JP2009019613A - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine Download PDF

Info

Publication number
JP2009019613A
JP2009019613A JP2007184774A JP2007184774A JP2009019613A JP 2009019613 A JP2009019613 A JP 2009019613A JP 2007184774 A JP2007184774 A JP 2007184774A JP 2007184774 A JP2007184774 A JP 2007184774A JP 2009019613 A JP2009019613 A JP 2009019613A
Authority
JP
Japan
Prior art keywords
cylinder
internal combustion
combustion engine
intake
intake port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007184774A
Other languages
Japanese (ja)
Inventor
Tomoyuki Takada
倫行 高田
Hirokazu Ito
弘和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007184774A priority Critical patent/JP2009019613A/en
Publication of JP2009019613A publication Critical patent/JP2009019613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake device for an internal combustion engine capable of suppressing cooling loss while suppressing weakening of a swirl. <P>SOLUTION: The intake device includes an intake port 5 for making a tangential flow Ft flow out in the direction along the inner periphery of a cylinder 2 of the internal combustion engine by leading air toward the cylinder 2, and by using the tangential flow Ft made to flow out by the intake port 5, the swirl Fsw can be formed in the cylinder 2. The intake device is provided with a cylinder member 10 having a blade part 12A extending while twisting about the same direction as the direction of a rotational component f2 so that the tangential flow Ft includes the rotational component f2 around the axis extending in the advancing direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は内燃機関のシリンダ内にスワールを形成できる内燃機関の吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine capable of forming a swirl in a cylinder of the internal combustion engine.

ディーゼル機関の吸気ポートに隣接してシリンダヘッドに開口する補助吸気ポートを設けた内燃機関の吸気装置がある(特許文献1)。この吸気装置は、シリンダ内にスワールが発生しているときに補助吸気ポートから縦流をシリンダ内に導入し、スワールと縦流とを混ぜることにより吸気の乱れエネルギを増加させる。その他、本発明に関連する先行技術文献として、特許文献2及び3が存在する。   There is an internal combustion engine intake device provided with an auxiliary intake port that opens to a cylinder head adjacent to an intake port of a diesel engine (Patent Document 1). This intake device introduces a longitudinal flow into the cylinder from the auxiliary intake port when a swirl is generated in the cylinder, and increases the turbulent energy of the intake air by mixing the swirl and the longitudinal flow. In addition, Patent Documents 2 and 3 exist as prior art documents related to the present invention.

特開平4−47124号公報JP-A-4-47124 特開平11−257077号公報Japanese Patent Laid-Open No. 11-257077 特開2002−30937号公報Japanese Patent Laid-Open No. 2002-30937

シリンダ内に形成されるスワールが強くなると流速が大きくなるため、シリンダの内周面やピストンの頂面等のスワールと接触する壁面からの放熱量が増加して、冷却損失が増加する問題がある。また、特許文献1の吸気装置のようにスワールに縦流を混ぜただけでは、補助吸気ポートから導入される縦流とシリンダ内のスワールとが干渉し合いスワールが弱められるおそれがある。   If the swirl formed in the cylinder becomes stronger, the flow rate increases, and therefore the amount of heat radiation from the wall surface that contacts the swirl, such as the inner peripheral surface of the cylinder or the top surface of the piston, increases, resulting in an increase in cooling loss. . Further, if the swirl is simply mixed with the swirl like the intake device of Patent Document 1, the swirl in the cylinder may interfere with the swirl introduced from the auxiliary intake port and the swirl may be weakened.

そこで、本発明は、スワールを弱めることを抑えつつ冷却損失の増加を抑制できる内燃機関の吸気装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an intake device for an internal combustion engine that can suppress an increase in cooling loss while suppressing weakening of a swirl.

本発明の内燃機関の吸気装置は、内燃機関のシリンダに向かって空気を導くことにより前記シリンダの内周に沿う方向の接線流を前記シリンダ内に流出させる吸気ポートを有し、前記吸気ポートが流出させた接線流を利用して前記シリンダ内にスワールを形成できる内燃機関の吸気装置において、前記接線流がその進行方向に延びる軸線回りの回転成分を持つように、前記吸気ポートが導く空気に対して前記回転成分と同方向回りの回転成分を与える回転成分付与手段を備えることにより、上述した課題を解決する(請求項1)。   An intake device for an internal combustion engine according to the present invention includes an intake port that causes a tangential flow in a direction along an inner periphery of the cylinder to flow into the cylinder by guiding air toward the cylinder of the internal combustion engine, and the intake port includes In an intake device of an internal combustion engine that can form a swirl in the cylinder using the tangential flow that has flowed out, the air introduced by the intake port so that the tangential flow has a rotational component around an axis extending in the traveling direction. On the other hand, the above-described problem is solved by providing a rotation component applying means for applying a rotation component around the same direction as the rotation component.

この吸気装置によれば、シリンダの内周に沿う接線流がその進行方向に延びる軸線回りの回転成分を持つため、シリンダ内周壁面付近に乱れを生じてその付近の流速が低下する。そのため、接線流が発展して形成されるスワールとシリンダ壁面との境界層が厚くなる。これによりシリンダの壁面からの放熱を抑制できる。吸気ポートが導く空気に対して回転成分を与えているので、シリンダ内に形成されるスワールと他の気流とが干渉することがない。しかも、流速が遅くなるのは壁面に近い領域に限られている。従って、スワールを弱めることを抑えつつ冷却損失の増加を抑制できる。   According to this intake device, since the tangential flow along the inner periphery of the cylinder has a rotational component around the axis extending in the traveling direction, the turbulence is generated near the inner peripheral wall surface of the cylinder, and the flow velocity in the vicinity thereof decreases. Therefore, the boundary layer between the swirl formed by the development of the tangential flow and the cylinder wall surface becomes thick. Thereby, the heat radiation from the wall surface of the cylinder can be suppressed. Since a rotational component is given to the air guided by the intake port, the swirl formed in the cylinder does not interfere with other airflows. Moreover, the flow rate is slow only in a region close to the wall surface. Therefore, it is possible to suppress an increase in cooling loss while suppressing weakening of the swirl.

