JP2009021117A - Omnidirectional operation switch device - Google Patents

Omnidirectional operation switch device Download PDF

Info

Publication number
JP2009021117A
JP2009021117A JP2007183146A JP2007183146A JP2009021117A JP 2009021117 A JP2009021117 A JP 2009021117A JP 2007183146 A JP2007183146 A JP 2007183146A JP 2007183146 A JP2007183146 A JP 2007183146A JP 2009021117 A JP2009021117 A JP 2009021117A
Authority
JP
Japan
Prior art keywords
electrode
operation member
frequency component
radial pattern
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007183146A
Other languages
Japanese (ja)
Other versions
JP5018296B2 (en
Inventor
Kouichi Yamanoue
耕一 山野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Visteon Japan Ltd
Original Assignee
Visteon Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visteon Japan Ltd filed Critical Visteon Japan Ltd
Priority to JP2007183146A priority Critical patent/JP5018296B2/en
Publication of JP2009021117A publication Critical patent/JP2009021117A/en
Application granted granted Critical
Publication of JP5018296B2 publication Critical patent/JP5018296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an omnidirectional operation switch device in which the tilting direction of an operation member can be detected with high precision, and which is inexpensive. <P>SOLUTION: The omnidirectional operation switch has a radial pattern 2 having division electrodes 21a to h of which the whole circumference is uniformly split in eight, a conical electrode 3 opposed to the radial pattern, the operation member 4 to tilt a conical electrode, a changeover means 6 to sequentially select the respective division electrodes at a fixed circulation cycle, a capacitance-voltage conversion means 7 in which the capacitance of a capacitor constituted of the conical electrode and the division electrodes is converted to a voltage signal by applying a high frequency signal of 500 kHz, a bandpass filter 8 in which, from a series of voltage signals sequentially converted in each division electrode, a specific frequency component of the circulation cycle is extracted, and a microcomputer 9 to detect a direction corresponding to a phase in which a signal waveform of the specific frequency component becomes maximum or minimum as the tilting operation direction of the operation member 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、全方向操作スイッチ装置に係り、より詳細には、全周の任意の方向に傾動操作される操作部材の傾動方向を検出する全方向操作スイッチ装置に関する。   The present invention relates to an omnidirectional operation switch device, and more particularly to an omnidirectional operation switch device that detects a tilt direction of an operation member that is tilted in an arbitrary direction around the entire circumference.

この種の全方向操作スイッチ装置の従来例が、下記の特許文献1及び2に開示されている。特許文献1に開示の装置は、操作部材の揺動操作に伴って傾動する導電性の円環部と、その円環部に対向するプリント板上の導電性の放射状パターンとを具備する。そして、導電性円環部と放射状パターンとが接触した位置を検出することによって、操作部材の傾動方向が検知される。   Conventional examples of this type of omnidirectional operation switch device are disclosed in Patent Documents 1 and 2 below. The apparatus disclosed in Patent Document 1 includes a conductive annular portion that tilts in response to a swinging operation of an operation member, and a conductive radial pattern on a printed board that faces the annular portion. Then, the tilting direction of the operation member is detected by detecting the position where the conductive ring portion and the radial pattern are in contact with each other.

また、特許文献2に開示の装置は、操作部材の揺動操作に伴って移動する可動電極と、その可動電極に対向した複数の固定電極とを具備する。そして、可動電極と個々の固定電極との間の静電容量の変化から、固定電極全ての静電容量変化量が演算され、操作部位の傾動方向が検知される。   The device disclosed in Patent Document 2 includes a movable electrode that moves in accordance with the swinging operation of the operation member, and a plurality of fixed electrodes that face the movable electrode. Then, the amount of change in capacitance of all the fixed electrodes is calculated from the change in capacitance between the movable electrode and each fixed electrode, and the tilt direction of the operation site is detected.

特開2003−272486号公報JP 2003-272486 A 特開2001−325858号公報JP 2001-325858 A

しかしながら、特許文献1の従来の全方向操作スイッチ装置では、操作部材の傾動方向の方位分解能が、プリント基板板上に形成した放射状パターンの数によって制限される。   However, in the conventional omnidirectional operation switch device of Patent Document 1, the azimuth resolution in the tilt direction of the operation member is limited by the number of radial patterns formed on the printed circuit board.

また、特許文献2には、個々の固定電極の静電容量値から操作部材の傾動方向を求める具体的な方法が開示されていない。一般的には、特許文献2に開示の装置において、操作部材の傾動方向を求める方法として、次の二つの方法が考えられる。一つは、揺動検出方位平面上のX方向及びY方向それぞれの静電容量値から、公知の三角関数を含むベクトル演算を行って、傾動方向を求める方法である。もう一つは、揺動検出方位平面上のX方向およびY方向それぞれの静電容量値から、予め作成しておいた二次元テーブルを参照して、傾動方向を求める方法である。   Further, Patent Document 2 does not disclose a specific method for obtaining the tilt direction of the operation member from the capacitance value of each fixed electrode. Generally, in the apparatus disclosed in Patent Document 2, the following two methods can be considered as methods for obtaining the tilt direction of the operation member. One is a method of obtaining a tilt direction by performing a vector operation including a known trigonometric function from capacitance values in the X direction and the Y direction on the oscillation detection azimuth plane. The other is a method for obtaining the tilt direction from the capacitance values in the X direction and Y direction on the oscillation detection azimuth plane with reference to a two-dimensional table prepared in advance.

しかしながら、これらの方法により高精度の方位分解能を得るためには、高機能なマイクロプロセッサを使用して多くの演算桁数を行うか、或いは、大容量のメモリーを使用して膨大なメモリーサイズの二次元テーブルを参照する必要がある。このため、いずれの方法を採用しても、コストの上昇につながる。   However, in order to obtain high-precision azimuth resolution by these methods, a large number of arithmetic digits are performed using a high-performance microprocessor, or a huge memory size is used using a large-capacity memory. It is necessary to refer to a two-dimensional table. For this reason, whichever method is adopted leads to an increase in cost.

そこで、本発明は、操作部材の傾動方向を高精度で検知することができ、且つ安価な全方位操作スイッチ装置を提供することを目的としている。   Accordingly, an object of the present invention is to provide an inexpensive omnidirectional operation switch device that can detect the tilting direction of an operation member with high accuracy.

