. 6B shows an electric signal (detection signal of the cloth amount detecting means) when the cloth amount detecting means 26 operates the driving device 11 before the drying is started and the inner tub 10 containing the clothes is rotated for a short time. ) And the cloth amount (weight) of clothing. The signal detected by the cloth amount detection means 26 is an electrical signal related to the degree of rotation, such as motor rotation speed, generated torque, rotation angle, motor current, etc., all of which are good with the cloth amount (weight) of clothing. It can be seen that the amount of cloth (weight) of the clothing stored in the inner tub 10 can be determined by using the signals detected by the cloth amount detection means 26 in the correlation characteristics.

衣類の布量(重量)を変化(1.5kg、3kg、4.5kg)させて、衣類乾燥率を80%および98%に到達する時間を測定した。図6(c)は、衣類の布量(重量)と、80%および98%の乾燥率に到達する時間の関係である。衣類の布量(重量)が多くなると、各々の乾燥率に到達する時間は長くなるが、両者は良好な相関特性にあることがわかる。図6(d)は、布量検知手段26の検出信号と、80%および98%乾燥率に到達する時間との関係である。布量検知手段26から検出される信号が大きくなると、各々の乾燥率に到達する時間が長くなるが、両者は良好な相関特性にあることがわかる。このことより、衣類布量(重量)に対応する布量検知手段26の検出信号から、所定乾燥率に到達する時間が推定できることがわかる。また、このことで、所定乾燥率に到達する時間を良好な精度で推定でき、衣類のシワを一層低減することができる。   The time required for the clothes drying rate to reach 80% and 98% was measured by changing the amount (weight) of the clothes (1.5 kg, 3 kg, 4.5 kg). FIG. 6C shows the relationship between the amount of cloth (weight) of the garment and the time to reach the drying rates of 80% and 98%. It can be seen that when the amount of cloth (weight) of the garment increases, the time to reach each drying rate becomes longer, but both have good correlation characteristics. FIG. 6D shows the relationship between the detection signal of the cloth amount detection means 26 and the time to reach the 80% and 98% drying rates. When the signal detected from the cloth amount detection means 26 is increased, it takes longer to reach each drying rate, but it can be seen that the two have good correlation characteristics. From this, it can be seen that the time to reach the predetermined drying rate can be estimated from the detection signal of the cloth amount detecting means 26 corresponding to the cloth amount (weight). Moreover, by this, the time to reach the predetermined drying rate can be estimated with good accuracy, and wrinkles of clothing can be further reduced.

布量検知手段26が、衣類を収納した内槽10を短時間回転させて、衣類の布量に関する電気信号(布量検出手段の検出信号)を得る例を、モータ電流で説明する。乾燥開始前に駆動装置11を作動させて、衣類を収納した内槽10を短時間回転させると、加速に起因するモータ電流(加速電流と称す)が発生する。また、駆動装置11の作動を止めると減速に起因するモータ電流(減速電流と称す)が発生する。この加速電流と減速電流の合計である合計電流は、衣類の布量に比例するので、この合計電流を検出すると衣類布量が判明する。また、これ以外に、内槽10を短時間正反回転させた際のモータ電流(または電力)と、内槽10の回転停止時の慣性で回る惰性回転角度との両方から、衣類布量を検知する方法もあり、衣類布量が多いとモータ電流が多いうえに惰性回転角度が小さく、衣類布量が少ないとモータ電流が少ないうえに惰性回転角度が大きい特性を利用している。   An example in which the cloth amount detection unit 26 rotates the inner tub 10 containing clothes for a short time to obtain an electrical signal related to the cloth amount of the clothes (detection signal of the cloth amount detection unit) will be described using a motor current. When the driving device 11 is operated before the drying is started and the inner tub 10 containing the clothes is rotated for a short time, a motor current (referred to as acceleration current) due to acceleration is generated. Further, when the operation of the drive device 11 is stopped, a motor current (referred to as a deceleration current) resulting from deceleration is generated. Since the total current, which is the sum of the acceleration current and the deceleration current, is proportional to the amount of clothing cloth, the amount of clothing cloth can be determined by detecting this total current. In addition to this, the amount of clothing cloth is determined from both the motor current (or electric power) when the inner tub 10 is rotated forward and backward for a short time and the inertial rotation angle that rotates with the inertia when the rotation of the inner tub 10 is stopped. There is also a method of detecting, and when the amount of clothes is large, the motor current is large and the inertia rotation angle is small, and when the amount of clothes is small, the motor current is small and the inertia rotation angle is large.