本発明の一態様として、前記吸気ポートは、前記接線流を流出させるための接線流生成領域と前記スワールの回転方向と同方向に旋回する旋回流を前記シリンダ内に流出させるための旋回流生成領域とが前記シリンダの高さ方向に関して上下に隣接するようにして同一ポート内に形成されたスワール生成ポートとして構成され、前記回転成分付与手段は、前記接線流生成領域に限定的に設けられてもよい(請求項2)。この態様によれば、回転成分付与手段が設けられる範囲が接線流生成領域に限られるので、吸気ポートの横断面の全体に回転成分付与手段を設ける場合と比べて、回転成分付与手段が空気に影響を与える部分が少なくなる。それにより、回転成分付与手段から影響を受ける空気の流速が相対的に速くなるため、吸気ポートが流出させる接線流の旋回成分の強さを増加させることができる。   As one aspect of the present invention, the intake port generates a swirl flow for letting the swirl flow swirling in the same direction as the rotation direction of the swirl and the tangential flow generation region for letting the tangential flow flow out into the cylinder. The swirl generation port is formed in the same port so that the region is adjacent to the upper and lower sides in the height direction of the cylinder, and the rotation component applying means is limitedly provided in the tangential flow generation region. (Claim 2). According to this aspect, since the range in which the rotation component applying means is provided is limited to the tangential flow generation region, the rotation component applying means is less exposed to the air than in the case where the rotation component applying means is provided in the entire cross section of the intake port. There will be less influence. Thereby, since the flow velocity of the air affected by the rotation component applying means becomes relatively high, the strength of the swirling component of the tangential flow that flows out from the intake port can be increased.

回転成分付与手段に特段の制限はなく、所用の回転成分を空気に対して与えることができればよい。例えば、前記回転成分付与手段として、前記吸気ポートの内面側から内方へに突出し、かつ前記吸気ポートにて空気が導かれる方向に向かって前記接線流が持つ前記回転成分と同方向回りにねじれながら延びる螺旋突部が設けられてもよい(請求項3)。この態様によれば、吸気ポートを通過する空気が螺旋突部に沿って進行するため、所定方向の回転成分を空気に与えることができる。この態様においては、前記螺旋突部は、その短手方向の断面がねじれ方向に向かって凹となるように湾曲してもよい(請求項4)。この場合には、空気をより捕まえやすくなるので、空気に対して旋回成分を効率的に与えることができるようになる。   There is no particular limitation on the rotation component applying means, and it is sufficient that the required rotation component can be applied to the air. For example, as the rotation component applying means, the twisting about the same direction as the rotation component that protrudes inward from the inner surface side of the intake port and that the tangential flow has in the direction in which air is guided at the intake port. However, a spiral protrusion that extends may be provided (claim 3). According to this aspect, since air passing through the intake port travels along the spiral protrusion, a rotation component in a predetermined direction can be given to the air. In this aspect, the spiral protrusion may be curved so that a cross section in the short side direction becomes concave toward the twist direction (claim 4). In this case, since it becomes easier to catch air, a swirl component can be efficiently given to the air.

また、本発明の一態様として、前記吸気ポートは、前記内燃機関のシリンダヘッドに形成された不動部と、前記螺旋突部が設けられかつ前記空気が導かれる方向に延びる軸線の回りを前記不動部に対して相対回転可能な状態で前記シリンダヘッドに支持された回転部とを含み、前記回転部を前記螺旋突部のねじれ方向と同方向回りに回転させることができる回転駆動手段を更に備えてもよい(請求項5)。この態様によれば、螺旋突部のねじれ方向と同方向に回転部が回転することにより、吸気ポートが導く空気に対してより大きな回転成分を与えることができる。   Further, as one aspect of the present invention, the intake port includes an immovable portion formed in a cylinder head of the internal combustion engine, and an axis around which the spiral protrusion is provided and extends in a direction in which the air is guided. And a rotation drive unit that is supported by the cylinder head in a state of being rotatable relative to the unit, and further includes a rotation drive unit that can rotate the rotation unit about the same direction as the twist direction of the spiral protrusion. (Claim 5). According to this aspect, when the rotating portion rotates in the same direction as the twist direction of the spiral protrusion, a larger rotational component can be given to the air guided by the intake port.

回転駆動手段の構成に特段の制限はない。例えば、電動モータを利用して回転部を回転させることもできる。また、前記内燃機関は前記吸気ポートを開閉する吸気バルブと、前記吸気バルブを開閉駆動する動弁手段とを有し、前記回転駆動手段は、前記動弁手段が前記吸気バルブを開弁させるための運動を前記回転部を回転させるための運動に変換して前記回転部に伝達する伝達機構を備えてもよい(請求項6)。この場合は、動弁手段を利用して回転部を回転駆動するため、回転部に対する回転駆動専用の駆動源を別途用意する必要がない。それにより部品点数の増加を抑止できる。しかも、動弁手段が吸気バルブを開弁させる運動を利用して回転部を回転させるため、吸気バルブの開弁期間と回転部の回転期間とを容易に同期させることができる。   There is no particular limitation on the configuration of the rotation driving means. For example, the rotating unit can be rotated using an electric motor. The internal combustion engine includes an intake valve that opens and closes the intake port, and valve operating means that drives the intake valve to open and close, and the rotational drive means is configured to cause the valve operating means to open the intake valve. A transmission mechanism may be provided that converts the movement of the above into a movement for rotating the rotating part and transmits the converted movement to the rotating part (Claim 6). In this case, since the rotary part is rotationally driven using the valve operating means, it is not necessary to separately prepare a drive source dedicated to rotational drive for the rotary part. Thereby, an increase in the number of parts can be suppressed. In addition, since the valve operating means rotates the rotating part using the movement of opening the intake valve, the valve opening period of the intake valve and the rotating period of the rotating part can be easily synchronized.

以上説明したように、本発明によれば、シリンダの内周に沿う接線流がその進行方向に延びる軸線回りの回転成分を持つため、シリンダ内周壁面付近に乱れを生じてその付近の流速が低下し、スワールとシリンダ壁面との境界層が厚くなる。これによりシリンダの壁面からの放熱を抑制できる。しかも、吸気ポートが導く空気に対して旋回成分を与えているので、シリンダ内に形成されるスワールと他の気流とが干渉することがない。従って、スワールを弱めることを抑えつつ冷却損失の増加を抑制できる。その結果、スワールによる燃料の混合、拡散効果を損なうことなく冷却損失の増加を抑えることができるので、低燃費で低スモークな燃焼が可能になる。   As described above, according to the present invention, since the tangential flow along the inner periphery of the cylinder has a rotational component around the axis extending in the traveling direction, turbulence occurs near the inner peripheral wall surface of the cylinder, and the flow velocity in the vicinity thereof And the boundary layer between the swirl and the cylinder wall surface becomes thicker. Thereby, the heat radiation from the wall surface of the cylinder can be suppressed. In addition, since the swirl component is given to the air guided by the intake port, the swirl formed in the cylinder does not interfere with other airflows. Therefore, it is possible to suppress an increase in cooling loss while suppressing weakening of the swirl. As a result, it is possible to suppress an increase in cooling loss without impairing the mixing and diffusing effect of the fuel by the swirl, so that low fuel consumption and low smoke combustion becomes possible.

