JP2009016211A - Electrode assembly, manufacturing method thereof, and discharging tube using same electrode assembly - Google Patents

Electrode assembly, manufacturing method thereof, and discharging tube using same electrode assembly Download PDF

Info

Publication number
JP2009016211A
JP2009016211A JP2007177570A JP2007177570A JP2009016211A JP 2009016211 A JP2009016211 A JP 2009016211A JP 2007177570 A JP2007177570 A JP 2007177570A JP 2007177570 A JP2007177570 A JP 2007177570A JP 2009016211 A JP2009016211 A JP 2009016211A
Authority
JP
Japan
Prior art keywords
metal
electrode
melting point
lead
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007177570A
Other languages
Japanese (ja)
Inventor
Takuo Saito
拓雄 斎藤
Yuichiro Hayashi
優一郎 林
Masahiko Baba
正彦 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2007177570A priority Critical patent/JP2009016211A/en
Publication of JP2009016211A publication Critical patent/JP2009016211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamp (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode assembly wherein the leakage of a discharging gas is suppressed, and an electrode comprising a metal sintered body containing a refractory metal and a lead wire comprising the refractory metal are welded to each other with a high mechanical strength. <P>SOLUTION: The electrode assembly (4) has an electrode (1) comprising a metal sintered body, a lead wire (2) joined to a bottom portion (1a) of the electrode (1), and a fillet portion (3) provided in the periphery of the joining portion of the electrode (1) to the lead wire (2) and for joining the electrode (1) to the lead wire (2). The electrode (1) contains refractory tungsten particles (W) dispersed in the base material of the metal sintered body and contains a nickel powder (Ni) having a lower melting point than that of the tungsten particles (W) which adheres intimately to the tungsten particles (W) as the carrying material of the tungsten particles (W). The lead wire (2) is made of the same metal as the tungsten particles (W). The fillet portion (3) has a metal organizing structure wherein tungsten particles (W) comprising the same metal as the tungsten particles (W) of the electrode (1) are dispersed in a base material comprising the same metal as the nickel powder (Ni) contained inside the electrode (1). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、焼結電極の底部に導入線を溶接した電極組立体及びその製法並びにその電極組立体を有する放電管に関する。   The present invention relates to an electrode assembly in which a lead wire is welded to the bottom of a sintered electrode, a method for manufacturing the electrode assembly, and a discharge tube having the electrode assembly.

例えば、冷陰極蛍光放電管(CCFL)等の放電管では、点灯中の放電により電極が発熱する。電極と一体化された導入線に密着するガラス管の発熱による熱衝撃に対して放電管の耐久性を強化するためには、ガラス管の線膨張率(線膨張係数)を小さくしなければならず、導入線を線膨張率の小さい金属で構成する必要がある。また、放電管内でスパッタリングが生ずると、電極と導入線との電極組立体を構成する金属の劣化現象又はガラス管の黒化現象が発生して、放電管の発光輝度が低下する問題が生ずるため、放電管内でスパッタリングを生じ難い金属で電極組立体を形成することが望ましい。このため、耐スパッタ性、線膨張率、化学的安定性及び製造価格を考慮して、例えばタングステン(W)又はモリブデン(Mo)で構成される電極組立体とすることが望ましい。しかしながら、高融点金属であるタングステン(W)又はモリブデン(Mo)から成る電極及び導入線を電極の底面で溶接にて接合して電極組立体を構成することは極めて困難である。そこで、例えば下記特許文献1には、タングステン(W)又はモリブデン(Mo)等の高融点金属で共に形成された電極と導入線との間にニッケル(Ni)等の低融点金属を挟み、電極の底面で溶接にて接合する電極組立体が開示されている。   For example, in a discharge tube such as a cold cathode fluorescent discharge tube (CCFL), the electrode generates heat due to the discharge during lighting. In order to enhance the durability of the discharge tube against thermal shock caused by the heat generated by the glass tube that is in close contact with the lead wire integrated with the electrode, the linear expansion coefficient (linear expansion coefficient) of the glass tube must be reduced. First, the lead-in wire needs to be made of a metal having a small coefficient of linear expansion. In addition, when sputtering occurs in the discharge tube, a deterioration phenomenon of the light emission luminance of the discharge tube occurs due to a deterioration phenomenon of the metal constituting the electrode assembly of the electrode and the lead wire or a blackening phenomenon of the glass tube. It is desirable to form the electrode assembly from a metal that is difficult to cause sputtering in the discharge tube. For this reason, in consideration of sputtering resistance, linear expansion coefficient, chemical stability, and manufacturing price, it is desirable to provide an electrode assembly made of, for example, tungsten (W) or molybdenum (Mo). However, it is extremely difficult to form an electrode assembly by welding an electrode made of tungsten (W) or molybdenum (Mo), which is a refractory metal, and a lead wire by welding at the bottom of the electrode. Therefore, for example, in Patent Document 1 below, a low melting point metal such as nickel (Ni) is sandwiched between an electrode formed together with a high melting point metal such as tungsten (W) or molybdenum (Mo) and a lead wire, An electrode assembly is disclosed that is welded to the bottom surface of the electrode.

この電極組立体では、カップ形状に形成する電極により、ホロー効果を発生させて電極での電圧降下を抑制できるが、絞り加工が困難なタングステン(W)及びモリブデン(Mo)を容易にはカップ形状に形成できない難点があった。このため、例えば下記特許文献2には、ニッケル(Ni)又は電子放出部材を含むタングステン(W)又はモリブデン(Mo)等の高融点金属をサブミクロンサイズの粉粒体とし、その粉粒体を分散担持する熱可塑性を有する二液性バインダ樹脂に混合して加熱溶融混練し、混練物を金型に注入して電極と導入線基部とを一体形状に成形した後、二液性バインダ樹脂を脱脂して連通孔を有する多孔質構造とし、更にそれを焼結させて電極と導入線基部とを一体化した電極が開示されている。また、特許文献2は、導入線基部に溶接される導入線先端部として、低融点金属であるニッケル(Ni)製の導入線を示す。   In this electrode assembly, the electrode formed in the cup shape can suppress the voltage drop at the electrode by generating a hollow effect, but it is easy to draw tungsten (W) and molybdenum (Mo) which are difficult to draw. There was a difficulty that could not be formed. For this reason, for example, in Patent Document 2 below, refractory metal such as nickel (Ni) or tungsten (W) or molybdenum (Mo) including an electron emitting member is used as a submicron-sized powder, and the powder It is mixed with a two-part binder resin having thermoplasticity that is dispersed and supported, heated and melt-kneaded, and the kneaded product is poured into a mold to form the electrode and lead wire base into an integral shape, and then the two-part binder resin is added. An electrode is disclosed in which a porous structure having a communication hole is formed by degreasing, and further, the electrode and the lead wire base are integrated by sintering. Patent Document 2 shows a lead wire made of nickel (Ni), which is a low melting point metal, as a lead wire tip portion welded to the lead wire base.

特開2005−327559公報JP 2005-327559 A 特開2005−71972公報JP-A-2005-71972

特許文献2の電極を形成する際に、ニッケル(Ni)又は電子放出部材を含み且つタングステン(W)又はモリブデン(Mo)等の高融点金属を主材とする粉粒体をカップ状電極部と導入線基部との一体形状に焼結し、ガラス管の封止時に、ガラスビーズが導入線基部の周囲を包囲して導入線基部に溶着するが、導入線基部の表面粗さを平滑化できないため、導入線基部とガラスビーズとを十分な接着強度で密着できず、導入線基部とガラスビーズとの間に連通孔を生ずる。導入線基部とガラスビーズとの間に連通孔が生ずると、ガラス管内に気密が良好な閉鎖空間を形成することができず、ガラス管内に充填された放電用ガスが連通孔を介して放電管の外部に流出したり、放電管の外部の大気が連通孔を介して放電管の閉鎖空間内に流入する欠点があった。   When the electrode of Patent Document 2 is formed, a powdery body containing nickel (Ni) or an electron-emitting member and mainly made of a refractory metal such as tungsten (W) or molybdenum (Mo) is used as a cup-shaped electrode portion. When the glass tube is sealed, the glass beads surround the periphery of the lead-in base and weld to the lead-in base when the glass tube is sealed, but the surface roughness of the lead-in base cannot be smoothed. Therefore, the introduction line base and the glass beads cannot be adhered with sufficient adhesive strength, and a communication hole is formed between the introduction line base and the glass beads. If a communication hole is formed between the introduction wire base and the glass bead, a closed space with good airtightness cannot be formed in the glass tube, and the discharge gas filled in the glass tube is discharged through the communication hole. Or the atmosphere outside the discharge tube flows into the closed space of the discharge tube through the communication hole.