上記の目的を達成するため、本発明の全方位操作スイッチ装置は、全周を等角度に分割した複数の分割電極を有する放射状パターンと、放射状パターンと対向し、かつ、全周の任意の方向に傾動可能に配置した円錐電極と、円錐電極を傾動させる操作部材と、放射状パターンの上記分割電極の各々を一定の巡回周期で順次に選択する切替手段と、円錐電極と、上記切替手段に選択されている上記分割電極とによって構成されるコンデンサの静電容量を、電圧信号に変換する静電容量−電圧変換手段と、分割電極ごとに順次に変換された一連の電圧信号から、巡回周期を一周期とする特定周波数成分を抽出する抽出手段と、特定周波数成分の信号波形の位相と放射状パターンの中心から見た方向とを対応づけ、信号波形が極大又は極小となる位相に対応する方向を操作部材の操作方向として検出する操作方向検出手段と、を備えることを特徴としている。   In order to achieve the above object, an omnidirectional operation switch device according to the present invention has a radial pattern having a plurality of divided electrodes obtained by dividing the entire circumference at equal angles, and is opposed to the radial pattern and in any direction of the entire circumference. A conical electrode disposed so as to be tiltable, an operation member for tilting the conical electrode, a switching means for sequentially selecting each of the divided electrodes of the radial pattern at a constant cyclic period, a conical electrode, and the switching means selected The cyclic period is determined from the capacitance-voltage conversion means for converting the capacitance of the capacitor constituted by the divided electrodes to a voltage signal and a series of voltage signals sequentially converted for each divided electrode. The extraction means for extracting a specific frequency component for one cycle is associated with the phase of the signal waveform of the specific frequency component and the direction viewed from the center of the radial pattern, and the signal waveform is maximized or minimized. It is characterized in that it comprises the operation direction detecting means for detecting as the operation direction of the corresponding direction the operating member, to.

このように、本発明では、切替手段の巡回周期に対応する特定周波数成分の信号波形が極大又は極小となる位相が検出されることによって、操作部材の傾動方向が検出される。このため、操作部材の傾動方向の検出精度は、放射状パターンの分割角度によって制限されない。また、本発明では、傾動方向の検出精度を高めるために、コスト上昇の要因となる高機能なマイクロプロセッサや大容量のメモリーを必要としない。したがって、本発明の全方向操作スイッチ装置によれば、操作部材の傾動方向を高精度で検知することができ、且つ安価な全方位操作スイッチ装置を提供することができる。   Thus, in the present invention, the tilting direction of the operating member is detected by detecting the phase at which the signal waveform of the specific frequency component corresponding to the cyclic period of the switching means is maximized or minimized. For this reason, the detection accuracy of the tilt direction of the operation member is not limited by the division angle of the radial pattern. Further, the present invention does not require a high-performance microprocessor or a large-capacity memory that causes an increase in cost in order to improve the detection accuracy of the tilt direction. Therefore, according to the omnidirectional operation switch device of the present invention, the tilt direction of the operation member can be detected with high accuracy, and an inexpensive omnidirectional operation switch device can be provided.

また、本発明において好ましくは、静電容量−電圧変換手段は、高周波信号源と、静電容量と高周波信号源との間、又はコンデンサと接地電位との間に設けた負荷抵抗とを有し、抽出手段は、コンデンサと負荷抵抗との間に接続される。
これにより、コンデンサの静電容量が、コンデンサと負荷抵抗との間のノードの電圧に変換される。
Preferably, in the present invention, the capacitance-voltage conversion means includes a high-frequency signal source and a load resistor provided between the capacitance and the high-frequency signal source or between the capacitor and the ground potential. The extraction means is connected between the capacitor and the load resistor.
As a result, the capacitance of the capacitor is converted into a voltage at a node between the capacitor and the load resistor.

また、本発明において好ましくは、抽出手段は、巡回周期に対応する周波数を含む周波数成分を通過させ、且つ、高周波信号の周波数成分を遮断するフィルタを含む。
フィルタにより、一連の電圧信号から、高周波信号の周波数成分が除去され、特定周波数の連続した信号波形が選択的に抽出される。
In the present invention, it is preferable that the extraction unit includes a filter that allows a frequency component including a frequency corresponding to the cyclic period to pass therethrough and blocks a frequency component of the high-frequency signal.
The filter removes the frequency component of the high-frequency signal from the series of voltage signals and selectively extracts a continuous signal waveform having a specific frequency.

また、本発明において好ましくは、特定周波数成分の信号波形の最大振幅に基づいて、操作部材の傾動操作量を検出する操作量検出手段を更に備える。
これにより、操作部材の傾動操作の方向と共に操作量も検出される。
In the present invention, it is preferable to further include an operation amount detection means for detecting a tilt operation amount of the operation member based on the maximum amplitude of the signal waveform of the specific frequency component.
Thereby, the operation amount is also detected together with the direction of the tilting operation of the operation member.

本発明によれは、操作部材の傾動方向を高精度で検知することができ、且つ安価な全方位操作スイッチ装置を提供することができる。   According to the present invention, it is possible to provide an inexpensive omnidirectional operation switch device that can detect the tilting direction of the operation member with high accuracy.

以下、添付の図面を参照して、本発明の全方向操作スイッチ装置の実施形態を説明する。
まず、図1を参照して、全方向操作スイッチ装置の電極の構成について説明する。図1は、実施形態の全方向操作スイッチの装置電極部分を模式的に示した斜視図である。
Embodiments of an omnidirectional operation switch device of the present invention will be described below with reference to the accompanying drawings.
First, the configuration of the electrodes of the omnidirectional operation switch device will be described with reference to FIG. FIG. 1 is a perspective view schematically showing a device electrode portion of the omnidirectional operation switch of the embodiment.

図1に示すように、全方向操作スイッチ装置の電極は、プリント基板1上に形成され、全周を等角度に分割した複数の分割電極21を有する放射状パターン2と、その放射状パターン2と対向し、かつ、全周の任意の方向に傾動可能に配置した円錐電極3とを有する。そして、各分割電極21と円錐電極3とによって、それぞれコンデンサCが構成されている。   As shown in FIG. 1, the electrodes of the omnidirectional operation switch device are formed on the printed circuit board 1 and have a radial pattern 2 having a plurality of divided electrodes 21 whose entire circumference is divided at equal angles, and are opposed to the radial pattern 2. And a conical electrode 3 disposed so as to be tiltable in an arbitrary direction along the entire circumference. Each divided electrode 21 and the conical electrode 3 constitute a capacitor C.

なお、本実施形態では、放射状パターン2は、プリント基板上に形成されているが、放射状パターンの構成はこれに限定されず、例えば、プリント基板を使用せずに、金属板等の導電材料で作ってもよい。また、本実施形態では、円錐電極3は、導電性樹脂で作られている。しかし、円錐電極3の材料はこれに限定されず、例えば、金属材料等の任意の導電性材料で作ってもよい。また、操作部材4は、ABS樹脂(アクリルニトリル−ブタジエン−スチレン樹脂)等の絶縁性の成形樹脂で作られている。   In the present embodiment, the radial pattern 2 is formed on the printed board, but the configuration of the radial pattern is not limited to this, and for example, a conductive material such as a metal plate is used without using the printed board. You can make it. In the present embodiment, the conical electrode 3 is made of a conductive resin. However, the material of the conical electrode 3 is not limited to this, and may be made of any conductive material such as a metal material. The operation member 4 is made of an insulating molding resin such as ABS resin (acrylonitrile-butadiene-styrene resin).