(第1の形態)
図1は本発明の一形態に係る吸気装置が適用された内燃機関の要部を模式的に示した平面図である。この図においては理解を容易にするため通路や穴等の内面を外形線で図示されている部分がある。図1に示した内燃機関1は、複数(図では1つのみ示す)シリンダ2が一方向に並ぶようにしてシリンダブロック3に形成された直列型のディーゼルエンジンとして構成されている。シリンダ2には空気を吸入するための吸気通路4が接続されており、その吸気通路4は各シリンダ2に空気を導くための二つの吸気ポート5、6を含んでいる。これらの吸気ポート5、6はシリンダ2の開口部を塞ぐシリンダヘッド7に形成されている。各吸気ポート5、6の開口部は吸気バルブ8にて開閉される。なお、シリンダ2には排気を導く排気通路が接続されているが図示を省略する。
(First form)
FIG. 1 is a plan view schematically showing a main part of an internal combustion engine to which an intake device according to an embodiment of the present invention is applied. In this figure, there are portions where the inner surfaces of passages, holes and the like are illustrated by outlines for easy understanding. The internal combustion engine 1 shown in FIG. 1 is configured as an in-line diesel engine formed in a cylinder block 3 such that a plurality (only one is shown) of cylinders 2 are arranged in one direction. An intake passage 4 for sucking air is connected to the cylinder 2, and the intake passage 4 includes two intake ports 5 and 6 for guiding air to each cylinder 2. These intake ports 5 and 6 are formed in a cylinder head 7 that closes the opening of the cylinder 2. Openings of the intake ports 5 and 6 are opened and closed by an intake valve 8. The cylinder 2 is connected to an exhaust passage for guiding exhaust, but the illustration is omitted.

一方の吸気ポート5はいわゆるタンジェンシャルポートとして構成されていて、吸気ポート5はシリンダ2に向かって空気を導くことにより、シリンダ2の周方向に沿う接線流Ftを流出させる。他方の吸気ポート6はヘリカルポートとして構成されている。吸気ポート6はシリンダ2に空気を導くことにより、シリンダ2の周方向に旋回する旋回流Frを流出させる。吸気行程において、各吸気ポート5、6から接線流Ft及び旋回流Frがそれぞれ流出するため、シリンダ2内にはこれらの流れを利用してスワールFswが形成される。周知のように、スワールFswはシリンダ2の内周面に沿ってシリンダ2の中心線と交差する面内を旋回する流れのことである。なお、スワールFswの形成にはヘリカルポートとして構成された吸気ポート6の存在が必須ではない。そのため吸気ポート6を他の形態に変更しても又は省略してもスワールFswを形成することは可能である。   One intake port 5 is configured as a so-called tangential port, and the intake port 5 guides air toward the cylinder 2, thereby causing a tangential flow Ft along the circumferential direction of the cylinder 2 to flow out. The other intake port 6 is configured as a helical port. The intake port 6 guides air to the cylinder 2 to cause the swirling flow Fr swirling in the circumferential direction of the cylinder 2 to flow out. In the intake stroke, the tangential flow Ft and the swirl flow Fr flow out from the intake ports 5 and 6, respectively, and thus the swirl Fsw is formed in the cylinder 2 using these flows. As is well known, the swirl Fsw is a flow swirling in a plane that intersects the center line of the cylinder 2 along the inner peripheral surface of the cylinder 2. Note that the presence of the intake port 6 configured as a helical port is not essential for the formation of the swirl Fsw. Therefore, the swirl Fsw can be formed even if the intake port 6 is changed to another form or omitted.

吸気ポート5はその上流側に配置された回転成分付与手段として機能する筒部材10を含んでいる。筒部材10はシリンダヘッド7と別部品として構成されている。シリンダヘッド7には筒部材10を嵌め込むための取付穴7aが形成されており、その取付穴7aは吸気ポート5の内径よりも筒部材10の肉厚くらい大きな内径を持っている。筒部材10はその取付穴7aに回転不能な状態で嵌め込まれることにより吸気ポート5の一部として機能する。   The intake port 5 includes a cylindrical member 10 that functions as a rotational component applying means disposed on the upstream side thereof. The cylinder member 10 is configured as a separate part from the cylinder head 7. A mounting hole 7 a for fitting the cylinder member 10 is formed in the cylinder head 7, and the mounting hole 7 a has an inner diameter that is larger than the inner diameter of the intake port 5 by the thickness of the cylindrical member 10. The cylindrical member 10 functions as a part of the intake port 5 by being fitted in the mounting hole 7a in a non-rotatable state.

図2〜図7は図1に示した筒部材10の詳細を示している。図2は筒部材10の正面図、図3は図2の矢印IIIの方向から見た状態を示した図、図4は図2の矢印IVの方向から見た状態を示した図、図5〜図7は図2のV−V線、VI−VI線、及びVII−VII線に関する断面図である。   2 to 7 show details of the cylindrical member 10 shown in FIG. 2 is a front view of the cylindrical member 10, FIG. 3 is a view showing a state seen from the direction of arrow III in FIG. 2, FIG. 4 is a view showing a state seen from the direction of arrow IV in FIG. FIG. 7 is a cross-sectional view taken along lines VV, VI-VI, and VII-VII in FIG.