そこで、本発明は、放電管内の放電ガスの流出や放電管外部の大気の流入を抑制でき、且つ高融点金属を含む金属焼結体により構成される電極と高融点金属により構成される導入線とを高い機械的強度で溶着できる電極組立体とその製法を提供することを目的とする。また、本発明は、熱衝撃に強く且つ電極組立体の電極の劣化又はバルブ(12)の黒化現象による発光輝度の低下を抑制できると共に、放電ガスの流出や外気の流入による寿命低下を抑制できる放電管を提供することを目的とする。   Therefore, the present invention can suppress the outflow of the discharge gas in the discharge tube and the inflow of the atmosphere outside the discharge tube, and the lead wire composed of the electrode made of a metal sintered body containing a refractory metal and the refractory metal. It is an object of the present invention to provide an electrode assembly that can be welded with high mechanical strength and a method for producing the same. In addition, the present invention is resistant to thermal shock and can suppress the deterioration of light emission luminance due to the deterioration of the electrode of the electrode assembly or the blackening phenomenon of the bulb (12), and also suppresses the life reduction due to the discharge of the discharge gas or the inflow of outside air. An object of the present invention is to provide a discharge tube that can be used.

本発明による電極組立体(4)は、低融点の第1の金属から成る第1の基材と、第1の基材に密着する高融点の第2の金属から成る多数の硬質粒子とを含む金属焼結体で構成される電極(1)と、電極(1)に接合される端面(2b)を形成する端部(2a)を有し且つ高融点の第3の金属から成る導入線(2)と、導入線(2)の端部(2a)の端面(2b)の周囲で端部(2a)の外周部(2c)と電極(1)とを環状に接合する隅肉部(3)とを備えている。電極(1)内の第1の金属は、硬質粒子に密着し且つ第2の金属より低い硬度を有し、隅肉部(3)は、第2の金属より融点の低い第4の金属から成る第2の基材と、第1の基材から拡散されて第2の基材の少なくとも一部内に保持される硬質粒子とを含む。電極(1)は、高融点の硬質粒子を含み、電極(1)内の第1の金属は、硬質粒子に密着するので、電極(2)の耐スパッタ性が向上し、電極組立体(4)の動作寿命を延長することができる。また、低融点の第1の金属により電極(1)を所望の形状に形成することができる。更に、導入線(2)の端部(2a)の端面(2b)を電極(1)に接合する上、隅肉部(3)により電極(1)と導入線(2)との接合部を拡張し、電極(1)と導入線(2)との接着面積を増大して密着性を向上するため、電極(1)と導入線(2)とを高い機械的強度で溶着することができる。隅肉部(3)は、硬質粒子の第2の金属より融点の低い第2の基材の少なくとも一部内に硬質粒子が保持されるので、電極(1)と隅肉部(3)との界面での熱衝撃又は振動衝撃を緩和し、電極(1)と導入線(2)とを高い機械的強度で溶接した電極組立体(4)を得ることができる。また、更に、導入線(2)は高融点の金属から成り且つ平滑な表面を有するため、ガラスビーズを導入線(2)の基部の周囲に溶着してガラス管(バルブ)を封止する際に、導入線(2)の基部とガラスビーズとが十分な接着強度で密着する。このため、導入線(2)の基部とガラスビーズとの間に生ずる連通孔を抑制して、放電ガスの流出や外気の流入を抑制することができる。   An electrode assembly (4) according to the present invention comprises a first substrate made of a first metal having a low melting point, and a plurality of hard particles made of a second metal having a high melting point that is in close contact with the first substrate. The lead wire made of a third metal having a high melting point and having an end portion (2a) forming an end face (2b) to be joined to the electrode (1) composed of a sintered metal body including (2) and a fillet portion that annularly joins the outer peripheral portion (2c) of the end portion (2a) and the electrode (1) around the end surface (2b) of the end portion (2a) of the lead-in wire (2) ( And 3). The first metal in the electrode (1) is in close contact with the hard particles and has a lower hardness than the second metal, and the fillet (3) is made of a fourth metal having a melting point lower than that of the second metal. And a hard particle that is diffused from the first substrate and retained within at least a portion of the second substrate. The electrode (1) contains high melting point hard particles, and the first metal in the electrode (1) is in close contact with the hard particles, so that the spatter resistance of the electrode (2) is improved and the electrode assembly (4 ) Operating life can be extended. In addition, the electrode (1) can be formed in a desired shape with the first metal having a low melting point. Further, the end surface (2b) of the end portion (2a) of the lead-in wire (2) is joined to the electrode (1), and the joint portion between the electrode (1) and the lead-in wire (2) is formed by the fillet portion (3). Expand and increase the adhesion area between the electrode (1) and the lead-in wire (2) to improve the adhesion, so that the electrode (1) and the lead-in wire (2) can be welded with high mechanical strength . Since the fillet portion (3) holds the hard particles in at least a part of the second base material having a melting point lower than that of the second metal of the hard particles, the electrode (1) and the fillet portion (3) It is possible to obtain an electrode assembly (4) in which the thermal shock or vibration shock at the interface is alleviated and the electrode (1) and the lead-in wire (2) are welded with high mechanical strength. Furthermore, since the lead-in wire (2) is made of a high melting point metal and has a smooth surface, the glass tube (valve) is sealed by welding glass beads around the base of the lead-in wire (2). In addition, the base of the lead-in wire (2) and the glass beads are in close contact with each other with sufficient adhesive strength. For this reason, the communication hole formed between the base portion of the lead-in wire (2) and the glass beads can be suppressed, and the outflow of discharge gas and the inflow of outside air can be suppressed.

本発明による電極組立体(4)の製法は、低融点の粉末状の第1の金属と第1の金属より高融点の第2の金属から成る硬質粒子とを混合して、粉末混合体を形成する工程と、粉末混合体をカップ状に焼結して、第1の金属から成る第1の基材に密着する多数の硬質粒子を有する金属焼結体の電極(1)を形成する工程と、第1の金属の融点以上の温度にて、高融点の第3の金属から成る導入線(2)の一端(2a)を電極(1)に溶接する工程とを含む。溶接工程により、第2の金属より低融点の第4の金属から成る第2の基材から成る隅肉部(3)を電極(1)と導入線(2)との接合部の周囲に形成すると共に、電極(1)に含まれる硬質粒子を第2の基材中に拡散する工程とを含む。本製法では、ガラスビーズを導入線(2)の基部の周囲に溶着してガラス管(バルブ)を封止する際に、平滑な表面を有する高融点の金属から成る導入線(2)の基部とガラスビーズとを十分な接着強度で密着できるため、導入線(2)の基部とガラスビーズとの間に生ずる連通孔を抑制して、放電ガスの流出や外気の流入を抑制することができる。更に、高融点の第2の金属から成る硬質粒子及び第2の金属から成る硬質粒子より低融点の粉末状の第1の金属を混合してカップ状に焼結した電極(1)と、第2の金属から成る硬質粒子と同一又は異なる高融点の金属から成る導入線(2)とを溶接する際に、電極(1)と導入線(2)との接合部に第1の金属の融点以上の温度となる熱エネルギを付与して加熱すると、熱エネルギを付与された電極(1)の第1の金属は溶融し、電極(1)の第2の金属から成る硬質粒子を担持できなくなる。その結果、比較的低融点の金属から成る隅肉部(3)の基材中に電極(1)の第2の金属から成る硬質粒子が拡散するため、電極(1)と隅肉部(3)との界面での熱衝撃又は振動衝撃を緩和して、信頼性の高い電極組立体(4)を得ることができる。また、電極(1)と導入線(2)との接合部の周囲に隅肉部(3)を形成し、隅肉部(3)が電極(1)と導入線(2)との接合部を拡張して接着面積を増大させるため、電極(1)と導入線(2)とを高い機械的強度で溶着することができる。   The electrode assembly (4) according to the present invention is produced by mixing a powdery first metal having a low melting point and hard particles made of a second metal having a melting point higher than that of the first metal. And forming a metal sintered body electrode (1) having a large number of hard particles in close contact with the first substrate made of the first metal by sintering the powder mixture into a cup shape. And welding one end (2a) of the lead wire (2) made of the high melting point third metal to the electrode (1) at a temperature equal to or higher than the melting point of the first metal. A fillet portion (3) made of a second base material made of a fourth metal having a lower melting point than the second metal is formed around the joint between the electrode (1) and the lead-in wire (2) by a welding process. And a step of diffusing hard particles contained in the electrode (1) into the second substrate. In this production method, when the glass beads are welded around the base of the lead-in wire (2) to seal the glass tube (bulb), the base of the lead-in wire (2) made of a high melting point metal having a smooth surface And glass beads can be brought into close contact with each other with sufficient adhesive strength, so that a communication hole formed between the base of the lead-in wire (2) and the glass beads can be suppressed, and discharge of discharge gas and inflow of outside air can be suppressed. . And an electrode (1) obtained by mixing hard particles made of a second metal having a high melting point and a powdery first metal having a lower melting point than the hard particles made of the second metal, and sintering them in a cup shape; When welding the hard particles made of two metals and the lead wire (2) made of the same or different high melting point metal, the melting point of the first metal at the joint between the electrode (1) and the lead wire (2) When heating is performed by applying the thermal energy at the above temperature, the first metal of the electrode (1) to which the thermal energy is applied melts, and hard particles made of the second metal of the electrode (1) cannot be supported. . As a result, the hard particles made of the second metal of the electrode (1) diffuse into the base material of the fillet part (3) made of a metal having a relatively low melting point, so that the electrode (1) and the fillet part (3 The electrode assembly (4) with high reliability can be obtained by relieving the thermal shock or vibration shock at the interface with the above. Further, a fillet portion (3) is formed around the joint portion between the electrode (1) and the lead-in wire (2), and the fillet portion (3) is joined to the electrode (1) and the lead-in wire (2). The electrode (1) and the lead-in wire (2) can be welded with a high mechanical strength in order to increase the bonding area by expanding the.