また、さらに、円錐電極3を傾動させる操作部材4が、円錐電極3に取り付けられている。操作部材4は、円錐電極3の円錐形の中心軸上に棒状に延びている。本実施形態では、操作部材4の傾動方向及び傾動角度と、円錐電極3の傾動方向及び傾動角度とが一致している。   Further, an operation member 4 for tilting the conical electrode 3 is attached to the conical electrode 3. The operation member 4 extends in a rod shape on the conical center axis of the conical electrode 3. In the present embodiment, the tilt direction and tilt angle of the operation member 4 are the same as the tilt direction and tilt angle of the conical electrode 3.

なお、操作部材4の形状は、棒状に限定されず、任意好適な形状とすることができる。また、操作部材4の傾動方向と、円錐電極3の傾動方向とは、必ずしも一致しなくてもよい。例えば、操作部材4と円錐電極3とがヒンジを介して連結され、且つ、そのヒンジを支点として傾動させることにより、操作部材の傾動方向と円錐形状の傾動方向とが正反対となるようにしてもよい。   In addition, the shape of the operation member 4 is not limited to a rod shape, and can be any suitable shape. Further, the tilting direction of the operation member 4 and the tilting direction of the conical electrode 3 do not necessarily coincide with each other. For example, the operating member 4 and the conical electrode 3 are connected via a hinge, and the hinge is tilted about the fulcrum so that the tilting direction of the operating member and the tilting direction of the conical shape are opposite to each other. Good.

図2(a)に示すように、本実施形態の放射状パターン2は、全周を45°ごとに8等分割した分割電極21a〜21hから形成されている。したがって、各分割電極21a〜21hは互いに同一形状の扇形電極であり、同一面積を有する。
なお、放射状パターン2の分割数は、8等分割に限定されない。好ましくは、3等分割以上に分割されるとよい。
As shown in FIG. 2A, the radial pattern 2 of the present embodiment is formed of divided electrodes 21a to 21h that are divided into eight equal parts every 45 °. Accordingly, the divided electrodes 21a to 21h are fan-shaped electrodes having the same shape and have the same area.
Note that the number of divisions of the radial pattern 2 is not limited to eight equal divisions. Preferably, it is divided into three or more equal divisions.

そして、図2(b)に実線で示すように、円錐電極3の中心軸線が、放射状パターン2の平面に垂直である場合、円錐電極3と各分割電極21a〜21hとの距離が互いに等しいので、円錐電極3と各分割電極21a〜21hの各々とでそれぞれ構成される各コンデンサの容量Ca〜Chは、互いに等しい。   2B, when the central axis of the conical electrode 3 is perpendicular to the plane of the radial pattern 2, the distance between the conical electrode 3 and each of the divided electrodes 21a to 21h is equal to each other. The capacities Ca to Ch of the capacitors respectively constituted by the conical electrode 3 and the divided electrodes 21a to 21h are equal to each other.

これに対して、図2bに破線で示すように、図2(a)に矢印Xで示す方向に円錐電極3が傾動した場合、円錐電極3と分割電極21c及び21dとの間隔が減少する。その結果、これらのコンデンサの静電容量Cc及びCdが大きくなる。一方、この場合、円錐電極3と分割電極21g及び21hとの間隔は拡大する。その結果、これらのコンデンサの静電容量Cg及びChは小さくなる。   On the other hand, as shown by the broken line in FIG. 2b, when the cone electrode 3 tilts in the direction indicated by the arrow X in FIG. 2A, the distance between the cone electrode 3 and the divided electrodes 21c and 21d decreases. As a result, the capacitances Cc and Cd of these capacitors are increased. On the other hand, in this case, the interval between the conical electrode 3 and the divided electrodes 21g and 21h is increased. As a result, the capacitances Cg and Ch of these capacitors are reduced.

これにより、円錐電極3と各分割電極21a〜21hとがそれぞれ構成するコンデンサの静電容量Ca〜Chの分布は、X方向において最大の静電容量値となり、X方向と逆方向で最小となる。すなわち、各静電容量の大小関係は、Cc、Cd>Cb、Ce>Ca、Cf>Cg、Chとなる。   As a result, the distribution of the capacitances Ca to Ch of the capacitors formed by the conical electrode 3 and each of the divided electrodes 21a to 21h has the maximum capacitance value in the X direction and the minimum in the direction opposite to the X direction. . That is, the magnitude relationship of each capacitance is Cc, Cd> Cb, Ce> Ca, Cf> Cg, Ch.

さらに、放射状パターン2の中心付近には、放射状パターンと同心円に配置された導電性の円形パターン22が形成されている。円形パターン22は、接地されている。また、各分割電極21a〜21hどうし、及び、円形パターン22と各分割電極21a〜21hは、互いに絶縁されている。円形パターン22と円錐電極3との間の静電容量は、円錐電極3の傾動によらず一定である。
なお、円形パターン22は省略してもよい。その場合、円錐電極3を接地電位に接続するとよい。
Further, a conductive circular pattern 22 arranged concentrically with the radial pattern is formed near the center of the radial pattern 2. The circular pattern 22 is grounded. The divided electrodes 21a to 21h and the circular pattern 22 and the divided electrodes 21a to 21h are insulated from each other. The capacitance between the circular pattern 22 and the cone electrode 3 is constant regardless of the tilt of the cone electrode 3.
The circular pattern 22 may be omitted. In that case, the conical electrode 3 may be connected to the ground potential.

また、図2(b)に示すように、円錐電極3は、円錐形状の頂点を下向きにして、その頂点がプリント基板1の放射状パターン2の中心に位置するように配置されている。プリント基板1の放射状パターン2の中心には、取り付け孔11が開口している。この取り付け孔11には、円錐電極3の頂点から延びるネジ棒4aが貫通している。このネジ棒4aは、ばね5aとナット5bとによって、プリント基板1に取り付けられている。これにより、円錐電極3は、全周の任意の方向に傾動することができる。すなわち、円錐電極3は、円錐形状の頂点付近を支点として、円錐形状の軸線が放射状パターン2の平面の法線に対して傾くように動くことができる。   Further, as shown in FIG. 2B, the conical electrode 3 is arranged so that the apex of the conical shape faces downward and the apex is positioned at the center of the radial pattern 2 of the printed circuit board 1. A mounting hole 11 is opened at the center of the radial pattern 2 of the printed circuit board 1. A screw rod 4 a extending from the apex of the conical electrode 3 passes through the attachment hole 11. The screw rod 4a is attached to the printed circuit board 1 by a spring 5a and a nut 5b. Thereby, the conical electrode 3 can be tilted in any direction of the entire circumference. That is, the conical electrode 3 can move so that the conical axis is inclined with respect to the normal of the plane of the radial pattern 2 with the vicinity of the apex of the conical shape as a fulcrum.