これらの図に示すように、筒部材10は円筒状に形成されており、その内周面10aには螺旋状に延びる4つのブレード部12A〜12Dが周方向に関して等間隔に設けられている。各ブレード部12A〜12Dは筒部材10の内周面10aから内方に突出し、かつ空気が導かれる方向(図2の右から左へ向かう方向)に向かって時計方向回りにねじれながら延びている。また、各ブレード部12A〜12Dはその短手方向の断面(横断面)がねじれ方向に向かって凹となるように湾曲している。図示の形態では、筒部材10の入口側端部10bから出口側端部10cに至る間に各ブレード部12A〜12Dが1回転ねじれるようにねじれのピッチが設定されている。これにより、筒部材10がシリンダヘッド7に嵌め込まれて吸気ポート5が構成されると、図4〜図7から明らかなように、吸気ポート5を通過する空気はブレード部12A〜12Dに沿って進行する。従って、吸気ポート5にて導かれる空気に対して、ねじれの方向と同方向回り、即ち空気が導かれる方向に向かって時計方向回りの旋回成分が与えられる。   As shown in these drawings, the cylindrical member 10 is formed in a cylindrical shape, and four blade portions 12A to 12D extending spirally are provided at equal intervals in the circumferential direction on the inner peripheral surface 10a. Each blade part 12A-12D protrudes inward from the inner peripheral surface 10a of the cylindrical member 10, and extends while twisting clockwise in the direction in which air is guided (the direction from right to left in FIG. 2). . Moreover, each blade part 12A-12D is curving so that the cross section (cross section) of the transversal direction may become concave toward a twist direction. In the illustrated form, the twist pitch is set such that each blade portion 12A to 12D is twisted once by rotating from the inlet side end portion 10b of the cylindrical member 10 to the outlet side end portion 10c. Thus, when the cylindrical member 10 is fitted into the cylinder head 7 and the intake port 5 is configured, the air passing through the intake port 5 flows along the blade portions 12A to 12D, as is apparent from FIGS. proceed. Therefore, a swirl component that rotates in the same direction as the twist direction, that is, clockwise in the direction in which the air is guided, is given to the air guided through the intake port 5.

それにより、図1に示すように、吸気ポート5が流出させる接線流Ftは接線方向成分f1と進行方向に対して時計方向回りの回転成分f2とを持つことになる。即ち、接線流Ftは接線成分f1の他に、進行方向に延びる軸線回りの回転成分f2を持つため、少なくとも接線流Ftの一部は螺旋を描く。このため、シリンダ2の内周壁面付近に乱れを生じてその付近の流速が低下する。図8及び図9はシリンダ内周壁面付近の流れの状態を模式的に示しており、図8は接線流Ftの流出初期における内周壁面付近の流速分布を、図9は接線流が発展してスワールFswが生成された状態における内周壁面付近の流速分布をそれぞれ示した説明図である。なお、図9においては通常の吸気ポートを用いた比較例の流速分布を破線で示している。   As a result, as shown in FIG. 1, the tangential flow Ft that flows out from the intake port 5 has a tangential component f1 and a rotational component f2 that is clockwise with respect to the traveling direction. That is, since the tangential flow Ft has a rotation component f2 around the axis extending in the traveling direction in addition to the tangential component f1, at least a part of the tangential flow Ft draws a spiral. For this reason, turbulence is generated in the vicinity of the inner peripheral wall surface of the cylinder 2, and the flow velocity in the vicinity thereof is reduced. 8 and 9 schematically show the flow state near the inner peripheral wall surface of the cylinder. FIG. 8 shows the flow velocity distribution near the inner peripheral wall surface in the initial outflow of the tangential flow Ft, and FIG. 9 shows the tangential flow developed. It is explanatory drawing which each showed the flow-velocity distribution of the inner peripheral wall surface in the state in which the swirl Fsw was produced | generated. In FIG. 9, the flow velocity distribution of a comparative example using a normal intake port is indicated by a broken line.

図8に示すように、接線流Ftの流出初期は回転成分f1の影響によって内周壁面の流れに乱れが生じ、その壁面に近い位置で流速が低下する。その後、接線流Ft及び図1に示した吸気ポート6の旋回流Frが相まってスワールFswが形成される。スワールFswの流速分布は接線流Ftの流出初期の乱れの影響を受けて、図9に示すように、内周壁面に近い位置のみの流速が比較例よりも遅くなる。これにより、スワールFswとシリンダ2の内周壁面との境界層が厚くなるため、内周壁面からの放熱を抑制できる。吸気ポート5が導く空気に対して回転成分を与えているので、シリンダ2内に形成されるスワールFswと他の気流とが干渉することがない。しかも、流速が遅くなるのは内周壁面に近い領域に限られている。従って、スワールを弱めることを抑えつつ冷却損失の増加を抑制できる。なお、本形態はシリンダ2の内周壁面に限らず、シリンダ2内に存在するピストン頂面等に関しても同様の効果がある。   As shown in FIG. 8, at the initial outflow of the tangential flow Ft, the flow of the inner peripheral wall surface is disturbed by the influence of the rotation component f1, and the flow velocity is lowered at a position near the wall surface. Thereafter, the tangential flow Ft and the swirl flow Fr of the intake port 6 shown in FIG. 1 are combined to form a swirl Fsw. The flow velocity distribution of the swirl Fsw is affected by the turbulence in the initial outflow of the tangential flow Ft, and as shown in FIG. 9, the flow velocity only at a position close to the inner peripheral wall surface becomes slower than the comparative example. Thereby, since the boundary layer between the swirl Fsw and the inner peripheral wall surface of the cylinder 2 is thickened, heat radiation from the inner peripheral wall surface can be suppressed. Since a rotational component is given to the air guided by the intake port 5, the swirl Fsw formed in the cylinder 2 does not interfere with other airflows. Moreover, the flow rate is slow only in the region close to the inner peripheral wall surface. Therefore, it is possible to suppress an increase in cooling loss while suppressing weakening of the swirl. The present embodiment is not limited to the inner peripheral wall surface of the cylinder 2, and the same effect is obtained with respect to the piston top surface and the like existing in the cylinder 2.

(第2の形態)
次に、本発明の第2の形態を図10及び図11を参照して説明する。第2の形態は上述した筒部材10をシリンダヘッド7に対して回転させることに特徴がある。なお、内燃機関1の基本構成等のついては図1と同様であるので説明を省略する。図10は筒部材を回転させる機構の概略を示しており、図11は図10のXI−XI線に関する断面を示している。これらの図に示すように、内燃機関1には筒部材10をシリンダヘッド7に対して回転させるため、回転駆動手段として機能する回転駆動機構20が設けられている。また、筒部材10は空気が導かれる方向に延びる軸線Axの回りに回転自在な状態でベアリング13を介してシリンダヘッド7に支持されている。これにより、筒部材10は吸気ポート5の一部を構成する回転部として機能し、吸気ポート5の残りの部分は不動部として機能する。
(Second form)
Next, a second embodiment of the present invention will be described with reference to FIGS. The second mode is characterized in that the above-described cylindrical member 10 is rotated with respect to the cylinder head 7. The basic configuration of the internal combustion engine 1 is the same as that shown in FIG. FIG. 10 shows an outline of a mechanism for rotating the cylindrical member, and FIG. 11 shows a cross section taken along line XI-XI in FIG. As shown in these drawings, the internal combustion engine 1 is provided with a rotation drive mechanism 20 that functions as a rotation drive means in order to rotate the cylindrical member 10 with respect to the cylinder head 7. The cylinder member 10 is supported by the cylinder head 7 via a bearing 13 in a state of being rotatable around an axis Ax extending in a direction in which air is guided. Thereby, the cylinder member 10 functions as a rotating part constituting a part of the intake port 5, and the remaining part of the intake port 5 functions as a non-moving part.