本発明による電極組立体(4)を使用する放電管(11)は、電極組立体(4)の電極(1)をバルブ(12)の閉鎖空間(13)内に配置し、且つ電極(1)に接合される導入線(2)の埋設部(2d)をバルブ(12)の各端部(12a)に融着し、且つ埋設部(2d)に隣接する導出部(2e)をバルブ(12)の外部に導出させて、閉鎖空間(13)を形成するバルブ(12)の各端部に電極組立体(4)を固定する。耐スパッタ性の高い高融点の第2の金属から成る硬質粒子を含む電極組立体(4)を使用するので、電極組立体(4)の電極(1)の劣化又はバルブ(12)の黒化現象による発光輝度の低下を抑制できる放電管(11)を得ることができる。また、導入線(2)の埋設部(2d)をバルブ(12)の各端部(12a)に融着する際に、導入線(2)の埋設部(2d)とバルブ(12)の各端部(12a)とを十分な接着強度で密着できるため、導入線(2)の埋設部(2d)とバルブ(12)の各端部(12a)との間に連通孔が生じて発生する放電ガスの流出や外気の流入を抑制して、放電管(11)の寿命低下を抑制することができる。更に、電極組立体(4)の隅肉部(3)は、第2の金属から成る硬質粒子よりも低融点の金属から成る基材中に電極(1)の第2の金属から成る硬質粒子を含むため、電極(1)と隅肉部(3)との界面での熱衝撃又は振動衝撃が緩和される。これにより、点灯中の電極組立体(4)の発熱による熱衝撃や振動衝撃に強い放電管(11)を得ることができる。   A discharge tube (11) using an electrode assembly (4) according to the present invention has an electrode (1) of an electrode assembly (4) disposed in a closed space (13) of a bulb (12) and an electrode (1 ) Embedded portion (2d) of lead wire (2) joined to each end (12a) of valve (12), and lead-out portion (2e) adjacent to embedded portion (2d) is connected to valve ( The electrode assembly (4) is fixed to each end portion of the valve (12) forming the closed space (13) by being led out to the outside of 12). Deterioration of electrode (1) of electrode assembly (4) or blackening of valve (12) because electrode assembly (4) containing hard particles made of a high melting point second metal with high spatter resistance is used. It is possible to obtain a discharge tube (11) that can suppress a decrease in light emission luminance due to the phenomenon. Further, when the embedded portion (2d) of the introduction line (2) is fused to each end (12a) of the valve (12), each of the embedded portion (2d) of the introduction line (2) and each of the valves (12) Since the end (12a) can be adhered with sufficient adhesive strength, a communication hole is generated between the embedded portion (2d) of the lead-in wire (2) and each end (12a) of the valve (12). By suppressing the outflow of discharge gas and the inflow of outside air, it is possible to suppress a decrease in the life of the discharge tube (11). Further, the fillet portion (3) of the electrode assembly (4) is formed of hard particles made of the second metal of the electrode (1) in a base material made of a metal having a lower melting point than the hard particles made of the second metal. Therefore, the thermal shock or vibration shock at the interface between the electrode (1) and the fillet portion (3) is relieved. Thereby, it is possible to obtain the discharge tube (11) that is resistant to thermal shock and vibration shock due to heat generation of the electrode assembly (4) during lighting.

本発明によれば、ガラスビーズを導入線の基部の周囲に溶着してガラス管(バルブ)を封止する際に、導入線の基部とガラスビーズとの間に連通孔を発生させずに、導入線の基部にガラスビーズを十分な接着強度で固着でき且つ密着して、ガラス管内部からの放電ガスの流出やガラス管外部からの大気の流入を阻止することができる。また、電極と導入線との接合部の周囲に形成した隅肉部により、電極と導入線との接着面積を増大して、高い機械的強度で電極と導入線とを溶着することができる。更に、電極の第2の金属から成る硬質粒子が隅肉部内に拡散して、均質化するので、電極と隅肉部との界面での熱衝撃や振動衝撃を緩和して、使用寿命を延長し且つ信頼性の高い電極組立体を得ることができる。   According to the present invention, when sealing the glass tube (bulb) by welding the glass beads around the base of the introduction line, without generating a communication hole between the base of the introduction line and the glass beads, The glass beads can be fixed and adhered to the base of the lead-in wire with sufficient adhesive strength, and discharge of discharge gas from the inside of the glass tube and inflow of air from the outside of the glass tube can be prevented. Further, the fillet portion formed around the joint between the electrode and the lead-in line can increase the adhesion area between the electrode and the lead-in line, and the electrode and the lead-in line can be welded with high mechanical strength. Furthermore, the hard particles made of the second metal of the electrode diffuse into the fillet part and homogenize it, so that the thermal and vibration shocks at the interface between the electrode and fillet part are alleviated and the service life is extended. In addition, a highly reliable electrode assembly can be obtained.

以下、本発明による電極組立体とその製法の実施の形態を図1〜図7について説明する。また、本発明による電極組立体を使用する放電管の実施の形態を図8について説明する。   Embodiments of an electrode assembly and its manufacturing method according to the present invention will be described below with reference to FIGS. An embodiment of a discharge tube using the electrode assembly according to the present invention will be described with reference to FIG.

本実施の形態の電極組立体(4)は、図2に示すように、金属焼結体により構成され且つU字断面形状を有するカップ状の電極(1)と、電極(1)の底部(1a)に一方の端部(2a)の端面(2b)が接合される導入線(2)と、電極(1)と導入線(2)との接合部の周囲に設けられて電極(1)と導入線(2)の端部(2a)の外周部(2c)とを環状に接合する隅肉部(3)とを備える。図5に示すように、カップ形状の電極(1)は、金属焼結体の基材(マトリックス)中に分散される高融点(融点:約3400℃)で線膨張係数が2.6×10-6/℃と比較的小さい第2の金属から成る硬質粒子としてのタングステン粒子(W)と、タングステン粒子(W)の担持材(バインダ)としてタングステン粒子(W)に密着し、タングステン粒子(W)より低融点で線膨張係数が大きい第1の金属としてのニッケル(Ni)とを含む。因みに、ニッケル(Ni)の線膨張係数は6.6×10-6/℃であり、融点は1450℃である。導入線(2)は、電極(1)内のタングステン粒子(W)と同一成分、即ち第3の金属として高融点のタングステン(W)から成る。導入線(2)のタングステン(W)の純度は、99重量%又はこれ以上である。 As shown in FIG. 2, the electrode assembly (4) of the present embodiment includes a cup-shaped electrode (1) made of a sintered metal body and having a U-shaped cross section, and a bottom portion of the electrode (1) ( 1a) the lead wire (2) where the end face (2b) of one end (2a) is joined, and the electrode (1) provided around the joint of the electrode (1) and lead wire (2) And a fillet portion (3) that annularly joins the outer peripheral portion (2c) of the end portion (2a) of the lead-in wire (2). As shown in FIG. 5, the cup-shaped electrode (1) has a high melting point (melting point: about 3400 ° C.) dispersed in the base material (matrix) of the sintered metal body and a linear expansion coefficient of 2.6 × 10. Tungsten particles (W) as hard particles composed of a relatively small second metal at -6 / ° C and tungsten particles (W) as a support material (binder) for tungsten particles (W) ) And nickel (Ni) as a first metal having a lower melting point and a larger linear expansion coefficient. Incidentally, the linear expansion coefficient of nickel (Ni) is 6.6 × 10 −6 / ° C., and the melting point is 1450 ° C. The lead-in wire (2) is made of the same component as the tungsten particles (W) in the electrode (1), that is, tungsten (W) having a high melting point as the third metal. The purity of tungsten (W) in the lead-in wire (2) is 99% by weight or more.