図1及び図2(b)に示すように、操作部材4は、力が加えられない状態では、プリント基板1の平面に対して垂直に直立している。そして、操作部材4は、円錐電極3の円錐形状の母線が放射状パターン2の平面と並行になるまで傾動させることができる。
また、本実施形態では、図2(b)に破線で示すように、操作部材4が円錐電極3に固定されているため、操作部材4の傾動方向及び傾動角度と、円錐電極3の傾動方向及び傾動角度とが一致している。
As shown in FIGS. 1 and 2B, the operation member 4 stands upright perpendicular to the plane of the printed circuit board 1 in a state where no force is applied. The operation member 4 can be tilted until the conical bus of the conical electrode 3 is parallel to the plane of the radial pattern 2.
In the present embodiment, as shown by a broken line in FIG. 2B, the operation member 4 is fixed to the conical electrode 3, so that the tilt direction and tilt angle of the operation member 4 and the tilt direction of the conical electrode 3 are fixed. And the tilt angle coincide with each other.

次に、図3を参照して、本発明の実施形態の全方向操作スイッチ装置の電極等以外の部分の構成を説明する。図3は、本実施形態の全方向操作スイッチ装置の全体構成の模式図である。なお、図3では、円錐電極3及び操作部材4の図示を省略している。   Next, with reference to FIG. 3, the structure of parts other than the electrode etc. of the omnidirectional operation switch apparatus of embodiment of this invention is demonstrated. FIG. 3 is a schematic diagram of the overall configuration of the omnidirectional operation switch device of the present embodiment. In FIG. 3, illustration of the conical electrode 3 and the operation member 4 is omitted.

図3に示すように、本実施形態の全方向操作スイッチ装置は、図1に示した電極等以外に、放射状パターン2の各分割電極21a〜21hを、図2(a)において時計回りに、一定の巡回周期で順次選択する切替手段6と、円錐電極3と、切替手段6に選択されている分割電極21とによって構成されるコンデンサの静電容量を、電圧信号に変換する静電容量−電圧変換手段7と、分割電極21a〜21hごとに順次に変換された一連の電圧信号から、巡回周期を一周期とする特定周波数成分を抽出する抽出手段8と、特定周波数成分の信号波形の位相と、放射状パターン2の中心から見た方向とを対応づけ、信号波形が極大又は極小となる位相に対応する方向を、操作部材4の操作方向として検出する操作方向検出手段9とを備える。   As shown in FIG. 3, the omnidirectional operation switch device of the present embodiment has the divided electrodes 21 a to 21 h of the radial pattern 2 in the clockwise direction in FIG. 2A in addition to the electrodes shown in FIG. Capacitance for converting a capacitance of a capacitor formed by the switching means 6 that sequentially selects at a constant cyclic cycle, the conical electrode 3, and the divided electrode 21 selected by the switching means 6 into a voltage signal− The voltage converting means 7, the extracting means 8 for extracting a specific frequency component having a cyclic period as one cycle from a series of voltage signals sequentially converted for each of the divided electrodes 21a to 21h, and the phase of the signal waveform of the specific frequency component And an operation direction detecting means 9 for detecting the direction corresponding to the phase where the signal waveform is maximized or minimized as the operation direction of the operation member 4.

さらに、本実施形態の全方向操作スイッチ装置は、特定周波数成分の信号波形の最大振幅に基づいて、操作部材4の傾動操作量を検出する操作量検出手段を更に備える。なお、本実施形態では、操作方向検出手段9及び操作量検出手段は、マイクロプロセッサ9で構成される。   Furthermore, the omnidirectional operation switch device of the present embodiment further includes an operation amount detection means for detecting the tilt operation amount of the operation member 4 based on the maximum amplitude of the signal waveform of the specific frequency component. In the present embodiment, the operation direction detection means 9 and the operation amount detection means are constituted by the microprocessor 9.

本実施形態の切替手段6は、各分割電極21a〜21hにそれぞれ接続する8つの入力端61a〜61hと、1つの出力端62とを有する。そして、切替手段6は、これらの入力端61a〜61hと出力端62との接続を、10ミリ秒(100Hz)の一定周期で巡回するように順次に切り替える。これにより、各分割電極21a〜21hは、10ミリ秒ごとに選択される。
なお、切替手段6の巡回周期は、10ミリ秒に限定されず、任意の一定周期で接続を切り替えることができる。
The switching means 6 of the present embodiment has eight input ends 61a to 61h connected to the respective divided electrodes 21a to 21h, and one output end 62. Then, the switching unit 6 sequentially switches the connection between the input terminals 61a to 61h and the output terminal 62 so as to circulate at a constant cycle of 10 milliseconds (100 Hz). Thereby, each divided electrode 21a-21h is selected every 10 milliseconds.
Note that the cyclic period of the switching unit 6 is not limited to 10 milliseconds, and the connection can be switched at an arbitrary fixed period.

本実施形態では、切替手段6の出力端に、静電容量−電圧変換手段7、及び抽出手段8が接続されている。   In the present embodiment, the capacitance-voltage conversion unit 7 and the extraction unit 8 are connected to the output terminal of the switching unit 6.

本実施形態の静電容量−電圧変換手段7は、高周波信号源71と、負荷抵抗72とから構成されている。負荷抵抗72は、コンデンサと高周波信号源71との間、すなわち、切替手段6の出力端62と、高周波信号源71との間に設けられている。高周波信号源71は、周波数500Hzでピーク間電圧5Vppの正弦波からなる高周波信号を発生する。
なお、印加する高周波信号の周波数は、500kHzに限定されず、任意好適な周波数を選択することができる。
The capacitance-voltage conversion means 7 of this embodiment is composed of a high frequency signal source 71 and a load resistor 72. The load resistor 72 is provided between the capacitor and the high frequency signal source 71, that is, between the output terminal 62 of the switching unit 6 and the high frequency signal source 71. The high frequency signal source 71 generates a high frequency signal composed of a sine wave having a frequency of 500 Hz and a peak-to-peak voltage of 5 Vpp.
Note that the frequency of the high-frequency signal to be applied is not limited to 500 kHz, and any suitable frequency can be selected.