回転駆動機構20は内燃機関1の動弁機構(動弁手段)15が吸気バルブ8を開弁させるための運動を利用して筒部材10を回転駆動できるように構成されている。回転駆動機構20は動弁機構15のカムシャフト16の回転を駆動源とし、その動力は伝達機構21にて筒部材10に伝達される。なお、周知のように、カムシャフト16は吸気バルブ8を開閉するための吸気用カム16aを有し、かつ内燃機関1のクランクシャフトの回転を利用して駆動される。   The rotation drive mechanism 20 is configured such that the valve mechanism (valve drive means) 15 of the internal combustion engine 1 can rotationally drive the cylindrical member 10 using a motion for opening the intake valve 8. The rotation drive mechanism 20 uses the rotation of the camshaft 16 of the valve operating mechanism 15 as a drive source, and the power is transmitted to the cylindrical member 10 by the transmission mechanism 21. As is well known, the camshaft 16 has an intake cam 16a for opening and closing the intake valve 8, and is driven by the rotation of the crankshaft of the internal combustion engine 1.

伝達機構21はカム軸15と一体回転し、かつ吸気用カム16の作用角と重複範囲が存在する作用角を持つ筒部材回転用カム22と、そのカム22から筒部材10までの間に介在する中間機構23とを有している。中間機構23は、カム22のカム面に接触した状態でシリンダヘッド7に摺動自在に支持され、かつ戻しばね26にてカム22側に押し付けられたカムフォロア24と、筒部材10に結合されたアーム25とを備えている。カムフォロア24にはその運動方向と直交する方向に延びるガイド溝24aが形成されており、アーム25にはそのガイド溝24aを摺動するスライド部材25aが回転自在に設けられている。   The transmission mechanism 21 rotates integrally with the camshaft 15 and has a cylinder member rotation cam 22 having an operating angle that overlaps the operating angle of the intake cam 16 and is interposed between the cam 22 and the cylinder member 10. And an intermediate mechanism 23. The intermediate mechanism 23 is coupled to the cylinder member 10 and a cam follower 24 that is slidably supported by the cylinder head 7 in contact with the cam surface of the cam 22 and pressed against the cam 22 side by a return spring 26. Arm 25. The cam follower 24 is formed with a guide groove 24a extending in a direction orthogonal to the direction of movement, and the arm 25 is provided with a slide member 25a that slides in the guide groove 24a.

以上の構成により、回転駆動機構20は吸気用カム16による吸気バルブ8の開弁動作に応じて筒部材10を図10の実線矢印の方向に回転させることができる。つまり、回転駆動機構20は筒部材10のブレード部12A〜12Dのねじれ方向と同方向に回転させることができる。なお、吸気バルブ8の閉弁後には筒部材10の回転方向が図11の破線矢印の方向に反転する。なお、吸気バルブ8の開弁動作と筒部材10の回転動作との時期的関係は筒部材回転用カム22のプロファイルを適宜設定することにより調整できる。   With the above configuration, the rotation drive mechanism 20 can rotate the cylindrical member 10 in the direction of the solid line arrow in FIG. 10 according to the opening operation of the intake valve 8 by the intake cam 16. That is, the rotation drive mechanism 20 can be rotated in the same direction as the twist direction of the blade portions 12 </ b> A to 12 </ b> D of the cylindrical member 10. Note that after the intake valve 8 is closed, the rotation direction of the cylindrical member 10 is reversed in the direction of the broken line arrow in FIG. The timing relationship between the opening operation of the intake valve 8 and the rotating operation of the cylindrical member 10 can be adjusted by appropriately setting the profile of the cylindrical member rotating cam 22.

第2の形態によれば、内燃機関1の吸気行程に同期させて筒部材10をブレード部12A〜12Dのねじれ方向と同方向に回転させることができるため、吸気ポート5が導く空気に対してより大きな回転成分を与えることができる。   According to the second mode, the cylinder member 10 can be rotated in the same direction as the twist direction of the blade portions 12A to 12D in synchronization with the intake stroke of the internal combustion engine 1, and therefore, the air guided by the intake port 5 A larger rotational component can be provided.

(第3の形態)
次に、本発明の第3の形態を図12及び図13を参照して説明する。この形態は上述した接線流Ftを流出させる吸気ポートの構成と、回転成分を与える回転成分付与手段としての筒部材の配置とにそれぞれ特徴がある。以下、第3の形態の特徴点を主に説明し、上述した形態との共通点については図面に共通の符号を付して説明を省略する。
(Third form)
Next, a third embodiment of the present invention will be described with reference to FIGS. This mode is characterized by the configuration of the intake port for allowing the tangential flow Ft to flow out and the arrangement of the cylindrical member as the rotation component applying means for applying the rotation component. Hereinafter, the characteristic points of the third embodiment will be mainly described, and the common points with the above-described embodiments will be denoted by the same reference numerals in the drawings, and the description thereof will be omitted.

図12は第3の形態に係る吸気装置が適用された内燃機関の要部を模式的に示した平面図である。この図に示すように、内燃機関1には接線流Ftと旋回流Frとを同一ポート内で生成できるスワール生成ポートとして構成された吸気ポート31が設けられている。吸気ポート31はその一部として、上述の形態に係る筒部材5よりも小寸法の筒部材36を含んでいる。筒部材36はシリンダヘッド7に形成された取付け穴7a′に回転不能な状態で嵌め込まれている。なお、筒部材36の構成はその寸法を除いて図2〜図7に示したものと同様であるので説明を省略する。   FIG. 12 is a plan view schematically showing a main part of the internal combustion engine to which the intake device according to the third embodiment is applied. As shown in this figure, the internal combustion engine 1 is provided with an intake port 31 configured as a swirl generation port capable of generating a tangential flow Ft and a swirl flow Fr in the same port. The intake port 31 includes a cylindrical member 36 having a smaller size than the cylindrical member 5 according to the above-described form as a part thereof. The cylindrical member 36 is fitted in a mounting hole 7 a ′ formed in the cylinder head 7 in a non-rotatable state. The configuration of the cylindrical member 36 is the same as that shown in FIGS.