また、洗濯機能を付与した洗濯乾燥機として使用する場合は、制御手段19は、駆動装置11が洗濯開始前に内槽10を回転させた際の回転度合いを基にして、布量検知手段26が検知した衣類布量から、各々の衣類乾燥率に対応する乾燥到達時間(乾燥率到達時間)を算出する。   When used as a washing / drying machine having a washing function, the control means 19 is based on the degree of rotation when the driving device 11 rotates the inner tub 10 before starting washing, and the cloth amount detection means 26. The dry arrival time (drying rate arrival time) corresponding to each clothing drying rate is calculated from the amount of clothing cloth detected by.

この制御シーケンスとすると、最もしわ低減効果がある乾燥率X1〜X2に加湿温風を衣類に送風できるので、加湿量が少なくてすみ、防水透湿性膜20の表面積を小さくして加湿手段18を小型化できる利点がある。また、乾燥時間の短縮が図れる。   If this control sequence is used, the humidified warm air can be blown to the clothing at the drying rate X1 to X2 that has the most wrinkle reducing effect, so that the amount of humidification can be reduced, and the surface area of the waterproof and moisture permeable membrane 20 can be reduced. There is an advantage that it can be downsized. Also, the drying time can be shortened.

(実施の形態5)
第5の実施の形態は、第4の実施の形態においておこなわれる所定乾燥率に到達する時間の推定において、制御手段19は、送風ダクト12の内部空間に配置した温度センサ27の温度情報から、各々の衣類乾燥率に到達する時間を補正するようにしたものである。
(Embodiment 5)
In the fifth embodiment, in the estimation of the time to reach the predetermined drying rate performed in the fourth embodiment, the control means 19 is based on the temperature information of the temperature sensor 27 arranged in the internal space of the air duct 12. The time to reach each clothing drying rate is corrected.

以下、その詳細について説明する。検討は、衣類乾燥率を80%および98%に設定した事例でおこなった。図7(a)は、内槽10に綿衣類3kgを収納して乾燥をおこなった際の、送風ダクト12の内部空間に配置した温度センサ27の温度を、乾燥経過時間ごとに測定した結果である。時間が経過すると、送風ダクト12内の温度が上昇することがわかる。次に、図6(a)の衣類乾燥率経過特性と、図7(a)の送風ダクト12内の温度特性を用いて、乾燥率が80%および98%に到達する際の、送風ダクト12内の温度を求めた。80%衣類乾燥率に到達すると送風ダクト内温度は45℃、98%衣類乾燥率に到達すると送風ダクト内温度は55℃となった。   The details will be described below. The examination was conducted in the case where the clothes drying rate was set to 80% and 98%. FIG. 7A shows the result of measuring the temperature of the temperature sensor 27 arranged in the internal space of the air duct 12 when 3 kg of cotton clothing is stored in the inner tub 10 and drying is performed for each elapsed time of drying. is there. As time passes, it turns out that the temperature in the ventilation duct 12 rises. Next, the air duct 12 when the dryness reaches 80% and 98% using the clothes drying rate progress characteristics of FIG. 6A and the temperature characteristics in the air duct 12 of FIG. 7A. The temperature inside was determined. When the 80% clothes drying rate was reached, the temperature inside the air duct was 45 ° C, and when the 98% clothes drying rate was reached, the temperature inside the air duct was 55 ° C.

図7(b)は、乾燥率80%に対応する送風ダクト12内の温度が45℃に到達する時間、および乾燥率98%に対応する送風ダクト12内の温度が55℃に到達する時間を、衣類の布量を変化(1.5kg、3kg、4.5kg)させて測定した結果である。衣類の布量(重量)が多くなると、各々の温度に到達する時間は長くなるが、両者は良好な相関特性にあることがわかる。   FIG. 7B shows the time for the temperature in the air duct 12 corresponding to the drying rate of 80% to reach 45 ° C. and the time for the temperature in the air duct 12 corresponding to the drying rate of 98% to reach 55 ° C. It is the result of having measured the cloth amount of clothing, changing (1.5 kg, 3 kg, 4.5 kg). It can be seen that as the amount (weight) of clothing increases, the time to reach each temperature increases, but both have good correlation characteristics.