抽出手段8は、コンデンサと負荷抵抗72との間、具体的には、コンデンサに接続された切替手段6の出力端62と負荷抵抗72との間に接続される。これにより、出力端62と負荷抵抗72との間のノードの電圧信号が、抽出手段8に入力される。   The extraction unit 8 is connected between the capacitor and the load resistor 72, specifically, between the output terminal 62 of the switching unit 6 connected to the capacitor and the load resistor 72. As a result, the voltage signal at the node between the output terminal 62 and the load resistor 72 is input to the extraction unit 8.

抽出手段8は、バンドパスフィルタ8で構成される。このバンドパスフィルタ8は、切替手段6の巡回周期10ミリ秒に対応する周波数100Hzを含む周波数成分を通過させ、且つ、高周波信号の周波数500kHzの周波数成分を遮断する。特定周波数成分には、操作部材4の傾動による、各分割電極21a〜21hに対応するコンデンサの静電容量の変動が反映される。   The extraction means 8 is composed of a bandpass filter 8. The band-pass filter 8 allows a frequency component including a frequency of 100 Hz corresponding to a cyclic period of 10 milliseconds of the switching unit 6 to pass, and blocks a frequency component of a high-frequency signal having a frequency of 500 kHz. The specific frequency component reflects a change in the capacitance of the capacitor corresponding to each of the divided electrodes 21 a to 21 h due to the tilt of the operation member 4.

なお、バンドパスフィルタ8の入力側に入力信号の正方向の電圧のみを通過させる半波整流回路を設けてもよい。また、抽出手段8は、ローパスフィルタで構成してもよい。   A half-wave rectifier circuit that allows only the positive voltage of the input signal to pass may be provided on the input side of the bandpass filter 8. Further, the extraction means 8 may be constituted by a low pass filter.

バンドパスフィルタ8から出力された特定周波数成分の信号は、マイクロコンピュータ9のT1端子及びT2端子にそれぞれ入力される。また、マイクロコンピュータ9の端子T3から切替手段6の制御端子Cへ切替信号が入力される。この切替信号により、切替手段6は、接続を順次に切り替える。   The signal of the specific frequency component output from the band pass filter 8 is input to the T1 terminal and T2 terminal of the microcomputer 9, respectively. A switching signal is input from the terminal T3 of the microcomputer 9 to the control terminal C of the switching means 6. In response to the switching signal, the switching unit 6 sequentially switches the connection.

マイクロコンピュータ9のT1端子に入力された信号は、アナログ/デジタル変換される。マイクロコンピュータ9は、操作量検出手段として働き、変換された特定周波数成分の信号波形の最大振幅に基づいて、操作部材4の傾動操作量を検出する。   The signal input to the T1 terminal of the microcomputer 9 is subjected to analog / digital conversion. The microcomputer 9 functions as an operation amount detection unit, and detects the tilt operation amount of the operation member 4 based on the maximum amplitude of the converted signal waveform of the specific frequency component.

また、マイクロコンピュータ9は、操作方向検出手段9として働き、T2端子に入力された信号は、公知のタイマー割り込みにより、信号波形が極大又は極小となる位相を検出する。検出された位相は、操作部材4の傾動操作方向に対応する。検出された傾動操作量及び傾動操作方向は操作信号として、出力端TOから図示しない外部機器へ出力される。   Further, the microcomputer 9 functions as the operation direction detecting means 9, and the signal input to the T2 terminal detects the phase at which the signal waveform is maximized or minimized by a known timer interruption. The detected phase corresponds to the tilting operation direction of the operation member 4. The detected tilt operation amount and tilt operation direction are output as operation signals from the output terminal TO to an external device (not shown).

次に、図4のタイミングチャートを参照して、本実施形態の全方向操作スイッチ装置の動作について説明する。
図4の1段目のタイミングチャートは、各分割電極21a〜21hに対応するコンデンサCa〜Chを表す。切替手段6は、図4に示した順に、各分割電極21a〜21hを巡回周期で選択する。
Next, the operation of the omnidirectional operation switch device of this embodiment will be described with reference to the timing chart of FIG.
The first stage timing chart of FIG. 4 represents capacitors Ca to Ch corresponding to the divided electrodes 21a to 21h. The switching unit 6 selects the divided electrodes 21a to 21h in a cyclic cycle in the order shown in FIG.

図4の2段目、及び3段目のタイミングチャートは、それぞれ切替手段6の出力端62から出力される信号波形I及びIIを示す。これらの信号波形I及びIIは、分割電極ごとに順次に静電容量−電圧変換された一連の電圧信号の波形を表す。ただし、2段目の信号波形Iは、操作部材4が中立の場合、即ち、操作部材4が放射パターン2の平面に対して垂直に立っている場合のものを示す。また、3段目の信号波形IIは、操作部材4が、図2(a)に矢印Xで示す方向に傾動した場合のものを示す。   The timing charts of the second and third stages in FIG. 4 show signal waveforms I and II output from the output terminal 62 of the switching unit 6, respectively. These signal waveforms I and II represent a series of voltage signal waveforms that are sequentially subjected to capacitance-voltage conversion for each divided electrode. However, the signal waveform I in the second stage shows a case where the operation member 4 is neutral, that is, a case where the operation member 4 stands perpendicular to the plane of the radiation pattern 2. Further, the signal waveform II in the third stage shows the case where the operation member 4 is tilted in the direction indicated by the arrow X in FIG.

図4の4段目のタイミングチャートは、バンドパスフィルタ8から出力された特定周波数成分の信号波形IIIを示す。この特定周波数成分の信号波形IIIの周期は、切替手段6が、各分割電極21a〜21hの選択を一巡させる周期10ミリ秒(100Hz)と一致している。そして、分割電極21aと分割電極21hとの境界の方向を0°として、特定周波数成分の信号波形IIIの位相と、放射状パターン2の中心から見た方向とが対応づけられている。   The timing chart at the fourth stage in FIG. 4 shows the signal waveform III of the specific frequency component output from the band pass filter 8. The period of the signal waveform III of the specific frequency component coincides with a period of 10 milliseconds (100 Hz) in which the switching unit 6 makes a round of selection of each of the divided electrodes 21a to 21h. The phase of the signal waveform III of the specific frequency component is associated with the direction viewed from the center of the radial pattern 2 with the direction of the boundary between the divided electrode 21a and the divided electrode 21h being 0 °.

まず、操作部材4が中立にある場合、各コンデンサの静電容量Ca〜Chは互いにほぼ等しい。このため、各コンデンサをインピーダンスとしてみた場合の、電圧降下は互いにほぼ等しい。その結果、図4の2段目の信号波形Iの信号レベル(振幅)は、選択されている分割電極によらず、一定となっている。   First, when the operation member 4 is neutral, the capacitances Ca to Ch of the capacitors are substantially equal to each other. For this reason, when each capacitor is viewed as an impedance, the voltage drops are almost equal to each other. As a result, the signal level (amplitude) of the second-stage signal waveform I in FIG. 4 is constant regardless of the selected divided electrode.

