JP2009018677A - Pneumatic tire and mounting method thereof - Google Patents

Pneumatic tire and mounting method thereof Download PDF

Info

Publication number
JP2009018677A
JP2009018677A JP2007182136A JP2007182136A JP2009018677A JP 2009018677 A JP2009018677 A JP 2009018677A JP 2007182136 A JP2007182136 A JP 2007182136A JP 2007182136 A JP2007182136 A JP 2007182136A JP 2009018677 A JP2009018677 A JP 2009018677A
Authority
JP
Japan
Prior art keywords
vehicle
road surface
tread
shoulder portion
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007182136A
Other languages
Japanese (ja)
Inventor
Hiroki Sawada
浩樹 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007182136A priority Critical patent/JP2009018677A/en
Publication of JP2009018677A publication Critical patent/JP2009018677A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of improving steering stability on both a road surface having a high friction coefficient and the road surface having a low friction coefficient. <P>SOLUTION: At least one of rubber property of a top tread at the rear wheel side and a tread pattern changes in the tire width direction, and an outside shoulder part 7 develops a high frictional force on the road surface having the low friction coefficient and an inside shoulder part 8 develops the high frictional force on the road surface having the high friction coefficient. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両の操縦安定性を向上させる空気入りタイヤ、および空気入りタイヤの装着方法に関する。   The present invention relates to a pneumatic tire that improves the steering stability of a vehicle, and a method for mounting a pneumatic tire.

この種の従来の技術に関連するものとして、特許文献1に開示された空気入りタイヤが挙げられる。この空気入りタイヤでは、トレッド部の主溝より幅方向の端部側に氷上性能を発揮するためのサイプ入りブロックが設けられるとともに、主溝間にサイプなしブロックが設けられており、氷上などの低摩擦係数の路面、及び高摩擦係数の路面において夏冬連続して使用可能である。   A pneumatic tire disclosed in Patent Document 1 is cited as a related to this type of conventional technology. In this pneumatic tire, a sipe-filled block for demonstrating on-ice performance is provided on the end side in the width direction from the main groove of the tread portion, and a non-sipe block is provided between the main grooves. It can be used continuously in summer and winter on low friction coefficient road surfaces and high friction coefficient road surfaces.

一方、特許文献2には、前輪には車両装着内側のネガティブ率が小さい空気入りタイヤを装着し、後輪には車両装着外側のネガティブ率が小さい空気入りタイヤを装着する空気入りタイヤの車両装着方法が開示されている。
特開平11−165509号公報 特開2002−178713号公報
On the other hand, in Patent Document 2, a pneumatic tire having a small negative rate inside the vehicle is attached to the front wheel, and a pneumatic tire having a small negative rate outside the vehicle is attached to the rear wheel. A method is disclosed.
Japanese Patent Laid-Open No. 11-165509 JP 2002-178713 A

しかしながら、上述した従来の技術では両者とも制動性能の向上を図ることができるが、操縦安定性(コーナリング、レーンチェンジ、旋回特性、直進安定性等)の向上を図ることができない。   However, both of the conventional techniques described above can improve the braking performance, but cannot improve the steering stability (cornering, lane change, turning characteristics, straight running stability, etc.).

そこで、本発明は、前記した課題を解決すべくなされたものであり、低摩擦係数の路面及び高摩擦係数の路面の両方において操縦安定性の向上を図ることができる空気入りタイヤを提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and provides a pneumatic tire capable of improving steering stability on both a low friction coefficient road surface and a high friction coefficient road surface. With the goal.

請求項1の発明は、車両装着状態で路面に接地するトレッド部の表面に形成され、ゴム物性及びトレッドパターンの少なくともいずれか一方がタイヤ幅方向に沿って変化するトップトレッドと、該トップトレッドのタイヤ幅方向の車両装着内側と車両装着外側のそれぞれに形成されるショルダー部とを備え、前記車両装着内側のショルダー部が、高摩擦係数の路面で高い摩擦力を、前記車両装着外側のショルダー部が、低摩擦係数の路面で高い摩擦力をそれぞれ発現し、車両の後輪側に装着されることを特徴とする空気入りタイヤである。   According to a first aspect of the present invention, there is provided a top tread formed on a surface of a tread portion that contacts a road surface in a vehicle-mounted state, wherein at least one of rubber physical properties and a tread pattern changes along a tire width direction, and the top tread A shoulder portion formed on each of the vehicle mounting inner side and the vehicle mounting outer side in the tire width direction, wherein the shoulder portion on the vehicle mounting inner side has a high frictional force on a road surface having a high coefficient of friction, and the shoulder portion on the vehicle mounting outer side. However, the pneumatic tire is characterized in that it exhibits a high frictional force on the road surface with a low coefficient of friction and is mounted on the rear wheel side of the vehicle.

請求項2の発明は、前記トップトレッドを除く前記トレッド部の形状及び構造の少なくとも一方がタイヤ幅方向の中心を境として非対称に形成され、コニシティーフォースが車両内側向きに発生することを特徴とする請求項1に記載の空気入りタイヤである。   The invention of claim 2 is characterized in that at least one of the shape and structure of the tread portion excluding the top tread is formed asymmetrically with a center in the tire width direction as a boundary, and a conicity force is generated inward of the vehicle. The pneumatic tire according to claim 1.