図7(c)は、布量検知手段26の検出信号と、乾燥率80%に対応する送風ダクト12内の温度が45℃に到達する時間および、乾燥率98%に対応する送風ダクト12内の温度が55℃に到達する時間の関係を整理したものである。布量検知手段26の信号が大きくなると、衣類の布量(重量)が多くなるので、各々の温度に到達する時間は長くなるが、両者は良好な相関特性にあることがわかる。   FIG. 7C shows the detection signal of the cloth amount detection means 26, the time for the temperature in the air duct 12 corresponding to the drying rate of 80% to reach 45 ° C., and the inside of the air duct 12 corresponding to the drying rate of 98%. This is a summary of the relationship of the time required for the temperature to reach 55 ° C. When the signal of the cloth amount detecting means 26 increases, the cloth amount (weight) of the clothes increases, so that it takes a long time to reach each temperature, but it can be seen that both have good correlation characteristics.

これらのことより、布量検知手段26が検知した衣類の布量に関する電気信号を基にして、所定の衣類乾燥率に到達する際の送風ダクト12内の温度を予め実験で求めて設定しておき、算出された乾燥時間に到達しても、この設定した送風ダクト12内の温度に実測温度が到達しない場合は、実測温度と設定温度との差に応じて、算出された乾燥時間を遅めに再設定して補正することで、その時間精度を高めることができる。   Based on the above, based on the electrical signal relating to the cloth amount of the clothes detected by the cloth amount detecting means 26, the temperature in the air duct 12 when reaching the predetermined clothes drying rate is obtained by experiment in advance and set. If the measured temperature does not reach the set temperature inside the air duct 12 even when the calculated drying time is reached, the calculated drying time is delayed according to the difference between the measured temperature and the set temperature. Therefore, the time accuracy can be improved by resetting and correcting.

また、逆に、設定した送風ダクト12内の温度に実測温度が到達したにも関わらず、実測乾燥時間が算出乾燥時間に到達しない場合、算出した乾燥時間を早めに再設定して補正することで、その時間精度を高めることができる。また、このことで、衣類のシワがさらに低減した。また、温度センサ27は、加熱手段14の上流側で除湿手段17の下流側に1個配置した例を記載したが、検出精度をさらに向上させるために除湿手段17の上流側にさらに1個配置して2個の温度情報で総合判断してもよい。   Conversely, when the measured drying time does not reach the calculated drying time even though the measured temperature has reached the set temperature inside the air duct 12, the calculated drying time is reset and corrected earlier. Thus, the time accuracy can be improved. Moreover, the wrinkle of clothing was further reduced by this. In addition, although one temperature sensor 27 is disposed upstream of the heating unit 14 and downstream of the dehumidifying unit 17, one more temperature sensor 27 is disposed upstream of the dehumidifying unit 17 in order to further improve detection accuracy. Thus, a comprehensive determination may be made with the two pieces of temperature information.

(実施の形態6)
第6の実施の形態は、最もしわ低減効果がある乾燥率X1〜X2について検討した。乾燥機の内槽10に綿衣類3kgを収納して乾燥をおこなった効果特性を図8に示す。図8(a)は、加湿温風を衣類に送風しない通常の乾燥(温風のみを送風)において、乾燥経過時間と衣類乾燥率の関係を測定した結果である。時間が経過すると衣類乾燥率が高くなり、乾燥が進んでいることがわかる。また、この乾燥経過時間と衣類乾燥率の関係を基にして、所定の乾燥率に対応する乾燥到達時間を予め求めた。
(Embodiment 6)
In the sixth embodiment, the drying rates X1 to X2 having the most wrinkle reduction effect were examined. FIG. 8 shows effect characteristics obtained by storing 3 kg of cotton clothes in the inner tub 10 of the dryer and drying. FIG. 8A shows the result of measurement of the relationship between the elapsed drying time and the clothing drying rate in normal drying in which humidified warm air is not blown to clothing (only warm air is blown). It can be seen that the drying rate of clothes increases with time, and the drying is progressing. Further, based on the relationship between the drying elapsed time and the clothing drying rate, a dry arrival time corresponding to a predetermined drying rate was obtained in advance.

図8(b)は、図8(a)の検討結果を基にして、所定乾燥率に対応する乾燥到達時間になると、加湿温風を衣類に送風し始め、所定乾燥率にさらに2.5%増加した乾燥率に対応する乾燥到達時間になると加湿温風の送風を停止して、これ以外の乾燥率は通常の乾燥(温風のみを送風)を各々ごとにおこなった場合の、衣類シワ特性である。   FIG. 8B shows, based on the examination result of FIG. 8A, when the drying arrival time corresponding to the predetermined drying rate is reached, the humidified warm air starts to be blown to the clothing, and the predetermined drying rate is further increased to 2.5. When the dry arrival time corresponding to the% increase in the drying rate is reached, the humidified warm air is stopped, and the other drying rates are normal wrinkles (only hot air is blown). It is a characteristic.