図13は吸気ポート31の詳細を示し、シリンダ2の上方から見た平面図とa〜dの各断面図とがそれぞれ示されている。なお、図13は、吸気ポート31の基本機能の説明がその主眼であるため筒部材36を図示していない。吸気ポート31は、シリンダ2に開口する開口部32と、吸気バルブ8のステム部の周りに沿って湾曲しながら開口部32に続くヘリカル部33と、ヘリカル部33の上流側(シリンダ2から離れる側)に接続された導入部34とを備えている。   FIG. 13 shows details of the intake port 31, and a plan view seen from above the cylinder 2 and sectional views a to d are shown. Note that FIG. 13 does not show the cylindrical member 36 because the basic function of the intake port 31 is mainly described. The intake port 31 includes an opening 32 that opens to the cylinder 2, a helical portion 33 that continues to the opening 32 while being curved around the stem portion of the intake valve 8, and an upstream side (away from the cylinder 2) of the helical portion 33. And an introduction portion 34 connected to the side).

導入部34は図13のa−a線及びb−b線の各断面図に示すように、シリンダ2の上下方向に関して上側に位置する上層領域34aと下側に位置する下層領域34bとを有する。これら上層領域34a及び下層領域34bはシリンダ2の高さ方向に関して上下に隣接するようにして吸気ポート31内に形成されている。導入部34は上層領域34aの横幅W1が下層領域34bの横幅W2よりも狭く、かつヘリカル部33に近付くに従ってこれらの横幅の差が徐々に拡大するように構成されている。つまり、上層領域34aはヘリカル部33に近づくに従って徐々に絞り込まれるように構成されている。ヘリカル部33は、図13のc−c線及びd−d線の各断面図に示すように、開口部32に向かって湾曲する過程でシリンダ2の上下方向に関する高さhが漸次低くなるように構成されている。   As shown in each sectional view taken along line aa and bb in FIG. 13, the introduction part 34 has an upper layer region 34 a located on the upper side in the vertical direction of the cylinder 2 and a lower layer region 34 b located on the lower side. . These upper layer region 34 a and lower layer region 34 b are formed in the intake port 31 so as to be adjacent to each other in the vertical direction with respect to the height direction of the cylinder 2. The introduction portion 34 is configured such that the lateral width W1 of the upper layer region 34a is narrower than the lateral width W2 of the lower layer region 34b, and the difference between these lateral widths gradually increases as the helical portion 33 is approached. That is, the upper layer region 34 a is configured to be gradually narrowed as it approaches the helical portion 33. As shown in the cross-sectional views taken along line cc and line dd in FIG. 13, the helical portion 33 is configured such that the height h in the vertical direction of the cylinder 2 gradually decreases in the process of bending toward the opening portion 32. It is configured.

この吸気ポート31によれば、これに導かれる空気が導入部34の下層領域34bを通過することで接線流Ftがシリンダ2内に流出され、空気が導入部34の上層領域34a及びこれに続くヘリカル部33を通過することで旋回流Frがシリンダ2内に流出される。これによって、図12に示すように、所用の吸気流量を確保しつつシリンダ2内にスワールFswが生成される。即ち、図示の形態の下層領域34bが本発明に係る接線流生成領域に相当し、上層領域34aが本発明に係る旋回流生成領域に相当する。   According to the intake port 31, the air guided thereto passes through the lower layer region 34 b of the introducing portion 34, whereby the tangential flow Ft flows out into the cylinder 2, and the air continues to the upper layer region 34 a of the introducing portion 34 and the following. The swirl flow Fr flows out into the cylinder 2 by passing through the helical portion 33. As a result, as shown in FIG. 12, the swirl Fsw is generated in the cylinder 2 while ensuring the required intake air flow rate. That is, the lower layer region 34b in the illustrated form corresponds to the tangential flow generation region according to the present invention, and the upper layer region 34a corresponds to the swirl flow generation region according to the present invention.

図12に示すように、本形態の筒部材36は上述した下層領域34bに限定的に設けられている。つまり、筒部材36は上層領域34aの機能を損なわないように下層領域34bに配置されることにより、吸気ポート31の一部として機能する。これにより、下層領域34bを通過する空気に限定して上述した各形態と同一方向の回転成分を与えることができる。筒部材36の寸法が図1の形態よりも小さくなって流速が速くなるので、吸気ポート31が流出させる接線流Ftの旋回成分f2の強さを図1の形態よりも増加させることができる。   As shown in FIG. 12, the cylindrical member 36 of this embodiment is limitedly provided in the lower layer region 34b described above. That is, the cylindrical member 36 functions as a part of the intake port 31 by being disposed in the lower layer region 34b so as not to impair the function of the upper layer region 34a. Thereby, it can restrict to the air which passes the lower layer area | region 34b, and can give the rotation component of the same direction as each form mentioned above. Since the dimension of the cylindrical member 36 is smaller than that of the configuration of FIG. 1 and the flow velocity is increased, the strength of the swirl component f2 of the tangential flow Ft that flows out from the intake port 31 can be increased as compared with the configuration of FIG.

本発明は以上の各形態に限定されず、種々の形態にて実施することができる。本発明に係る吸気ポートの形態は図示の形態に限定されず、接線流を流出させることができる形状であれば任意のものに置換できる。例えば、図1に示した吸気ポート5を周知のヘリカルポートに置換することも可能である。また、本発明に係る吸気ポートの隣に吸気ポートを配置すること及びその形態は任意である。従って、この吸気ポートを省略しても構わないし、またこの吸気ポートを種々の形態で実施することもできる。   The present invention is not limited to the above embodiments, and can be implemented in various forms. The form of the intake port according to the present invention is not limited to the form shown in the drawings, and any shape can be used as long as it can flow a tangential flow. For example, the intake port 5 shown in FIG. 1 can be replaced with a known helical port. In addition, the intake port is arranged next to the intake port according to the present invention and its form is arbitrary. Therefore, this intake port may be omitted, and this intake port can be implemented in various forms.