本実施の形態の電極組立体(4)では、電極(1)と導入線(2)とを溶接する際に形成される隅肉部(3)は、電極(1)及び導入線(2)との接合性及び密着性に優れ、且つ隅肉部(3)の断面は、導入線(2)の他方の端部側から一方の端部(電極(1)との接合部側)へと拡径するテーパ状に形成される。隅肉部(3)の基材中に含まれる第4の金属としてのニッケル(Ni)は、金属焼結体の基材中に分散するニッケル(Ni)及びタングステン粒子(W)、導入線(2)を構成するタングステン(W)の何れとも濡れ性、親和性又は相互拡散性に優れる。また、隅肉部(3)は、電極(1)と導入線(2)との接合面積を増大するので、電極(1)と導入線(2)とを高い機械的強度で溶着することができる。また、隅肉部(3)の基材中には、電極(1)中のタングステン粒子(W)、更にニッケル(Ni)と同一の金属が分散するので、電極(1)と隅肉部(3)との界面での熱衝撃又は振動衝撃に強い電極組立体(4)を得ることができる。つまり、使用寿命が長く且つ信頼性の高い電極組立体(4)を得ることができる。更に、電極(1)に含まれる低融点のニッケル(Ni)により結合される高融点のタングステン粒子(W)は高い耐スパッタ性を電極(1)に付与し、ニッケル(Ni)は、タングステン粒子(W)間を強固且つ密接に接合するので、使用寿命が長く且つ信頼性の高い電極(1)を得ることができる。なお、本実施の形態の電極組立体(4)を得る際に、図1に示すように、電極(1)と導入線(2)との間に接合材(5)として低融点金属(例えばニッケル(Ni))を介在させて溶接した場合は、接合材(5)の低融点金属を含む基材中に電極(1)中のニッケル(Ni)及びタングステン粒子(W)の一部が拡散した金属組織構造を有する隅肉部(3)となる。   In the electrode assembly (4) of the present embodiment, the fillet portion (3) formed when welding the electrode (1) and the lead-in wire (2) includes the electrode (1) and the lead-in wire (2). The cross section of the fillet portion (3) is from the other end side of the lead-in wire (2) to one end portion (joint side with the electrode (1)). It is formed in a tapered shape that expands in diameter. Nickel (Ni) as the fourth metal contained in the base material of the fillet portion (3) is nickel (Ni) and tungsten particles (W) dispersed in the base material of the sintered metal body, lead wire ( Any of the tungsten (W) constituting 2) is excellent in wettability, affinity or mutual diffusion. Further, the fillet portion (3) increases the bonding area between the electrode (1) and the lead-in wire (2), so that the electrode (1) and the lead-in wire (2) can be welded with high mechanical strength. it can. Further, in the base material of the fillet portion (3), tungsten particles (W) in the electrode (1), and further the same metal as nickel (Ni) are dispersed, so the electrode (1) and fillet portion ( An electrode assembly (4) resistant to thermal shock or vibration shock at the interface with 3) can be obtained. That is, an electrode assembly (4) having a long service life and high reliability can be obtained. Furthermore, the high melting point tungsten particles (W) bonded by the low melting point nickel (Ni) contained in the electrode (1) impart high sputtering resistance to the electrode (1), and the nickel (Ni) is a tungsten particle. Since (W) is firmly and closely joined, an electrode (1) having a long service life and high reliability can be obtained. When obtaining the electrode assembly (4) of the present embodiment, as shown in FIG. 1, a low melting point metal (for example, as a bonding material (5) between the electrode (1) and the lead-in wire (2) is used. When welding is performed with nickel (Ni)), some of the nickel (Ni) and tungsten particles (W) in the electrode (1) diffuse into the base material containing the low melting point metal in the bonding material (5). The fillet portion (3) having the above-described metal structure is obtained.

図2に示す電極組立体(4)を製造する際に、まず、高融点で線膨張係数が比較的小さく且つ0.2〜数μm程度の平均粒径を有するサブミクロン又はミクロンサイズのタングステン粒子(W)と、タングステン(W)より低融点で線膨張係数の大きい金属である粉末状のニッケル(Ni)とを複数の結着樹脂に配合して混練し、タングステン粒子(W)及び粉末状のニッケル(Ni)の混合物を結着樹脂内に十分に分散させる。一方、射出成形装置の樹脂成形部に搭載された成形金型内には、カップ形状のキャビティ(空所)を1個又は複数個形成し、加熱シリンダにて計量されたタングステン粒子(W)及びニッケル(Ni)粒子を含み、前記の工程で結着樹脂に配合して混練された混練物が成形金型のキャビティ内に充填される。成形金型のキャビティ内に充填された混練物を冷却及び固化させて、カップ形状の電極の成形体(グリーン体)が形成される。その後、成形金型からカップ形状の電極の成形体を取り出して、少なくとも1つの結着樹脂の脱脂を行うと、残留する結着樹脂及び当該樹脂に担持されたタングステン粒子(W)及びニッケル(Ni)粒子を含む成形体は、溶出した結着樹脂の一方の抜けた跡が全体的に微細な連通孔として残留して多孔質構造に形成される。多孔質の成形体は、焼結工程で発生する収縮量を見込んで最終的な形状よりも大きい。   When the electrode assembly (4) shown in FIG. 2 is manufactured, first, submicron or micron-sized tungsten particles having a high melting point, a relatively small linear expansion coefficient, and an average particle size of about 0.2 to several μm. (W) and powdered nickel (Ni), which is a metal having a lower melting point and a larger linear expansion coefficient than tungsten (W), are kneaded into a plurality of binder resins, tungsten particles (W) and powdery The nickel (Ni) mixture is sufficiently dispersed in the binder resin. On the other hand, one or more cup-shaped cavities are formed in the molding die mounted on the resin molding part of the injection molding apparatus, and tungsten particles (W) measured by a heating cylinder and A kneaded product containing nickel (Ni) particles and blended and kneaded with the binder resin in the above-described step is filled in the cavity of the molding die. The kneaded material filled in the cavity of the molding die is cooled and solidified to form a cup-shaped electrode molded body (green body). Thereafter, when the cup-shaped electrode molded body is taken out from the molding die and at least one binder resin is degreased, the remaining binder resin, tungsten particles (W) and nickel (Ni) supported on the resin are retained. ) The molded body containing particles is formed in a porous structure in which one trace of the eluted binder resin is left as a fine communication hole as a whole. The porous molded body is larger than the final shape in anticipation of the amount of shrinkage generated in the sintering process.

次に、多孔質の成形体を加圧焼結炉に投入し、成形体に残留する結着樹脂を更に脱脂させる。成形体に残留する結着樹脂を更に脱脂する際に、加圧焼結炉内の温度を成形体に含まれるニッケル(Ni)の融点:1455℃以上で且つ成形体に含まれるタングステン粒子(W)の再結晶温度1150〜1350℃(例えば1300℃)以上であって、成形体に含まれるタングステン粒子(W)の融点3422℃以下の温度、例えば1500℃で加熱して、ニッケル(Ni)を溶解させ、更にタングステン粒子(W)を再結晶化によって棒状に成長させ、加圧しながらタングステン粒子(W)間をニッケル(Ni)により焼結し密着させることにより、図1に示すカップ形状を有する電極(1)が形成される。本実施の形態では、融点より低い温度でタングステン粒子(W)を稠密一体化させて電極を焼結するので、得られる電極(1)を「焼結電極」という。実際には、焼結炉内の成形体を加圧下で加熱できるヒップ炉を使用して焼結することが好ましい。焼結電極(1)は、図5に示すように、タングステン粒子(W)間の微細な間隙がニッケル(Ni)により緊密に閉塞される。焼結電極(1)内でのニッケル(Ni)の作用は、スローリーク防止の他、他の金属との濡れ性及び拡散性が良好で、タングステン(W)単体に比べて、ニッケル(Ni)の存在により異なる金属との溶接が容易になる利点がある。焼結が完了すると、所望の寸法(例えば、外径が2mm程度)のカップ形状の焼結電極(1)が得られる。焼結電極(1)に含まれるニッケル(Ni)の割合は、重量百分率で0.5〜10.0%、更に好ましくは0.5〜5.0%、残部はタングステン(W)であることが望ましい。   Next, the porous molded body is put into a pressure sintering furnace, and the binder resin remaining in the molded body is further degreased. When the binder resin remaining in the molded body is further degreased, the temperature in the pressure sintering furnace is the melting point of nickel (Ni) contained in the molded body: 1455 ° C. or more and tungsten particles contained in the molded body (W ) At a recrystallization temperature of 1150 to 1350 ° C. (for example, 1300 ° C.) or higher and a melting point of tungsten particles (W) contained in the compact is 3422 ° C. or less, for example, 1500 ° C. By dissolving and further growing tungsten particles (W) in a rod shape by recrystallization and sintering and bonding the tungsten particles (W) with nickel (Ni) while applying pressure, the cup shape shown in FIG. 1 is obtained. An electrode (1) is formed. In the present embodiment, the tungsten particles (W) are densely integrated at a temperature lower than the melting point to sinter the electrode, and thus the obtained electrode (1) is referred to as “sintered electrode”. In practice, it is preferable to sinter using a hip furnace capable of heating the compact in the sintering furnace under pressure. In the sintered electrode (1), as shown in FIG. 5, fine gaps between tungsten particles (W) are tightly closed by nickel (Ni). The action of nickel (Ni) in the sintered electrode (1) is to prevent slow leaks, as well as good wettability and diffusibility with other metals, nickel (Ni) compared to tungsten (W) alone Therefore, there is an advantage that welding with different metals becomes easy. When the sintering is completed, a cup-shaped sintered electrode (1) having a desired dimension (for example, an outer diameter of about 2 mm) is obtained. The ratio of nickel (Ni) contained in the sintered electrode (1) is 0.5 to 10.0% by weight, more preferably 0.5 to 5.0%, and the balance is tungsten (W). Is desirable.