請求項3の発明は、車両装着状態で路面に接地するトレッド部の表面に形成され、ゴム物性及びトレッドパターンの少なくともいずれか一方がタイヤ幅方向に沿って変化するトップトレッドと、該トップトレッドのタイヤ幅方向の車両装着内側と車両装着外側のそれぞれに形成されるショルダー部とを備え、前記車両装着内側のショルダー部が、低摩擦係数の路面で高い摩擦力を発現し、車両の前輪側に装着されることを特徴とする空気入りタイヤである。   According to a third aspect of the present invention, there is provided a top tread formed on the surface of the tread portion that contacts the road surface in a vehicle-mounted state, wherein at least one of the rubber physical properties and the tread pattern changes along the tire width direction, A shoulder portion formed on each of the vehicle mounting inner side and the vehicle mounting outer side in the tire width direction, and the shoulder portion on the vehicle mounting inner side expresses a high frictional force on a road surface having a low coefficient of friction, and is on the front wheel side of the vehicle. A pneumatic tire characterized by being mounted.

請求項4の発明は、
車両装着状態で路面に接地するトレッド部の表面に形成され、ゴム物性及びトレッドパターンの少なくともいずれか一方がタイヤ幅方向に沿って変化するトップトレッドと、該トップトレッドのタイヤ幅方向の車両装着内側と車両装着外側のそれぞれに形成されるショルダー部とを備え、前記車両装着内側のショルダー部が、高摩擦係数の路面で高い摩擦力を、前記車両装着外側のショルダー部が、低摩擦係数の路面で高い摩擦力をそれぞれ発現する後輪用タイヤを車両の後輪側に装着することを特徴とする空気入りタイヤの装着方法である。
The invention of claim 4
A top tread formed on the surface of the tread portion that contacts the road surface in a vehicle-mounted state and at least one of rubber physical properties and a tread pattern changes along the tire width direction, and the vehicle mounting inner side of the top tread in the tire width direction And a shoulder portion formed on each of the vehicle mounting outer sides, the vehicle mounting inner shoulder portion having a high frictional force on a road surface having a high friction coefficient, and the vehicle mounting outer shoulder portion having a low friction coefficient road surface. A pneumatic tire mounting method is characterized in that rear wheel tires that exhibit high frictional force are mounted on the rear wheel side of the vehicle.

請求項5の発明は、前記トップトレッドと、前記ショルダー部とを備え、前記車両装着内側のショルダー部が、低摩擦係数の路面で高い摩擦力を発現する前輪用タイヤを車両の前輪側に装着することを特徴とする請求項4に記載の空気入りタイヤの装着方法である。   According to a fifth aspect of the present invention, a front wheel tire including the top tread and the shoulder portion, wherein the shoulder portion on the inner side of the vehicle expresses a high frictional force on a road surface having a low friction coefficient, is attached to the front wheel side of the vehicle. The pneumatic tire mounting method according to claim 4, wherein the pneumatic tire is mounted.

請求項1、請求項4の発明によれば、コーナリング時や旋回時に後輪側の空気入りタイヤに大きな横力を発生するようにしたり、横力を小さくすることによって全体としての操縦安定性の向上を図ることができる。具体的には、高摩擦係数の路面では、路面が滑り難いため、後輪側空気入りタイヤの車両装着内側のショルダー部が高い摩擦力を発現することにより、コーナリング時や旋回時に車両内側向きの横力を大きくしてより滑り難くし、操縦安定性を良くする。又、低摩擦係数の路面では、路面が滑り易いため、コーナリング時や旋回時に発生する横力が大きいと却って車両挙動が突然に不安定になってコントロール不能に陥ることになることから、空気入りタイヤの車両装着外側のショルダー部が高い摩擦力を発現し、車両外側向きの横力が生じることにより、後輪側の空気入りタイヤに生じる車両内側向きの横力を抑制するので、唐突なコントロール不能を回避して全体としての操縦安定性を確保する。以上により、低摩擦係数の路面及び高摩擦係数の路面の両方において操縦安定性の向上を図ることができる。   According to the first and fourth aspects of the invention, a large lateral force is generated in the pneumatic tire on the rear wheel side during cornering or turning, or the overall steering stability is reduced by reducing the lateral force. Improvements can be made. Specifically, on the road surface with a high friction coefficient, since the road surface is difficult to slip, the shoulder portion on the inner side of the vehicle of the rear wheel side pneumatic tire expresses a high frictional force. Increase lateral force to make it more difficult to slip and improve steering stability. On the road surface with a low coefficient of friction, the road surface is slippery, and if the lateral force generated during cornering or turning is large, the vehicle behavior suddenly becomes unstable and becomes uncontrollable. Abrupt control because the shoulder on the outside of the tire wearing the tire expresses a high frictional force and the lateral force toward the outside of the vehicle is generated, thereby suppressing the lateral force toward the inside of the pneumatic tire on the rear wheel side. Avoid the impossibility and ensure the overall handling stability. As described above, it is possible to improve the steering stability on both the low friction coefficient road surface and the high friction coefficient road surface.

請求項2の発明は、請求項1の発明の効果に加えて、低摩擦係数の路面では、前輪側空気入りタイヤの車両内側向きのコニシティーフォースが発生して、前輪側で車両内側向きの横力が生じることにより、あたかもトーインを大きくしたのと同様の効果により、直進性能を向上させることができる。   In the invention of claim 2, in addition to the effect of the invention of claim 1, on the road surface with a low coefficient of friction, a concentric force directed toward the vehicle inner side of the front wheel side pneumatic tire is generated, so that the front wheel side faces the vehicle inner side. By generating the lateral force, the straight running performance can be improved by the same effect as if the toe-in was increased.

