JP2009019537A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2009019537A
JP2009019537A JP2007181716A JP2007181716A JP2009019537A JP 2009019537 A JP2009019537 A JP 2009019537A JP 2007181716 A JP2007181716 A JP 2007181716A JP 2007181716 A JP2007181716 A JP 2007181716A JP 2009019537 A JP2009019537 A JP 2009019537A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
oxygen storage
alumina
osc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007181716A
Other languages
Japanese (ja)
Inventor
Masaaki Akamine
真明 赤峰
Masahiko Shigetsu
雅彦 重津
Hisaya Kawabata
久也 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007181716A priority Critical patent/JP2009019537A/en
Publication of JP2009019537A publication Critical patent/JP2009019537A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9472Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance exhaust emission control performance, by early activating a three-way catalyst 32. <P>SOLUTION: A CO adsorbing member 31 is arranged on the upstream side of the three-way catalyst 32 of an exhaust passage of an engine 5. A metal carrier 36 having a heat conduction restraining part 35 by a slit is used in an intermediate position in the three-way catalyst 32. Pd/alumina and Rh/OSC are arranged in a catalyst part 32a on the upstream side of the heat conduction restraining part 35. Pt/alumina and the Rh/OSC are arranged in a downstream side catalyst part 32b. CeZr-based composite oxide having the ZrO<SB>2</SB>/CeO<SB>2</SB>mass ratio of 1 or more, is used as an oxygen storage material (an OSC material) of the upstream side catalyst part 32a. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エンジンの排気ガス浄化装置に関する。     The present invention relates to an exhaust gas purification device for an engine.

エンジンの排気ガス浄化装置に関しては、エンジン冷間始動時のような排気ガス温度が低いときの低温浄化性能の確保が求められるとともに、エンジンの加速運転時のような排気ガス温度が高いときの触媒の劣化を抑えることが求められる。低温浄化性能に関しては、触媒が十分に活性化していない排気ガス低温時に、未浄化排気ガスの排出を如何に抑えるか、また、触媒を如何に早く活性化させるかが課題となる。一方、触媒の熱劣化に関しては、触媒金属のシンタリングを抑制すること、触媒金属を担持する酸素吸蔵放出材(OSC材)、その他の金属酸化物系サポート材の結晶構造の変化による比表面積の低下を抑制することが課題となる。     Regarding engine exhaust gas purification devices, it is required to ensure low temperature purification performance when the exhaust gas temperature is low, such as when the engine is cold-started, and the catalyst when the exhaust gas temperature is high, such as during engine acceleration operation. It is required to suppress deterioration of the material. With regard to the low-temperature purification performance, the problem is how to suppress the emission of unpurified exhaust gas and how quickly the catalyst is activated at a low temperature of the exhaust gas where the catalyst is not sufficiently activated. On the other hand, regarding the thermal degradation of the catalyst, the specific surface area is reduced by suppressing the sintering of the catalyst metal, the oxygen storage / release material (OSC material) supporting the catalyst metal, and the crystal structure of other metal oxide support materials. It becomes a problem to suppress the decrease.

これまでの触媒金属の高分散担持技術やサポート材の複合化技術の開発・進歩により、上記触媒の熱劣化の課題に関しては解決されつつある。しかし、低温時の未浄化排気ガスの排出問題に関しては、HCトラップ材の利用が図られている程度であり、また、触媒の早期活性化に関しても、触媒をエンジンに近付けて配置すること等により、触媒の早期昇温が図られている程度に過ぎない。     Due to the development and advancement of the high-dispersion support technology of catalyst metal and the composite technology of support materials, the problem of thermal degradation of the catalyst is being solved. However, regarding the problem of unpurified exhaust gas emission at low temperatures, the use of HC trap materials has only been attempted, and for the early activation of the catalyst, by placing the catalyst close to the engine, etc. The catalyst is only heated to an early temperature.

例えば、特許文献1には、エンジンの排気通路の上流側にHCトラップ触媒を配置し、その下流側に三元触媒を配置すること、HCトラップ触媒のハニカム担体にそのセルを横断するようにスリットを形成することが記載されている。これは、スリットによって、担体の上流側から下流側への熱伝導を抑制することにより、HCトラップ触媒の担体全体の温度上昇を遅らせるというものである。すなわち、HC脱離タイミングを遅らせることにより、HC吸着量を増大させるとともに、HC脱離が開始するまでの触媒金属の温度上昇を大きくし、その後に脱離するHCの浄化効率を高める、というものである。     For example, Patent Document 1 discloses that an HC trap catalyst is disposed upstream of an engine exhaust passage, a three-way catalyst is disposed downstream thereof, and a honeycomb carrier of the HC trap catalyst is slit across the cell. Is described. This suppresses the heat conduction from the upstream side to the downstream side of the carrier by the slit, thereby delaying the temperature rise of the entire carrier of the HC trap catalyst. That is, by delaying the HC desorption timing, the amount of HC adsorption is increased, the temperature rise of the catalyst metal until HC desorption starts, and the purification efficiency of HC desorbed thereafter is increased. It is.

特許文献2には、エンジンの排気通路の三元触媒よりも上流側にCO低温酸化触媒を配置することが記載されている。これは、排気ガス中のCOの酸化によって得られた熱を三元触媒の早期活性化に利用するというものである。CO低温酸化触媒としては、Mn、Fe、Co、Ni及びCuからなる群より選択される2種以上の卑金属の複合酸化物(例えば、Cu−Mn複合酸化物)が開示されている。     Patent Document 2 describes that a CO low-temperature oxidation catalyst is disposed upstream of the three-way catalyst in the engine exhaust passage. This is to use the heat obtained by the oxidation of CO in the exhaust gas for the early activation of the three-way catalyst. As the CO low-temperature oxidation catalyst, a composite oxide of two or more base metals selected from the group consisting of Mn, Fe, Co, Ni and Cu (for example, a Cu—Mn composite oxide) is disclosed.

特許文献3には、白金成分と酸化第一銅とが無機担体に担持されてなるCO選択酸化触媒が記載されている。
特開2004−84517号公報 特開2005−87963号公報 特開2006−341206号公報
Patent Document 3 describes a CO selective oxidation catalyst in which a platinum component and cuprous oxide are supported on an inorganic carrier.
JP 2004-84517 A JP 2005-87963 A JP 2006-341206 A

ところで、エンジンには、低燃費で高出力が得られることが要求される。この相反する要求のために、燃料噴射制御、空燃比制御、点火制御等のエンジン制御技術、動弁系部品の低摩擦化技術、エンジン本体の構造に関する技術の開発が進められている。例えば、燃料を気筒内燃焼室に直接噴射供給する直噴エンジンとし、エンジン本体の構造の面からは高圧縮比エンジンとすることが行なわれている。     By the way, the engine is required to obtain high output with low fuel consumption. In order to meet these conflicting demands, engine control technologies such as fuel injection control, air-fuel ratio control, ignition control, etc., technology for reducing friction of valve system components, and technology related to the structure of the engine body are being developed. For example, a direct injection engine that directly injects fuel into an in-cylinder combustion chamber is used, and a high compression ratio engine is used in terms of the structure of the engine body.

しかし、直噴エンジンとした場合、エンジン冷間時には気筒内での燃料の気化が不十分になり易く、HCの排出量が増大する。また、高圧縮比とすると、燃料の気化が不十分になりやすく、また、燃料が気筒内の未燃焼領域(シリンダブロックの上面とシリンダヘッドの下面の間に画成されるクレビス等)に押し込まれ易くなり、HCの排出量が増大する。     However, in the case of a direct injection engine, when the engine is cold, fuel vaporization in the cylinder tends to be insufficient, and the amount of HC emission increases. Also, if the compression ratio is high, fuel vaporization tends to be insufficient, and the fuel is pushed into an unburned area in the cylinder (such as a clevis defined between the upper surface of the cylinder block and the lower surface of the cylinder head). This increases the amount of HC emission.

また、エンジン出力には排気系の構造も関係する。すなわち、排気ガス浄化触媒は排気ガスの流れを妨げてエンジンの背圧を増大させる一因となる。また、各気筒毎に排出された排気ガスの圧力が他気筒の排気の邪魔をする排気干渉が排気マニホールドで生ずるという問題がある。従って、エンジン出力向上のために背圧(排気抵抗)を小さくすることが求められる。     The engine output is also related to the structure of the exhaust system. That is, the exhaust gas purification catalyst is a factor that increases the back pressure of the engine by hindering the flow of exhaust gas. In addition, there is a problem that exhaust interference occurs in the exhaust manifold where the pressure of the exhaust gas discharged for each cylinder interferes with the exhaust of other cylinders. Therefore, it is required to reduce the back pressure (exhaust resistance) in order to improve engine output.

そのためには、例えば4気筒エンジンであれば、排気マニホールドの4本の分岐管を2本にまとめ、さらにその2本を1本にまとめるというように、段階的に集合させていくことにより排気干渉を抑えるとともに、エンジン本体から排気マニホールドの集合部までの距離を長くし(例えば80cm以上)、その下流側に触媒を設けることが背圧増加を抑える上で有効になる。     For that purpose, for example, in the case of a four-cylinder engine, exhaust interference is obtained by collecting the four branch pipes of the exhaust manifold into two, and then combining the two into one. In addition, it is effective to increase the distance from the engine body to the exhaust manifold assembly (for example, 80 cm or more) and to provide a catalyst on the downstream side of the increase in back pressure.

しかし、エンジン本体から触媒までの距離が長くなると、触媒金属のシンタリング抑制及びサポート材の結晶構造の破壊抑制には有利になるものの、触媒に達するまでの排気ガス温度の低下が大きくなるため、低温浄化性能の向上(触媒の早期活性化及び未浄化排気ガスの排出抑制)の面からは極めて不利になる。     However, when the distance from the engine body to the catalyst is increased, it is advantageous for suppressing the sintering of the catalyst metal and the crystal structure of the support material, but the exhaust gas temperature decreases until reaching the catalyst. This is extremely disadvantageous from the viewpoint of improving the low-temperature purification performance (early catalyst activation and suppression of emission of unpurified exhaust gas).

これに対し、従来は上述の如きHCトラップ触媒による未浄化HCの排出抑制、CO酸化触媒による三元触媒の早期活性化など、各課題に対して個別的に対応されているが、十分な対応がなされているとは言い難い。     On the other hand, in the past, each problem has been individually addressed, such as suppression of unpurified HC emissions by the HC trap catalyst as described above, and early activation of the three-way catalyst by the CO oxidation catalyst. It is hard to say that has been made.

そこで、本発明は、排気ガス低温時に触媒温度を効率良く高めてその早期活性化を図ることを課題とする。     Therefore, an object of the present invention is to increase the catalyst temperature efficiently at the time of low exhaust gas temperature to achieve early activation thereof.

また、本発明は、排気ガスの空燃比A/Fの変動を効率良く吸収して、排気ガス浄化効率を高めることを課題とする。     Moreover, this invention makes it a subject to absorb the fluctuation | variation of the air fuel ratio A / F of exhaust gas efficiently, and to improve exhaust gas purification efficiency.

本発明は、このような課題に対し、熱伝導抑制部付きメタル担体を採用した排気ガス浄化触媒とCO吸着材とを組み合わせるようにした。     In the present invention, an exhaust gas purification catalyst that employs a metal carrier with a heat conduction suppressing portion and a CO adsorbent are combined with respect to such problems.