次に、図1に示すように、カップ形状の電極(1)に含まれるタングステン粒子(W)の融点より低い融点を有するニッケル(Ni)から成り、外径が1.7mmで厚さが0.05mmの接合材(5)をタングステン(W)粉末を粉末冶金し研磨して成る外径が0.8mmの導入線(2)の一端(2a)と電極(1)の底部(1a)との間に配置する。その後、例えば、図6に示すように、導入線(2)の埋設部(2d)にガラスビーズ(14)を挿入し、埋設部(2d)に隣接する導出部(2e)に溶接用電源(21)の陰極に接続された固定電極(22)を接続し、電極(1)の筒部(1b)内に溶接用電源(21)の陽極に接続された可動電極(23)を挿入して、導入線(2)側に可動電極(23)を加圧しながら可動電極(23)の先端部(23a)を電極(1)のカップ内壁の底部(1a)に当接させ、電極(1)の底部(1a)、接合材(5)及び導入線(2)に1200アンペア以上の溶接電流を4ミリ秒の期間流して抵抗溶接を行い、カップ形状の電極(1)の底部(1a)に導入線(2)を固着する。別法として、図7に示すように、高出力レーザ装置(31)の集光レンズ(32)から出力される1キロワットのレーザ光(33)を電極(1)のカップ内壁の底部(1a)に34ミリ秒の期間照射し、0.7秒後更に1キロワットのレーザ光(33)を34ミリ秒の期間電極(1)のカップ内壁の底部(1a)に照射してレーザ溶接を行い、カップ形状の電極(1)の底部(1a)に導入線(2)を固着する。溶接電流又はレーザ光出力等の諸条件は、電極(1)の底部(1a)の厚さや金属の状態により適宜決定される。また、電極(1)の底部(1a)の導入線(2)との接合面の溶接温度は、接合材(5)を構成するニッケル(Ni)の融点以上且つ電極(1)に含まれるニッケル(Ni)の溶融温度以上で、且つ導入線(2)を構成するタングステン(W)の融点以下に設定される。従って、電極(1)と導入線(2)との間に介在するタングステン粒子(W)の大半は合金化しないが、一部合金化することもある。このように、大きな溶接電流を流すか又は高出力のレーザ光や電子を照射して、電極(1)と導入線(2)との接合部を含む領域のみに熱エネルギを付与すると、加熱された電極(1)の領域では、電極(1)を構成する金属焼結体の基材中に分散する高融点のタングステン粒子(W)間に挟まれた低融点のニッケル(Ni)が溶融する。その結果、金属焼結体の基材中に分散するタングステン粒子(W)間の結合が緩くなり、溶融したニッケル(Ni)はタングステン粒子(W)間の担持材として機能しなくなる。   Next, as shown in FIG. 1, it is made of nickel (Ni) having a melting point lower than that of the tungsten particles (W) contained in the cup-shaped electrode (1), has an outer diameter of 1.7 mm and a thickness of 0. One end (2a) of the lead wire (2) having an outer diameter of 0.8 mm and a bottom portion (1a) of the electrode (1) formed by powder metallurgy and polishing tungsten (W) powder with a 0.05 mm bonding material (5) Place between. Thereafter, for example, as shown in FIG. 6, the glass beads (14) are inserted into the embedded portion (2d) of the lead-in wire (2), and the welding power source (2e) is connected to the outlet portion (2e) adjacent to the embedded portion (2d). 21) Connect the fixed electrode (22) connected to the cathode, and insert the movable electrode (23) connected to the anode of the welding power source (21) into the cylindrical part (1b) of the electrode (1). The tip (23a) of the movable electrode (23) is brought into contact with the bottom (1a) of the cup inner wall of the electrode (1) while pressing the movable electrode (23) toward the lead-in line (2), and the electrode (1) Resistance welding is performed by flowing a welding current of 1200 amperes or more through the bottom (1a), joining material (5) and lead-in wire (2) for a period of 4 milliseconds, to the bottom (1a) of the cup-shaped electrode (1). Secure the lead-in wire (2). Alternatively, as shown in FIG. 7, 1 kilowatt laser beam (33) output from the condenser lens (32) of the high-power laser device (31) is converted into the bottom (1a) of the inner wall of the cup of the electrode (1). For 34 milliseconds, and 0.7 seconds later, 1 kilowatt laser beam (33) is further irradiated to the bottom (1a) of the inner wall of the cup of the electrode (1) for 34 milliseconds, and laser welding is performed. The lead-in wire (2) is fixed to the bottom (1a) of the cup-shaped electrode (1). Various conditions such as the welding current or laser light output are appropriately determined depending on the thickness of the bottom (1a) of the electrode (1) and the state of the metal. Further, the welding temperature of the joint surface with the lead-in wire (2) at the bottom (1a) of the electrode (1) is equal to or higher than the melting point of nickel (Ni) constituting the joint material (5) and is contained in the electrode (1). It is set to be equal to or higher than the melting temperature of (Ni) and lower than the melting point of tungsten (W) constituting the lead-in wire (2). Therefore, most of the tungsten particles (W) interposed between the electrode (1) and the lead-in wire (2) are not alloyed, but may be partially alloyed. In this way, when a large welding current is applied or a high-power laser beam or electron is irradiated to apply thermal energy only to the region including the junction between the electrode (1) and the lead-in wire (2), the heating is performed. In the region of the electrode (1), the low melting point nickel (Ni) sandwiched between the high melting point tungsten particles (W) dispersed in the base material of the sintered metal constituting the electrode (1) melts. . As a result, the bond between the tungsten particles (W) dispersed in the base material of the sintered metal becomes loose, and the molten nickel (Ni) does not function as a support material between the tungsten particles (W).

このとき、電極(1)と導入線(2)とに互いに押圧力が加わって、接合材(5)を押し潰す力により、溶融した接合材(5)中のニッケル(Ni)が電極(1)内に侵入し、逆に電極(1)に含まれる担持されないタングステン粒子(W)は、溶融した接合材(5)中のニッケル(Ni)内又は電極(1)中の溶融したニッケル(Ni)内の何れか一方又は双方に拡散して、拡散した一部が電極(1)の外側に溢れ出る。電極(1)の外側に溢れ出たニッケル(Ni)内に分散するタングステン粒子(W)の一部は、導入線(2)を這い上がるか又は電極(1)の底部(1a)から導入線(2)の外側面に亘って包囲する領域を埋めるように電極(1)と導入線(2)とを接合する。その結果、図2に示すように、比較的低融点の金属であるニッケル(Ni)から成る基材中に、電極(1)のタングステン粒子(W)の一部が分散する金属組織構造を有するテーパ状の隅肉部(3)が導入線(2)の一端(2a)側の周囲に形成される。即ち、隅肉部(3)は、電極(1)に含まれるニッケル(Ni)と同一の金属から成る基材中に、電極(1)中のタングステン粒子(W)を分散させた金属組織構造を有し、電極(1)と導入線(2)との接着面積を増大しながら、電極(1)と導入線(2)との接合部の周囲に形成されて、電極(1)と導入線(2)の一端(2a)とを接合する。このように、ニッケル(Ni)を含むタングステン粒子(W)の焼結体から成る電極(1)と高融点の硬質金属であるタングステン製の導入線(2)とが強固且つ密接に接合された電極組立体(4)が得られる。   At this time, the pressing force is applied to the electrode (1) and the lead-in wire (2) to crush the bonding material (5), so that the nickel (Ni) in the molten bonding material (5) becomes the electrode (1 ), And on the contrary, the unsupported tungsten particles (W) contained in the electrode (1) are melted in the nickel (Ni) in the molten bonding material (5) or the molten nickel (Ni in the electrode (1)). ) Is diffused to one or both of the inside, and a part of the diffusion overflows outside the electrode (1). Part of the tungsten particles (W) dispersed in nickel (Ni) overflowing outside the electrode (1) scoops up the lead wire (2) or leads from the bottom (1a) of the electrode (1). The electrode (1) and the lead-in wire (2) are joined so as to fill the region surrounding the outer surface of (2). As a result, as shown in FIG. 2, it has a metal structure in which a part of tungsten particles (W) of the electrode (1) is dispersed in a base material made of nickel (Ni) which is a relatively low melting point metal. A tapered fillet portion (3) is formed around one end (2a) of the lead-in wire (2). That is, the fillet (3) has a metal structure in which tungsten particles (W) in the electrode (1) are dispersed in a base material made of the same metal as nickel (Ni) contained in the electrode (1). The electrode (1) and the introduction line (2) are formed around the joint of the electrode (1) and the introduction line (2) while increasing the adhesion area between the electrode (1) and the introduction line (2). Join one end (2a) of the line (2). In this way, the electrode (1) made of a sintered body of tungsten particles (W) containing nickel (Ni) and the lead-in wire (2) made of tungsten, which is a high melting point hard metal, were firmly and closely joined. An electrode assembly (4) is obtained.