請求項3、請求項5の発明によれば、低摩擦係数の路面では、前輪側の車両装着内側のショルダー部が高い摩擦力を発現することにより、前輪側で車両内側向きの横力が生じることにより、あたかもトーインを大きくした(もしくはネガティブキャンパーを大きくした)のと同様の効果によって、直進性能(直進安定性)を向上させることができる。特に、路面の摩擦係数が低く様々な外乱を受けやすいスノー及びアイス路面において、上記の直進性能を向上させる効果が顕著である。   According to the third and fifth aspects of the invention, on the road surface having a low coefficient of friction, a lateral force directed toward the inside of the vehicle is generated on the front wheel side due to the high frictional force generated by the shoulder portion on the vehicle mounting inner side on the front wheel side. Thus, straight running performance (straight running stability) can be improved by the same effect as if the toe-in was increased (or the negative camper was increased). In particular, the effect of improving the straight running performance is remarkable on snow and ice road surfaces that have a low friction coefficient and are susceptible to various disturbances.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は本発明の第1実施形態に係わる空気入りタイヤのトレッド部を示す断面図、図2は本発明の第1実施形態を示し、(a)は高摩擦係数の路面における後輪側の空気入りタイヤに掛かる横力を示す概念図、(b)は低摩擦係数の路面における後輪側の空気入りタイヤに掛かる横力を示す概念図、図3は第1実施形態に係わる前輪側と後輪側の空気入りタイヤの装着パターンを示す概念図である。なお、図2、図3、及び後述する図4〜図6の各概念図において、説明を容易にするため図1の断面図と同様の部分には同一ハッチングを施してある。
(First embodiment)
FIG. 1 is a cross-sectional view showing a tread portion of a pneumatic tire according to a first embodiment of the present invention, FIG. 2 shows the first embodiment of the present invention, and (a) is a rear wheel side of a road surface with a high coefficient of friction. FIG. 3B is a conceptual diagram showing the lateral force applied to the pneumatic tire, FIG. 3B is a conceptual diagram showing the lateral force applied to the pneumatic tire on the rear wheel side on the road surface with a low friction coefficient, and FIG. 3 is the front wheel side according to the first embodiment. It is a conceptual diagram which shows the mounting pattern of the pneumatic tire on the rear wheel side. 2 and 3 and FIGS. 4 to 6 to be described later, the same hatching is applied to the same parts as those in the cross-sectional view of FIG. 1 for easy explanation.

図3に示すように、本実施形態の空気入りタイヤ2A,2Bは、車両3の後輪側のみに装着されており、前輪側の空気入りタイヤ1A,1Bとしては標準的なもの、例えばオールシーズンタイプのものが装着されている。そして、後輪側の空気入りタイヤ2A,2Bは、トレッド部4が、第1ゴム層5、第2ゴム層6、外側ショルダー部7(車両装着外側のショルダー部),内側ショルダー部8(車両装着内側のショルダー部)、及び補助ゴム層9,10から一体に構成されるとともに、該トレッド部4のタイヤ幅方向に沿う断面が台形に形成されている。また、該トレッド部4のトップトレッド、すなわち第2ゴム層6及びショルダー部7,8以外の形状及び構造の少なくとも一方がタイヤ幅方向の中心を境として非対称に形成され、コニシティーフォースが車両3内側向きに発生する。   As shown in FIG. 3, the pneumatic tires 2A and 2B according to the present embodiment are mounted only on the rear wheel side of the vehicle 3, and standard pneumatic tires 1A and 1B, for example, all Seasonal type is installed. In the pneumatic tires 2A and 2B on the rear wheel side, the tread portion 4 includes the first rubber layer 5, the second rubber layer 6, the outer shoulder portion 7 (the shoulder portion on the vehicle mounting outer side), and the inner shoulder portion 8 (the vehicle). The cross section along the tire width direction of the tread portion 4 is formed in a trapezoidal shape, integrally formed from the shoulder portion on the inner side of the mounting) and the auxiliary rubber layers 9 and 10. Further, at least one of the shape and structure other than the top tread of the tread portion 4, that is, the second rubber layer 6 and the shoulder portions 7 and 8, is formed asymmetrically with respect to the center in the tire width direction. Occurs inward.

第1ゴム層5は、図示しないベルトの外周側に設けられ、この第1ゴム層5の外周側には、タイヤ幅方向の中央部に配置される第2ゴム層6と、この第2ゴム層6のタイヤ幅方向の外側及び内側にそれぞれ配置される外側ショルダー部7,内側ショルダー部8とが積層されている。そして、第1ゴム層5及びショルダー部7,8のタイヤ幅方向の側方は、補助ゴム層9,10により覆われている。   The first rubber layer 5 is provided on the outer peripheral side of a belt (not shown). On the outer peripheral side of the first rubber layer 5, a second rubber layer 6 disposed in the center in the tire width direction and the second rubber. The outer shoulder portion 7 and the inner shoulder portion 8 are laminated on the outer side and the inner side of the layer 6 in the tire width direction, respectively. The side portions of the first rubber layer 5 and the shoulder portions 7 and 8 in the tire width direction are covered with auxiliary rubber layers 9 and 10.

一方の空気入りタイヤ2Aは、車両3の左側に装着されており、外側ショルダー部7及び補助ゴム層9が外側(すなわち左側)に配置されるとともに、内側ショルダー部8及び補助ゴム層10が内側(すなわち右側)に配置されている。また、他方の空気入りタイヤ2Bは、車両3の右側に装着されており、外側ショルダー部7及び補助ゴム層9が外側(すなわち右側)に配置されるとともに、内側ショルダー部8及び補助ゴム層10が内側(すなわち左側)に配置されている。   One pneumatic tire 2A is mounted on the left side of the vehicle 3, the outer shoulder portion 7 and the auxiliary rubber layer 9 are arranged on the outer side (that is, the left side), and the inner shoulder portion 8 and the auxiliary rubber layer 10 are on the inner side. (Ie right side). The other pneumatic tire 2B is mounted on the right side of the vehicle 3, and the outer shoulder portion 7 and the auxiliary rubber layer 9 are disposed on the outer side (that is, the right side), while the inner shoulder portion 8 and the auxiliary rubber layer 10 are disposed. Are arranged on the inner side (that is, on the left side).