すなわち、本発明は、エンジンの排気通路に設けられる排気ガス浄化装置において、
排気ガス中のCOを吸着するCO吸着材と、該CO吸着材よりも排気ガス流れの下流側に配置された排気ガス浄化触媒とを備え、
上記排気ガス浄化触媒は、排気ガスが通過する多数のセル通路を有するハニカム状のメタル担体のセル通路壁に触媒層が形成されたものであり、
上記メタル担体は、排気ガス流れ方向の中間位置に、担体上流側から担体下流側への熱伝導が抑制されるように、部分的に上記セル通路壁をカットしてなる空隙が形成されており、
上記メタル担体の上記中間位置よりも上流側の触媒部には、アルミナ粒子にPdを担持させてなるPd/アルミナと、酸素吸蔵材粒子にRhを担持させてなるRh/OSCとが配置され、
上記メタル担体の上記中間位置よりも下流側の触媒部には、アルミナ粒子にPtを担持させてなるPt/アルミナと、酸素吸蔵材粒子にRhを担持させてなるRh/OSCとが配置され、
上記上流側触媒部の上記酸素吸蔵材粒子は、ZrとCeとを含有し且つCeOに対するZrOの質量比ZrO/CeOが1以上の複合酸化物よりなることを特徴とする。
That is, the present invention provides an exhaust gas purification device provided in an exhaust passage of an engine.
A CO adsorbent that adsorbs CO in the exhaust gas, and an exhaust gas purification catalyst disposed downstream of the CO adsorbent in the exhaust gas flow,
The exhaust gas purification catalyst is one in which a catalyst layer is formed on a cell passage wall of a honeycomb-shaped metal carrier having a large number of cell passages through which exhaust gas passes,
The metal carrier has a gap formed by partially cutting the cell passage wall at an intermediate position in the exhaust gas flow direction so that heat conduction from the carrier upstream side to the carrier downstream side is suppressed. ,
Pd / alumina in which Pd is supported on alumina particles and Rh / OSC in which Rh is supported on oxygen storage material particles are disposed in the catalyst portion upstream of the intermediate position of the metal carrier,
Pt / alumina in which Pt is supported on alumina particles and Rh / OSC in which Rh is supported on oxygen storage material particles are disposed in the catalyst portion downstream of the intermediate position of the metal carrier,
The oxygen storage component particles in the upstream catalyst unit is characterized in that the mass ratio ZrO 2 / CeO 2 in ZrO 2 is formed of one or more composite oxide to and CeO 2 containing Zr and Ce.

従って、エンジンの冷間始動時等、排気ガス、CO吸着材及び触媒の温度が低いときは、排気ガス中のCOが上流側のCO吸着材に吸着され、COが未浄化のまま排出されることが防止される。また、排気ガス温度の上昇に伴って触媒の温度が上昇していくが、触媒のメタル担体の中間位置には部分的にセル通路壁が切れて空隙が形成されているから、該中間位置よりも上流側から下流側への熱伝導が抑制される。このため、上流側触媒部は排気ガスの熱によって温度が効率良く、すなわち、速やかに上昇し、該上流側触媒部の早期活性化が図れる。     Therefore, when the temperature of the exhaust gas, the CO adsorbent and the catalyst is low, such as when the engine is cold started, the CO in the exhaust gas is adsorbed by the upstream CO adsorbent, and the CO is discharged without being purified. It is prevented. In addition, the temperature of the catalyst rises as the exhaust gas temperature rises, but since the cell passage wall is partially cut and a gap is formed at the intermediate position of the catalyst metal carrier, Also, heat conduction from the upstream side to the downstream side is suppressed. For this reason, the temperature of the upstream catalyst portion is efficiently increased by the heat of the exhaust gas, that is, quickly rises, and the upstream catalyst portion can be activated early.

そうして、上記上流側触媒部には、HCの浄化に関するライトオフ温度が低いPd/アルミナと、NOxの浄化に関するライトオフ温度が低いRh/OSCが配置されているから、排気ガス中のHC及びNOxを効率良く浄化することができ、未浄化のまま排出されるHC及びNOxの量を低減する上で有利になる。さらに、Rh/OSCはCOの浄化に関するライトオフ温度も低く、このRh/OSCを上流側触媒部及び下流側触媒部の双方に配置したから、上記CO吸着材が温度上昇に伴ってCOを脱離し、上記触媒に流入するCO量が多くなっても、これを効率良く浄化することができる。     Thus, Pd / alumina having a low light-off temperature related to the purification of HC and Rh / OSC having a low light-off temperature related to the purification of NOx are arranged in the upstream side catalyst portion. And NOx can be efficiently purified, which is advantageous in reducing the amount of HC and NOx discharged without purification. Further, Rh / OSC has a low light-off temperature for CO purification, and since this Rh / OSC is disposed in both the upstream catalyst portion and the downstream catalyst portion, the CO adsorbent desorbs CO as the temperature rises. Even if the amount of CO flowing into the catalyst increases, it can be efficiently purified.

しかも、上流側触媒部のRh/OSCを構成する酸素吸蔵材粒子は、ZrO/CeO質量比が1以上の複合酸化物よりなるから、排気ガスの空燃比A/Fの変動に応じて酸素を吸蔵・放出するときの応答性が良く、このため、上流側触媒部でA/F変動が吸収され、上流側触媒部だけでなく下流側触媒部においても、HC、CO及びNOxの浄化に有利になる。 In addition, since the oxygen storage material particles constituting the Rh / OSC of the upstream catalyst portion are composed of a composite oxide having a ZrO 2 / CeO 2 mass ratio of 1 or more, the oxygen storage material particles correspond to changes in the air-fuel ratio A / F of the exhaust gas. Responsibility when occluding and releasing oxygen is good, so A / F fluctuations are absorbed in the upstream catalyst part, and purification of HC, CO, and NOx not only in the upstream catalyst part but also in the downstream catalyst part To be advantageous.

上記メタル担体の中間位置のセル通路壁の空隙は、排気ガス流れ方向に交差する方向(特に直交する方向)へ延びるスリットであっても、或いはセル通路壁を貫通する丸孔、上記交差方向に延びる長孔等の孔であってもよい。このようなスリット又は孔を排気ガス流れ方向に交差する方向に多数並ぶように設けることにより、熱伝導抑制部を形成することができる。或いは、当該メタル担体に外周から切れ込みをいれることによって熱伝導抑制のための空隙を形成するようにしてもよい。     The gap in the cell passage wall at the intermediate position of the metal carrier may be a slit extending in the direction intersecting the exhaust gas flow direction (particularly the direction orthogonal), or a round hole penetrating the cell passage wall in the intersecting direction. It may be a hole such as a long hole extending. By providing a large number of such slits or holes in a direction intersecting the exhaust gas flow direction, the heat conduction suppressing portion can be formed. Or you may make it form the space | gap for heat conduction suppression by notching the said metal support | carrier from the outer periphery.

また、上記空隙は、上記メタル担体の上流端から下流側へ当該担体長の1/4以上1/2以下の長さ離れた位置に形成することが好ましい。     Moreover, it is preferable to form the said space | gap in the position away from the upstream end of the said metal support | carrier to 1/4 downstream of the said carrier length from the upstream end to the downstream side.

CO吸着材としては、SrTiOのようなペロブスカイト型酸化物、或いはこれににPdを担持させたもの、アルミナやセリア等にCuを担持させたCu担持材、或いはアルミナにFe、Co、Ni、W及びMoのうちの少なくとも一種を担持させたものが好ましい。なお、本明細書、特許請求の範囲等においては、温度が低いときに排気ガス成分を化学的又は物理的に吸着ないしは捕捉し、温度が上昇すると、吸着ないしは捕捉していた当該排気ガス成分を脱離する材を「吸着材」と称しているが、当業者間では「吸蔵材」又は「トラップ材」と称されることもある。 Examples of the CO adsorbent include perovskite oxides such as SrTiO 3 , or those in which Pd is supported thereon, Cu support materials in which Cu is supported on alumina, ceria, or the like, or Fe, Co, Ni, alumina What carried at least 1 type of W and Mo is preferable. In the present specification, claims, etc., the exhaust gas component is chemically or physically adsorbed or captured when the temperature is low, and the adsorbed or captured exhaust gas component is removed when the temperature rises. The material to be detached is referred to as “adsorbent”, but may be referred to as “occlusion material” or “trap material” by those skilled in the art.

好ましいのは、上記上流側触媒部は複数の触媒層が重なった構造とされていて、上層に上記Rh/OSCが配置され、下層に上記Pd/アルミナが配置され、
上記下流側触媒部は複数の触媒層が重なった構造とされていて、上層に上記Rh/OSCが配置され、下層に上記Pt/アルミナと共にPd/アルミナが配置されていることである。
Preferably, the upstream catalyst portion has a structure in which a plurality of catalyst layers are overlapped, the Rh / OSC is disposed in the upper layer, and the Pd / alumina is disposed in the lower layer.
The downstream catalyst portion has a structure in which a plurality of catalyst layers are overlapped, the Rh / OSC is disposed in the upper layer, and Pd / alumina is disposed in the lower layer together with the Pt / alumina.

すなわち、上流側触媒部及び下流側触媒部のいずれも、排気ガスのA/F変動に応じて酸素の吸蔵・放出をする酸素吸蔵材粒子(Rh/OSCを構成するOSC材)が上層に配置されているから、該A/F変動を吸収してHC、CO及びNOxを効率良く浄化する上で有利になる。また、排気ガスによって加熱され易い上層にRh/OSCが配置されているから、NOxの浄化に有利になり、また、CO吸着材からCOが脱離して触媒にCOが多量に流入するときの該COの浄化に有利になる。     In other words, in both the upstream catalyst section and the downstream catalyst section, oxygen storage material particles (OSC material constituting Rh / OSC) that store and release oxygen according to the A / F fluctuation of the exhaust gas are disposed in the upper layer. Therefore, it is advantageous to absorb the A / F fluctuation and efficiently purify HC, CO and NOx. Further, since Rh / OSC is disposed in the upper layer that is easily heated by the exhaust gas, it is advantageous for purification of NOx, and when CO is desorbed from the CO adsorbent and a large amount of CO flows into the catalyst. This is advantageous for CO purification.

好ましいのは、上記上流側触媒部に配置されている上記酸素吸蔵材粒子の、排気ガスの空燃比A/Fの変動に応じて酸素を吸蔵・放出するときの応答性が、上記下流側触媒部に配置されている上記酸素吸蔵材粒子の同応答性よりも良いことである。     Preferably, the response of the oxygen storage material particles arranged in the upstream catalyst section when storing and releasing oxygen in accordance with fluctuations in the air-fuel ratio A / F of the exhaust gas is the downstream catalyst. It is better than the responsiveness of the oxygen storage material particles arranged in the part.

これにより、上流側触媒部においてA/Fの変動が良く吸収されることから、上流側触媒部だけでなく、下流側触媒部でもHC、CO及びNOxを効率良く浄化する上で有利になる。     As a result, the A / F fluctuation is well absorbed in the upstream catalyst section, which is advantageous in efficiently purifying HC, CO, and NOx not only in the upstream catalyst section but also in the downstream catalyst section.

好ましいのは、上記下流側触媒部の上記酸素吸蔵材粒子は、ZrとCeとを含有する複合酸化物よりなり、
上記上流側触媒部の上記酸素吸蔵材粒子の上記質量比ZrO/CeOが、上記下流側触媒部の上記酸素吸蔵材粒子の上記質量比ZrO/CeOよりも大であることである。
Preferably, the oxygen storage material particles in the downstream catalyst portion are composed of a composite oxide containing Zr and Ce,
The mass ratio ZrO 2 / CeO 2 of the oxygen storage material particles in the upstream catalyst part is larger than the mass ratio ZrO 2 / CeO 2 of the oxygen storage material particles in the downstream catalyst part. .