本実施の形態の電極組立体(4)を製造する際に、タングステン粒子(W)と粉末状のニッケル(Ni)に樹脂製接着剤を構成する結着樹脂を配合して作成した流動性の混合物を成形金型のキャビティ内に充填して、カップ形状の成形体を射出成形により容易に成形しても良い。また、電極(1)と導入線(2)とを溶接する際に、電極(1)に接合材(5)と導入線(2)との接触部に熱エネルギを付与して加熱すると、電極(1)内のニッケル(Ni)に接合材(5)中のニッケル(Ni)が溶融し且つ混じり合って、その混合物の一部が電極(1)の外側に流出して、導入線(2)から盛り上がる隅肉部(3)が形成され、隅肉部(3)のニッケル(Ni)により、電極(1)と導入線(2)とを容易且つ強固に接合することができる。このとき、電極(1)内のタングステン粒子(W)のうち、粒子間のニッケル(Ni)の溶融により結合が緩くなったタングステン粒子(W)が上記の混合物と共に隅肉部(3)内に拡散して、タングステン粒子(W)の電極(1)から溶接部に亘る線膨張率の差を特許文献1に示す高融点金属から成る電極と導入線との間に低融点金属を挟む場合に比較して緩和して、信頼性の高い電極組立体(4)を得ることができる。   When producing the electrode assembly (4) of the present embodiment, the fluidity of the fluid produced by blending the binder resin constituting the resin adhesive into the tungsten particles (W) and powdered nickel (Ni). The mixture may be filled into a cavity of a molding die, and a cup-shaped molded body may be easily molded by injection molding. Further, when welding the electrode (1) and the lead-in wire (2), if the electrode (1) is heated by applying heat energy to the contact portion between the bonding material (5) and the lead-in wire (2), the electrode Nickel (Ni) in the bonding material (5) melts and mixes with the nickel (Ni) in (1), and a part of the mixture flows out of the electrode (1), leading to the lead-in wire (2 The fillet portion (3) that rises from the fillet portion (3) is formed, and the electrode (1) and the lead-in wire (2) can be easily and firmly joined to each other by the nickel (Ni) of the fillet portion (3). At this time, among the tungsten particles (W) in the electrode (1), the tungsten particles (W) loosened by melting of nickel (Ni) between the particles, together with the above mixture, in the fillet portion (3) When the low melting point metal is sandwiched between the electrode made of the high melting point metal shown in Patent Document 1 and the lead wire, the difference in the linear expansion coefficient from the electrode (1) of the tungsten particles (W) to the weld is diffused. The electrode assembly (4) with high reliability can be obtained by relaxing in comparison.

電極組立体(4)を製造する際に、図1の接合材(5)を電極(1)の底部(1a)と導入線(2)の一端(2a)との間に配置せず、図3に示すように、タングステン粒子(W)及びニッケル(Ni)を含む焼結体により構成されるカップ形状の電極(1)の底部(1a)とタングステン製の導入線(2)の一端(2a)とを直接突き合わせて電極(1)と導入線(2)を溶接して、図4に示す電極組立体(4)を形成してもよい。この場合、接合材(5)を設けないため、図4に示すように、隅肉部(3)の体積が小さくなるので、図2に示す場合と比較して接合面積は小さくなる。   When manufacturing the electrode assembly (4), the bonding material (5) of FIG. 1 is not disposed between the bottom (1a) of the electrode (1) and one end (2a) of the lead-in wire (2). 3, the bottom (1a) of the cup-shaped electrode (1) composed of a sintered body containing tungsten particles (W) and nickel (Ni) and one end (2a of the tungsten lead wire (2)) May be directly butted to weld the electrode (1) and the lead-in wire (2) to form the electrode assembly (4) shown in FIG. In this case, since the bonding material (5) is not provided, the volume of the fillet portion (3) is reduced as shown in FIG. 4, so that the bonding area is reduced as compared with the case shown in FIG.

別法として、電極組立体(4)を製造する際に、結着樹脂を使用せずに、タングステン粒子(W)と粉末状のニッケル(Ni)とを混合して粉末混合体を形成し、タングステン粒子(W)及びニッケル(Ni)粉末の粉末混合物を加圧焼結炉内に装入して加圧して圧密化しながら、600℃以上、例えば700℃程度の温度に加熱してカップ状に焼結して電極(1)を形成してもよい。この場合、タングステン粒子(W)及びニッケル(Ni)粒子と結着樹脂とを混練する工程と、成形体から結着樹脂を除去する工程とを省略でき、短時間で焼結電極(1)を形成できる。   Alternatively, when manufacturing the electrode assembly (4), without using a binder resin, the tungsten particles (W) and powdered nickel (Ni) are mixed to form a powder mixture, While a powder mixture of tungsten particles (W) and nickel (Ni) powder is charged into a pressure sintering furnace and pressed and consolidated, it is heated to a temperature of 600 ° C. or higher, for example, about 700 ° C. to form a cup shape. The electrode (1) may be formed by sintering. In this case, the step of kneading the tungsten particles (W) and nickel (Ni) particles and the binder resin and the step of removing the binder resin from the molded body can be omitted, and the sintered electrode (1) can be formed in a short time. Can be formed.

上記の実施の形態では、電極(1)と導入線(2)とを溶接する際に、電極(1)の底部(1a)の導入線(2)と接触する領域の近傍のニッケル(Ni)が溶融して、同一領域内のタングステン粒子(W)間の結合が緩くなる。この結果、粒子間の結合が緩くなったタングステン粒子(W)が、接合材(5)中のニッケル(Ni)又は電極(1)中の溶融したニッケル(Ni)の何れか一方又は双方と共に、電極(1)の外側に流れ出すので、電極(1)の底部(1a)の導入線(2)と接触する領域の近傍のタングステン粒子(W)の密度が電極(1)の他の領域に比較して若干低下するか又はタングステン粒子(W)が若干減少するため、電極(1)の底部(1a)の導入線(2)及び隅肉部(3)に接合する部分の厚さが底部(1a)の他の部分より若干薄くなる。そこで、溶接前の電極(1)の底部(1a)の導入線(2)及び隅肉部(3)に接合する部分の厚さを底部(1a)の他の部分の厚さよりも厚くしてもよい。また、タングステン粒子(W)を含むニッケル(Ni)製の接合材(5)等の線膨張係数の大きい金属粒子を含む低融点金属を電極(1)と導入線(2)との間に介在させてもよい。また、電極(1)及び接合材(5)に含まれる低融点金属は、互いに異なる金属材料を使用してもよい。また、電極(1)の高融点金属粒子(第2の金属から成る硬質粒子)及び導入線(2)を構成する高融点金属は、互いに異なる金属材料を使用してもよい。また、電極(1)に含まれる高融点の硬質金属粒子及び導入線(2)を構成する高融点金属として融点が2000℃以上の金属、更に望ましくは、融点が2000℃以上で且つ線膨張係数の小さい金属として例えばタングステン(W)やモリブデン(Mo)を利用できる。また、電極(1)に含まれる粒子間金属及び接合材(5)を構成する低融点金属としては、融点が2000℃以下の金属、例えば鉄(Fe)、白金(Pt)、コバルト(Co)、ニッケル(Ni)、クロム(Cr)、又はこれらの金属の少なくとも1つを含む合金等から選択すればよい。因みに、モリブデン(Mo)の融点は2620℃であり、線膨張係数は3.7×10-6/℃である。また、鉄(Fe)の融点は1540℃で線膨張係数は5.6×10-6/℃であり、白金(Pt)の融点は1770℃で線膨張係数は6.6×10-6/℃であり、コバルト(Co)の融点は1490℃で線膨張係数は6.8×10-6/℃である。また、電極(1)内にスカンジウム(Sc)、イットリウム(Y)、ニオブ(Nb)、ランタン(La)、セリウム(Ce)、ガドリニウム(Gd)又はトリウム(Th)等の化合物から成る電子放出性材料を含んでもよい。また、電極(1)は複雑な形状でもよいが、ホロー効果により電極(1)での電圧降下を低減できるカップ形状が好ましい。 In the above embodiment, when welding the electrode (1) and the lead-in wire (2), nickel (Ni) in the vicinity of the region in contact with the lead-in wire (2) at the bottom (1a) of the electrode (1) As a result, the bonds between tungsten particles (W) in the same region become loose. As a result, the tungsten particles (W) in which the bonding between the particles is loose, together with one or both of nickel (Ni) in the bonding material (5) and molten nickel (Ni) in the electrode (1), Since it flows out of the electrode (1), the density of tungsten particles (W) in the vicinity of the area in contact with the lead-in line (2) at the bottom (1a) of the electrode (1) is compared with other areas of the electrode (1). Therefore, the thickness of the portion joined to the lead-in line (2) and fillet part (3) of the bottom part (1a) of the electrode (1) is slightly reduced or the tungsten particles (W) are slightly reduced. 1a) Slightly thinner than other parts. Therefore, the thickness of the portion joined to the lead wire (2) and fillet portion (3) of the bottom (1a) of the electrode (1) before welding is made thicker than the thickness of the other portion of the bottom (1a). Also good. Also, a low melting point metal containing metal particles having a large linear expansion coefficient such as a nickel (Ni) bonding material (5) containing tungsten particles (W) is interposed between the electrode (1) and the lead-in wire (2). You may let them. Further, the low melting point metals contained in the electrode (1) and the bonding material (5) may use different metal materials. Further, the refractory metal particles (hard particles made of the second metal) of the electrode (1) and the refractory metal constituting the lead-in wire (2) may use different metal materials. Further, the high melting point hard metal particles contained in the electrode (1) and the high melting point metal constituting the lead-in wire (2) are metals having a melting point of 2000 ° C. or higher, more preferably a melting point of 2000 ° C. or higher and a linear expansion coefficient. For example, tungsten (W) or molybdenum (Mo) can be used as a small metal. Further, as the low melting point metal constituting the interparticle metal and the bonding material (5) contained in the electrode (1), a metal having a melting point of 2000 ° C. or less, such as iron (Fe), platinum (Pt), cobalt (Co) Nickel (Ni), chromium (Cr), or an alloy containing at least one of these metals may be selected. Incidentally, the melting point of molybdenum (Mo) is 2620 ° C., and the linear expansion coefficient is 3.7 × 10 −6 / ° C. Iron (Fe) has a melting point of 1540 ° C. and a linear expansion coefficient of 5.6 × 10 −6 / ° C., and platinum (Pt) has a melting point of 1770 ° C. and a linear expansion coefficient of 6.6 × 10 −6 / ° C. The melting point of cobalt (Co) is 1490 ° C. and the linear expansion coefficient is 6.8 × 10 −6 / ° C. In addition, the electrode (1) has an electron emission property composed of a compound such as scandium (Sc), yttrium (Y), niobium (Nb), lanthanum (La), cerium (Ce), gadolinium (Gd), or thorium (Th). Materials may be included. The electrode (1) may have a complicated shape, but a cup shape that can reduce a voltage drop at the electrode (1) by the hollow effect is preferable.