なお、乾燥率95%においてはその対応時間になると加湿温風を送風しさらに3.0%増加した乾燥率(乾燥率98%)に対応する乾燥到達時間になると加湿温風の送風を停止している。またこれにともない、乾燥率98%対応時間になると加湿温風を送風し、さらに2.0%増加した乾燥率(乾燥率100%)に対応する乾燥到達時間になると加湿温風の送風を停止している。   At a drying rate of 95%, humidified warm air is blown at the corresponding time, and when the drying arrival time corresponding to a drying rate increased by 3.0% (drying rate of 98%) is reached, the humidified warm air is stopped. ing. Accordingly, when the drying rate reaches 98%, the humidified warm air is blown, and when the drying arrival time corresponding to the drying rate increased by 2.0% (drying rate 100%) is reached, the humidified warm air stops blowing. is doing.

この衣類シワ特性より、本発明は、参考例と比較しても、衣類シワが低減していることがわかる。これは、水蒸気が綿衣類繊維束に入りこんだ架橋体の作用をなして衣類シワが低減すると考えられる。また特に、衣類乾燥率80〜98%領域内に設定させる任意の衣類乾燥率に加湿温風を衣類に送風すると、優れた衣類シワ特性を有することがわかる。この理由は、衣類乾燥率が80〜98%の領域において、衣類は架橋体の作用をなす媒体が存在しない性質があるので通常の乾燥(温風のみを送風)を行なうと衣類シワが多く固着するのだが、加湿温風を衣類に送風すると、水蒸気が綿衣類繊維束に入りこんだ架橋体の作用をなして衣類シワが一層低減すると考えられる。   From this clothing wrinkle characteristic, it can be seen that the clothing wrinkle is reduced in the present invention as compared with the reference example. This is considered that the wrinkle of clothing is reduced by the action of a crosslinked body in which water vapor enters the cotton clothing fiber bundle. Moreover, it turns out that it has the outstanding clothing wrinkle characteristic especially if humidified warm air is ventilated to clothing to the arbitrary clothing drying rate set to the clothing drying rate 80-98% area | region. This is because, in the region where the clothes drying rate is 80 to 98%, the clothes do not have a medium that acts as a cross-linked body. However, when humidified warm air is blown to the garment, it is considered that the wrinkle is further reduced by acting as a cross-linked body in which water vapor enters the cotton garment fiber bundle.

ここで、綿衣類におけるシワ固着メカニズムを説明する。シワは、内槽10が回転することで、その中に収納された衣類が回転落下の動きを繰り返すことで受ける、ねじれや圧縮などの応力によるひずみである。シワ(応力によるひずみ)は、衣類を構成する繊維高分子材料の(1)結晶性(繊維を構成する分子が枝分かれをせず規則正しく配列すること)、(2)ガラス転移温度(繊維を構成する分子が動きを停止して硬くて脆くなる温度)、(3)架橋(繊維を構成する分子が互いに弱い結合で結ばれること)により、その固着性が決まる。結晶性が低いほど、ガラス転移温度に近い衣類温度ほど、少なく架橋されているほど、シワが固着し易い傾向にある。綿衣類の場合、乾燥率の大小に関わらず結晶性がほぼ同じであるので結晶性に関する考慮は特に必要ない。ガラス転移温度は、乾燥率の大小によって大きく変化し乾燥率が高くなるにつれて高温側に移動する。そのため、衣類温度が高いほどガラス転移温度に近づく温度になるので、衣類が柔らかくなって変形し易くなりシワが固着し易い傾向にある。   Here, the wrinkle fixing mechanism in cotton clothing will be described. The wrinkles are strains caused by stresses such as twisting and compression that are received when the clothes stored in the inner tub 10 are repeatedly rotated and dropped as the inner tub 10 rotates. The wrinkles (strain due to stress) are (1) crystallinity (the molecules constituting the fibers are regularly arranged without branching), (2) glass transition temperature (the fibers are constituted) The temperature at which the molecules stop moving and become hard and brittle), and (3) cross-linking (the molecules that make up the fibers are joined together by weak bonds) determine their adhesion. The lower the crystallinity, the closer the clothing temperature is to the glass transition temperature, and the lower the crosslinking, the more likely the wrinkles will stick. In the case of cotton clothing, the crystallinity is almost the same regardless of the drying rate, so that there is no need to consider the crystallinity. The glass transition temperature varies greatly depending on the drying rate, and moves to the higher temperature side as the drying rate increases. For this reason, the higher the clothing temperature, the closer to the glass transition temperature, so that the clothing becomes soft and easily deforms, and the wrinkles tend to stick.