すなわち、後述の実験データで明らかになるが、ZrとCeとを含有する複合酸化物の場合、その質量比ZrO/CeOが大きくなるほど、上記A/F変動に対する酸素吸蔵・放出の応答性が良くなる。従って、上記構成にすることにより、A/F変動を吸収して排気ガスを効率良く浄化する上で有利になる。 That is, as will become clear from the experimental data described later, in the case of a composite oxide containing Zr and Ce, the larger the mass ratio ZrO 2 / CeO 2 is, the higher the oxygen storage / release response to the A / F fluctuation. Will be better. Therefore, the above configuration is advantageous in efficiently purifying exhaust gas by absorbing A / F fluctuations.

この場合、下流側触媒部の酸素吸蔵材粒子は、相対的に質量比ZrO/CeOが小さい、つまり、Ce成分が多いことになるが、そのことは酸素の吸蔵・放出量が上流側触媒部の酸素吸蔵材粒子よりも多いことを意味する。そうして、CO吸着材からCOが脱離するときは、そのCOの酸化浄化に多量の酸素が必要であるところ、COの脱離に伴って排気ガスのA/Fがリッチ側に振れたときに、下流側触媒部の酸素吸蔵材粒子から多量の酸素が放出されることになるから、CO脱離時のCOの酸化浄化に有利になる。 In this case, the oxygen storage material particles in the downstream catalyst portion have a relatively small mass ratio ZrO 2 / CeO 2 , that is, a large amount of Ce component, which means that the oxygen storage / release amount is upstream. It means more than the oxygen storage material particles in the catalyst part. Thus, when CO is desorbed from the CO adsorbent, a large amount of oxygen is required for the oxidation and purification of the CO, and the A / F of the exhaust gas is swung to the rich side along with the desorption of CO. Sometimes, a large amount of oxygen is released from the oxygen storage material particles in the downstream catalyst part, which is advantageous for CO oxidation purification during CO desorption.

以上のように、本発明によれば、CO吸着材と、その下流側に配置された排気ガス浄化触媒とを備え、該触媒のメタル担体は、排気ガス流れ方向の中間位置に熱伝導抑制部を備えているから、エンジンの冷間始動時など低温時にCOが未浄化のまま排出されることを防止できるとともに、上記中間位置よりも上流側触媒部の早期活性化が図れ、また、該上流側触媒部にはPd/アルミナとRh/OSCとを配置し、下流側触媒部にはPt/アルミナとRh/OSCとを配置し、上流側触媒部の酸素吸蔵材粒子として、排気ガスのA/F変動吸収に有効なZrO/CeO質量比が1以上の複合酸化物を採用したから、HC、CO及びNOxの効率良い浄化に有利になる。 As described above, according to the present invention, the CO adsorbent and the exhaust gas purification catalyst disposed on the downstream side thereof are provided, and the metal carrier of the catalyst is disposed at the intermediate position in the exhaust gas flow direction. Therefore, CO can be prevented from being discharged without being purified at a low temperature such as when the engine is cold started, and the upstream side catalyst portion can be activated earlier than the intermediate position. Pd / alumina and Rh / OSC are arranged in the side catalyst part, Pt / alumina and Rh / OSC are arranged in the downstream catalyst part, and the exhaust gas A is used as oxygen storage material particles in the upstream catalyst part. Since a composite oxide having a ZrO 2 / CeO 2 mass ratio of 1 or more effective for / F fluctuation absorption is employed, it is advantageous for efficient purification of HC, CO and NOx.

また、上流側触媒部の触媒層を積層構造として、上層にRh/OSCを配置し、下層にPd/アルミナを配置し、下流側触媒部の触媒層を積層構造として、上層にRh/OSCを配置し、下層にPt/アルミナと共にPd/アルミナを配置すると、排気ガスのA/F変動を吸収してHC、CO及びNOxを効率良く浄化する上で有利になり、また、排気ガス温度が低いときのNOxの浄化、並びにCO吸着材からCOが脱離するときの該COの浄化に有利になる。     Further, the catalyst layer of the upstream catalyst part is made into a laminated structure, Rh / OSC is placed in the upper layer, Pd / alumina is placed in the lower layer, the catalyst layer in the downstream catalyst part is made into a laminated structure, and Rh / OSC is placed in the upper layer. Arranging and disposing Pd / alumina together with Pt / alumina in the lower layer is advantageous for efficiently purifying HC, CO and NOx by absorbing the A / F fluctuation of the exhaust gas, and the exhaust gas temperature is low. This is advantageous for the purification of NOx and the purification of CO when CO is desorbed from the CO adsorbent.

また、上流側触媒部に下流側触媒部よりも排気ガスのA/F変動に対する応答性が良い酸素吸蔵材粒子を配置すると、上流側触媒部においてA/Fの変動が良く吸収されることから、上流側触媒部だけでなく、下流側触媒部でも排気ガスを効率良く浄化する上で有利になる。     In addition, if oxygen storage material particles having better responsiveness to A / F fluctuations of the exhaust gas than the downstream catalyst part are arranged in the upstream catalyst part, the A / F fluctuation is absorbed well in the upstream catalyst part. In addition to the upstream catalyst portion, the downstream catalyst portion is advantageous for efficiently purifying exhaust gas.

また、上流側触媒部の酸素吸蔵材粒子の質量比ZrO/CeOが、下流側触媒部の酸素吸蔵材粒子の質量比ZrO/CeOよりも大であるケースでは、排気ガスのA/F変動を吸収して排気ガスを効率良く浄化する上で有利になるとともに、CO吸着材からのCOの脱離に伴って排気ガスのA/Fがリッチ側に振れたときに、下流側触媒部の酸素吸蔵材粒子から多量の酸素が放出されるから、該CO脱離時のCOの酸化浄化に有利になる。 Further, in the case where the mass ratio ZrO 2 / CeO 2 of the oxygen storage material particles in the upstream catalyst portion is larger than the mass ratio ZrO 2 / CeO 2 of the oxygen storage material particles in the downstream catalyst portion, the exhaust gas A This is advantageous for efficiently purifying exhaust gas by absorbing the / F fluctuation, and when the A / F of the exhaust gas moves to the rich side due to the desorption of CO from the CO adsorbent, the downstream side Since a large amount of oxygen is released from the oxygen storage material particles in the catalyst portion, it is advantageous for the oxidation purification of CO during the CO desorption.

以下、本発明の実施形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。     Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

図1は自動車のガソリンエンジン及び排気系を示す。同図において、1はエンジンルーム2と車室とを仕切るダッシュパネル(車室前板)、3はエンジンルーム2のフード、4は車室のフロアパネル中央を車体前後方向に延びるフロアトンネル部である。エンジンルーム2において、5は横置き型の多気筒エンジン本体、6はラジエータ、7は吸気マニホールド、8は排気マニホールドである。     FIG. 1 shows an automobile gasoline engine and exhaust system. In the figure, 1 is a dash panel (cabinet front plate) that partitions the engine room 2 and the passenger compartment, 3 is a hood of the engine compartment 2, and 4 is a floor tunnel portion that extends in the vehicle longitudinal direction in the center of the floor panel of the passenger compartment. is there. In the engine room 2, 5 is a horizontal multi-cylinder engine body, 6 is a radiator, 7 is an intake manifold, and 8 is an exhaust manifold.

エンジン本体5において、11は気筒、12はピストン、13は点火プラグであり、当該エンジンは低燃費で高出力を得るべくサイドインジェクタ14を有する高圧縮比の直噴ガソリンエンジンとされている。排気マニホールド8は、エンジン本体5より後方へ延び、その集合部15(図2参照)に第1触媒コンバータ16が結合されている。第1触媒コンバータ16より後方へ延びる排気管17の前部に第2触媒コンバータ18が設けられている。     In the engine main body 5, 11 is a cylinder, 12 is a piston, and 13 is a spark plug. The engine is a high-compression-ratio direct-injection gasoline engine having a side injector 14 to obtain high output with low fuel consumption. The exhaust manifold 8 extends rearward from the engine body 5, and a first catalytic converter 16 is coupled to a collecting portion 15 (see FIG. 2). A second catalytic converter 18 is provided in the front part of the exhaust pipe 17 extending rearward from the first catalytic converter 16.

<排気マニホールド構造>
本実施形態では、排気マニホールド8の集合部15はエンジン本体5から後方へ遠く(例えば、最短管長部分で60cm以上100cm以下)離されて、ダッシュパネル1の下方位置に配置されている。従って、第1触媒コンバータ16は、排気マニホールド8に直結されているものの、エンジン本体5から遠く離れてダッシュパネル1の下方ないしは該ダッシュパネル1よりも後方に配置されている。また、第1触媒コンバータ16、排気管17及び第2触媒コンバータ18はフロアトンネル部4の中に配設され、排気管17はフロアトンネル部4を通して後方へ延びている。
<Exhaust manifold structure>
In the present embodiment, the collecting portion 15 of the exhaust manifold 8 is far from the engine body 5 (for example, 60 cm or more and 100 cm or less at the shortest pipe length portion) and is disposed at a position below the dash panel 1. Therefore, although the first catalytic converter 16 is directly connected to the exhaust manifold 8, the first catalytic converter 16 is disposed far from the engine body 5 and below the dash panel 1 or behind the dash panel 1. The first catalytic converter 16, the exhaust pipe 17 and the second catalytic converter 18 are disposed in the floor tunnel portion 4, and the exhaust pipe 17 extends rearward through the floor tunnel portion 4.

上述の如く、エンジン本体5からマニホールド集合部15までの距離を長くとっているのは、エンジンの気筒間の排気干渉を抑えるためである。すなわち、図2に4気筒エンジンの例で示すように、排気マニホールド8は、各気筒(図2では図示省略)から延びる4本の分岐管21〜24のうちの両端2本の分岐管21,24を途中で1本の集合管25に集合させる一方、中央2本の分岐管22,23を途中で1本の集合管26に集合させ、その2本の集合管25,26を集合させて上記集合部15としている。     As described above, the reason why the distance from the engine body 5 to the manifold assembly portion 15 is long is to suppress exhaust interference between cylinders of the engine. That is, as shown in FIG. 2 as an example of a four-cylinder engine, the exhaust manifold 8 includes two branch pipes 21 at both ends of four branch pipes 21 to 24 extending from each cylinder (not shown in FIG. 2). 24 is assembled in one collecting pipe 25 on the way, while the central two branch pipes 22 and 23 are gathered on one collecting pipe 26 and the two collecting pipes 25 and 26 are assembled. The collecting unit 15 is used.

このような排気マニホールド構造であれば、分岐管21→分岐管23→分岐管24→分岐管22の順で排気が行なわれるように、4気筒の点火順を定めることにより、点火順が相隣る気筒間で生ずる排気干渉を小さく抑えることができる。     With such an exhaust manifold structure, the ignition order of the four cylinders is determined so that exhaust is performed in the order of the branch pipe 21 → the branch pipe 23 → the branch pipe 24 → the branch pipe 22. Exhaust interference generated between the cylinders can be reduced.