図1〜図5に示す電極組立体(4)は、例えば図8に示す冷陰極蛍光放電管(CCFL)等の放電管(11)に適用することができる。本実施の形態の放電管(11)は、図8に示すように、放電用ガスを収容する閉鎖空間(13)を形成するガラス製のバルブ(12)と、バルブ(12)の内壁面に被着された図示しない蛍光膜とを備え、図1〜図5に示す電極組立体(4)の電極(1)をバルブ(12)の閉鎖空間(13)内に配置し且つガラスビーズ(14)を介して電極(1)に接合される導入線(2)の埋設部(2d)をバルブ(12)の各端部(12a)に融着し且つ埋設部(2d)に隣接する導出部(2e)をバルブ(12)の外部に導出させて、バルブ(12)の各端部(12a)の各々に電極組立体(4)を固定し、一対の電極組立体(4)間に電圧を印加することにより、電極(1)間で放電させて閉鎖空間(13)内に充填した放電用ガスを介して発光させる。   The electrode assembly (4) shown in FIGS. 1 to 5 can be applied to a discharge tube (11) such as a cold cathode fluorescent discharge tube (CCFL) shown in FIG. As shown in FIG. 8, the discharge tube (11) of the present embodiment includes a glass bulb (12) that forms a closed space (13) that accommodates a discharge gas, and an inner wall surface of the bulb (12). The electrode (1) of the electrode assembly (4) shown in FIGS. 1 to 5 is disposed in the closed space (13) of the bulb (12) and is made of glass beads (14). ) And the lead-out portion (2d) of the lead-in wire (2) joined to the electrode (1) via the lead (2) is fused to each end portion (12a) of the valve (12) and adjacent to the buried portion (2d). (2e) is led out of the valve (12), the electrode assembly (4) is fixed to each end (12a) of the valve (12), and a voltage is applied between the pair of electrode assemblies (4). Is applied to cause discharge between the electrodes (1) to emit light through the discharge gas filled in the closed space (13).

本実施の形態の放電管(11)では、線膨張係数の小さいタングステン粒子(W)を含む電極組立体(4)を使用するので、電極組立体(4)の電極(1)の劣化又はバルブ(12)の黒化現象による発光輝度の低下を抑制できる。また、導入線(2)の埋設部(2d)をバルブ(12)の各端部(12a)に融着する際に、導入線(2)の埋設部(2d)とバルブ(12)の各端部(12a)とを十分な接着強度で密着できるので、導入線(2)の埋設部(2d)とバルブ(12)の各端部(12a)との間に連通孔が生じて発生するバルブ(12)内の放電ガスの流出やバルブ(12)外部の大気の流入を抑制して、放電管(11)の寿命低下を抑制することができる。更に、電極組立体(4)の隅肉部(3)は、タングステン粒子(W)よりも低融点の金属であるニッケル(Ni)から成る基材中に電極(1)のタングステン粒子(W)の一部を含むので、電極(1)と隅肉部(3)との界面での熱衝撃が緩和され、高い機械的強度で溶接される。これにより、点灯中の電極組立体(4)の発熱による熱衝撃や振動衝撃に強い放電管(11)を得ることが可能となる。   In the discharge tube (11) of the present embodiment, since the electrode assembly (4) containing tungsten particles (W) having a small linear expansion coefficient is used, the deterioration of the electrode (1) of the electrode assembly (4) or the bulb The decrease in emission luminance due to the blackening phenomenon of (12) can be suppressed. Further, when the embedded portion (2d) of the introduction line (2) is fused to each end (12a) of the valve (12), each of the embedded portion (2d) of the introduction line (2) and each of the valves (12) Since the end (12a) can be adhered with sufficient adhesive strength, a communication hole is generated between the embedded portion (2d) of the lead-in wire (2) and each end (12a) of the valve (12). The discharge of the discharge gas in the bulb (12) and the inflow of the atmosphere outside the bulb (12) can be suppressed, and the life reduction of the discharge tube (11) can be suppressed. Further, the fillet portion (3) of the electrode assembly (4) is made of tungsten particles (W) of the electrode (1) in a base material made of nickel (Ni) which is a metal having a lower melting point than the tungsten particles (W). Therefore, the thermal shock at the interface between the electrode (1) and the fillet portion (3) is alleviated and welding is performed with high mechanical strength. This makes it possible to obtain a discharge tube (11) that is resistant to thermal shock and vibration shock due to heat generation of the electrode assembly (4) during lighting.

本発明は、硬質粒子と粒子間金属を含む焼結体により構成される電極の製造及びその電極を使用する放電管に良好に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be suitably applied to the production of an electrode constituted by a sintered body containing hard particles and intergranular metal and a discharge tube using the electrode.

本発明による電極組立体の構成の一実施の形態を示す断面図Sectional drawing which shows one Embodiment of a structure of the electrode assembly by this invention 図1の構成で溶接した後の電極組立体を示す断面図Sectional drawing which shows the electrode assembly after welding with the structure of FIG. 本発明による電極組立体の構成の他の実施の形態を示す断面図Sectional drawing which shows other embodiment of the structure of the electrode assembly by this invention 図3の構成で溶接した後の電極組立体を示す断面図Sectional drawing which shows the electrode assembly after welding with the structure of FIG. 焼結電極の微細構造を示す断面図Sectional view showing the microstructure of the sintered electrode 図1に示す電極組立体を抵抗溶接する際の構成図Configuration diagram when resistance welding the electrode assembly shown in FIG. 図1に示す電極組立体をレーザ溶接する際の構成図Configuration diagram when laser welding the electrode assembly shown in FIG. 本発明による電極組立体を使用した放電管の断面図Sectional view of a discharge tube using an electrode assembly according to the invention

符号の説明Explanation of symbols

(1)・・電極、 (1a)・・底部、 (1b)・・筒部、 (2)・・導入線、 (2a)・・端部、 (2b)・・端面、 (2c)・・外周部、 (2d)・・埋設部、 (2e)・・導出部、 (3)・・隅肉部、 (4)・・電極組立体、 (5)・・接合材、 (11)・・放電管、 (12)・・バルブ、 (13)・・閉鎖空間、 (14)・・ガラスビーズ、 (21)・・溶接用電源、 (22)・・固定電極、 (23)・・可動電極、 (23a)・・先端部、 (31)・・高出力レーザ装置、 (32)・・集光レンズ、 (33)・・レーザ光、 (W)・・タングステン粒子(第2の金属から成る硬質粒子)、 (Ni)・・ニッケル(第1の金属)、   (1) ・ ・ Electrode, (1a) ・ ・ Bottom, (1b) ・ ・ Cylinder, (2) ・ ・ Introduction wire, (2a) ・ ・ End, (2b) ・ ・ End face, (2c) ・ ・Peripheral part, (2d) ... Embedded part, (2e) ... Lead-out part, (3) ... Fillet part, (4) ... Electrode assembly, (5) ... Joining material, (11) ... Discharge tube, (12) ・ ・ Valve, (13) ・ ・ Enclosed space, (14) ・ ・ Glass beads, (21) ・ ・ Power supply for welding, (22) ・ ・ Fixed electrode, (23) ・ ・ Movable electrode , (23a)-tip, (31)-high power laser device, (32)-condensing lens, (33)-laser light, (W)-tungsten particles (consisting of a second metal) Hard particles), (Ni) ・ ・ Nickel (first metal),

Claims (8)