外側ショルダー部7は、スノー・アイス路面に代表される低摩擦係数の路面(主にウインターシーズン)で高い摩擦力を発現するゴム物性及びトレッドパターンの少なくとも一方を備えており、例えば、スタッドレスタイヤ用の発泡ゴムにより外側ショルダー部7を形成するか、あるいは多数のサイプを有するパターンが設けられている。   The outer shoulder portion 7 has at least one of a rubber property and a tread pattern that exhibits a high frictional force on a road surface (mainly winter season) with a low friction coefficient typified by a snow / ice road surface. For example, for a studless tire The outer shoulder portion 7 is formed of the foamed rubber, or a pattern having a large number of sipes is provided.

内側ショルダー部8は、ドライ路面に代表される高摩擦係数の路面(主にサマーシーズン)で高い摩擦力を発現するゴム物性及びトレッドパターンの少なくとも一方を備えており、例えば、ネガティブ率(溝面積比率)の小さいパターンを有し、特に、高い摩擦力が極端に求められる場合には溝無しパターンを有する。   The inner shoulder portion 8 has at least one of a rubber physical property and a tread pattern that expresses a high frictional force on a road surface (mainly summer season) with a high friction coefficient typified by a dry road surface. For example, a negative rate (groove area) The pattern has a small ratio), and in particular, when a high frictional force is extremely required, a grooveless pattern is provided.

上記構成において、図2(a)において、高摩擦係数の路面では、例えばコーナリング時や旋回時に後輪側の空気入りタイヤ2A、2Bで受ける横力は路面の摩擦係数に依存しており比較的高く、路面をしっかりとグリップするため、車両3は滑り難い。従って、余程の限界走行をしない限り、安定的にアンダーステアの状況下で走行する。このアンダーステアの状況下にあっては、後輪側の空気入りタイヤ(特に、旋回外側のもの)2A,2Bに発生する車両3内側向きの横力が大きい方が操縦安定性が高まる。本実施形態では、車両3の左側に装着される空気入りタイヤ2Aの内側ショルダー部8が高い摩擦力を発現するので、図2(a)の右方向へ比較的大きな横力F1が生じ、一方、外側ショルダー部7が比較的低い摩擦力を発現するので、図2(a)の左方向へ比較的小さな横力F2が生じる結果、空気入りタイヤ2Aのトレッド部4全体では車両3内側向きの大きな横力を路面から受けるとともに、右側の空気入りタイヤ2Bでも同様であるため、操縦安定性が良い。また、上記のアンダーステアの状況下にあっては、後輪側の空気入りタイヤ2A,2Bにコニシティーフォースによっても大きな横力が車両3内側向きに発生するため、この点からも操縦安定性が良い。   In the above configuration, in FIG. 2A, on the road surface having a high friction coefficient, for example, the lateral force received by the pneumatic tires 2A and 2B on the rear wheel side during cornering or turning depends on the friction coefficient of the road surface. The vehicle 3 is not slippery because it is high and firmly grips the road surface. Therefore, as long as the vehicle does not travel excessively, it travels stably under understeer conditions. Under this understeering condition, the steering stability increases when the lateral force inward of the vehicle 3 generated in the pneumatic tires 2A and 2B on the rear wheel side (especially those on the outside of the turn) is large. In the present embodiment, since the inner shoulder portion 8 of the pneumatic tire 2A mounted on the left side of the vehicle 3 exhibits a high frictional force, a relatively large lateral force F1 is generated in the right direction in FIG. Since the outer shoulder portion 7 exhibits a relatively low frictional force, a relatively small lateral force F2 is generated in the left direction in FIG. 2A. As a result, the entire tread portion 4 of the pneumatic tire 2A is directed toward the inside of the vehicle 3. Since a large lateral force is received from the road surface and the same applies to the right pneumatic tire 2B, the steering stability is good. Further, under the above-described understeer condition, a large lateral force is generated in the rear tire side pneumatic tires 2A and 2B by the force of concentricity toward the inside of the vehicle 3, so that the steering stability is also improved from this point. good.