回転成分付与手段の形態は任意であって、シリンダヘッド7と別部品である必要はない。例えば、吸気ポートの内面に図2〜図7に示したブレード部12A〜12Dと同等の螺旋突部を一体に設けてもよい。また、これらのブレード部12A〜12Dは螺旋突部の一例にすぎない。例えば、螺旋突部の断面が湾曲せずに直線的な形態で実施することもできる。なお、図示のように、ねじれ方向に対して凹となるように湾曲させた場合には、空気を捕まえやすくなるので空気に対して旋回成分を効率的に与えることができるようになる。螺旋突部の個数は任意であり、一つであってもよい。また突出量も適宜定めることができる。例えば、突出量を増大させることによって、吸気ポート内が螺旋突部で仕切られる形態で実施することもできる。   The form of the rotation component applying means is arbitrary, and need not be a separate component from the cylinder head 7. For example, a spiral protrusion equivalent to the blade portions 12A to 12D shown in FIGS. 2 to 7 may be integrally provided on the inner surface of the intake port. Moreover, these blade parts 12A-12D are only examples of a spiral protrusion. For example, it can also be implemented in a linear form without the cross section of the spiral protrusion being curved. In addition, as shown in the figure, when it is curved so as to be concave with respect to the twisting direction, air can be easily captured, so that a swirl component can be efficiently given to the air. The number of spiral protrusions is arbitrary and may be one. Further, the protruding amount can be determined as appropriate. For example, by increasing the protrusion amount, the intake port can be partitioned by a spiral protrusion.

また、回転駆動手段は第2の形態のように機械的に実現することに限られない。従って、例えば電動モータで回転駆動手段を実施することもできる。電動機を用いた場合には回転部を回転させる時期等を電動機の動作制御によって任意に設定できる利点がある。従って、内燃機関1の運転状態に応じて回転成分の強さを変化させることを容易に実現できる。   Further, the rotation driving means is not limited to being mechanically realized as in the second embodiment. Therefore, for example, the rotation driving means can be implemented by an electric motor. When the electric motor is used, there is an advantage that the timing for rotating the rotating portion can be arbitrarily set by the operation control of the electric motor. Therefore, it is possible to easily realize changing the strength of the rotation component according to the operating state of the internal combustion engine 1.

第3の形態では、筒部材36をシリンダヘッド7に対して回転不能に設けているが、筒部材36をシリンダヘッド7に対して回転自在に装着し、これを第2の形態と同様の機構又は電動機等を利用して回転させることも可能である。   In the third embodiment, the cylindrical member 36 is provided so as not to rotate with respect to the cylinder head 7. However, the cylindrical member 36 is mounted rotatably with respect to the cylinder head 7, and this is the same mechanism as in the second embodiment. Alternatively, it can be rotated using an electric motor or the like.

本発明の一形態に係る吸気装置が適用された内燃機関の要部を模式的に示した平面図。The top view which showed typically the principal part of the internal combustion engine to which the intake device which concerns on one form of this invention was applied. 図1の筒部材の詳細を示した正面図。The front view which showed the detail of the cylinder member of FIG. 図2の矢印IIIの方向から見た状態を示した図。The figure which showed the state seen from the direction of arrow III of FIG. 図2の矢印IVの方向から見た状態を示した図。The figure which showed the state seen from the direction of arrow IV of FIG. 図2のV−V線に関する断面図。Sectional drawing regarding the VV line of FIG. 図2のVI−VI線に関する断面図。Sectional drawing regarding the VI-VI line of FIG. 図2のVII−VII線に関する断面図。Sectional drawing regarding the VII-VII line of FIG. 接線流の流出初期における内周壁面付近の流速分布を示した説明図。それぞれ示した説明図である。Explanatory drawing which showed the flow-velocity distribution near the inner peripheral wall surface in the outflow early stage of a tangential flow. It is explanatory drawing shown respectively. 接線流が発展してスワールが生成された状態における内周壁面付近の流速分布を示した説明図。Explanatory drawing which showed the flow-velocity distribution of the inner peripheral wall surface in the state where the tangential flow developed and the swirl was generated. 筒部材を回転させる機構の概略を示した図。The figure which showed the outline of the mechanism which rotates a cylinder member. 図10のXI−XI線に関する断面図。Sectional drawing regarding the XI-XI line of FIG. 第3の形態に係る吸気装置が適用された内燃機関の要部を模式的に示した平面図。The top view which showed typically the principal part of the internal combustion engine to which the intake device which concerns on a 3rd form was applied. 図12に示した吸気ポートの詳細を示した図。The figure which showed the detail of the intake port shown in FIG.

符号の説明Explanation of symbols

1 内燃機関
2 シリンダ
5 吸気ポート
7 シリンダヘッド
10 筒部材(回転成分付与手段、回転部)
12A〜12D ブレード部(螺旋突部)
15 動弁機構(動弁手段)
20 回転駆動機構(回転駆動手段)
21 伝達機構
31 吸気ポート(スワール生成ポート)
36 筒部材(回転成分付与手段、回転部)
34a 上層領域(旋回流生成領域)
34b 下層領域(接線流生成領域)
Ax 空気が導かれる方向に延びる軸線
Ft 接線流
Fsw スワール
f2 回転成分
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 5 Intake port 7 Cylinder head 10 Cylindrical member (Rotation component provision means, rotation part)
12A-12D Blade part (spiral protrusion)
15 Valve mechanism (valve mechanism)
20 Rotation drive mechanism (rotation drive means)
21 Transmission mechanism 31 Intake port (swirl generation port)
36 Tube member (rotation component applying means, rotating part)
34a Upper layer region (swirl flow generation region)
34b Lower layer region (tangential flow generation region)
Ax Axis Ft that extends in the direction in which the air is guided Tangent flow Fsw Swirl f2 Rotational component

Claims (6)