この信号波形Iの成分は、実質的に500kHzの高周波成分のみを含み、100Hzの特定周波数成分を含まない。その結果、この信号波形IIが入力されたバンドパスフィルタ8から出力される特定周波数成分の電圧信号の信号レベルは、実質的に0Vとなる。これにより、操作部材4が中立であることが検出される。   The component of the signal waveform I substantially includes only a high frequency component of 500 kHz and does not include a specific frequency component of 100 Hz. As a result, the signal level of the voltage signal of the specific frequency component output from the band pass filter 8 to which the signal waveform II is input is substantially 0V. Thereby, it is detected that the operation member 4 is neutral.

これに対して、操作部材4が傾動操作されると、各コンデンサの静電容量Ca〜Chが互いに異なる値となる。例えば、操作部材4が、図2(a)に矢印Xで示す方向に傾動した場合、円錐電極3と各分割電極21a〜21hとがそれぞれ構成するコンデンサの静電容量Ca〜Chは、X方向において最大の静電容量値となり、X方向と逆方向で最小となる。すなわち、各静電容量の大小関係は、Cc、Cd>Cb、Ce>Ca、Cf>Cg、Chとなる。   On the other hand, when the operation member 4 is tilted, the capacitances Ca to Ch of the capacitors have different values. For example, when the operation member 4 is tilted in the direction indicated by the arrow X in FIG. 2A, the capacitances Ca to Ch of the capacitors respectively formed by the conical electrode 3 and the divided electrodes 21a to 21h are in the X direction. At the maximum capacitance value and the minimum in the direction opposite to the X direction. That is, the magnitude relationship of each capacitance is Cc, Cd> Cb, Ce> Ca, Cf> Cg, Ch.

このため、信号波形IIの振幅も、図4に示すように、切替手段6によって選択されているコンデンサの静電容量に対応して変化する。その結果、この信号波形IIには、500kHzの高周波成分に加えて、切替手段6の選択が一巡する周期に対応する100Hzで変化する特定周波数成分が含まれる。   For this reason, the amplitude of the signal waveform II also changes corresponding to the capacitance of the capacitor selected by the switching means 6, as shown in FIG. As a result, the signal waveform II includes a specific frequency component that changes at 100 Hz corresponding to a cycle in which the selection of the switching means 6 is completed in addition to the high-frequency component of 500 kHz.

この信号波形IIの電圧信号をバンドパスフィルタ8に通すことによって、信号波形IIIの特定周波数成分が抽出される。図4に示すように、抽出された信号波形IIIは、位相tXで最小となる、振幅Vsの正弦波である。   By passing the voltage signal of the signal waveform II through the bandpass filter 8, a specific frequency component of the signal waveform III is extracted. As shown in FIG. 4, the extracted signal waveform III is a sine wave having an amplitude Vs that is minimum at the phase tX.

マイクロプロセッサ9の端子T1に入力された信号波形IIIは、アナログ/デジタル(A/D)変換される。変換後の信号の振幅Vsから操作部材4の傾動操作の角度、即ち、傾動操作量が検出される。操作部材4の傾動操作量は、信号波形IIIの振幅にほぼ比例する。   The signal waveform III input to the terminal T1 of the microprocessor 9 is analog / digital (A / D) converted. The angle of the tilting operation of the operation member 4, that is, the tilting operation amount is detected from the amplitude Vs of the converted signal. The tilting operation amount of the operation member 4 is substantially proportional to the amplitude of the signal waveform III.

また、マイクロプロセッサ9の端子T2に入力された信号波形IIIの位相tXのタイミングから、操作部材4の傾動方向Xが検出される。図4では、信号波形IIIの位相を、放射状パターン2の全周を分割電極21aと分割電極21hとの境界を起点とした、切替手段6の巡回方向と同じ時計回りの角度と対応づけている。そして、位相tXは、操作部材4の傾動方向XであるX°に対応する。   Further, the tilt direction X of the operation member 4 is detected from the timing of the phase tX of the signal waveform III input to the terminal T2 of the microprocessor 9. In FIG. 4, the phase of the signal waveform III is associated with the same clockwise angle as the cyclic direction of the switching means 6 starting from the boundary between the divided electrode 21a and the divided electrode 21h around the entire circumference of the radial pattern 2. . The phase tX corresponds to X ° that is the tilting direction X of the operation member 4.

この位相tXは、具体的には、タイマー割り込みによって検出される。タイマー割り込みは、マイクロプロセッサ9の端子T2に入力された信号波形IIIの信号レベルが、図4に一点鎖線IVで示す中心電圧となるタイミングで発生する。信号波形IIIが一点鎖線IVを交わるタイミングt0とタイミングt1との所定のタイマー値がサンプリングされる。そして、このタイミングt1とタイミングt0とから、これらのタイミングの中央値tXが演算されて、この中央値に対応する操作部材4の傾動方向が検出される。   Specifically, this phase tX is detected by a timer interrupt. The timer interrupt is generated at a timing when the signal level of the signal waveform III input to the terminal T2 of the microprocessor 9 becomes the center voltage indicated by the alternate long and short dash line IV in FIG. A predetermined timer value at timing t0 and timing t1 at which the signal waveform III crosses the alternate long and short dash line IV is sampled. Then, from the timing t1 and the timing t0, the median value tX of these timings is calculated, and the tilt direction of the operation member 4 corresponding to the median value is detected.

傾動方向の検出精度は、特定周波数成分の信号波形の極小値等の位相の検出精度に依存する。本実施形態では、この位相の検出精度は、タイマー割り込み時のサンプリング精度に依存するが、分割電極による放射状パターン2の分割数の制約を受けない。このため、放射状パターンの分割数によらずに、傾動方向の検出にあたり、高い方位分解能が実現される。   The detection accuracy of the tilt direction depends on the detection accuracy of the phase such as the minimum value of the signal waveform of the specific frequency component. In this embodiment, the phase detection accuracy depends on the sampling accuracy at the time of timer interruption, but is not limited by the number of divisions of the radial pattern 2 by the division electrodes. For this reason, high azimuth | direction resolution is implement | achieved in the detection of a tilt direction irrespective of the division | segmentation number of a radial pattern.