一方、図2(b)において、低摩擦係数の路面では、コーナリング時や旋回時に後輪側の空気入りタイヤ2A,2Bに発生する横力は、比較的小さく路面のグリップを失いやすい。従って、余程の低速走行でない限り、アンダーステアからオーバーステアに変化する状況下で走行する機会が多々ある。このような状況下にあって、後輪側の空気入りタイヤ(特に、旋回外側のもの)2A,2Bに発生する横力が大きいほど滑り難いように思われるが、逆に限界を超えた直後の車両挙動が突然に不安定になり非常に車両コントロールがし難くなる。そして、低摩擦係数の路面では、直ぐに限界を超えた走行になるため、却って後輪側の空気入りタイヤ2A,2Bに発生する横力が大きいとコーナリング時や旋回時に車両コントロール性を唐突に失うことになる。従って、コーナリング時や旋回時に後輪側の空気入りタイヤ2A,2Bに発生する横力が小さい方が操縦安定性の観点から好ましい。また、一般に、主として高摩擦係数の路面を走行する際の操縦安定性を高めるため車両の後輪がネガティブキャンバーに設定されている場合が多く、この場合には低摩擦係数の路面を走行する際には旋回外側後輪(旋回内側向き)のキャンバースラストが大きすぎるため、摩擦係数の路面での走行時に操縦安定性がさらに低下する。本実施形態では、車両3の左側に装着される空気入りタイヤ2Aの外側ショルダー部7が高い摩擦力を発現するので、図2(b)の左方向へ比較的大きな横力F2が生じる。一方、内側ショルダー部8が比較的低い摩擦力を発現するので、図2(b)の右方向へ比較的小さな横力F1が生じる結果、空気入りタイヤ2Aのトレッド部4全体では車両3外側向きの横力を路面から受けるとともに、空気入りタイヤ2Aの内向きキャンバースラストを抑制することができ、右側の空気入りタイヤ2Bでも同様であるため、上述したように限界を超えた後の車両コントロール性を唐突に失うことを抑制でき、操縦安定性を向上することができる。   On the other hand, in FIG. 2B, on the road surface with a low friction coefficient, the lateral force generated in the pneumatic tires 2A and 2B on the rear wheel side during cornering or turning is relatively small and the grip on the road surface is easily lost. Therefore, there are many opportunities to travel under a situation where the vehicle changes from understeer to oversteer unless the vehicle is traveling at a low speed. Under such circumstances, it seems that it is harder to slip as the lateral force generated in the pneumatic tires 2A and 2B on the rear wheel side (especially those on the outside of the turn) increases. The vehicle behavior suddenly becomes unstable and it becomes very difficult to control the vehicle. And on the road surface with a low friction coefficient, the vehicle will immediately exceed the limit. If the lateral force generated in the pneumatic tires 2A, 2B on the rear wheel side is large, the vehicle controllability is suddenly lost during cornering or turning. It will be. Therefore, it is preferable from the viewpoint of steering stability that the lateral force generated in the pneumatic tires 2A and 2B on the rear wheel side during cornering or turning is small. In general, the rear wheel of the vehicle is often set to a negative camber in order to improve the steering stability when traveling mainly on a road surface with a high friction coefficient. In this case, when traveling on a road surface with a low friction coefficient, Since the camber thrust of the rear outer wheel (inward of the turning) is too large, the steering stability further decreases when traveling on the road surface having a friction coefficient. In the present embodiment, since the outer shoulder portion 7 of the pneumatic tire 2A mounted on the left side of the vehicle 3 exhibits a high frictional force, a relatively large lateral force F2 is generated in the left direction in FIG. On the other hand, since the inner shoulder portion 8 exhibits a relatively low frictional force, a relatively small lateral force F1 is generated in the right direction in FIG. 2B. As a result, the entire tread portion 4 of the pneumatic tire 2A faces the outside of the vehicle 3. In addition, the inward camber thrust of the pneumatic tire 2A can be suppressed and the same applies to the right pneumatic tire 2B. Therefore, the vehicle controllability after exceeding the limit as described above Can be prevented from being suddenly lost, and the handling stability can be improved.

(第2実施形態)
図4は第2実施形態に係わる空気入りタイヤの装着パターンを示す概念図である。なお、本実施形態に係わる空気入りタイヤ1A,1B,2A,2Bは、上記第1実施形態に係わる空気入りタイヤ1A,1B,2A,2Bと同様の構成要素を備えている。よって、それら同様の構成要素には共通の符号を付すとともに、重複する説明を省略する。
(Second Embodiment)
FIG. 4 is a conceptual diagram showing a mounting pattern of a pneumatic tire according to the second embodiment. The pneumatic tires 1A, 1B, 2A, 2B according to the present embodiment include the same components as the pneumatic tires 1A, 1B, 2A, 2B according to the first embodiment. Therefore, the same components are denoted by common reference numerals, and redundant description is omitted.

本実施形態は、図4に示すように、前輪側の空気入りタイヤ1A、1Bが、低摩擦係数の路面で高い摩擦力を発現する内側ショルダー部11を備えるとともに、空気入りタイヤ1A、1Bのトップトレッド、すなわち第2ゴム層6及び内側ショルダー部11以外の形状及び構造の少なくとも一方がタイヤ幅方向の中心を境として非対称に形成され、コニシティーフォースが車両3内側向きに発生する。   In the present embodiment, as shown in FIG. 4, the pneumatic tires 1 </ b> A and 1 </ b> B on the front wheel side include the inner shoulder portion 11 that expresses a high frictional force on a road surface with a low friction coefficient, and the pneumatic tires 1 </ b> A and 1 </ b> B At least one of the shape and structure other than the top tread, that is, the second rubber layer 6 and the inner shoulder portion 11 is formed asymmetrically with respect to the center in the tire width direction, and a conicity force is generated toward the inner side of the vehicle 3.

上記構成において、低摩擦係数の路面では、前輪側の空気入りタイヤ1A,1Bの内側ショルダー部11が高い摩擦力を発現するとともに、車両3内側向きのコニシティーフォースが発生することにより、車両3内側向きへ横力が生じるので、あたかもトーインを大きくした(もしくはネガティブキャンパーを大きくした)のと同様の効果により、直進性能(直進安定性)を向上させることができる。特に、路面の摩擦係数が低く様々な外乱を受けやすいスノー及びアイス路面において、上記の直進性能を向上させる効果が顕著である。操縦安定性を向上させることができる。   In the above configuration, on the road surface with a low friction coefficient, the inner shoulder portion 11 of the pneumatic tires 1A and 1B on the front wheel side expresses a high frictional force, and a conicity force directed toward the inner side of the vehicle 3 is generated. Since a lateral force is generated inwardly, straight running performance (straight running stability) can be improved by the same effect as if toe-in is increased (or the negative camper is increased). In particular, the effect of improving the straight running performance is remarkable on snow and ice road surfaces that have a low friction coefficient and are susceptible to various disturbances. Steering stability can be improved.