綿衣類における架橋について説明する。架橋は、乾燥率の大小によって大きく変化する。綿衣類を洗濯脱水した直後(乾燥率が約67%〜約80%近辺)はしみ込んだ水分による架橋、乾燥率98%以降は水素結合による架橋が各々あるので、シワが固着しにくい。しかしながら、それ以外の乾燥率領域(乾燥率80〜98%近辺)は、架橋されないのでシワが固着し易い傾向にある。そのため、綿衣類を洗濯脱水した直後(乾燥率約67%〜約80%近辺)においては、水分が充分に綿衣類繊維束にしみ込んで衣類の繊維束を架橋させる架橋体として作用してシワがあまり固着しないが、乾燥率80%から98%の領域において、架橋体の作用をなす媒体が存在しないのでシワが最も多く固着し、この領域で多く固着したシワは衣類乾燥率98%を越えても最後までそのまま保持されるので、仕上がりを悪化させている。   The cross-linking in cotton clothing will be described. Crosslinking varies greatly depending on the drying rate. Immediately after washing and dewatering the cotton garment (drying rate of about 67% to about 80%), there are cross-linking by the soaked water, and after the dry rate of 98%, there are cross-linking by hydrogen bonds, so that wrinkles are hard to stick. However, the other drying rate region (drying rate of 80 to 98%) is not cross-linked and thus tends to be fixed with wrinkles. Therefore, immediately after washing and dewatering the cotton garment (drying rate of about 67% to about 80%), the water sufficiently soaks into the cotton garment fiber bundle and acts as a cross-linked body that crosslinks the fiber bundle of the garment. Although it does not stick so much, in the region where the drying rate is 80% to 98%, there is no medium that acts as a cross-linked body, so the wrinkle is the most fixed, and the wrinkle that adheres a lot in this region exceeds the clothing drying rate of 98%. Since it is held as it is until the end, the finish is deteriorated.

次に、加湿温風による綿衣類のシワ低減メカニズムを説明する。加湿温風が綿衣類に吹き付けられと、水蒸気が、綿衣類繊維の中部まで入り込み、綿衣類を構成する繊維束に作用してシワ固着を抑制する。そして、このシワ固着抑制は、衣類乾燥率80〜98%領域において特に顕著な効果が得られる。この理由は、前述のように、衣類乾燥率80%未満においてはしみ込んだ水分が作用してシワが固着し難い性質、衣類乾燥率98%を越えると架橋体の作用をなす水素結合が発生してこれ以上にはシワ固着を行わない性質が各々あるので、この乾燥率領域では、水蒸気の架橋作用に基づくシワ固着抑制効果が顕著に現れないためである。その点、衣類乾燥率80〜98%領域においては綿衣類には架橋作用をなす媒体が存在しないのだが、加湿温風を綿衣類に吹き付けると、水蒸気が、綿衣類の温度を低下させるとともに衣類の繊維束に作用し、シワ固着を抑制する効果が顕著に得られるのである。   Next, the wrinkle reduction mechanism of cotton clothing by humidified warm air will be described. When the humidified warm air is blown onto the cotton garment, the water vapor penetrates into the middle of the cotton garment fiber and acts on the fiber bundle constituting the cotton garment to suppress wrinkle sticking. And this wrinkle sticking suppression has a particularly remarkable effect in the range of the clothes drying rate of 80 to 98%. The reason for this is that, as described above, the moisture that has penetrated when the clothes drying rate is less than 80% acts and the wrinkles are hard to stick, and when the clothes drying rate exceeds 98%, hydrogen bonds that act as a crosslinked product are generated. This is because wrinkle fixation is not performed more than this, and in this drying rate region, the effect of suppressing wrinkle fixation based on the cross-linking action of water vapor does not appear remarkably. On the other hand, in the range of 80 to 98% of the clothes drying rate, there is no medium for crosslinking in cotton clothing, but when humidified warm air is blown onto cotton clothing, water vapor reduces the temperature of the cotton clothing and the clothing. The effect which acts on the fiber bundle of this and suppresses wrinkle sticking is notably acquired.