内燃機関のシリンダに向かって空気を導くことにより前記シリンダの内周に沿う方向の接線流を前記シリンダ内に流出させる吸気ポートを有し、前記吸気ポートが流出させた接線流を利用して前記シリンダ内にスワールを形成できる内燃機関の吸気装置において、
前記接線流がその進行方向に延びる軸線回りの回転成分を持つように、前記吸気ポートが導く空気に対して前記接線流が持つ前記回転成分と同方向回りの回転成分を与える回転成分付与手段を備えることを特徴とする内燃機関の吸気装置。
An intake port for flowing out a tangential flow in a direction along the inner periphery of the cylinder by introducing air toward the cylinder of the internal combustion engine into the cylinder, and using the tangential flow discharged by the intake port; In an intake device for an internal combustion engine that can form a swirl in a cylinder,
Rotation component applying means for applying a rotation component around the same direction as the rotation component of the tangential flow to the air guided by the intake port so that the tangential flow has a rotation component around an axis extending in the traveling direction. An intake device for an internal combustion engine, comprising:
前記吸気ポートは、前記接線流を流出させるための接線流生成領域と前記スワールの回転方向と同方向に旋回する旋回流を前記シリンダ内に流出させるための旋回流生成領域とが前記シリンダの高さ方向に関して上下に隣接するようにして同一ポート内に形成されたスワール生成ポートとして構成され、
前記回転成分付与手段は、前記接線流生成領域に限定的に設けられていることを特徴とする請求項1に記載の内燃機関の吸気装置。
The intake port has a tangential flow generation region for letting out the tangential flow and a swirl flow generation region for letting a swirling flow swirling in the same direction as the rotation direction of the swirl into the cylinder. It is configured as a swirl generation port formed in the same port so as to be adjacent vertically in the vertical direction,
2. The intake device for an internal combustion engine according to claim 1, wherein the rotation component applying unit is provided in a limited manner in the tangential flow generation region.
前記回転成分付与手段として、前記吸気ポートの内面側から内方へに突出し、かつ前記吸気ポートにて空気が導かれる方向に向かって前記接線流が持つ前記回転成分と同方向回りにねじれながら延びる螺旋突部が設けられていることを特徴とする請求項1又は2に記載の内燃機関の吸気装置。   As the rotation component applying means, it protrudes inward from the inner surface side of the intake port and extends while twisting around the same direction as the rotation component of the tangential flow toward the direction in which air is guided at the intake port. The intake device for an internal combustion engine according to claim 1, wherein a spiral protrusion is provided. 前記螺旋突部は、その短手方向の断面がねじれ方向に向かって凹となるように湾曲していることを特徴とする請求項3に記載の内燃機関の吸気装置。   The intake device for an internal combustion engine according to claim 3, wherein the spiral protrusion is curved so that a cross section in a short direction thereof becomes concave toward a twist direction. 前記吸気ポートは、前記内燃機関のシリンダヘッドに形成された不動部と、前記螺旋突部が設けられかつ前記空気が導かれる方向に延びる軸線の回りを前記不動部に対して相対回転可能な状態で前記シリンダヘッドに支持された回転部とを含み、
前記回転部を前記螺旋突部のねじれ方向と同方向回りに回転させることができる回転駆動手段を更に備えることを特徴とする請求項3又は4に記載の内燃機関の吸気装置。
The intake port is a state in which the stationary part formed in the cylinder head of the internal combustion engine and the spiral protrusion and the axis that extends in the direction in which the air is guided can rotate relative to the stationary part. And a rotating part supported by the cylinder head,
5. The intake device for an internal combustion engine according to claim 3, further comprising a rotation driving unit capable of rotating the rotating unit in the same direction as a twist direction of the spiral protrusion.
前記内燃機関は前記吸気ポートを開閉する吸気バルブと、前記吸気バルブを開閉駆動する動弁手段とを有し、
前記回転駆動手段は、前記動弁手段が前記吸気バルブを開弁させるための運動を前記回転部を回転させるための運動に変換して前記回転部に伝達する伝達機構を備えることを特徴とする請求項5に記載の内燃機関の吸気装置。
The internal combustion engine includes an intake valve that opens and closes the intake port, and valve operating means that drives the intake valve to open and close,
The rotation driving means includes a transmission mechanism that converts a movement for opening the intake valve by the valve operating means into a movement for rotating the rotation section and transmits the movement to the rotation section. The intake device for an internal combustion engine according to claim 5.
JP2007184774A 2007-07-13 2007-07-13 Intake device for internal combustion engine Pending JP2009019613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007184774A JP2009019613A (en) 2007-07-13 2007-07-13 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007184774A JP2009019613A (en) 2007-07-13 2007-07-13 Intake device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009019613A true JP2009019613A (en) 2009-01-29

Family

ID=40359457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007184774A Pending JP2009019613A (en) 2007-07-13 2007-07-13 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009019613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192735A (en) * 2014-03-31 2015-11-05 株式会社サンセイアールアンドディ Game machine
EP3517764A1 (en) 2018-01-24 2019-07-31 Mazda Motor Corporation Cylinder head of engine, internal combustion engine and method of producing cylinder head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192735A (en) * 2014-03-31 2015-11-05 株式会社サンセイアールアンドディ Game machine
EP3517764A1 (en) 2018-01-24 2019-07-31 Mazda Motor Corporation Cylinder head of engine, internal combustion engine and method of producing cylinder head
US10655531B2 (en) 2018-01-24 2020-05-19 Mazda Motor Corporation Cylinder head of engine

Similar Documents

Publication Publication Date Title
RU2578015C1 (en) Device for recycling exhaust gas heat
JP2008057525A (en) Intake structure for internal combustion engine
JP2009019613A (en) Intake device for internal combustion engine
KR20190105652A (en) Compression ignition combustion engine
KR101459932B1 (en) Intake device for generating tumble flow
CN113404608B (en) Cylinder cover and gas engine
JP2007198301A (en) Intake port of internal combustion engine
JP2021076084A (en) engine
JP5570489B2 (en) Intake device for internal combustion engine
JP2009293388A (en) Structure of air flow controller
US20160195048A1 (en) Switching Device with Air Gap Insulation in Cylinder Head Flange
CN113404613B (en) Cylinder head and gas engine
CN113404568B (en) Integral intake valve, cylinder head and gas engine
JP2009002218A (en) Intake system of internal combustion engine
CN108678827A (en) Air inlet door and valve actuating mechanism
JP2007198303A (en) Intake port of internal combustion engine
JP2007162517A (en) Intake device for internal combustion engine
JP3561987B2 (en) Multi-valve intake engine
JP2006194122A (en) Internal combustion engine
JP2006214331A (en) Intake device for internal combustion engine
JP4887963B2 (en) Intake device for internal combustion engine
JP4979548B2 (en) Rectification method and structure of intake air of internal combustion engine
JP2009197757A (en) Air current noise reduction device for internal combustion engine
JP2005240666A (en) Intake device for internal combustion engine
JP2008057374A (en) Intake device for internal combustion engine