また、上記排気マニホールド構造を採用することにより、エンジン本体5から第1触媒コンバータ16に至るまでの排気通路が長く(例えば65cm以上に)なるので、該コンバータ16に収容されている後述の触媒が排気流れの抵抗になることが軽減され、エンジンの低燃費高出力化に有利になる。本実施形態では、第1触媒コンバータ16は、運転者が当該自動車の運転のために操作するアクセル、ブレーキ等のペダルの下方位置に配置されている。     Further, by adopting the exhaust manifold structure, the exhaust passage from the engine body 5 to the first catalytic converter 16 becomes long (for example, 65 cm or more), so that a catalyst described later contained in the converter 16 can be used. The resistance to exhaust flow is reduced, which is advantageous for high fuel efficiency and high output of the engine. In this embodiment, the 1st catalytic converter 16 is arrange | positioned in the downward position of pedals, such as an accelerator and a brake which a driver | operator operates for the driving | operation of the said motor vehicle.

<触媒について>
第1触媒コンバータ16には、CO吸着部材31と三元触媒32とが、前者が排気ガス流れの上流側に、後者がその下流側に位置するように収容されている。第2触媒コンバータ18にはHCトラップ触媒33が収容されている。
<About catalyst>
The first catalytic converter 16 accommodates a CO adsorbing member 31 and a three-way catalyst 32 so that the former is located upstream of the exhaust gas flow and the latter is located downstream thereof. An HC trap catalyst 33 is accommodated in the second catalytic converter 18.

CO吸着部材31は、ハニカム担体のセル壁に、温度が低いときに(三元触媒32が不活性ないしは低活性であるときに)排気ガス中のCOを吸着し、温度が高くなると吸着していたCOを脱離し始めるCO吸着材層を形成してなる。     The CO adsorbing member 31 adsorbs the CO in the exhaust gas when the temperature is low (when the three-way catalyst 32 is inactive or low activity) on the cell wall of the honeycomb carrier, and adsorbs when the temperature is high. A CO adsorbent layer that begins to desorb CO is formed.

三元触媒32は、排気ガス中のHC、CO及びNOxを同時に浄化する浄化率が理論空燃比付近で高い触媒であって、排気ガスが通過する多数のセル通路を有するハニカム状のメタル担体のセル通路壁に触媒層が形成されたものである。     The three-way catalyst 32 is a catalyst having a high purification rate near the stoichiometric air-fuel ratio for simultaneously purifying HC, CO, and NOx in the exhaust gas, and is a honeycomb-shaped metal carrier having a number of cell passages through which the exhaust gas passes. A catalyst layer is formed on the cell passage wall.

上記メタル担体の排気ガス流れ方向の中間位置には、部分的に上記セル通路壁がカットされてなる空隙を設けることにより、担体上流側から担体下流側への熱伝導を抑制する熱伝導抑制部35が形成されている。この熱伝導抑制部35よりも上流側の触媒部32aには、アルミナ粒子にPdを担持させてなるPd/アルミナと、酸素吸蔵材粒子にRhを担持させてなるRh/OSCとが配置され、熱伝導抑制部35よりも下流側の触媒部32bには、アルミナ粒子にPtを担持させてなるPt/アルミナと、酸素吸蔵材粒子にRhを担持させてなるRh/OSCとが配置されている。上流側触媒部32aの酸素吸蔵材粒子は、ZrとCeとを含有し且つCeOに対するZrOの質量比ZrO/CeOが1以上の複合酸化物よりなる。 A heat conduction suppression unit that suppresses heat conduction from the upstream side of the carrier to the downstream side of the carrier by providing a gap formed by partially cutting the cell passage wall at an intermediate position in the exhaust gas flow direction of the metal carrier. 35 is formed. Pd / alumina in which Pd is supported on alumina particles and Rh / OSC in which Rh is supported on oxygen storage material particles are arranged in the catalyst portion 32a upstream of the heat conduction suppressing portion 35, Pt / alumina in which Pt is supported on alumina particles and Rh / OSC in which Rh is supported on oxygen storage material particles are disposed in the catalyst portion 32b on the downstream side of the heat conduction suppressing portion 35. . Oxygen storage component particles of the upstream catalyst unit 32a, the weight ratio ZrO 2 / CeO 2 in ZrO 2 is formed of one or more composite oxide to and CeO 2 containing Zr and Ce.

HCトラップ触媒33は、ハニカム担体のセル壁に触媒層を形成してなるハニカム触媒であり、その触媒層は、三元触媒32がそのライトオフ温度付近の温度になるまでは排気ガス中のHCを捕捉するHCトラップ材(例えばゼオライト)と、さらに温度が上昇したときに該トラップ材から放出されるHCを酸化浄化する触媒とを含有する。     The HC trap catalyst 33 is a honeycomb catalyst formed by forming a catalyst layer on the cell wall of the honeycomb carrier, and the catalyst layer is HC in the exhaust gas until the three-way catalyst 32 reaches a temperature near its light-off temperature. HC trap material (for example, zeolite) that traps HC and a catalyst that oxidizes and purifies HC released from the trap material when the temperature further rises.

−好適な三元触媒32−
図3に示すように、好ましいメタル担体36は、金属製の平板37と金属製の波板38とを重ね合わせて渦巻き状に形成したものであり、平板37と波板38との間に多数のセル通路39が形成されている。平板37及び波板38各々の排気ガス流れ方向(セル通路の方向)の中間位置には、多数のスリット孔41が排気ガス流れ方向と直交する方向に並べて形成されている。図3の例ではスリット孔41が複数列設けられているが、1列であってもよい。
-Suitable three-way catalyst 32-
As shown in FIG. 3, the preferred metal carrier 36 is formed by superposing a metal flat plate 37 and a metal corrugated plate 38 in a spiral shape, and a large number between the flat plate 37 and the corrugated plate 38. Cell passage 39 is formed. A large number of slit holes 41 are formed side by side in a direction perpendicular to the exhaust gas flow direction at an intermediate position in the exhaust gas flow direction (cell passage direction) of each of the flat plate 37 and the corrugated plate 38. In the example of FIG. 3, the slit holes 41 are provided in a plurality of rows, but may be a single row.

上記スリット孔41が、メタル担体36の中間位置において部分的にセル通路壁をカットしてなる空隙となっており、このスリット孔41によって担体上流側から担体下流側への熱伝導を抑制する熱伝導抑制部35が形成されている。この熱伝導抑制部35はメタル担体36の上流端から当該担体長の1/3程度の長さ下流側へ離れた位置に形成することが好ましい。     The slit hole 41 is a gap formed by partially cutting the cell passage wall at an intermediate position of the metal carrier 36, and the slit hole 41 suppresses heat conduction from the carrier upstream side to the carrier downstream side. A conduction suppressing portion 35 is formed. The heat conduction suppressing portion 35 is preferably formed at a position away from the upstream end of the metal carrier 36 to the downstream side by about 1/3 of the carrier length.

上流側触媒部32aは、複数の触媒層が重なった積層構造とし、上層に上記Rh/OSCを配置し、下層に上記Pd/アルミナを配置することが好ましい。下流側触媒部32bは、複数の触媒層が重なった積層構造とし、上層に上記Rh/OSCを配置し、下層に上記Pt/アルミナと共にPd/アルミナを配置することが好ましい。     The upstream catalyst part 32a preferably has a laminated structure in which a plurality of catalyst layers are overlapped, and the Rh / OSC is disposed in the upper layer and the Pd / alumina is disposed in the lower layer. It is preferable that the downstream catalyst portion 32b has a laminated structure in which a plurality of catalyst layers are stacked, the Rh / OSC is disposed in the upper layer, and Pd / alumina is disposed in the lower layer together with the Pt / alumina.

そうして、上流側触媒部32aのRh/OSCを構成する酸素吸蔵材粒子については、排気ガスの空燃比A/Fの変動に応じて酸素を吸蔵・放出する応答性が良いものが好ましく、下流側触媒部32bのRh/OSCを構成する酸素吸蔵材粒子については、酸素吸蔵・放出量が大きいものが好ましい。     Thus, the oxygen storage material particles constituting the Rh / OSC of the upstream side catalyst part 32a are preferably those having good responsiveness to store and release oxygen in accordance with fluctuations in the air-fuel ratio A / F of the exhaust gas. About the oxygen storage material particle which comprises Rh / OSC of the downstream catalyst part 32b, a thing with a large oxygen storage-release amount is preferable.

−好適なHCトラップ触媒33−
ハニカム担体のセル壁に触媒層を形成したハニカム触媒とする。触媒層は、ゼオライト等のHCトラップ材と、HCを酸化浄化するHC浄化触媒とを含有する。HCトラップ材としてはβ型ゼオライトが好ましい。HCトラップ触媒33は、HCトラップ材とHC浄化触媒とを混合してハニカム担体のセル壁に単一の触媒層を形成するように担持させた混合型としても、HCトラップ材を含有する触媒層とHC浄化触媒を含有する触媒層とを有する積層型としてもよい。
-Suitable HC trap catalyst 33-
A honeycomb catalyst in which a catalyst layer is formed on the cell wall of the honeycomb carrier is used. The catalyst layer contains an HC trap material such as zeolite and an HC purification catalyst for oxidizing and purifying HC. Β-type zeolite is preferable as the HC trap material. The HC trap catalyst 33 may be a mixed type in which an HC trap material and an HC purification catalyst are mixed and supported so as to form a single catalyst layer on the cell wall of the honeycomb carrier, or a catalyst layer containing the HC trap material. And a catalyst layer containing an HC purification catalyst.

積層型とする場合は、HCトラップ材を下層に配置し、HC浄化触媒を上層に配置する。例えば、ゼオライトを下層に、HC浄化触媒としてのPd/アルミナを上層に配置する。この上層と下層との中間にRh/OSC層を形成してよい。或いは、上層をPd/アルミナとPd/OSCとの混合層とし、中間にRh/OSC層を形成してよい。     In the case of a stacked type, the HC trap material is disposed in the lower layer, and the HC purification catalyst is disposed in the upper layer. For example, zeolite is disposed in the lower layer, and Pd / alumina as the HC purification catalyst is disposed in the upper layer. An Rh / OSC layer may be formed between the upper layer and the lower layer. Alternatively, the upper layer may be a mixed layer of Pd / alumina and Pd / OSC, and the Rh / OSC layer may be formed in the middle.

なお、HCトラップ触媒33を設ける代わりに、三元触媒32の下流側触媒部32bにHCトラップ材を設けるようにしてもよい。     Instead of providing the HC trap catalyst 33, an HC trap material may be provided in the downstream catalyst portion 32b of the three-way catalyst 32.

<酸素吸蔵材の性能評価>
−酸素吸蔵量−
酸素吸蔵材として、CeとZrとNdとを含むCeZrNd複合酸化物(複酸化物)と、CeとZrとLaとPrとを含むCeZrLaPr複合酸化物(複酸化物)とを準備した。CeZrNd複合酸化物の組成比はCeO:ZrO:Nd=10:80:10(質量%)であり、CeZrLaPr複合酸化物の組成比はCeO:ZrO:La:Pr11=50:40:5:5(質量%)である。
<Performance evaluation of oxygen storage materials>
−Oxygen storage amount−
As an oxygen storage material, a CeZrNd composite oxide (double oxide) containing Ce, Zr, and Nd and a CeZrLaPr composite oxide (double oxide) containing Ce, Zr, La, and Pr were prepared. The composition ratio of CeZrNd composite oxide is CeO 2 : ZrO 2 : Nd 2 O 3 = 10: 80: 10 (mass%), and the composition ratio of CeZrLaPr composite oxide is CeO 2 : ZrO 2 : La 2 O 3 : Pr 6 O 11 = 50: 40 : 5: a 5 (mass%).