(実施の形態7)
第7の実施の形態は、第4の実施の形態において設定される衣類乾燥率において、最も衣類が少ない衣類乾燥率について検討したものである。図8(b)の結果からわかるように、90%を含む衣類乾燥率が最も衣類シワが少なかった。この理由は、衣類は、衣類乾燥率が90%前後の領域において、加湿温風を衣類に送風すると、最も、水蒸気が綿衣類繊維束にはいこんだ架橋体の作用をなして衣類シワが一層低減すると考えられる。
(Embodiment 7)
In the seventh embodiment, the clothing drying rate with the least amount of clothing is examined in the clothing drying rate set in the fourth embodiment. As can be seen from the results in FIG. 8 (b), the clothing wrinkle rate including 90% had the least amount of clothing wrinkles. The reason for this is that when the clothing has a drying rate of about 90%, when humidified warm air is blown to the clothing, the clothing is wrinkled more by the action of a cross-linked body in which water vapor enters the cotton clothing fiber bundle. It is thought to be reduced.

(実施の形態8)
第8の実施の形態は、内槽10の回転軸方向がシワ固着に及ぼす影響を非加湿温風下で検討した。この効果特性を表2に示す。内槽10の回転軸を前上がりに水平より少し斜めにして回転させた乾燥機の方が、内槽10の回転軸を垂直にして回転させた乾燥機よりシワ固着が少なかった。これは、回転軸を水平より少し斜めにして回転させた乾燥機の方が、衣類への応力負荷が少ないためと思われる。またさらに、乾燥率95%において加湿温風を供給すると、両者とも非加湿温風と比較してシワ低減がなされるが、特に回転軸を水平より少し斜めにして回転させた乾燥機の方が、垂直にして回転させた乾燥機よりシワ固着が少なかった。
(Embodiment 8)
In the eighth embodiment, the influence of the rotation axis direction of the inner tub 10 on wrinkle fixation was examined under non-humidified hot air. The effect characteristics are shown in Table 2. The dryer that was rotated with the rotation axis of the inner tank 10 tilted slightly upward from the horizontal was less wrinkled and fixed than the dryer that was rotated with the rotation axis of the inner tank 10 vertical. This is presumably because the dryer with the rotating shaft rotated slightly obliquely from the horizontal has less stress load on the clothes. Furthermore, when humidified hot air is supplied at a drying rate of 95%, both of them are reduced in wrinkles as compared to non-humidified hot air, but in particular, the dryer with the rotating shaft rotated slightly obliquely from the horizontal is better. There was less wrinkle sticking than the dryer rotated vertically.

なお、内槽10は回転軸を水平にして回転させても、少し斜めにした場合と同様に優れたシワ低減効果が得られた。また、衣類乾燥率80〜98%領域内に設定させる任意の衣類乾燥率に、加湿温風を衣類に送風すると、衣類乾燥率95%の場合と比較してさらに優れたシワ低減効果が得られた。なお、優れた衣類静電気やシワの低減効果が得られる範囲は、内槽10の回転軸が水平より0〜30°前上がりに斜めにする範囲である。   In addition, even if the inner tank 10 was rotated with the rotation axis being horizontal, an excellent wrinkle reduction effect was obtained as in the case where the inner tank 10 was slightly inclined. In addition, when humidified warm air is blown to clothing at any clothing drying rate set in the region of clothing drying rate of 80 to 98%, an even better wrinkle reduction effect can be obtained as compared with a clothing drying rate of 95%. It was. In addition, the range in which the effect of reducing excellent clothes static electricity and wrinkles is obtained is a range in which the rotation axis of the inner tub 10 is inclined 0 to 30 ° upward from the horizontal.

Figure 2009022487
Figure 2009022487

以上のように、本発明にかかる衣類乾燥機は、衣類の静電気やシワ固着を抑えて、仕上がり性を良くすることができるので、衣類の乾燥をおこなう衣類乾燥機や洗濯衣類乾燥機として有用である。   As described above, the clothes dryer according to the present invention can improve the finishing performance by suppressing static electricity and wrinkle adhesion of the clothes, and thus is useful as a clothes dryer or a laundry clothes dryer for drying clothes. is there.