低融点の第1の金属から成る第1の基材と、該第1の基材に密着する高融点の第2の金属から成る多数の硬質粒子とを含む金属焼結体で構成される電極と、
前記電極に接合される端面を形成する端部を有し且つ高融点の第3の金属から成る導入線と、
前記導入線の端部の端面の周囲で前記端部の外周部と前記電極とを環状に接合する隅肉部とを備え、
前記電極内の第1の金属は、前記硬質粒子に密着し且つ前記第2の金属より低い硬度を有し、
前記隅肉部は、前記第2の金属より融点の低い第4の金属から成る第2の基材と、前記第1の基材から拡散されて前記第2の基材の少なくとも一部内に保持される前記硬質粒子とを含むことを特徴とする電極組立体。
An electrode composed of a sintered metal body including a first base material made of a first metal having a low melting point and a plurality of hard particles made of a second metal having a high melting point that is in close contact with the first base material. When,
An introduction line made of a third metal having a high melting point and an end part forming an end face joined to the electrode;
A fillet portion that annularly joins the outer peripheral portion of the end portion and the electrode around the end face of the end portion of the introduction line,
The first metal in the electrode is in close contact with the hard particles and has a lower hardness than the second metal;
The fillet portion is diffused from the first base material and held in at least a part of the second base material made of a fourth metal having a melting point lower than that of the second metal. An electrode assembly comprising the hard particles.
金属焼結体により構成される電極と、該電極の底部に接合される導入線とを備え、
前記電極に接合される前記導入線の周囲に設けられる隅肉部は、前記電極の底部と導入線との接合部を環状に拡張し、
前記電極は、前記金属焼結体の第1の基材を構成する第1の金属と、該第1の金属に密着する第2の金属から成る硬質粒子とを含み、
前記第1の金属は、低融点で且つ線膨張係数が大きく、前記第2の金属は、高融点で且つ線膨張係数が小さく、
前記導入線は、高融点の第3の金属から成り、
前記隅肉部は、前記第2の金属より融点の低い第4の金属から成る第2の基材と、前記第1の基材から拡散されて該第2の基材の少なくとも一部内に分散される前記硬質粒子とを含む金属組織構造を有することを特徴とする電極組立体。
An electrode composed of a sintered metal body, and an introduction line joined to the bottom of the electrode,
The fillet portion provided around the lead-in line joined to the electrode extends the joint part between the bottom part of the electrode and the lead-in line in an annular shape,
The electrode includes a first metal constituting a first base of the sintered metal body, and hard particles composed of a second metal that is in close contact with the first metal,
The first metal has a low melting point and a large coefficient of linear expansion, and the second metal has a high melting point and a small coefficient of linear expansion,
The lead wire is made of a high melting point third metal,
The fillet part is diffused from the first base material and dispersed in at least a part of the second base material made of a fourth metal having a melting point lower than that of the second metal. An electrode assembly having a metallographic structure including the hard particles.
前記第2の金属及び前記第3の金属は、タングステン及びモリブデンから成る群から選択され、
前記第1の金属及び前記第4の金属は、ニッケルである請求項1又は2に記載の電極組立体。
The second metal and the third metal are selected from the group consisting of tungsten and molybdenum;
The electrode assembly according to claim 1, wherein the first metal and the fourth metal are nickel.
低融点の粉末状の第1の金属と該第1の金属より高融点の第2の金属から成る硬質粒子とを混合して、粉末混合体を形成する工程と、
該粉末混合体をカップ状に焼結して、前記第1の金属から成る第1の基材に密着する多数の硬質粒子を有する金属焼結体の電極を形成する工程と、
前記第1の金属の融点以上の温度にて、高融点の第3の金属から成る導入線の一端を前記電極に溶接する工程とを含み、
前記溶接工程により、前記第2の金属より低融点の第4の金属から成る第2の基材から成る隅肉部を前記電極と前記導入線との接合部の周囲に形成すると共に、前記電極に含まれる前記硬質粒子を前記第2の基材中に拡散する工程とを含むことを特徴とする電極組立体の製法。
Mixing a powdery first metal having a low melting point and hard particles composed of a second metal having a higher melting point than the first metal to form a powder mixture;
Sintering the powder mixture in a cup shape to form a metal sintered body electrode having a number of hard particles in close contact with the first substrate comprising the first metal;
Welding one end of a lead wire made of a high melting point third metal to the electrode at a temperature equal to or higher than the melting point of the first metal,
By the welding step, a fillet portion made of a second base material made of a fourth metal having a melting point lower than that of the second metal is formed around the joint portion between the electrode and the lead-in wire, and the electrode And a step of diffusing the hard particles contained in the second base material into the second base material.
低融点の粉末状の第1の金属と該第1の金属より高融点の第2の金属から成る硬質粒子とを混合して、粉末混合体を形成する工程と、
該粉末混合体をカップ状に焼結して、前記第1の金属から成る第1の基材に密着する多数の前記硬質粒子を有する金属焼結体で構成される電極を形成する工程と、
前記第1の金属の融点以上の温度にて、高融点の第3の金属から成る導入線の一端を前記電極に溶接する工程とを含み、
前記溶接工程により、前記電極中に包含される前記硬質粒子の一部を前記電極から第2の基材中に拡散させた隅肉部を、前記電極と前記導入線との接合部の周囲に形成することを特徴とする電極組立体の製法。
Mixing a powdery first metal having a low melting point and hard particles composed of a second metal having a higher melting point than the first metal to form a powder mixture;
Sintering the powder mixture in a cup shape to form an electrode composed of a metal sintered body having a large number of the hard particles in close contact with the first substrate made of the first metal;
Welding one end of a lead wire made of a high melting point third metal to the electrode at a temperature equal to or higher than the melting point of the first metal,
A fillet portion in which a part of the hard particles contained in the electrode is diffused from the electrode into the second base material by the welding process is provided around the joint portion of the electrode and the lead-in wire. A method of manufacturing an electrode assembly, comprising: forming an electrode assembly.
前記電極と前記導入線との間に前記第1の金属から成る接合材を配置する工程と、
前記接合材を介して前記電極と前記導入線とを溶着する工程を含む請求項4又は5に記載の電極組立体の製法。
Disposing a bonding material made of the first metal between the electrode and the lead-in wire;
The manufacturing method of the electrode assembly of Claim 4 or 5 including the process of welding the said electrode and the said introductory wire through the said joining material.
前記第2の金属及び前記第3の金属は、タングステン及びモリブデンから成る群から選択され、
前記第1の金属及び前記隅肉部を構成する金属は、ニッケルである請求項4〜6の何れか1項に記載の電極組立体の製法。
The second metal and the third metal are selected from the group consisting of tungsten and molybdenum;
The method for producing an electrode assembly according to any one of claims 4 to 6, wherein the metal constituting the first metal and the fillet portion is nickel.
請求項1〜3の何れかに記載の電極組立体又は請求項4〜7の何れかにより製造される電極組立体の電極をバルブの閉鎖空間内に配置し、且つ前記電極に接合される導入線の埋設部を前記バルブの各端部に融着し、且つ前記埋設部に隣接する導出部を前記バルブの外部に導出させて、前記閉鎖空間を形成する前記バルブの各端部に前記電極組立体を固定したことを特徴とする放電管。   An electrode assembly according to any one of claims 1 to 3 or an electrode assembly manufactured according to any one of claims 4 to 7 is arranged in a closed space of a valve and joined to the electrode. A wire embedded portion is fused to each end portion of the bulb, and a lead-out portion adjacent to the buried portion is led out to the outside of the valve so that the electrode is formed at each end portion of the valve forming the closed space. A discharge tube having a fixed assembly.
JP2007177570A 2007-07-05 2007-07-05 Electrode assembly, manufacturing method thereof, and discharging tube using same electrode assembly Pending JP2009016211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177570A JP2009016211A (en) 2007-07-05 2007-07-05 Electrode assembly, manufacturing method thereof, and discharging tube using same electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177570A JP2009016211A (en) 2007-07-05 2007-07-05 Electrode assembly, manufacturing method thereof, and discharging tube using same electrode assembly

Publications (1)

Publication Number Publication Date
JP2009016211A true JP2009016211A (en) 2009-01-22

Family

ID=40356864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177570A Pending JP2009016211A (en) 2007-07-05 2007-07-05 Electrode assembly, manufacturing method thereof, and discharging tube using same electrode assembly

Country Status (1)

Country Link
JP (1) JP2009016211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186673A (en) * 2009-02-13 2010-08-26 Aitekku Kk Method for manufacturing electrode for cold-cathode lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186673A (en) * 2009-02-13 2010-08-26 Aitekku Kk Method for manufacturing electrode for cold-cathode lamp

Similar Documents

Publication Publication Date Title
JP5730201B2 (en) Seal rings and related methods
JP5472915B2 (en) Discharge lamp
TWI509655B (en) Discharge lamp
US6375533B1 (en) Electricity lead-in body for bulb and method for manufacturing the same
JP2009016211A (en) Electrode assembly, manufacturing method thereof, and discharging tube using same electrode assembly
KR20080017419A (en) Electrode system for a lamp
JP2005071972A (en) Electrode for cold cathode tube, and manufacturing method of the same
KR100825832B1 (en) Method for assembling magnetron cathod and a melting contact metal for connecting filament and mo hat thereof
KR102229692B1 (en) Discharge lamp
JP2004146306A (en) Electrode for cold cathode discharge tube
KR20090093637A (en) Melting contact metal for connecting filament and Mo hat for magnetron cathod
KR101125098B1 (en) Sealing nethod ane metal granule using the same SOFC
WO2015049995A1 (en) Short-arc discharge lamp and short-arc discharge lamp cathode production method
JP2007294242A (en) Electrode for cold-cathode discharge tube, its manufacturing method, and cold-cathode discharge tube
JP2001325916A (en) Lamp
US20150008821A1 (en) Hermetically sealed ceramic discharge lamps
TW536725B (en) Impregnated cathode structure and its manufacturing method
JP2017506421A (en) Contact pin, tubular contact body, and manufacturing method
JP3991109B2 (en) Functionally graded material and tube
KR19990027594A (en) Pellet support structure of electron gun cathode
KR100473068B1 (en) Cathode manufacturing method of electron gun
JP4997485B2 (en) Conductive microsphere joined body and joining method
JP2009129637A (en) Sealing member, and bulb
KR100473069B1 (en) Pellet support structure of electron gun cathode
JPH10289691A (en) Closed body using functionally gradient material