そうして、この両酸素吸蔵材各々の酸素吸蔵量を図4に示す測定装置により測定した。この試験装置は、供試材(酸素吸蔵材)48にガスを流通させることができるようになっており、排気通路47における供試材48の入口側及び出口側にそれぞれリニア酸素センサ49が設けられている。     Then, the oxygen storage amount of each of these oxygen storage materials was measured by the measuring device shown in FIG. In this test apparatus, gas can be circulated through a test material (oxygen storage material) 48, and linear oxygen sensors 49 are provided on the inlet side and the outlet side of the test material 48 in the exhaust passage 47, respectively. It has been.

供試材には事前に900℃×100時間のベンチエージングを施した。測定にあたっては、まず、供試材48に10%COガス(残N)流通させた状態とした。そして、そのガスに酸素を20秒間添加し(リーン状態)、次にガス無添加状態(ストイキ状態)を20秒間続け、次にCOを20秒間添加し(リッチ状態)、次にガス無添加状態(ストイキ状態)を20秒間続ける、というサイクルを繰り返し、入口側と出口側のリニア酸素センサの出力差(入口側−出口側)を測定した。リーン状態になると、供試材48が酸素を吸蔵するため、上記出力差はプラスになる。このリーン状態での出力差を積算することにより、酸素吸蔵量を求めた。酸素吸蔵量の測定は350℃、400℃、450℃及び500℃の各温度で行なった。 The test material was bench-aged at 900 ° C. for 100 hours in advance. In the measurement, first, 10% CO 2 gas (remaining N 2 ) was passed through the test material 48. Then, oxygen is added to the gas for 20 seconds (lean state), then the gas-free state (stoichiometric state) is continued for 20 seconds, then CO is added for 20 seconds (rich state), and then the gas-free state The cycle of continuing (stoichiometric state) for 20 seconds was repeated, and the output difference (inlet side-outlet side) of the linear oxygen sensor on the inlet side and the outlet side was measured. In the lean state, the specimen 48 occludes oxygen, so the output difference becomes positive. The oxygen storage amount was determined by integrating the output difference in the lean state. The oxygen storage amount was measured at 350 ° C, 400 ° C, 450 ° C and 500 ° C.

測定結果は図5に示されている。同図において、「Ce/Zr/Nd=10/80/10」はCeZrNd複合酸化物のことであり、「Ce/Zr/La/Pr=50/40/5/5/」はCeZrLaPr複合酸化物のことである。なお、図5及び後述の図6〜図8では、「CeO」、「ZrO」、「La」及び「Pr11」各々を「Ce」、「Zr」、「La」及び「Pr」と略記している。図5によれば、いずれも温度上昇に伴って酸素吸蔵量が多くなっている。また、CeZrLaPr複合酸化物の方がCeZrNd複合酸化物よりも酸素吸蔵量が多い。 The measurement results are shown in FIG. In the figure, “Ce / Zr / Nd = 10/80/10” refers to the CeZrNd composite oxide, and “Ce / Zr / La / Pr = 50/40/5/5 /” refers to the CeZrLaPr composite oxide. That's it. In FIG. 5 and FIGS. 6 to 8 described later, “CeO 2 ”, “ZrO 2 ”, “La 2 O 3 ”, and “Pr 6 O 11 ” are respectively represented by “Ce”, “Zr”, “La”. And “Pr”. According to FIG. 5, the oxygen storage amount increases with increasing temperature. Further, the CeZrLaPr composite oxide has a larger oxygen storage capacity than the CeZrNd composite oxide.

−酸素放出量−
ZrO/CeO質量比が異なる4種類のCeZrNd複合酸化物を準備し、図4に示す測定装置によって、各々の酸素放出量を測定した。4種類のCeZrNd複合酸化物各々のCeO:ZrO:Nd(質量%)は、10:80:10(ZrO/CeO質量比=8)、20:70:10(ZrO/CeO質量比=7/2)、30:60:10(ZrO/CeO質量比=2)及び50:40:10(ZrO/CeO質量比=4/5)である。また、測定前に、各供試材に対して、2%O、10%HO及び残Nの雰囲気(温度1100℃)に24時間保持するエージングを施した。
−Oxygen release amount−
Four types of CeZrNd composite oxides having different ZrO 2 / CeO 2 mass ratios were prepared, and each oxygen release amount was measured by a measuring apparatus shown in FIG. The CeO 2 : ZrO 2 : Nd 2 O 3 (mass%) of each of the four types of CeZrNd composite oxides is 10:80:10 (ZrO 2 / CeO 2 mass ratio = 8), 20:70:10 (ZrO 2 / CeO 2 weight ratio = 7/2), 30: 60: a 10 (ZrO 2 / CeO 2 weight ratio = 2) and 50:40:10 (ZrO 2 / CeO 2 weight ratio = 4/5). Further, before the measurement, each specimen was subjected to aging for 24 hours in an atmosphere (temperature: 1100 ° C.) of 2% O 2 , 10% H 2 O and the remaining N 2 .

測定方法は酸素吸蔵量の場合と基本的には同じであるが、上記サイクルにおいては、リッチ状態になったときに供試材48が酸素を放出し、入口側と出口側のリニア酸素センサの出力差(入口側−出口側)がマイナスになることから、このリッチ状態での出力差を積算することにより、酸素放出量を求めた。測定温度は500℃とした。     The measurement method is basically the same as in the case of the oxygen storage amount, but in the above cycle, the specimen 48 releases oxygen when it becomes rich, and the linear oxygen sensors on the inlet side and outlet side Since the output difference (inlet side−outlet side) becomes negative, the oxygen release amount was determined by integrating the output difference in this rich state. The measurement temperature was 500 ° C.

測定結果は図6に示されている。同図横軸の「Ce含有量」はCeO含有量を意味する。同図によれば、CeO含有量が増大するにつれて、すなわち、ZrO/CeO質量比が小さくなるほど、酸素放出量が多くなることがわかる。 The measurement results are shown in FIG. The “Ce content” on the horizontal axis in the figure means the CeO 2 content. According to the figure, it can be seen that as the CeO 2 content increases, that is, as the ZrO 2 / CeO 2 mass ratio decreases, the oxygen release amount increases.

−A/F変動に対する応答性−
上記CeZrLaPr複合酸化物及びZrO/CeO質量比が異なる上記4種類のCeZrNd複合酸化物各々の、排気ガスの空燃比A/Fの変動に応じて酸素を吸蔵・放出する応答性(以下、これを適宜「A/F応答性」という。)について調べた。
-Responsiveness to A / F fluctuation-
Responsiveness of occluding and releasing oxygen in accordance with fluctuations in the air-fuel ratio A / F of the exhaust gas of each of the four types of CeZrNd composite oxides having different mass ratios of the CeZrLaPr composite oxide and the ZrO 2 / CeO 2 (hereinafter, This was referred to as “A / F responsiveness” as appropriate.

すなわち、上記計5種類の複合酸化物粒子各々にRhを担持させてなる触媒粉を調製し、それぞれをハニカム担体に担持させた供試触媒を作製した。ハニカム担体1L当たりの触媒粉の担持量は70g/L、Rh担持量は0.3g/Lとした。そうして、A/F変動速度が異なる各種の模擬排気ガスにより、各供試触媒の触媒入口ガス温度400℃及び300℃各々でのNOx浄化率をリグテストで測定した。     That is, a catalyst powder in which Rh was supported on each of the five types of composite oxide particles was prepared, and a test catalyst was prepared in which each was supported on a honeycomb carrier. The amount of catalyst powder supported per liter of honeycomb carrier was 70 g / L, and the amount of Rh supported was 0.3 g / L. Then, the NOx purification rate at each of the catalyst inlet gas temperatures of 400 ° C. and 300 ° C. of each test catalyst was measured by a rig test using various simulated exhaust gases having different A / F fluctuation rates.

A/F変動条件は表1のとおりであり、各A/F変動時のガス組成は表2のとおりである。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスをパルス状に添加することにより、A/Fを強制的に振動させた。空間速度SVは60000/hとした。     The A / F variation conditions are as shown in Table 1, and the gas composition at each A / F variation is as shown in Table 2. That is, the A / F was forcibly vibrated by adding a predetermined amount of fluctuation gas in a pulsed manner while constantly flowing the main stream gas of A / F = 14.7. The space velocity SV was 60000 / h.

表1のA/F変動速度(A/F/s)は図7に示すd(A/F)/dT(Tは時間)である。A/F変動速度を異ならせるにあたり、単に変動周波数だけを変化させずに、変動の振れ幅も変化させたのは、A/Fが14.7からプラス又はマイナスになったときの変動の大きさを、A/Fがプラス(又はマイナス)になっている振れ時間と振幅との関係で量的に揃えるためである。     The A / F fluctuation speed (A / F / s) in Table 1 is d (A / F) / dT (T is time) shown in FIG. When changing the A / F fluctuation speed, the fluctuation amplitude was changed without changing only the fluctuation frequency, because the magnitude of fluctuation when the A / F was changed from 14.7 to plus or minus. This is because the A / F is quantitatively aligned by the relationship between the shake time and the amplitude when the A / F is positive (or negative).

Figure 2009019537
Figure 2009019537

Figure 2009019537
Figure 2009019537

400℃でのNOx浄化率C400は図8に、300℃でのNOx浄化率C300は図9に示されている。図8,9において、「CZN」はCeZrNd複合酸化物のことであり、「CZLP」はCeZrLaPr複合酸化物のことである。この両図によれば、A/F変動速度値が小さいときは、ZrO/CeO質量比が小さい複合酸化物(Ce含有量大)の方がNOx浄化率が大きいが、A/F変動速度値が大きくなってくると、各複合酸化物間のNOx浄化率の大小関係が逆転して、同質量比が大きい複合酸化物の方がNOx浄化率が大きくなっている。 The NOx purification rate C400 at 400 ° C. is shown in FIG. 8, and the NOx purification rate C300 at 300 ° C. is shown in FIG. 8 and 9, “CZN” refers to a CeZrNd composite oxide, and “CZLP” refers to a CeZrLaPr composite oxide. According to both figures, when the A / F fluctuation rate value is small, the complex oxide (the Ce content is large) having a small ZrO 2 / CeO 2 mass ratio has a larger NOx purification rate, but the A / F fluctuation is large. As the speed value increases, the magnitude relationship of the NOx purification rate between the composite oxides is reversed, and the composite oxide having a larger mass ratio has a higher NOx purification rate.

図5,6から明らかなように、CeZrNd複合酸化物やCeZrLaPr複合酸化物のようなCeZr系複合酸化物は、ZrO/CeO質量比が小さいほど、酸素吸蔵放出量が多い。そのために、A/F変動速度値が小さいときは(図8,9)は、ZrO/CeO質量比が小さくなるほど(Ce含有量が大になるほど)、NOx浄化率が大きくなっていると認められる。 As is apparent from FIGS. 5 and 6, CeZr-based composite oxides such as CeZrNd composite oxide and CeZrLaPr composite oxide have a larger oxygen storage / release amount as the ZrO 2 / CeO 2 mass ratio is smaller. Therefore, when the A / F fluctuation speed value is small (FIGS. 8 and 9), the NOx purification rate increases as the ZrO 2 / CeO 2 mass ratio decreases (the Ce content increases). Is recognized.