本発明の実施の形態1における衣類乾燥機の断面図Sectional drawing of the clothes dryer in Embodiment 1 of this invention 同衣類乾燥機の加湿手段の断面図Sectional view of humidifying means of the clothes dryer 本発明の実施の形態3における衣類乾燥機の断面図Sectional drawing of the clothes dryer in Embodiment 3 of this invention 本発明の実施の形態4における衣類乾燥機の加湿手段のタイムチャートTime chart of humidifying means of clothes dryer in embodiment 4 of the present invention 同加湿手段の動作を示すフローチャートFlow chart showing the operation of the humidifying means (a)同衣類乾燥機の乾燥経過時間と衣類乾燥率の関係図(b)同衣類布量と衣類検出手段の検出信号との関係図(c)同衣類布量と所定乾燥率到達時間の関係図(d)同衣類検出手段の検出信号と所定乾燥率到達時間の関係図(A) Relationship diagram between the elapsed time of drying of the clothes dryer and the drying rate of clothing (b) Relationship diagram between the amount of clothing cloth and the detection signal of the clothing detection means (c) The amount of clothing cloth and the arrival time of the predetermined drying rate Relationship diagram (d) Relationship diagram between the detection signal of the clothing detection means and the predetermined drying rate arrival time (a)本発明の実施の形態5における衣類乾燥機の乾燥経過時間と送風ダクト内温度の関係図(b)同衣類布量と所定送風ダクト内温度到達時間との関係図(c)同布量検知手段の検出信号と所定送風ダクト内温度到達時間の関係図(A) Relationship diagram between drying time of clothes dryer and temperature in air duct in embodiment 5 of the present invention (b) Relationship diagram between amount of clothing cloth and predetermined temperature in air duct (c) Relationship diagram between the detection signal of the volume detection means and the temperature arrival time in the predetermined air duct (a)本発明の実施の形態6における衣類乾燥機の乾燥経過時間と衣類乾燥率の関係図(b)同衣類乾燥率とシワ評価点数の関係図(A) Relationship diagram between drying elapsed time and clothing drying rate of clothing dryer in Embodiment 6 of the present invention (b) Relationship diagram between clothing drying rate and wrinkle evaluation score 従来の衣類乾燥機の斜視図A perspective view of a conventional clothes dryer

符号の説明Explanation of symbols

9 筐体
10 内槽
11 駆動装置
12 送風ダクト
13 入口部
14 加熱手段
15 送風手段
16 出口部
17 除湿手段
18 加湿手段
19 制御手段
20 防水透湿性膜
21 温風流路
22 水流路
23 水流路開閉手段
24 バイパス送風ダクト
25 流路切替手段
26 布量検知手段
27 温度センサ(温度検知手段)
DESCRIPTION OF SYMBOLS 9 Housing | casing 10 Inner tank 11 Drive apparatus 12 Blower duct 13 Inlet part 14 Heating means 15 Blower means 16 Outlet part 17 Dehumidifying means 18 Humidifying means 19 Control means 20 Waterproof moisture-permeable film 21 Hot air flow path 22 Water flow path 23 Water flow path opening / closing means 24 bypass air duct 25 flow path switching means 26 cloth amount detection means 27 temperature sensor (temperature detection means)

Claims (6)