<実施例>
JIS規格K7125(1987)に記載される「(プラスチック、フィルム)摩擦係数測定機」の例にある(c)又は(d)の方法を用いて、従来例と各種比較例と各種実施例の空気入りタイヤに用いられるトレッド部材の摩擦係数を評価した。図7は、その際の各種データを示し、図8は、上記の摩擦係数測定機を示す。
<Example>
Using the method (c) or (d) in the example of “(Plastic, Film) Friction Coefficient Measuring Machine” described in JIS standard K7125 (1987), conventional examples, various comparative examples, and various examples of air The coefficient of friction of the tread member used for the entering tire was evaluated. FIG. 7 shows various data at that time, and FIG. 8 shows the friction coefficient measuring machine.

図8に示す摩擦係数測定機20では、テーブル21上に路面材22を固定し、この路面材22上に試験片23を載置して、滑り片24により試験片23を駆動して、そのときの力をロードセル25で計測することにより、路面材22及び試験片23間の動摩擦係数を検出するようになっている。本出願人は225/55R17型の空気入りタイヤを用いて摩擦係数測定を行なうため、該タイヤのトレッドを切り出すことにより、縦20mm×横20mm×厚さ5mmの試験片23を作成した。高摩擦係数の路面材22として鉄板を用いるとともに、低摩擦係数の路面材22として氷を用いた。   In the friction coefficient measuring machine 20 shown in FIG. 8, a road surface material 22 is fixed on a table 21, a test piece 23 is placed on the road surface material 22, and the test piece 23 is driven by a sliding piece 24. The dynamic friction coefficient between the road surface material 22 and the test piece 23 is detected by measuring the force with the load cell 25. In order to measure the coefficient of friction using a 225 / 55R17 type pneumatic tire, the present applicant cut out a tread of the tire to prepare a test piece 23 of 20 mm long × 20 mm wide × 5 mm thick. An iron plate was used as the road surface material 22 with a high friction coefficient, and ice was used as the road surface material 22 with a low friction coefficient.

また、ドライ路面(高摩擦係数の路面)とスノー路面(低摩擦係数の路面)の各テストコースにおいて、従来例(オールシーズンタイプのタイヤ)と各種比較例と各種実施例の空気入りタイヤのコーナリングフィーリング及び直進性能を同一タイヤ・同一試験車両で評価し、テストドライバーの評点を、従来例を基準指数(100)として指数表示した。この表示指数が大きいほどコーナリングフィーリング性及び直進性能が良いことを示している。   In addition, in each test course on dry road surface (high friction coefficient road surface) and snow road surface (low friction coefficient road surface), conventional examples (all-season type tires), various comparative examples, and cornering of pneumatic tires of various examples. Feeling and straight running performance were evaluated with the same tire and the same test vehicle, and the score of the test driver was displayed as an index with the conventional example as a reference index (100). The larger the display index, the better the cornering feeling and straight running performance.

比較例1は、図6(a)に示すように、後輪側の空気入りタイヤ2A,2Bの外側ショルダー部7が低摩擦係数の路面にて高い摩擦力を発現する場合である。この比較例1では、図7に示すように、低摩擦係数の路面でのコーナリング性が向上するが、高摩擦係数の路面でのコーナリング性の低下が認められるとともに、低摩擦係数の路面での直進性能は従来例と同じ程度しかない。   In Comparative Example 1, as shown in FIG. 6 (a), the outer shoulder 7 of the pneumatic tires 2A and 2B on the rear wheel side exhibits a high frictional force on a road surface having a low friction coefficient. In Comparative Example 1, as shown in FIG. 7, cornering performance on a road surface with a low friction coefficient is improved, but a decrease in cornering performance on a road surface with a high friction coefficient is recognized, and on a road surface with a low friction coefficient. The straight running performance is only the same as the conventional example.

比較例2は、図6(b)に示すように、後輪側の空気入りタイヤ2A,2Bの外側ショルダー部7、及び前輪側の空気入りタイヤ1A,1Bの内側ショルダー部11が低摩擦係数の路面にてそれぞれ高い摩擦力を発現する場合である。この比較例2では、図7に示すように、低摩擦係数の路面での直進性能及びコーナリング性がそれぞれ従来例より向上するが、高摩擦係数の路面でのコーナリング性の低下が認められた。   In Comparative Example 2, as shown in FIG. 6B, the outer shoulder 7 of the rear tires 2A and 2B and the inner shoulder 11 of the front tires 1A and 1B have a low friction coefficient. This is a case where a high frictional force is expressed on each road surface. In Comparative Example 2, as shown in FIG. 7, the straight running performance and cornering performance on a road surface with a low friction coefficient are improved as compared with the conventional example, but a decrease in cornering performance on a road surface with a high friction coefficient is recognized.

実施例1、2は、図3及び図4に示すように、高摩擦係数の路面にて後輪側の空気入りタイヤ2A,2Bの内側ショルダー部8が高い摩擦力を発現し、一方、低摩擦係数の路面にて後輪側空気入りタイヤ2A,2Bの外側ショルダー部7が高い摩擦力を発現する場合である。これら実施例1、2では、図7に示すように、高摩擦係数の路面および低摩擦係数の路面の両方においてコーナリング性の向上が認められた。特に実施例2では、低摩擦係数の路面での直進性能の向上も認められた。   In Examples 1 and 2, as shown in FIGS. 3 and 4, the inner shoulder portions 8 of the pneumatic tires 2A and 2B on the rear wheel side exhibit a high frictional force on the road surface with a high friction coefficient, while the low friction coefficient is low. This is a case where the outer shoulder portion 7 of the rear wheel side pneumatic tire 2A, 2B develops a high frictional force on the road surface of the friction coefficient. In these Examples 1 and 2, as shown in FIG. 7, the cornering property was improved on both the high friction coefficient road surface and the low friction coefficient road surface. In particular, in Example 2, an improvement in straight running performance on a road surface having a low friction coefficient was also observed.