そうして、仮に各複合酸化物のA/F変動に対する酸素の吸蔵・放出の応答性が同じであれば、A/F変動速度値が大きくなっても、各複合酸化物間のNOx浄化率の大小関係は変化しないはずである。しかし、図8,9の結果によれば、A/F変動速度値が大きくなってくると、各複合酸化物間のNOx浄化率の大小関係が逆転している。これは、各複合酸化物のA/F変動に対する応答性が相異なること、つまり、CeZr系複合酸化物はZrO/CeO質量比が大きいものほど酸素の吸蔵・放出の応答性が良いことを意味する。 If the responsiveness of oxygen storage / release to the A / F fluctuation of each composite oxide is the same, the NOx purification rate between the composite oxides even if the A / F fluctuation speed value increases. The magnitude relationship should not change. However, according to the results of FIGS. 8 and 9, when the A / F fluctuation speed value increases, the magnitude relationship of the NOx purification rate between the composite oxides is reversed. This is because the responsiveness of each composite oxide to A / F fluctuations is different, that is, the CeZr-based composite oxide has a higher oxygen storage / release response as the ZrO 2 / CeO 2 mass ratio increases. Means.

<排気ガス浄化性能>
以上を踏まえて、三元触媒の構成が相異なる次の実施例1〜4及び比較例1〜3の各排気ガス浄化装置を準備し、排気ガス浄化性能を評価した。
<Exhaust gas purification performance>
Based on the above, the exhaust gas purification devices of the following Examples 1 to 4 and Comparative Examples 1 to 3 having different configurations of the three-way catalyst were prepared, and the exhaust gas purification performance was evaluated.

−実施例1−
CO吸着部材31のCO吸着材としてSrTiOを採用した。なお、触媒金属は担持していない。CO吸着部材31の担体容量は0.3Lである。三元触媒32のメタル担体36としては、担体上流端から当該担体長の1/3の長さ下流側へ離れた位置に上記3列スリット孔41による熱伝導抑制部35が形成されているものを採用した。三元触媒32の担体容量は0.7Lである。
Example 1
SrTiO 3 was employed as the CO adsorbent for the CO adsorbing member 31. The catalyst metal is not supported. The carrier capacity of the CO adsorption member 31 is 0.3L. As the metal carrier 36 of the three-way catalyst 32, the heat conduction suppressing portion 35 is formed by the three rows of slit holes 41 at a position separated from the upstream end of the carrier to the downstream side of the length of 1/3 of the carrier length. It was adopted. The carrier capacity of the three-way catalyst 32 is 0.7L.

三元触媒32の上流側触媒部32aは、上層にRh/OSC(OSC担持量=70g/L,Rh担持量=0.3g/L)を配置し、下層にPd/アルミナ(アルミナ担持量=50g/L,Pd担持量=4.9g/L)を配置した。上層のOSCとしては、CeO:ZrO:Nd=10:80:10(質量%)のCeZrNd複合酸化物を採用し、下層のアルミナとしてはLaを4質量%含有する活性アルミナを採用した。 The upstream side catalyst portion 32a of the three-way catalyst 32 has Rh / OSC (OSC carrying amount = 70 g / L, Rh carrying amount = 0.3 g / L) disposed in the upper layer and Pd / alumina (alumina carrying amount = 50 g / L, Pd loading = 4.9 g / L). As the upper layer OSC, a CeZrNd composite oxide of CeO 2 : ZrO 2 : Nd 2 O 3 = 10: 80: 10 (mass%) is adopted, and as the lower layer alumina, activated alumina containing 4 mass% of La is used. Adopted.

三元触媒32の下流側触媒部32bは、上層にRh/OSC(OSC担持量=70g/L,Rh担持量=0.1g/L)を配置し、下層にPt/アルミナ(アルミナ担持量=25g/L,Pt担持量=0.2g/L)及びPd/アルミナ(アルミナ担持量=50g/L,Pd担持量=1.4g/L)を配置した。上層のOSCとしては、CeO:ZrO:La:Pr11=50:40:5:5(質量%)のCeZrLaPr複合酸化物を採用し、下層のPt/アルミナ及びPd/アルミナにはLaを4質量%含有する活性アルミナを採用した。 In the downstream side catalyst portion 32b of the three-way catalyst 32, Rh / OSC (OSC carrying amount = 70 g / L, Rh carrying amount = 0.1 g / L) is disposed in the upper layer, and Pt / alumina (alumina carrying amount = 25 g / L, Pt loading = 0.2 g / L) and Pd / alumina (alumina loading = 50 g / L, Pd loading = 1.4 g / L) were arranged. As the upper layer OSC, a CeZrLaPr composite oxide of CeO 2 : ZrO 2 : La 2 O 3 : Pr 6 O 11 = 50: 40: 5: 5 (mass%) is adopted, and the lower layer Pt / alumina and Pd / Activated alumina containing 4% by mass of La was used as the alumina.

三元触媒32全体の触媒貴金属の配合比率は、Pt:Pd:Rh=1:30:2(質量比)である。なお、HCトラップ触媒は設けていない。     The blending ratio of the catalyst noble metal in the entire three-way catalyst 32 is Pt: Pd: Rh = 1: 30: 2 (mass ratio). Note that no HC trap catalyst is provided.

−実施例2−
三元触媒32の上流側触媒部32aについて、実施例1の二層構造に代えて、Rh/OSCとPd/アルミナとを混合した単層構造とし、下流側触媒部32bについても、実施例1の二層構造に代えて、Rh/OSCとPt/アルミナとPd/アルミナとを混合した単層構造とした。他の構成は実施例1と同じである。
-Example 2-
The upstream side catalyst part 32a of the three-way catalyst 32 has a single layer structure in which Rh / OSC and Pd / alumina are mixed instead of the two-layer structure of Example 1, and the downstream side catalyst part 32b is also in Example 1. Instead of the two-layer structure, a single-layer structure in which Rh / OSC, Pt / alumina, and Pd / alumina are mixed is used. Other configurations are the same as those of the first embodiment.

−実施例3−
三元触媒32の下流側触媒部32bのOSCについて、実施例1のCeZrLaPr複合酸化物に代えて、CeO:ZrO:Nd=30:60:10(質量%)のCeZrNd複合酸化物を採用した。他の構成は実施例1と同じである。
Example 3
For the OSC of the downstream side catalyst portion 32b of the three-way catalyst 32, CeO 2 : ZrO 2 : Nd 2 O 3 = 30: 60: 10 (mass%) CeZrNd composite oxidation instead of the CeZrLaPr composite oxide of Example 1 The thing was adopted. Other configurations are the same as those of the first embodiment.

−実施例4−
三元触媒32の下流側触媒部32bのOSCについて、実施例1のCeZrLaPr複合酸化物に代えて、上流側触媒部32aと同じCeO:ZrO:Nd=10:80:10(質量%)のCeZrNd複合酸化物を採用した。他の構成は実施例1と同じである。
Example 4
About the OSC of the downstream side catalyst part 32b of the three-way catalyst 32, instead of the CeZrLaPr composite oxide of Example 1, the same CeO 2 : ZrO 2 : Nd 2 O 3 = 10: 80: 10 (as in the upstream side catalyst part 32a) (Mass%) CeZrNd composite oxide was employed. Other configurations are the same as those of the first embodiment.

−比較例1−
三元触媒32に、スリット孔による熱伝導抑制部が形成されていないメタル担体を採用する他は実施例1と同じ構成にした。
-Comparative Example 1-
The same configuration as that of Example 1 was adopted except that a three-way catalyst 32 using a metal carrier in which a heat conduction suppressing portion by a slit hole was not formed.

−比較例2−
三元触媒32の上流側触媒部32aのOSCについて、実施例1のCeZrNd複合酸化物に代えて、下流側触媒部32bと同じCeZrLaPr複合酸化物を採用した。他の構成は実施例1と同じである。
-Comparative Example 2-
For the OSC of the upstream side catalyst part 32a of the three-way catalyst 32, instead of the CeZrNd composite oxide of Example 1, the same CeZrLaPr composite oxide as that of the downstream side catalyst part 32b was adopted. Other configurations are the same as those of the first embodiment.

−比較例3−
三元触媒32の上流側触媒部32aのOSCとして、CeO:ZrO:La:Pr11=50:40:5:5(質量%)のCeZrLaPr複合酸化物を採用し、下流側触媒部32bのOSCとして、CeO:ZrO:Nd=10:80:10(質量%)のCeZrNd複合酸化物を採用した(2種類のOSC材の配置を実施例1とは逆にした。)。他の構成は実施例1と同じである。
-Comparative Example 3-
As the OSC of the upstream side catalyst portion 32a of the three-way catalyst 32, CeO 2 : ZrO 2 : La 2 O 3 : Pr 6 O 11 = 50: 40: 5: 5 (mass%) CeZrLaPr composite oxide is adopted, A CeZrNd composite oxide of CeO 2 : ZrO 2 : Nd 2 O 3 = 10: 80: 10 (mass%) was employed as the OSC of the downstream catalyst portion 32b (the arrangement of two types of OSC materials is the same as in Example 1). Reversed.) Other configurations are the same as those of the first embodiment.

(排気ガス浄化性能の評価)
上記実施例1〜4及び比較例1〜3の各排気ガス浄化装置について、モデル排気ガス流通反応装置にセットし、排気ガス浄化性能(ライトオフ温度T50及び高温浄化性能C400)を評価した。モデル排気ガスは表1に示す「A/F=14.7±0.9,1.0Hz」とした。空間速度SVは60000/h、昇温速度は30℃/分とした。
(Evaluation of exhaust gas purification performance)
About each exhaust-gas purification apparatus of the said Examples 1-4 and Comparative Examples 1-3, it set to the model exhaust-gas distribution | circulation reaction apparatus, and exhaust-gas purification performance (light-off temperature T50 and high temperature purification performance C400) was evaluated. The model exhaust gas was set to “A / F = 14.7 ± 0.9, 1.0 Hz” shown in Table 1. The space velocity SV was 60000 / h, and the heating rate was 30 ° C./min.

T50(℃)は、モデル排気ガス温度の上昇により、触媒下流で検出されるガスの各成分(HC及びNOx)濃度が、触媒に流入するガスの各成分(HC及びNOx)濃度の半分になった時点(すなわち浄化率が50%になった時点)の触媒入口ガス温度(ライトオフ温度)であって、触媒の低温浄化性能を表すものである。C400(%)は、触媒入口でのモデル排気ガス温度が400℃であるときのガスの各成分(HC、CO及びNOx)の浄化率であって、触媒の高温浄化性能を表すものである。結果を表3に示す。     In T50 (° C.), as the model exhaust gas temperature rises, the concentration of each component (HC and NOx) of the gas detected downstream of the catalyst becomes half of the concentration of each component (HC and NOx) of the gas flowing into the catalyst. This is the catalyst inlet gas temperature (light-off temperature) when the purification rate reaches 50% (that is, when the purification rate becomes 50%), and represents the low-temperature purification performance of the catalyst. C400 (%) is the purification rate of each component (HC, CO and NOx) of the gas when the model exhaust gas temperature at the catalyst inlet is 400 ° C., and represents the high temperature purification performance of the catalyst. The results are shown in Table 3.