筐体と、前記筐体内に配置されその内部空間に衣類を収容する内槽と、前記内槽を回転させる駆動装置と、乾燥用空気の除湿を行う除湿手段と、前記除湿手段で除湿した空気を加熱する加熱手段と、前記除湿手段の下流側に配置し前記内槽へ供給する温風を加湿する加湿手段と、前記内槽から前記除湿手段および加熱手段を経て前記内槽へ乾燥用空気を循環させる送風ダクトと、前記送風ダクト内に乾燥用空気を送風する送風手段と、前記加湿手段を制御する制御手段とを備え、前記加湿手段は、水蒸気透過性を有する防水透湿性膜を有し、前記防水透湿性膜を通して前記内槽へ供給される乾燥用空気を加湿するようにした衣類乾燥機。 A housing, an inner tub disposed in the housing and containing clothing, a driving device for rotating the inner tub, dehumidifying means for dehumidifying drying air, and air dehumidified by the dehumidifying means Heating means for heating the humidifying means, humidifying means for humidifying the warm air supplied to the inner tank disposed downstream of the dehumidifying means, and drying air from the inner tank to the inner tank through the dehumidifying means and the heating means A ventilation duct that circulates the air, a blowing means that blows drying air into the ventilation duct, and a control means that controls the humidifying means, and the humidifying means has a waterproof moisture-permeable membrane having water vapor permeability. And a clothes dryer for humidifying the drying air supplied to the inner tank through the waterproof and moisture-permeable membrane. 加湿手段は、水蒸気透過性を有する防水透湿性膜と、前記防水透湿性膜の片面側に設けて送風ダクトと連通する温風流路と、前記防水透湿性膜によって分離された他面側に設けた水流路を有し、前記水流路を流れる水から前記防水透湿性膜を通して温風流路を流れる乾燥用空気を加湿するようにした請求項1記載の衣類乾燥機。 The humidifying means is provided on the other surface side separated by the waterproof and moisture permeable membrane, the waterproof and moisture permeable membrane having water vapor permeability, the warm air flow path provided on one side of the waterproof and moisture permeable membrane and communicating with the air duct. The clothes dryer according to claim 1, further comprising a water channel, wherein drying air flowing through the warm air channel through the waterproof and moisture permeable membrane is humidified from water flowing through the water channel. 加湿手段は、水流路を流れる水と、温風流路を流れる乾燥用空気が防水透湿性膜の表面に沿って流れるようにした請求項2記載の衣類乾燥機。 The clothes dryer according to claim 2, wherein the humidifying means allows water flowing through the water flow path and drying air flowing through the warm air flow path to flow along the surface of the waterproof and moisture permeable membrane. 加湿手段は、水流路を流れる流水方向を、温風流路を流れる乾燥用空気の送風方向と逆方向に設定した請求項2または3記載の衣類乾燥機。 The clothes dryer according to claim 2 or 3, wherein the humidifying means sets the direction of flowing water flowing through the water flow path to a direction opposite to the blowing direction of drying air flowing through the hot air flow path. 制御手段は、加湿手段の動作時に除湿手段の除湿能力を低下または動作を停止させるようにした請求項1記載の衣類乾燥機。 2. The clothes dryer according to claim 1, wherein the control means reduces the dehumidifying capacity of the dehumidifying means or stops the operation when the humidifying means is in operation. 除湿手段の上流側と下流側の送風ダクトを接続するバイパス送風ダクトと、前記除湿手段の上流側で前記送風ダクトと前記バイパス送風ダクトの分岐部に設けた流路切替手段を設け、制御手段は、加湿手段の動作時に内槽から出た乾燥用空気を前記バイパス送風ダクトへ流すようにした請求項1記載の衣類乾燥機。 A bypass air duct that connects the upstream and downstream air ducts of the dehumidifying means, and a flow path switching means provided at a branching portion of the air duct and the bypass air duct on the upstream side of the dehumidifying means, The clothes dryer according to claim 1, wherein drying air that has come out of the inner tub during operation of the humidifying means is caused to flow to the bypass air duct.
JP2007187906A 2007-07-19 2007-07-19 Clothes dryer Pending JP2009022487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187906A JP2009022487A (en) 2007-07-19 2007-07-19 Clothes dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187906A JP2009022487A (en) 2007-07-19 2007-07-19 Clothes dryer

Publications (1)

Publication Number Publication Date
JP2009022487A true JP2009022487A (en) 2009-02-05

Family

ID=40394896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187906A Pending JP2009022487A (en) 2007-07-19 2007-07-19 Clothes dryer

Country Status (1)

Country Link
JP (1) JP2009022487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2478969A1 (en) * 2011-01-24 2012-07-25 Electrolux Home Products Corporation N.V. Home appliance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2478969A1 (en) * 2011-01-24 2012-07-25 Electrolux Home Products Corporation N.V. Home appliance
WO2012101028A1 (en) * 2011-01-24 2012-08-02 Electrolux Home Products Corporation N.V. Home appliance

Similar Documents

Publication Publication Date Title
US8863403B2 (en) Misting control method of clothing dryer
JP2009178481A (en) Clothes dryer
KR100595763B1 (en) Clothes dryer with a dehumidifier
TW201131043A (en) Garment dryer, and washing and drying machine
JP2018508305A (en) Clothing processing apparatus and control method thereof
CN104805661B (en) Intelligent air can dehumidify clothes-drying device
CN109736057B (en) Washing and drying machine and clothes drying and wrinkle removing control method thereof
US8468718B2 (en) Home laundry drier
JP2009291233A (en) Washing and drying machine
JP4384203B2 (en) Clothes dryer
TW201014941A (en) Drying machine, laundry/drying machine
JP2013081638A (en) Clothes dryer
JPH08229297A (en) Clothes drying machine
JP2007289559A (en) Washing and drying machine
JP2009022487A (en) Clothes dryer
JP2007143711A (en) Machine for drying and dehumidification for clothes
JP2011087623A (en) Clothes dryer
JP4924521B2 (en) Washing and drying machine
JP2011167574A (en) Drum type dryer
JP2009022486A (en) Clothes dryer
CN114753127B (en) Clothes care method of washing and drying machine, washing and drying machine and control method thereof
JP2007082863A (en) Clothes dryer and clothes washing/drying machine
CN110904654A (en) Control method for clothes dryer and clothes dryer
JP2012161355A (en) Clothes dryer
JP2005344987A (en) Dehumidifying drier