本発明の第1実施形態に係わる空気入りタイヤのトレッド部を示す断面図である。It is sectional drawing which shows the tread part of the pneumatic tire concerning 1st Embodiment of this invention. 本発明の第1実施形態を示し、(a)は高摩擦係数の路面における後輪側の空気入りタイヤに掛かる横力を示す概念図、(b)は低摩擦係数の路面における後輪側の空気入りタイヤに掛かる横力を示す概念図である。1 shows a first embodiment of the present invention, (a) is a conceptual diagram showing lateral force applied to a pneumatic tire on a rear wheel side on a road surface with a high friction coefficient, (b) is a rear wheel side on a road surface with a low friction coefficient. It is a conceptual diagram which shows the lateral force applied to a pneumatic tire. 第1実施形態に係わる前輪側と後輪側の空気入りタイヤの装着パターンを示す概念図である。It is a conceptual diagram which shows the mounting pattern of the pneumatic tire of the front-wheel side and rear-wheel side concerning 1st Embodiment. 本発明の第2実施形態に係わる前輪側と後輪側の空気入りタイヤの装着パターンを示す概念図である。It is a conceptual diagram which shows the mounting pattern of the pneumatic tire of the front-wheel side and rear-wheel side concerning 2nd Embodiment of this invention. 従来例に係わる前輪側と後輪側の空気入りタイヤの装着パターンを示す概念図である。It is a conceptual diagram which shows the mounting pattern of the pneumatic tire of the front-wheel side and rear-wheel side concerning a prior art example. 比較例を示し、(a)は比較例1に係わる前輪側と後輪側の空気入りタイヤの装着パターンの示す概念図、(b)は比較例2に係わる前輪側と後輪側の空気入りタイヤの装着パターンを示す概念図である。A comparative example is shown, (a) is a conceptual diagram showing a mounting pattern of pneumatic tires on the front and rear wheels according to Comparative Example 1, and (b) is a pneumatic on the front wheel and rear wheels according to Comparative Example 2. It is a conceptual diagram which shows the mounting pattern of a tire. 本発明の実施例を示し、ドライ路面(高摩擦係数の路面)とスノー路面(低摩擦係数の路面)の各テストコースにおいて、従来例と各種比較例と各種実施例の空気入りタイヤのコーナリングフィーリング及び直進性能を同一タイヤ・同一試験車両で評価し、その際の各種データを示す図である。Examples of the present invention are shown, and in each test course of a dry road surface (road surface with a high friction coefficient) and a snow road surface (road surface with a low friction coefficient), cornering fee of pneumatic tires of conventional examples, various comparative examples, and various examples It is a figure which shows various data at the time of evaluating a ring and rectilinear advance performance with the same tire and the same test vehicle. 路面の摩擦係数を計測する際に用いた摩擦係数測定機を示す正面図である。It is a front view which shows the friction coefficient measuring machine used when measuring the friction coefficient of a road surface.

符号の説明Explanation of symbols

1A,1B 前輪側の空気入りタイヤ
2A,2B 後輪側の空気入りタイヤ
3 車両
4 トレッド部
7 外側ショルダー部(ショルダー部)
8 内側ショルダー部(ショルダー部)
11 内側ショルダー部(ショルダー部)
1A, 1B Pneumatic tire on the front wheel side 2A, 2B Pneumatic tire on the rear wheel side 3 Vehicle 4 Tread part 7 Outer shoulder part (shoulder part)
8 Inner shoulder (shoulder)
11 Inner shoulder (shoulder)

Claims (5)