Figure 2009019537
Figure 2009019537

T50をみると、実施例1〜4はいずれも、比較例1〜3に比べてライトオフ温度が低く、低温時の排気ガス浄化性能に優れていること(三元触媒が早期に活性化すること)がわかる。C400をみると、実施例は、実施例4のCO及びNOxの浄化率が少し低くなっているが、その他は比較例よりもHC、CO及びNOxの浄化率が高くなっており、高温時の排気ガス浄化性能にも優れていることがわかる。     Looking at T50, all of Examples 1 to 4 have a lower light-off temperature than Comparative Examples 1 to 3 and excellent exhaust gas purification performance at low temperatures (the three-way catalyst is activated early. I understand). Looking at C400, in Example, the purification rate of CO and NOx in Example 4 is slightly lower, but in other cases, the purification rate of HC, CO and NOx is higher than in the comparative example, and at high temperatures It can be seen that the exhaust gas purification performance is also excellent.

以下、具体的にみていくと、比較例1は、メタル担体のスリット孔がない点のみが実施例1と相違するが、実施例1のライトオフ温度の方が比較例1よりも十数℃低くなっている。これは、スリット孔により、上流側触媒部32aから下流側触媒部32bへの熱伝達が抑制され、上流側触媒部32aの早期昇温、早期活性が図れた結果と認められる。また、実施例1の場合、スリット孔があるため、上流側触媒部32aは早期に温まって活性化し、浄化されないまま下流側触媒部32bに流入する排気ガス成分の量が少なくなるため、下流側触媒部32bでの反応効率が上がり、99%ないしは100%の浄化性能を発揮するまでの時間が短くなる。これに対して、比較例1の場合、スリット孔がないため、上記実施例1のような効果が得られず、400℃では100%の浄化率に達しない。     Hereinafter, specifically, Comparative Example 1 is different from Example 1 only in that there is no slit hole of the metal carrier, but the light-off temperature of Example 1 is more than a dozen degrees C. compared to Comparative Example 1. It is low. This is recognized as a result of the heat transfer from the upstream side catalyst part 32a to the downstream side catalyst part 32b being suppressed by the slit hole, so that the upstream side catalyst part 32a can be raised in temperature and activated early. Further, in the case of Example 1, since there is a slit hole, the upstream catalyst part 32a is warmed and activated early, and the amount of exhaust gas components flowing into the downstream catalyst part 32b is reduced without being purified. The reaction efficiency in the catalyst part 32b increases, and the time until the purification performance of 99% or 100% is exhibited is shortened. On the other hand, in the case of Comparative Example 1, since there is no slit hole, the effect as in Example 1 cannot be obtained, and the purification rate of 100% is not reached at 400 ° C.

比較例2は、CeZrLaPr複合酸化物(酸素吸蔵放出量は多いが、A/F応答性は低い)を上流・下流の両触媒部32a,32bに採用した点で実施例1と相違するが、実施例1のライトオフ温度の方が比較例2よりも十数℃低くなっている。これは、上流側触媒部32aのOSC材のA/F応答性の違いによるものと認められる。すなわち、実施例1の場合は、上流側触媒部32aのA/F応答性が良いCeZrNd複合酸化物により、排気ガスのA/F変動が効果的に吸収され、ライトオフ温度が低くなっていると考えられる。     Comparative Example 2 is different from Example 1 in that CeZrLaPr composite oxide (the oxygen storage / release amount is large but the A / F responsiveness is low) is adopted for both the upstream and downstream catalyst parts 32a and 32b. The light-off temperature of Example 1 is lower than that of Comparative Example 2 by several tens of degrees Celsius. This is recognized to be due to the difference in the A / F responsiveness of the OSC material of the upstream side catalyst portion 32a. That is, in the case of Example 1, the CeZrNd composite oxide with good A / F response of the upstream side catalyst portion 32a effectively absorbs the A / F fluctuation of the exhaust gas, and the light-off temperature is lowered. it is conceivable that.

実施例3は、下流側触媒部32bに、実施例1のOSC材(CeO:ZrO:La:Pr11=50:40:5:5)よりも、ZrO/CeO質量比が大きいOSC材(CeO:ZrO:Nd=30:60:10)を用い、実施例4は、下流側触媒部32bに、ZrO/CeO質量比がさらに大きいOSC材(CeO:ZrO:Nd=10:80:10)を用いたものである。換言すれば、下流側触媒部32bのOSC材の酸素吸蔵放出量は、実施例4→実施例3→実施例1の順で大きくなっている。 In Example 3, ZrO 2 / CeO is more downstream than the OSC material of Example 1 (CeO 2 : ZrO 2 : La 2 O 3 : Pr 6 O 11 = 50: 40: 5: 5). The OSC material (CeO 2 : ZrO 2 : Nd 2 O 3 = 30: 60: 10) having a large 2 mass ratio is used, and in Example 4, the mass ratio of ZrO 2 / CeO 2 is further increased in the downstream side catalyst portion 32b. An OSC material (CeO 2 : ZrO 2 : Nd 2 O 3 = 10: 80: 10) is used. In other words, the oxygen storage / release amount of the OSC material in the downstream catalyst portion 32b increases in the order of Example 4 → Example 3 → Example 1.

そこで、実施例1,3,4の排気ガス浄化性能を比較すると、ライトオフ温度は実施例4→実施例3→実施例1の順で低くなり、また、C400浄化率も実施例1,3の方が実施例4よりも高い。これから、下流側触媒部32bに酸素吸蔵放出量が多いOSC材を用いることが、ライトオフ性能及び高温浄化性能の両面で有利であることがわかる。     Accordingly, when comparing the exhaust gas purification performance of Examples 1, 3, and 4, the light-off temperature decreases in the order of Example 4 → Example 3 → Example 1, and the C400 purification rate is also in Examples 1, 3 Is higher than Example 4. From this, it can be seen that the use of an OSC material having a large oxygen storage / release amount for the downstream catalyst portion 32b is advantageous in both light-off performance and high-temperature purification performance.

実施例4(上流・下流の両触媒部32a,32bにA/F応答性が良いOSC材を用いた)と、比較例2(上流・下流の両触媒部32a,32bに酸素吸蔵放出量が多いOSC材を用いた)とを比較すると、そのライトオフ温度は実施例4の方が比較例2よりは低くなっている。これから、上流側触媒部32aのOSC材のA/F応答性がライトオフ性能に与える効果は、下流側触媒部32bのOSC材の酸素吸蔵放出量がライトオフ性能に与える効果よりも大きいことがわかる。     Example 4 (OSC material with good A / F response was used for both upstream and downstream catalyst parts 32a and 32b) and Comparative Example 2 (both upstream and downstream catalyst parts 32a and 32b had oxygen storage and release amounts) In comparison with Comparative Example 2, the light-off temperature is lower in Example 4 than in Comparative Example 2. From this, the effect that the A / F responsiveness of the OSC material of the upstream side catalyst portion 32a has on the light-off performance is greater than the effect that the oxygen storage / release amount of the OSC material of the downstream side catalyst portion 32b has on the light-off performance. Recognize.

比較例3は、上流側触媒部32aに比較例2と同じくA/F応答性が低いOSC材を用いていることから、同様にライトオフ温度が低くなっており、さらに下流側触媒部32bのOSC材の酸素吸蔵放出量が少ないことから、C400浄化率も比較例2に比べて低くなっている。     Since Comparative Example 3 uses an OSC material having a low A / F response as in Comparative Example 2 for the upstream catalyst portion 32a, the light-off temperature is similarly low, and the downstream catalyst portion 32b Since the oxygen storage / release amount of the OSC material is small, the C400 purification rate is also lower than that of Comparative Example 2.

実施例2は、上流・下流の触媒部32a,32b各々を、実施例1の二層構造とは違って、触媒成分が混合された単層構造にしたものであるが、ライトオフ温度は実施例1に比べて少し高くなっている。このことから、実施例1のように、上流・下流の触媒部32a,32b各々を複数の触媒層が重なった積層構造とし、各々の上層にRh/OSCを配置することが、排気ガスを効率良く浄化する上で有利であることがわかる。     In the second embodiment, each of the upstream and downstream catalyst portions 32a and 32b has a single layer structure in which catalyst components are mixed, unlike the two-layer structure of the first embodiment. It is a little higher than Example 1. Therefore, as in Example 1, each of the upstream and downstream catalyst portions 32a and 32b has a stacked structure in which a plurality of catalyst layers are overlapped, and the Rh / OSC is disposed on each upper layer to make exhaust gas efficient. It turns out that it is advantageous in purifying well.

自動車前部におけるエンジンの排気ガス浄化装置のレイアウトを示す側面図である。It is a side view which shows the layout of the exhaust-gas purification apparatus of the engine in a motor vehicle front part. エンジンの排気ガス浄化触媒装置を示す斜視図である。It is a perspective view which shows the exhaust-gas purification catalyst apparatus of an engine. メタル担体の一例を示す斜視図である。It is a perspective view which shows an example of a metal carrier. 酸素吸蔵材の酸素吸蔵放出量を測定する装置の要部構成を示す図である。It is a figure which shows the principal part structure of the apparatus which measures the oxygen storage-and-release amount of an oxygen storage material. 酸素吸蔵材の温度・酸素吸蔵量特性を示すグラフ図である。It is a graph which shows the temperature and oxygen storage amount characteristic of an oxygen storage material. 酸素吸蔵材のCe含有量・酸素放出量特性を示すグラフ図である。It is a graph which shows Ce content and oxygen release amount characteristic of an oxygen storage material. A/F変動特性を示す図である。It is a figure which shows an A / F fluctuation characteristic. 各種酸素吸蔵材を用いた触媒のA/F変動速度と触媒入口温度400℃でのNOx浄化率との関係を示すグラフ図である。It is a graph which shows the relationship between the A / F fluctuation rate of the catalyst using various oxygen storage materials, and the NOx purification rate in the catalyst inlet temperature of 400 degreeC. 各種酸素吸蔵材を用いた触媒のA/F変動速度と触媒入口温度300℃でのNOx浄化率との関係を示すグラフ図である。It is a graph which shows the relationship between the A / F fluctuation rate of the catalyst using various oxygen storage materials, and the NOx purification rate in the catalyst inlet temperature of 300 degreeC.