上述の実施形態においては、本発明を特定の条件で構成した例について説明したが、本発明は種々の変更及び組み合わせを行うことができ、これに限定されるものではない。例えば、静電容量−電圧変換手段は、実施形態に示したものに限定されない。
静電容量−電圧変換手段の変形例として、円形パターンを介して円錐電極側に高周波信号を印加し、切替手段の出力端を負荷抵抗を介して接地するように構成してもよい。その場合、円錐形電極の傾動方向に相当する位相で、特定周波数成分の信号波形が極大となる。
In the above-mentioned embodiment, although the example which comprised this invention on the specific conditions was demonstrated, this invention can perform a various change and combination, and is not limited to this. For example, the capacitance-voltage conversion means is not limited to that shown in the embodiment.
As a modification of the capacitance-voltage conversion means, a high-frequency signal may be applied to the conical electrode side via a circular pattern, and the output end of the switching means may be grounded via a load resistor. In that case, the signal waveform of the specific frequency component becomes maximum at a phase corresponding to the tilting direction of the conical electrode.

また、静電容量−電圧変換手段の別の変形例として、円形パターンを介して円錐電極側に、負荷抵抗を介して高周波信号を印加するとともに、バンドパスフィルタ等の抽出手段介してマイクロコンピュータを接続し、一方、切替手段の出力端を接地するように構成してもよい。その場合、円錐形電極の傾動方向に相当する位相で、特定周波数成分の信号波形が極小となる。   As another modification of the capacitance-voltage conversion means, a high frequency signal is applied to the conical electrode side via a circular pattern via a load resistor, and a microcomputer is provided via an extraction means such as a bandpass filter. On the other hand, the output end of the switching means may be grounded. In that case, the signal waveform of the specific frequency component is minimized at a phase corresponding to the tilt direction of the conical electrode.

また、静電容量−電圧変換手段の別の変形例として、円形パターンを介して円錐電極側を、負荷抵抗を介して接地するとともに、バンドパスフィルタ等の抽出手段介してマイクロコンピュータと接続し、一方、切替手段の出力端に高周波信号を印加するように構成してもよい。その場合、円錐形電極の傾動方向に相当する位相で、特定周波数成分の信号波形が極大となる。   As another modification of the capacitance-voltage conversion means, the conical electrode side is grounded via a load resistor via a circular pattern, and connected to a microcomputer via an extraction means such as a bandpass filter, On the other hand, you may comprise so that a high frequency signal may be applied to the output terminal of a switching means. In that case, the signal waveform of the specific frequency component becomes maximum at a phase corresponding to the tilting direction of the conical electrode.

また、上述の実施形態では、円錐電極と放射状パターンをプリント基板の同一面側に設けているが、円錐電極と放射状パターンの配置はこれに限定されない。例えば、円錐電極をプリント基板の上面に配置し、放射状パターンをプリント基板の下面に形成してもよい。   In the above-described embodiment, the conical electrode and the radial pattern are provided on the same surface side of the printed board, but the arrangement of the conical electrode and the radial pattern is not limited to this. For example, the conical electrode may be disposed on the upper surface of the printed circuit board, and the radial pattern may be formed on the lower surface of the printed circuit board.

また、上述の実施形態では、円錐電極と操作部材をプリント基板の同一面側に設けているが、円錐電極と操作部材の配置はこれに限定されない。例えば、円錐電極をプリント基板の下面側にプリント基板側に円錐の頂点を向けて設け、操作部材を、プリント基板の上面側からプリント基板を貫通して円錐電極に連結するようにしてもよい。   In the above-described embodiment, the conical electrode and the operation member are provided on the same surface side of the printed board, but the arrangement of the conical electrode and the operation member is not limited to this. For example, the conical electrode may be provided on the lower surface side of the printed circuit board with the apex of the cone facing the printed circuit board side, and the operation member may be connected to the conical electrode through the printed circuit board from the upper surface side of the printed circuit board.

さらに、操作部材は傾動するだけでなく、様々な機能と組み合わせることができる。例えば、操作部材に、プリント板に対して垂直方向から押圧して作動する公知のプッシュスイッチの機能、及び、操作部材の周囲で回動して機能する回転ダイアルの機能の一方又は両方を付加してもよい。   Furthermore, the operating member can be combined with various functions as well as tilting. For example, the operation member is added with one or both of a function of a known push switch that operates by pressing from the vertical direction with respect to the printed board and a function of a rotary dial that functions by rotating around the operation member. May be.

以上説明したように、本発明の全方向操作スイッチ装置は、ダイアルの回転位置を非接触でかつ正確に検出可能であり、また外来ノイズや結露等に対して信頼性の高いダイアル構造を提供できるから、自動車用の空調制御装置用ダイアル等に用いて好適であるほか、その他一般電気製品の全方向操作スイッチ装置としても使用可能である。   As described above, the omnidirectional operation switch device of the present invention can accurately detect the rotational position of the dial in a non-contact manner and can provide a highly reliable dial structure against external noise, condensation, and the like. In addition to being suitable for use as a dial for an air conditioning control device for automobiles, it can also be used as an omnidirectional operation switch device for other general electric products.

本発明の実施形態の全方向操作スイッチ装置の電極等を模式的に示した斜視図である。It is the perspective view which showed typically the electrode etc. of the omnidirectional operation switch apparatus of embodiment of this invention. (a)は、実施形態の放射状パターンの平面図であり、(b)は、実施形態の電極の縦断面図である。(A) is a top view of the radial pattern of embodiment, (b) is a longitudinal cross-sectional view of the electrode of embodiment. 実施形態の全方方向操作スイッチ装置の構成図である。It is a block diagram of the omnidirectional operation switch apparatus of embodiment. 実施形態の全方向操作スイッチ装置の動作のタイミングチャートである。It is a timing chart of operation | movement of the omnidirectional operation switch apparatus of embodiment.

符号の説明Explanation of symbols

1 プリント基板
2 放射状パターン
3 円錐電極
4 操作部材
5a ばね
5b ナット
6 切替スイッチ
7 静電容量−電圧変換手段
8 抽出手段、バンドパスフィルタ
9 マイクロコンピュータ、操作方向検出手段
21a〜21h 分割電極
22 円形パターン
71 高周波信号源
72 負荷抵抗
DESCRIPTION OF SYMBOLS 1 Printed circuit board 2 Radial pattern 3 Conical electrode 4 Operation member 5a Spring 5b Nut 6 Changeover switch 7 Capacitance-voltage conversion means 8 Extraction means, band pass filter 9 Microcomputer, operation direction detection means 21a-21h Divided electrode 22 Circular pattern 71 High-frequency signal source 72 Load resistance

Claims (4)