車両装着状態で路面に接地するトレッド部の表面に形成され、ゴム物性及びトレッドパターンの少なくともいずれか一方がタイヤ幅方向に沿って変化するトップトレッドと、
該トップトレッドのタイヤ幅方向の車両装着内側と車両装着外側のそれぞれに形成されるショルダー部とを備え、
前記車両装着内側のショルダー部が、高摩擦係数の路面で高い摩擦力を、
前記車両装着外側のショルダー部が、低摩擦係数の路面で高い摩擦力をそれぞれ発現し、
車両の後輪側に装着されることを特徴とする空気入りタイヤ。
A top tread formed on the surface of the tread portion that contacts the road surface in a vehicle-mounted state, wherein at least one of the rubber physical properties and the tread pattern changes along the tire width direction;
A shoulder portion formed on each of the vehicle mounting inner side and the vehicle mounting outer side in the tire width direction of the top tread,
The vehicle-mounted inner shoulder portion has a high frictional force on a road surface with a high coefficient of friction.
The shoulder part on the outside of the vehicle expresses a high frictional force on a road surface with a low coefficient of friction,
A pneumatic tire that is mounted on a rear wheel side of a vehicle.
前記トップトレッドを除く前記トレッド部の形状及び構造の少なくとも一方がタイヤ幅方向の中心を境として非対称に形成され、コニシティーフォースが車両内側向きに発生することを特徴とする請求項1に記載の空気入りタイヤ。   2. The shape and structure of the tread portion excluding the top tread are formed asymmetrically with respect to the center in the tire width direction, and a conicity force is generated inward of the vehicle. Pneumatic tire. 車両装着状態で路面に接地するトレッド部の表面に形成され、ゴム物性及びトレッドパターンの少なくともいずれか一方がタイヤ幅方向に沿って変化するトップトレッドと、
該トップトレッドのタイヤ幅方向の車両装着内側と車両装着外側のそれぞれに形成されるショルダー部とを備え、
前記車両装着内側のショルダー部が、低摩擦係数の路面で高い摩擦力を発現し、
車両の前輪側に装着されることを特徴とする空気入りタイヤ。
A top tread formed on the surface of the tread portion that contacts the road surface in a vehicle-mounted state, wherein at least one of the rubber physical properties and the tread pattern changes along the tire width direction;
A shoulder portion formed on each of the vehicle mounting inner side and the vehicle mounting outer side in the tire width direction of the top tread,
The shoulder portion on the inner side of the vehicle expresses a high frictional force on the road surface with a low coefficient of friction,
A pneumatic tire that is mounted on a front wheel side of a vehicle.
車両装着状態で路面に接地するトレッド部の表面に形成され、ゴム物性及びトレッドパターンの少なくともいずれか一方がタイヤ幅方向に沿って変化するトップトレッドと、
該トップトレッドのタイヤ幅方向の車両装着内側と車両装着外側のそれぞれに形成されるショルダー部とを備え、
前記車両装着内側のショルダー部が、高摩擦係数の路面で高い摩擦力を、
前記車両装着外側のショルダー部が、低摩擦係数の路面で高い摩擦力をそれぞれ発現する後輪用タイヤを車両の後輪側に装着することを特徴とする空気入りタイヤの装着方法。
A top tread formed on the surface of the tread portion that contacts the road surface in a vehicle-mounted state, wherein at least one of the rubber physical properties and the tread pattern changes along the tire width direction;
A shoulder portion formed on each of the vehicle mounting inner side and the vehicle mounting outer side in the tire width direction of the top tread,
The vehicle-mounted inner shoulder portion has a high frictional force on a road surface with a high coefficient of friction.
A method for mounting a pneumatic tire, characterized in that a rear tire is mounted on a rear wheel side of the vehicle in which a shoulder portion on the vehicle mounting outer side expresses a high frictional force on a road surface having a low friction coefficient.
前記トップトレッドと、前記ショルダー部とを備え、
前記車両装着内側のショルダー部が、低摩擦係数の路面で高い摩擦力を発現する前輪用タイヤを車両の前輪側に装着することを特徴とする請求項4に記載の空気入りタイヤの装着方法。
The top tread and the shoulder portion,
The method for mounting a pneumatic tire according to claim 4, wherein the shoulder portion on the inner side of the vehicle mounts a front wheel tire that expresses a high frictional force on a road surface with a low coefficient of friction on the front wheel side of the vehicle.
JP2007182136A 2007-07-11 2007-07-11 Pneumatic tire and mounting method thereof Pending JP2009018677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007182136A JP2009018677A (en) 2007-07-11 2007-07-11 Pneumatic tire and mounting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007182136A JP2009018677A (en) 2007-07-11 2007-07-11 Pneumatic tire and mounting method thereof

Publications (1)

Publication Number Publication Date
JP2009018677A true JP2009018677A (en) 2009-01-29

Family

ID=40358697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007182136A Pending JP2009018677A (en) 2007-07-11 2007-07-11 Pneumatic tire and mounting method thereof

Country Status (1)

Country Link
JP (1) JP2009018677A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195357A (en) * 2009-02-27 2010-09-09 Bridgestone Corp Studless tire
JP2013035449A (en) * 2011-08-09 2013-02-21 Toyo Tire & Rubber Co Ltd Tire mounting structure of vehicle
JP2013071680A (en) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The Pneumatic tire unit
JP2013159322A (en) * 2012-02-08 2013-08-19 Bridgestone Corp Pneumatic tire and production method of pneumatic tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195357A (en) * 2009-02-27 2010-09-09 Bridgestone Corp Studless tire
JP2013035449A (en) * 2011-08-09 2013-02-21 Toyo Tire & Rubber Co Ltd Tire mounting structure of vehicle
JP2013071680A (en) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The Pneumatic tire unit
US9038684B2 (en) 2011-09-28 2015-05-26 The Yokohama Rubber Co., Ltd. Pneumatic tire unit
JP2013159322A (en) * 2012-02-08 2013-08-19 Bridgestone Corp Pneumatic tire and production method of pneumatic tire

Similar Documents

Publication Publication Date Title
JP4383465B2 (en) How to use a motorcycle tire pair and a motorcycle tire
JP4649215B2 (en) Pneumatic tires for motorcycles
KR101073994B1 (en) High-performance tyre for a motor vehicle
US9061550B2 (en) Pneumatic tire
CN101743137B (en) Pneumatic tire for motor bicycle
JP2016525043A (en) Tires for vehicles
WO2004052663A1 (en) Pneumatic tire
US9889710B2 (en) Pneumatic tire mount method, and combination pneumatic tire
EP2471671B1 (en) Pneumatic tire
JP2009137412A (en) Pneumatic tire
JPS61222806A (en) Improvements in wheel driving car and radial-ply tire thereof
JP2009018677A (en) Pneumatic tire and mounting method thereof
JP4928785B2 (en) Pneumatic tire
JP2002178713A (en) Installing method of pneumatic tire and pneumatic tire for front wheel
JP6585472B2 (en) Pneumatic tire
JP2006297991A (en) Pneumatic tire
JP5357662B2 (en) tire
JP4894831B2 (en) Pneumatic tire for racing cart
JP2002205513A (en) Pneumatic radial tire
JP4943711B2 (en) Pneumatic tire
JPH04271902A (en) Pneumatic tire
JP6019097B2 (en) Pneumatic tire
JP4242954B2 (en) Tires for automobiles
JPH026204A (en) Pneumatic tire for passenger car
JPS6116110A (en) Radial tyre for truck and bus