符号の説明Explanation of symbols

1 ダッシュパネル
4 フロアトンネル部
5 エンジン本体
8 排気マニホールド
15 集合部
16 触媒コンバータ
17 排気管
31 CO吸着部材
32 三元触媒
32a 上流側触媒部
32b 下流側触媒部
33 HCトラップ触媒
35 熱伝導抑制部
36 メタル担体
39 セル通路
41 スリット孔
DESCRIPTION OF SYMBOLS 1 Dash panel 4 Floor tunnel part 5 Engine main body 8 Exhaust manifold 15 Collecting part 16 Catalytic converter 17 Exhaust pipe 31 CO adsorption member 32 Three way catalyst 32a Upstream side catalyst part 32b Downstream side catalyst part 33 HC trap catalyst 35 Heat conduction suppression part 36 Metal carrier 39 Cell passage 41 Slit hole

Claims (4)

エンジンの排気通路に設けられる排気ガス浄化装置において、
排気ガス中のCOを吸着するCO吸着材と、該CO吸着材よりも排気ガス流れの下流側に配置された排気ガス浄化触媒とを備え、
上記排気ガス浄化触媒は、排気ガスが通過する多数のセル通路を有するハニカム状のメタル担体のセル通路壁に触媒層が形成されたものであり、
上記メタル担体は、排気ガス流れ方向の中間位置に、担体上流側から担体下流側への熱伝導が抑制されるように、部分的に上記セル通路壁をカットしてなる空隙が形成されており、
上記メタル担体の上記中間位置よりも上流側の触媒部には、アルミナ粒子にPdを担持させてなるPd/アルミナと、酸素吸蔵材粒子にRhを担持させてなるRh/OSCとが配置され、
上記メタル担体の上記中間位置よりも下流側の触媒部には、アルミナ粒子にPtを担持させてなるPt/アルミナと、酸素吸蔵材粒子にRhを担持させてなるRh/OSCとが配置され、
上記上流側触媒部の上記酸素吸蔵材粒子は、ZrとCeとを含有し且つCeOに対するZrOの質量比ZrO/CeOが1以上の複合酸化物よりなることを特徴とする排気ガス浄化装置。
In the exhaust gas purification device provided in the exhaust passage of the engine,
A CO adsorbent that adsorbs CO in the exhaust gas, and an exhaust gas purification catalyst disposed downstream of the CO adsorbent in the exhaust gas flow,
The exhaust gas purification catalyst is one in which a catalyst layer is formed on a cell passage wall of a honeycomb-shaped metal carrier having a large number of cell passages through which exhaust gas passes,
The metal carrier has a gap formed by partially cutting the cell passage wall at an intermediate position in the exhaust gas flow direction so that heat conduction from the carrier upstream side to the carrier downstream side is suppressed. ,
Pd / alumina in which Pd is supported on alumina particles and Rh / OSC in which Rh is supported on oxygen storage material particles are disposed in the catalyst portion upstream of the intermediate position of the metal carrier,
Pt / alumina in which Pt is supported on alumina particles and Rh / OSC in which Rh is supported on oxygen storage material particles are disposed in the catalyst portion downstream of the intermediate position of the metal carrier,
The oxygen storage component particles in the upstream catalyst unit, exhaust gases, characterized in that the mass ratio ZrO 2 / CeO 2 in ZrO 2 is formed of one or more composite oxide to and CeO 2 containing Zr and Ce Purification equipment.
請求項1において、
上記上流側触媒部は、複数の触媒層が重なった構造とされていて、上層に上記Rh/OSCが配置され、下層に上記Pd/アルミナが配置され、
上記下流側触媒部は、複数の触媒層が重なった構造とされていて、上層に上記Rh/OSCが配置され、下層に上記Pt/アルミナと共にPd/アルミナが配置されていることを特徴とする排気ガス浄化装置。
In claim 1,
The upstream catalyst portion has a structure in which a plurality of catalyst layers are overlapped, the Rh / OSC is disposed in the upper layer, and the Pd / alumina is disposed in the lower layer.
The downstream catalyst portion has a structure in which a plurality of catalyst layers are overlapped, the Rh / OSC is disposed in an upper layer, and Pd / alumina is disposed in the lower layer together with the Pt / alumina. Exhaust gas purification device.
請求項1又は請求項2において、
上記上流側触媒部に配置されている上記酸素吸蔵材粒子は、排気ガスの空燃比A/Fの変動に応じて酸素を吸蔵・放出する応答性が、上記下流側触媒部に配置されている上記酸素吸蔵材粒子の同応答性よりも良いことを特徴とする排気ガス浄化装置。
In claim 1 or claim 2,
The oxygen storage material particles arranged in the upstream catalyst section are arranged in the downstream catalyst section so as to store and release oxygen in accordance with fluctuations in the air-fuel ratio A / F of the exhaust gas. An exhaust gas purifying apparatus characterized by being better than the responsiveness of the oxygen storage material particles.
請求項1乃至請求項3のいずれか一において、
上記下流側触媒部の上記酸素吸蔵材粒子は、ZrとCeとを含有する複合酸化物よりなり、
上記上流側触媒部の上記酸素吸蔵材粒子の上記質量比ZrO/CeOが、上記下流側触媒部の上記酸素吸蔵材粒子の上記質量比ZrO/CeOよりも大であることを特徴とする排気ガス浄化装置。
In any one of Claim 1 thru | or 3,
The oxygen storage material particles in the downstream catalyst portion are composed of a composite oxide containing Zr and Ce,
The mass ratio ZrO 2 / CeO 2 of the oxygen storage material particles in the upstream catalyst part is larger than the mass ratio ZrO 2 / CeO 2 of the oxygen storage material particles in the downstream catalyst part. Exhaust gas purification device.
JP2007181716A 2007-07-11 2007-07-11 Exhaust emission control device Pending JP2009019537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181716A JP2009019537A (en) 2007-07-11 2007-07-11 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181716A JP2009019537A (en) 2007-07-11 2007-07-11 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2009019537A true JP2009019537A (en) 2009-01-29

Family

ID=40359399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181716A Pending JP2009019537A (en) 2007-07-11 2007-07-11 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2009019537A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021485A (en) * 2009-07-13 2011-02-03 Isuzu Motors Ltd Exhaust emission control device for automobile
JP2011101842A (en) * 2009-11-10 2011-05-26 Mazda Motor Corp Exhaust gas purifying catalyst
JP2012024701A (en) * 2010-07-23 2012-02-09 Toyota Motor Corp Catalyst for purifying exhaust gas
WO2012052828A1 (en) * 2010-10-22 2012-04-26 Toyota Jidosha Kabushiki Kaisha Exhaust purifying catalyst
WO2012069405A1 (en) * 2010-11-22 2012-05-31 Umicore Ag & Co. Kg Three-way catalytic system having an upstream multi - layer catalyst
WO2012069404A1 (en) * 2010-11-22 2012-05-31 Umicore Ag & Co. Kg Three-way catalytic system having an upstream single -layer catalyst
WO2012144098A1 (en) 2011-04-22 2012-10-26 三井金属鉱業株式会社 Carrier for internal-combustion engine exhaust gas purification catalyst
JP2017200675A (en) * 2016-05-02 2017-11-09 三菱自動車工業株式会社 Exhaust gas purification catalyst of internal combustion engine
JP2020163338A (en) * 2019-03-29 2020-10-08 株式会社キャタラー Exhaust gas purification catalyst device
US11883797B2 (en) 2019-03-29 2024-01-30 Cataler Corporation Exhaust gas purification catalyst device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021485A (en) * 2009-07-13 2011-02-03 Isuzu Motors Ltd Exhaust emission control device for automobile
JP2011101842A (en) * 2009-11-10 2011-05-26 Mazda Motor Corp Exhaust gas purifying catalyst
JP2012024701A (en) * 2010-07-23 2012-02-09 Toyota Motor Corp Catalyst for purifying exhaust gas
US8697600B2 (en) 2010-07-23 2014-04-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
CN103180559A (en) * 2010-10-22 2013-06-26 丰田自动车株式会社 Exhaust purifying catalyst
WO2012052828A1 (en) * 2010-10-22 2012-04-26 Toyota Jidosha Kabushiki Kaisha Exhaust purifying catalyst
US8835349B2 (en) 2010-10-22 2014-09-16 Toyota Jidosha Kabushiki Kaisha Exhaust purifying catalyst
WO2012069405A1 (en) * 2010-11-22 2012-05-31 Umicore Ag & Co. Kg Three-way catalytic system having an upstream multi - layer catalyst
US8394348B1 (en) 2010-11-22 2013-03-12 Umicore Ag & Co. Kg Three-way catalyst having a upstream multi-layer catalyst
US8323599B2 (en) 2010-11-22 2012-12-04 Umicore Ag & Co. Kg Three-way catalyst having an upstream multi-layer catalyst
CN103201018A (en) * 2010-11-22 2013-07-10 尤米科尔股份公司及两合公司 Three-way catalytic system having an upstream multi - layer catalyst
US8557204B2 (en) 2010-11-22 2013-10-15 Umicore Ag & Co. Kg Three-way catalyst having an upstream single-layer catalyst
WO2012069404A1 (en) * 2010-11-22 2012-05-31 Umicore Ag & Co. Kg Three-way catalytic system having an upstream single -layer catalyst
JP2014509242A (en) * 2010-11-22 2014-04-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Three-way catalyst system with upstream multilayer catalyst
JP2014509241A (en) * 2010-11-22 2014-04-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Three way catalyst system with upstream single layer catalyst
KR101913662B1 (en) * 2010-11-22 2018-11-01 우미코레 아게 운트 코 카게 Three-way catalytic system having an upstream single-layer catalyst
US8968690B2 (en) 2010-11-22 2015-03-03 Umicore Ag & Co. Kg Three-way catalyst having an upstream single-layer catalyst
KR101913664B1 (en) * 2010-11-22 2018-11-01 우미코레 아게 운트 코 카게 Three-way catalytic system having an upstream multi-layer catalyst
WO2012144098A1 (en) 2011-04-22 2012-10-26 三井金属鉱業株式会社 Carrier for internal-combustion engine exhaust gas purification catalyst
US9669389B2 (en) 2011-04-22 2017-06-06 Mitsui Mining & Smelting Co., Ltd. Carrier for internal-combustion engine exhaust gas purification catalyst
JP2017200675A (en) * 2016-05-02 2017-11-09 三菱自動車工業株式会社 Exhaust gas purification catalyst of internal combustion engine
JP2020163338A (en) * 2019-03-29 2020-10-08 株式会社キャタラー Exhaust gas purification catalyst device
WO2020203424A1 (en) * 2019-03-29 2020-10-08 株式会社キャタラー Exhaust gas cleaning catalytic device
EP3950097A4 (en) * 2019-03-29 2022-12-14 Cataler Corporation Exhaust gas cleaning catalytic device
JP7288331B2 (en) 2019-03-29 2023-06-07 株式会社キャタラー Exhaust gas purification catalyst device
US11850573B2 (en) 2019-03-29 2023-12-26 Cataler Corporation Exhaust gas cleaning catalytic device
US11883797B2 (en) 2019-03-29 2024-01-30 Cataler Corporation Exhaust gas purification catalyst device

Similar Documents

Publication Publication Date Title
JP2009019537A (en) Exhaust emission control device
US9810120B2 (en) Exhaust gas purifying system
US20110061371A1 (en) HYDROCARBON AND NOx TRAP
JP2006263582A (en) Exhaust-gas cleaning catalyst
JP2009270446A (en) Exhaust emission control method and exhaust emission control system
JP5664801B2 (en) Exhaust gas purification device for spark ignition type internal combustion engine
JP6015760B2 (en) Exhaust gas purification device for spark ignition type internal combustion engine
EP2623738B1 (en) NOx purification method of an exhaust purification system of an internal combustion engine
JP5748005B2 (en) Exhaust gas purification device for internal combustion engine
JPWO2011067863A1 (en) Exhaust gas purification device for internal combustion engine
WO2014016965A1 (en) Exhaust purification device of internal combustion engine
JP6988648B2 (en) Exhaust purification device for internal combustion engine
JP4946658B2 (en) Exhaust gas purification catalyst device
US20120042636A1 (en) Exhaust purification system of internal combustion engine
JP2009167844A (en) Exhaust emission control catalyst device
JP2019157739A (en) Exhaust purifying device for internal combustion engine
JP2009007946A (en) Exhaust emission control catalyst device
JP4998698B2 (en) Exhaust gas purification device
WO2007064004A1 (en) Exhaust gas purifier for internal combustion engine
JP2011231755A (en) Exhaust emission control device of internal combustion engine
JP2009007944A (en) Exhaust emission control catalyst device
JP2009007942A (en) Exhaust emission control catalyst device
JP3419310B2 (en) Exhaust gas purification device for internal combustion engine
WO2014024311A1 (en) Exhaust purification device of spark ignition internal combustion engine
JP2004190549A (en) Exhaust emission control device of internal combustion engine