全周を等角度に分割した複数の分割電極を有する放射状パターンと、
上記放射状パターンと対向し、かつ、全周の任意の方向に傾動可能に配置した円錐電極と、
上記円錐電極を傾動させる操作部材と、
上記放射状パターンの上記分割電極の各々を一定の巡回周期で順次に選択する切替手段と、
上記円錐電極と上記切替手段に選択されている上記分割電極とによって構成されるコンデンサの静電容量を、電圧信号に変換する静電容量−電圧変換手段と、
上記分割電極ごとに順次に変換された一連の電圧信号から、上記巡回周期を一周期とする特定周波数成分を抽出する抽出手段と、
上記特定周波数成分の信号波形の位相と上記放射状パターンの中心から見た方向とを対応づけ、上記信号波形が極大又は極小となる位相に対応する方向を上記操作部材の操作方向として検出する操作方向検出手段と、
を備えることを特徴とする全方向操作スイッチ装置。
A radial pattern having a plurality of divided electrodes with the entire circumference divided at equal angles;
A conical electrode opposed to the radial pattern and arranged so as to be tiltable in any direction along the entire circumference;
An operation member for tilting the conical electrode;
Switching means for sequentially selecting each of the divided electrodes of the radial pattern at a constant cyclic period;
Capacitance-voltage conversion means for converting a capacitance of a capacitor constituted by the conical electrode and the divided electrode selected by the switching means into a voltage signal;
Extraction means for extracting a specific frequency component having the cyclic period as one period from a series of voltage signals sequentially converted for each of the divided electrodes;
An operation direction that correlates the phase of the signal waveform of the specific frequency component with the direction viewed from the center of the radial pattern, and detects the direction corresponding to the phase at which the signal waveform is maximized or minimized as the operation direction of the operation member. Detection means;
An omnidirectional operation switch device comprising:
上記静電容量−電圧変換手段は、高周波信号源と、
上記コンデンサと上記高周波信号源との間、又は上記コンデンサと接地電位との間に設けた負荷抵抗と、
を有し、
上記抽出手段は、上記コンデンサと上記負荷抵抗との間に接続される
ことを特徴とする請求項1記載の全方向操作スイッチ装置。
The capacitance-voltage conversion means includes a high-frequency signal source,
A load resistor provided between the capacitor and the high-frequency signal source or between the capacitor and a ground potential;
Have
2. The omnidirectional operation switch device according to claim 1, wherein the extraction means is connected between the capacitor and the load resistor.
上記抽出手段は、上記巡回周期に対応する周波数を含む周波数成分を通過させ、且つ、上記高周波信号の周波数成分を遮断するフィルタを含む、
ことを特徴とする請求項2記載の全方向操作スイッチ装置。
The extraction means includes a filter that allows a frequency component including a frequency corresponding to the cyclic period to pass therethrough and blocks the frequency component of the high-frequency signal.
The omnidirectional operation switch device according to claim 2.
上記特定周波数成分の信号波形の最大振幅に基づいて、上記操作部材の傾動操作量を検出する操作量検出手段を更に備える
ことを特徴とする請求項1乃至3の何れか一項に記載の全方向操作スイッチ装置。
The operation amount detecting means for detecting a tilt operation amount of the operation member based on the maximum amplitude of the signal waveform of the specific frequency component is further provided. Directional operation switch device.
JP2007183146A 2007-07-12 2007-07-12 Omni-directional operation switch device Expired - Fee Related JP5018296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007183146A JP5018296B2 (en) 2007-07-12 2007-07-12 Omni-directional operation switch device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007183146A JP5018296B2 (en) 2007-07-12 2007-07-12 Omni-directional operation switch device

Publications (2)

Publication Number Publication Date
JP2009021117A true JP2009021117A (en) 2009-01-29
JP5018296B2 JP5018296B2 (en) 2012-09-05

Family

ID=40360594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007183146A Expired - Fee Related JP5018296B2 (en) 2007-07-12 2007-07-12 Omni-directional operation switch device

Country Status (1)

Country Link
JP (1) JP5018296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817526B1 (en) 2016-09-26 2018-01-11 현대자동차주식회사 Control apparatus using dial and vehicle having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325858A (en) * 2000-03-07 2001-11-22 Alps Electric Co Ltd Multi-directional input device
JP2006084318A (en) * 2004-09-16 2006-03-30 Oki Electric Ind Co Ltd Static capacitance type distance sensor
JP2006185745A (en) * 2004-12-27 2006-07-13 Pentel Corp Capacitance type touch switch device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325858A (en) * 2000-03-07 2001-11-22 Alps Electric Co Ltd Multi-directional input device
JP2006084318A (en) * 2004-09-16 2006-03-30 Oki Electric Ind Co Ltd Static capacitance type distance sensor
JP2006185745A (en) * 2004-12-27 2006-07-13 Pentel Corp Capacitance type touch switch device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817526B1 (en) 2016-09-26 2018-01-11 현대자동차주식회사 Control apparatus using dial and vehicle having the same
CN107870580A (en) * 2016-09-26 2018-04-03 现代自动车株式会社 Control device and its manufacture method and the vehicle comprising the control device
US10574232B2 (en) 2016-09-26 2020-02-25 Hyundai Motor Company Control apparatus using dial, manufacturing method of control apparatus using dial and vehicle including the same

Also Published As

Publication number Publication date
JP5018296B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
EP1378736B1 (en) Electrical capacitance sensor
KR101368511B1 (en) Pointing member, position detection apparatus and position detection method
CN103914197B (en) Touch-sensitive input device
CN110286787B (en) Control chip for touch panel and operation method thereof
CN110226152B (en) Improving Sensitivity and Robustness of Mechanical Rotation and Position Detection Using Capacitive Sensors
KR101527438B1 (en) Capacitive touch panel
CN105210296A (en) Actuating element
US11592936B2 (en) Capacitive touch device with high sensitivity and low power consumption
CN102870327A (en) Detection of a dielectric object
US8307720B2 (en) Device for determining a torque and/or a rotational angle of a shaft
JP2014002080A (en) Rotary input apparatus
JP5018296B2 (en) Omni-directional operation switch device
CN105556432A (en) Active pen with tip pressure sensor
CN106104429A (en) Active pen with tip pressure sensor
JP2002098712A (en) Capacitive type physical quantity detection device
CN105302245A (en) Terminal with touch key
CN114207555A (en) Control device, control method, and control program
JP6908353B2 (en) Electrode structure for capacitance coupling type switch
CN107728829B (en) Sampling frequency and accumulator scanning in a touch screen controller
JP2602878B2 (en) Input Ben of the coordinate input device
JP2011215675A (en) Capacitive touch panel
CN1838051A (en) Touch type induction device
JP3208518B2 (en) Capacitive detector
JP7313247B2 (en) Measuring system and manufacturing method of capacitive sensor
KR101440289B1 (en) Method and apparatus for sensing a plurality of touch inputs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees