JP2009016055A - Manufacturing method of gas diffusion layer, and paste composition for gas diffusion layer manufacturing - Google Patents

Manufacturing method of gas diffusion layer, and paste composition for gas diffusion layer manufacturing Download PDF

Info

Publication number
JP2009016055A
JP2009016055A JP2007173355A JP2007173355A JP2009016055A JP 2009016055 A JP2009016055 A JP 2009016055A JP 2007173355 A JP2007173355 A JP 2007173355A JP 2007173355 A JP2007173355 A JP 2007173355A JP 2009016055 A JP2009016055 A JP 2009016055A
Authority
JP
Japan
Prior art keywords
paste composition
conductive porous
gas diffusion
diffusion layer
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007173355A
Other languages
Japanese (ja)
Other versions
JP5292729B2 (en
Inventor
Hiroshi Kishimoto
比呂志 岸本
Aiko Oimatsu
あいこ 老松
Satoshi Tsunoda
智 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Inctec Inc
Original Assignee
Dai Nippon Printing Co Ltd
Inctec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd, Inctec Inc filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007173355A priority Critical patent/JP5292729B2/en
Publication of JP2009016055A publication Critical patent/JP2009016055A/en
Application granted granted Critical
Publication of JP5292729B2 publication Critical patent/JP5292729B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a gas diffusion layer in order to suppress reduction of gas permeability and increase in contact resistance. <P>SOLUTION: The manufacturing method of the gas diffusion layer is the method of manufacturing the gas diffusion layer by coating, drying, and calcining so that a paste composition may not permeate into a conductive porous base material surface, and the paste composition and the conductive porous base material satisfy the following (A) and (B) requirements: (A) the paste composition contains carbon particles, fluororesin, dispersant, and water, and its surface tension is 35 mN/m or less: (B) the surface tension of the paste composition is smaller than that of the conductive porous base material, and a contact angle of the conductive porous base material and the paste composition is 90 to 120°. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は燃料電池用のガス拡散層の新規な製造方法及びその製造に用いるペースト組成物に関する。   The present invention relates to a novel method for producing a gas diffusion layer for a fuel cell and a paste composition used for the production.

固体高分子型燃料電池を構成する膜−電極接合体(MEA)は、ガス拡散層/触媒層/水素イオン伝導性固体高分子/触媒層/ガス拡散層という層構造を有している。   A membrane-electrode assembly (MEA) constituting a solid polymer fuel cell has a layer structure of gas diffusion layer / catalyst layer / hydrogen ion conductive solid polymer / catalyst layer / gas diffusion layer.

このうち、ガス拡散層は、主として、セパレータから供給されるガスを広く触媒層に行き渡らせる役割を果たすため、ガス透過性が良好なものが必要とされる。また、触媒層で発生した電子を効率よくエネルギーに変換するために導電性も必要である。さらには、触媒層の反応で生成される水がガス拡散層内に侵入して留まると、ガス透過を妨げる原因ともなるので、ガス拡散層には撥水性も必要とされる。   Among these, the gas diffusion layer mainly plays a role of spreading the gas supplied from the separator to the catalyst layer, and therefore, a gas diffusion layer with good gas permeability is required. In addition, conductivity is required to efficiently convert electrons generated in the catalyst layer into energy. Furthermore, if water generated by the reaction of the catalyst layer penetrates into the gas diffusion layer and stays in the gas diffusion layer, the gas diffusion layer may be hindered, so that the gas diffusion layer also needs water repellency.

このうち、撥水性を持たせる方法として、導電性多孔質基材(ガス拡散層)を撥水性樹脂に含浸させる撥水処理を行うことにより、撥水性樹脂を付着させる方法が行われている。   Among these methods, as a method of imparting water repellency, a method of adhering the water-repellent resin by performing a water-repellent treatment in which a conductive porous substrate (gas diffusion layer) is impregnated into the water-repellent resin is performed.

しかし、撥水性樹脂等の絶縁性材料により被覆されたガス拡散層を触媒層に積層させてMEAを製造すると、ガス拡散層と触媒層との接触抵抗が大きくなってしまい、導電性が低下する問題が生じている。   However, when an MEA is manufactured by laminating a gas diffusion layer coated with an insulating material such as a water repellent resin on the catalyst layer, the contact resistance between the gas diffusion layer and the catalyst layer increases and the conductivity decreases. There is a problem.

この接触抵抗の問題を解決するため、撥水性樹脂が被覆された導電性多孔質基材に、炭素材料及び撥水性樹脂から構成される層(いわゆる平坦化層)を導電性多孔質基材表面に形成させる方法が提案されている(特許文献1)。この方法は、炭素材料及び撥水性樹脂を含むペースト組成物を導電性多孔質基材に塗布及び焼成することにより平坦化層を形成させる。   In order to solve this contact resistance problem, a conductive porous substrate coated with a water-repellent resin is coated with a layer composed of a carbon material and a water-repellent resin (so-called flattening layer) on the surface of the conductive porous substrate. A method of forming the film is proposed (Patent Document 1). In this method, a planarizing layer is formed by applying and baking a paste composition containing a carbon material and a water-repellent resin on a conductive porous substrate.

しかしながら、この方法では、当該ペースト組成物が多孔質基材内部にまで浸透し、ペースト組成物が多孔質基材内部の空隙を埋めてしまう。そのため、ガス拡散性が損なわれ、かえって、燃料電池全体の電池性能が低下するという問題が生じている。   However, in this method, the paste composition penetrates into the porous substrate, and the paste composition fills the voids inside the porous substrate. Therefore, the gas diffusibility is impaired, and on the contrary, there is a problem that the cell performance of the entire fuel cell is lowered.

したがって、導電性多孔質基材本来のガス透過性の低減を抑制し、かつ接触抵抗を下げたガス拡散層の提供が望まれている。
特開2003−115302
Therefore, it is desired to provide a gas diffusion layer that suppresses the reduction in gas permeability inherent in the conductive porous substrate and has a reduced contact resistance.
JP 2003-115302 A

本発明は、ガス透過性の低下及び接触抵抗の増加を抑制させるためのガス拡散層の製造方法を提供することを主な目的とする。   The main object of the present invention is to provide a method for producing a gas diffusion layer for suppressing a decrease in gas permeability and an increase in contact resistance.

本発明者らは上記問題点に鑑み、鋭意研究を重ねた結果、特定のペースト組成物及び特定の導電性多孔質基材を用い、特定の方法で処理することにより、上記問題点を解決でき、所望のガス拡散層を製造できることを見い出した。すなわち、本発明は下記の製造方法及びペースト組成物等を提供する。   In view of the above problems, the present inventors have conducted extensive research and as a result, the above problems can be solved by treating with a specific method using a specific paste composition and a specific conductive porous substrate. It has been found that a desired gas diffusion layer can be produced. That is, the present invention provides the following production method and paste composition.

項1.導電性多孔質基材表面にペースト組成物が浸透しないように塗布し、乾燥及び焼成することにより、ガス拡散層を製造する方法であって、
ペースト組成物及び導電性多孔質基材が下記(A)及び(B):
(A)前記ペースト組成物が炭素粒子、フッ素系樹脂、分散剤及び水を含み、その表面張力が35mN/m以下である:
(B)前記ペースト組成物の表面張力が導電性多孔質基材の表面張力よりも小さく、前記導電性多孔質基材とペースト組成物との接触角が90〜120°である:
の要件を満足している、ガス拡散層の製造方法。
Item 1. A method for producing a gas diffusion layer by applying the paste composition on the surface of the conductive porous substrate so as not to penetrate, drying and firing,
The paste composition and conductive porous substrate are the following (A) and (B):
(A) The paste composition contains carbon particles, a fluororesin, a dispersant, and water, and the surface tension is 35 mN / m or less:
(B) The surface tension of the paste composition is smaller than the surface tension of the conductive porous substrate, and the contact angle between the conductive porous substrate and the paste composition is 90 to 120 °:
A method for producing a gas diffusion layer that satisfies the above requirements.

項2.ブレードを用いてペースト組成物を塗布する際には、ブレードを導電性多孔質基材表面に接触させないように行う、項1に記載の製造方法。   Item 2. Item 2. The production method according to Item 1, wherein when the paste composition is applied using a blade, the blade is not brought into contact with the surface of the conductive porous substrate.

項3.前記ペースト組成物がアルコールを含有しない、項1又は2に記載の製造方法。   Item 3. Item 3. The method according to Item 1 or 2, wherein the paste composition does not contain alcohol.

項4.前記導電性多孔質基材の表面張力とペースト組成物の表面張力との差が2.5mN/m以上である、項1〜3のいずれかに記載の製造方法。   Item 4. Item 4. The production method according to any one of Items 1 to 3, wherein the difference between the surface tension of the conductive porous substrate and the surface tension of the paste composition is 2.5 mN / m or more.

項5.前記導電性多孔質基材は予め撥水処理がなされている、項1〜4のいずれかに記載の製造方法。   Item 5. Item 5. The manufacturing method according to any one of Items 1 to 4, wherein the conductive porous substrate is subjected to a water repellent treatment in advance.

項6.前記分散剤の熱分解温度が350℃以下である、項1〜5のいずれかに記載の製造方法。   Item 6. The manufacturing method in any one of claim | item 1 -5 whose thermal decomposition temperature of the said dispersing agent is 350 degrees C or less.

項7.項1〜6のいずれかに記載の製造方法により得られるガス拡散層。   Item 7. The gas diffusion layer obtained by the manufacturing method in any one of claim | item 1 -6.

項8.導電性多孔質基材表面に塗布、乾燥及び焼成してガス拡散層を製造するために使用されるペースト組成物であって、前記ペースト組成物が炭素粒子、フッ素系樹脂、分散剤及び水を含み、その表面張力(25℃)が35mN/m以下である、ことを特徴とするペースト組成物。   Item 8. A paste composition used for producing a gas diffusion layer by coating, drying and firing on the surface of a conductive porous substrate, wherein the paste composition contains carbon particles, a fluororesin, a dispersant and water. A paste composition comprising a surface tension (25 ° C.) of 35 mN / m or less.

項9.分散剤が、ポリオキシエチレンアルキレンアルキルエーテル、ポリエチレングリコールアルキルエーテル、ポリオキシエチレン脂肪酸エステル及び酸性基含有構造変性ポリアクリレートからなる群から選択される少なくとも1種である。項8に記載のペースト組成物。   Item 9. The dispersant is at least one selected from the group consisting of polyoxyethylene alkylene alkyl ether, polyethylene glycol alkyl ether, polyoxyethylene fatty acid ester, and acidic group-containing structurally modified polyacrylate. Item 9. The paste composition according to Item 8.

本発明のガス拡散層の製造方法は、導電性多孔質基材表面にペースト組成物が浸透しないように塗布し、乾燥及び焼成することにより、ガス拡散層を製造する方法であって、
ペースト組成物及び導電性多孔質基材が下記(A)及び(B)の要件を満足していることを特徴とする。
(A)前記ペースト組成物が炭素粒子、フッ素系樹脂、分散剤及び水を含み、その表面張力が35mN/m以下である。
(B)前記ペースト組成物の表面張力が導電性多孔質基材の表面張力よりも小さく、前記ペースト組成物と導電性多孔質基材との接触角が90〜120°である。
The method for producing a gas diffusion layer of the present invention is a method for producing a gas diffusion layer by applying the paste composition to the surface of the conductive porous substrate so as not to penetrate, drying and firing,
The paste composition and the conductive porous substrate satisfy the following requirements (A) and (B).
(A) The paste composition contains carbon particles, a fluororesin, a dispersant, and water, and the surface tension is 35 mN / m or less.
(B) The surface tension of the paste composition is smaller than the surface tension of the conductive porous substrate, and the contact angle between the paste composition and the conductive porous substrate is 90 to 120 °.

これにより、導電性多孔質基材表面に、当該基材内部の空隙を閉塞させずに、触媒層との接触抵抗を下げることができる層(平坦化層)を設けることが可能となる。この結果、優れた電池性能を発揮できるガス拡散層を製造することができる。以下これを詳述する。   This makes it possible to provide a layer (planarization layer) that can reduce the contact resistance with the catalyst layer without blocking the voids inside the base material on the surface of the conductive porous base material. As a result, a gas diffusion layer that can exhibit excellent battery performance can be produced. This will be described in detail below.

ペースト組成物
本発明のペースト組成物は、炭素粒子、フッ素系樹脂、分散剤及び水を含み、その表面張力(25℃)が35mN/m以下であることを特徴とする。
Paste composition The paste composition of the present invention comprises carbon particles, a fluororesin, a dispersant and water, and has a surface tension (25 ° C.) of 35 mN / m or less.

炭素粒子は、導電性のものであれば限定的でなく、公知又は市販のものを使用できる。例えば、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラック等のカーボンブラック;黒鉛;活性炭等を1種単独又は2種以上で用いることができる。炭素粒子の算術平均粒子径は通常5nm〜200nm程度、好ましくは20nm〜80nm程度である。   The carbon particles are not limited as long as they are conductive, and known or commercially available carbon particles can be used. For example, carbon black such as channel black, furnace black, ketjen black, acetylene black, and lamp black; graphite; activated carbon and the like can be used alone or in combination of two or more. The arithmetic average particle diameter of the carbon particles is usually about 5 nm to 200 nm, preferably about 20 nm to 80 nm.

本発明に用いるフッ素系樹脂は、公知又は市販のものを使用できる。例えば、ポリテトラフルオロエチレン、フッ化エチレンプロピレン樹脂、パーフロロアルコキシ樹脂等が挙げられる。このようなフッ素系樹脂を含有することにより、ガス拡散層に撥水性を持たせることが可能となる。その結果、電池反応時に生成する水を速やかに外部に排出することができ、生成水によるガス拡散層内の空隙の閉塞を抑制できる。   A well-known or commercially available fluorine resin can be used for the present invention. For example, polytetrafluoroethylene, fluorinated ethylene propylene resin, perfluoroalkoxy resin and the like can be mentioned. By containing such a fluorine resin, the gas diffusion layer can be provided with water repellency. As a result, water generated during the battery reaction can be quickly discharged to the outside, and blockage of voids in the gas diffusion layer due to the generated water can be suppressed.

分散剤としては、公知又は市販のものが使用できるが、本発明では、特に熱分解温度が350℃以下のものが好ましい。このような分散剤としては、例えば、ポリオキシエチレンアルキレンアルキルエーテル(熱分解温度330℃)、ポリオキシエチレン脂肪酸エステル (熱分解温度330℃)、ポリエチレングリコールアルキルエーテル(熱分解温度350℃)、酸性基含有構造変性ポリアクリレート(熱分解温度350℃)等が挙げられる。これにより、低温度で分散剤を分解させることができるため、大型高温炉等を必要とせず、低コスト化を図ることができる。   As the dispersant, known or commercially available ones can be used. In the present invention, those having a thermal decomposition temperature of 350 ° C. or less are particularly preferable. Examples of such a dispersant include polyoxyethylene alkylene alkyl ether (thermal decomposition temperature 330 ° C.), polyoxyethylene fatty acid ester (thermal decomposition temperature 330 ° C.), polyethylene glycol alkyl ether (thermal decomposition temperature 350 ° C.), acidic Examples thereof include group-containing structure-modified polyacrylate (thermal decomposition temperature: 350 ° C.). Thereby, since a dispersing agent can be decomposed | disassembled at low temperature, a large sized high temperature furnace etc. are not required but cost reduction can be achieved.

本発明のペースト組成物は、アルコールを実質的に含有しないことが好ましい。このようなアルコールとしては、例えば、炭素数1〜5程度(特に炭素数2〜4)の1価又は多価のアルコールが挙げられる。具体的には、メタノール、エタノール、イソプロピルアルコール(IPA)、n−ブタノール、t−ブタノール等が挙げられる。このようにアルコールを含有しない場合には、塗布されるペースト組成物が導電性多孔質基材に浸透することをより抑制でき、導電性多孔質基材の多孔性を保つことが可能となる。   The paste composition of the present invention preferably contains substantially no alcohol. Examples of such alcohol include monovalent or polyhydric alcohols having about 1 to 5 carbon atoms (particularly 2 to 4 carbon atoms). Specific examples include methanol, ethanol, isopropyl alcohol (IPA), n-butanol, and t-butanol. Thus, when it does not contain alcohol, it can suppress that the paste composition apply | coated permeate | transmits an electroconductive porous base material more, and it becomes possible to maintain the porosity of an electroconductive porous base material.

ペースト組成物の配合割合は所定の表面張力を有する限り限定的でないが、例えば、炭素粒子100重量部に対して、フッ素系樹脂5〜500重量部(好ましくは50〜400重量部)程度、分散剤10〜500重量部(好ましくは20〜200重量部)程度、水50〜2000重量部(好ましくは100〜1000重量部)程度とすればよい。   The blending ratio of the paste composition is not limited as long as it has a predetermined surface tension. For example, about 5 to 500 parts by weight (preferably 50 to 400 parts by weight) of fluororesin is dispersed with respect to 100 parts by weight of carbon particles. The agent may be about 10 to 500 parts by weight (preferably 20 to 200 parts by weight) and water about 50 to 2000 parts by weight (preferably 100 to 1000 parts by weight).

本発明のペースト組成物は、表面張力(25℃)が35mN/m以下程度であることを必須とする。好ましくは、34mN/m以下程度である。これにより、多孔質基材へのペースト塗布時にペースト組成物が塗布しやすく、ペースト組成物のはじきを抑制できる。下限は限定的でないが、例えば、20mN/m程度、好ましくは25mN/m程度とすればよい。   The paste composition of the present invention must have a surface tension (25 ° C.) of about 35 mN / m or less. Preferably, it is about 34 mN / m or less. Thereby, the paste composition can be easily applied at the time of applying the paste to the porous substrate, and the repelling of the paste composition can be suppressed. The lower limit is not limited, but may be, for example, about 20 mN / m, preferably about 25 mN / m.

本発明におけるペースト組成物の表面張力は、自動表面張力計(協和界面科学(株)製CBVP―Z))を用い、ペースト組成物の温度を25℃に調整し、プレート法を用いることにより、測定されるものである。   The surface tension of the paste composition in the present invention is determined by using an automatic surface tension meter (CBVP-Z manufactured by Kyowa Interface Science Co., Ltd.), adjusting the temperature of the paste composition to 25 ° C., and using the plate method. It is to be measured.

ガス拡散層の製造方法
本発明のガス拡散層の製造方法は、上記ペースト組成物を、導電性多孔質基材表面に、ペースト組成物が浸透しないように塗布し、乾燥及び焼成することを特徴とする。より具体的には、前記ペースト組成物と導電性多孔質基材との接触角が90〜120°となるような導電性多孔質基材の表面に、ペースト組成物をブレードを接触させないように塗布し、次いで乾燥及び焼成する。
Method for Producing Gas Diffusion Layer The method for producing a gas diffusion layer of the present invention is characterized in that the paste composition is applied to the surface of the conductive porous substrate so that the paste composition does not penetrate, and is dried and fired. And More specifically, the blade of the paste composition is not brought into contact with the surface of the conductive porous substrate such that the contact angle between the paste composition and the conductive porous substrate is 90 to 120 °. Apply, then dry and fire.

本発明では、ペースト組成物の塗布する対象である導電性多孔質基材と当該ペースト組成物との接触角が90〜120°程度であることを必須とする。これにより、ペースト組成物を基材上に均一に塗布しようとする際に、塗布した瞬間にペースト組成物が基材上ではじかれて均一に塗布できない(いわゆるハジキ)現象を抑制し、基材上にペースト組成物を安定して均一に塗布することが可能となる。   In the present invention, it is essential that the contact angle between the conductive porous substrate to which the paste composition is applied and the paste composition is about 90 to 120 °. Thereby, when trying to apply the paste composition uniformly on the substrate, the paste composition is repelled on the substrate at the moment of application and the phenomenon that the paste composition cannot be applied uniformly (so-called repellency) is suppressed. The paste composition can be stably and uniformly applied thereon.

本発明におけるペースト組成物と導電性多孔質基材との接触角は、自動接触角測定機(英弘精機(株)製、「OCA20」)を用い、1μl(マイクロリットル)程度のペースト組成物の液滴を基材表面に滴下し、30秒後の接触角を観察することにより得られる。   In the present invention, the contact angle between the paste composition and the conductive porous substrate is determined by using an automatic contact angle measuring machine (“OCA20” manufactured by Eihiro Seiki Co., Ltd.) of about 1 μl (microliter) of the paste composition. It is obtained by dropping a droplet on the substrate surface and observing the contact angle after 30 seconds.

導電性多孔質基材は、公知又は市販のものを用いることができる。例えば、カーボンペーパー、カーボンクロス、カーボン不織布等が挙げられる。   A well-known or commercially available conductive porous substrate can be used. For example, carbon paper, carbon cloth, carbon non-woven fabric and the like can be mentioned.

導電性多孔質基材の厚みは限定的でないが、通常50μm〜1000μm程度、好ましくは100μm〜400μm程度とすればよい。   The thickness of the conductive porous substrate is not limited, but is usually about 50 μm to 1000 μm, preferably about 100 μm to 400 μm.

導電性多孔質基材表面の表面張力(撥水処理した場合は撥水処理後の値)は、通常35〜40mN/m、好ましくは36〜39mN/mとすればよい。   The surface tension of the surface of the conductive porous substrate (the value after the water repellent treatment when subjected to the water repellent treatment) is usually 35 to 40 mN / m, preferably 36 to 39 mN / m.

なお、本発明の導電性多孔質基材表面はあらかじめ撥水処理が施されたものであることが好ましい。これにより、導電性多孔質基材に撥水性を持たせ、電池反応により生じる水による多孔質基材内部の閉塞を抑制できる。また、基材へのペースト組成物塗布時にペースト組成物が内部まで浸透する現象を抑制でき、ガス拡散性能を向上できる。   In addition, it is preferable that the surface of the conductive porous substrate of the present invention has been subjected to water repellent treatment in advance. Thereby, the electroconductive porous base material is given water repellency, and blockage inside the porous base material due to water generated by the battery reaction can be suppressed. Moreover, the phenomenon which a paste composition osmose | permeates to the inside at the time of paste composition application | coating to a base material can be suppressed, and gas diffusion performance can be improved.

本発明における導電性多孔質基材の表面張力(撥水処理が施されている場合は撥水処理後の導電性多孔質基材の表面張力)は、表面張力の異なる複数のぬれ指数標準液(和光純薬工業(株)製)(25℃)を用意し、当該複数の標準液を導電性多孔質基材表面に滴下し、標準液が基材表面ではじかれるか否かを観察することにより測定されるものである。   In the present invention, the surface tension of the conductive porous substrate (the surface tension of the conductive porous substrate after the water repellent treatment when the water repellent treatment is applied) is a plurality of wetting index standard solutions having different surface tensions. (Wako Pure Chemical Industries, Ltd.) (25 ° C.) is prepared, the plurality of standard solutions are dropped on the surface of the conductive porous substrate, and whether the standard solution is repelled on the substrate surface is observed. Is measured.

本発明において、ペースト組成物の表面張力は、導電性多孔質基材の表面張力よりも小さいことを必須とする。特に、ペースト組成物と導電性多孔質基材との表面張力の差は、2.5mN/m程度以上が好ましく、より好ましくは3.0mN/m程度以上である。これにより、ブレードを接触させずに塗布することがより一層容易となる。   In the present invention, it is essential that the surface tension of the paste composition is smaller than the surface tension of the conductive porous substrate. In particular, the difference in surface tension between the paste composition and the conductive porous substrate is preferably about 2.5 mN / m or more, more preferably about 3.0 mN / m or more. Thereby, it becomes much easier to apply without contacting the blade.

本発明では、ペースト組成物が導電性多孔質基材表面に浸透しないように塗布することを特徴とする。具体的には、例えば、ブレードを用いてペースト組成物を塗布する場合には、ブレードを導電性多孔質基材表面に接触しないように行うことにより、塗布されたペースト組成物(上面)を掻き取ればよい。   The present invention is characterized in that the paste composition is applied so as not to penetrate the surface of the conductive porous substrate. Specifically, for example, when applying the paste composition using a blade, the applied paste composition (upper surface) is scraped by preventing the blade from coming into contact with the surface of the conductive porous substrate. Take it.

一般的に基材にペースト組成物を塗布する際、ドクターブレード等のブレード、ワイヤーバー、スクリーン印刷で用いるスキージ等を被覆物(すなわち、導電性多孔質基材)表面に接触させ、圧力をかけて余分なペースト組成物を掻き取る方式が採用される。これに対し、本発明では、例えばブレード等を導電性多孔質基材表面に接触しないように行う等により、ペースト組成物が導電性多孔質基材表面に浸透しないようにする。これにより、導電性多孔質基材内部の空隙の閉塞を抑制することができ、良好なガス拡散性能を有したまま、平坦化層を形成させたガス拡散層を得ることができる。   In general, when applying a paste composition to a substrate, a blade such as a doctor blade, a wire bar, a squeegee used for screen printing, etc. are brought into contact with the surface of the coating (ie, conductive porous substrate) and pressure is applied. A method of scraping off excess paste composition is employed. On the other hand, in the present invention, the paste composition is prevented from penetrating the surface of the conductive porous substrate by, for example, performing a blade or the like so as not to contact the surface of the conductive porous substrate. Thereby, blockage | closure of the space | gap inside a conductive porous base material can be suppressed, and the gas diffusion layer which formed the planarization layer can be obtained, having favorable gas diffusion performance.

このような塗布方法に用いる装置としては、例えば公知又は市販のアプリケータを用いればよい。   As an apparatus used for such a coating method, for example, a known or commercially available applicator may be used.

本発明の製造方法では、塗布後、乾燥し、次いで焼成する。これにより、導電性多孔質基材表面に、平坦化層を得ることができる。この平坦化層を設けることにより、基材表面の凹凸を平滑にできるため、基材と触媒層との接触面積を大きくして接触抵抗が低減することができる。   In the production method of the present invention, after coating, it is dried and then baked. Thereby, a planarization layer can be obtained on the surface of the conductive porous substrate. By providing this flattening layer, the unevenness of the substrate surface can be smoothed, so that the contact area between the substrate and the catalyst layer can be increased and the contact resistance can be reduced.

ペースト組成物の塗布量は、固形分換算で、通常5〜100g/m程度、好ましくは、15〜50g/m程度とすればよい。 The coating amount of the paste composition, in terms of solid content, typically 5 to 100 g / m 2, preferably about may be set to 15 to 50 g / m 2 approximately.

乾燥温度は限定的でなく、例えば、大気中にて、50〜150℃程度、好ましくは90〜130℃程度に加熱することにより行えばよい。   The drying temperature is not limited. For example, the drying temperature may be about 50 to 150 ° C., preferably about 90 to 130 ° C. in the air.

乾燥時間は、乾燥温度等に応じて適宜決定されるが、通常10分〜30分程度とすればよい。   Although drying time is suitably determined according to drying temperature etc., what is necessary is just to normally be about 10 minutes-30 minutes.

焼成温度も限定的でなく、例えば、大気中にて、250〜390℃程度、好ましくは300〜350℃程度に加熱することにより行えばよい。   The firing temperature is not limited, and may be performed by heating to about 250 to 390 ° C., preferably about 300 to 350 ° C. in the atmosphere.

焼成時間は、焼成温度等に応じて適宜決定されるが、通常30分〜120分程度とすればよい。   The firing time is appropriately determined according to the firing temperature and the like, but it may be usually about 30 minutes to 120 minutes.

ガス拡散層
本発明により得られるガス拡散層は、導電性多孔質基材の表面上に、上記ペースト組成物が乾燥及び焼成することにより得られる層(平坦化層)が積層されている。このため、導電性多孔質基材のガス拡散性能を劣化させずに、触媒層との接触抵抗を下げることができる。
Gas diffusion layer In the gas diffusion layer obtained by the present invention, a layer (planarization layer) obtained by drying and baking the paste composition is laminated on the surface of the conductive porous substrate. For this reason, the contact resistance with the catalyst layer can be lowered without deteriorating the gas diffusion performance of the conductive porous substrate.

本発明のガス拡散層は、導電性多孔質基材表面上に形成されている平坦化層が、実質的に導電性多孔質基材内部に浸透していない構造を有している。   The gas diffusion layer of the present invention has a structure in which the planarization layer formed on the surface of the conductive porous substrate does not substantially penetrate into the inside of the conductive porous substrate.

平坦化層の厚みは、ペースト組成物の塗布量等に応じて決定されるが、通常10μm〜100μm程度である。   The thickness of the flattening layer is determined according to the application amount of the paste composition and the like, but is usually about 10 μm to 100 μm.

本発明のガス拡散層は、例えば、固体高分子型燃料電池用のガス拡散層として用いることができる。すなわち、平坦化層が接触するように、本発明のガス拡散層を公知又は市販の触媒層に積層し、さらに、公知又は市販の水素イオン伝導性固体高分子電解質膜を積層させることにより、固体燃料電池用膜−電極接合体(ガス拡散層/触媒層/水素イオン伝導性固体高分子電解質膜/触媒層/ガス拡散層の層構造)として用いることができる。   The gas diffusion layer of the present invention can be used as, for example, a gas diffusion layer for a polymer electrolyte fuel cell. That is, by laminating the gas diffusion layer of the present invention on a known or commercially available catalyst layer so that the planarizing layer contacts, and further laminating a known or commercially available hydrogen ion conductive solid polymer electrolyte membrane, It can be used as a fuel cell membrane-electrode assembly (layer structure of gas diffusion layer / catalyst layer / hydrogen ion conductive solid polymer electrolyte membrane / catalyst layer / gas diffusion layer).

本発明の製造方法によれば、ペースト組成物を導電性多孔質基材内部に染み込みにくくさせるため、導電性多孔質基材内部の空隙を閉塞させずに、平坦化層を導電性多孔質基材表面付近に形成させることができる。このため、ガス拡散性能を劣化させず、導電性及び撥水性が優れたガス拡散層、ひいては電流−電圧特性等が良好な、優れた電池性能を発揮するガス拡散層を製造することができる。   According to the production method of the present invention, in order to make the paste composition difficult to penetrate into the inside of the conductive porous substrate, the planarizing layer is formed into the conductive porous substrate without blocking the voids inside the conductive porous substrate. It can be formed near the surface of the material. For this reason, it is possible to produce a gas diffusion layer excellent in conductivity and water repellency without deteriorating the gas diffusion performance, and thus a gas diffusion layer exhibiting excellent battery performance with good current-voltage characteristics and the like.

以下に実施例を挙げて本発明をより詳細に説明する。なお、本発明は下記の実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to the following Example.

<ペースト組成物の調製>
実施例1
炭素粒子として「バルカンxc72R(キャボット社製)」を20重量部、分散剤としてポリオキシエチレンアルキレンアルキルエーテル(熱分解温度330℃)「エマルゲンMS110(花王社製)」を20重量部及びイオン交換水を60重量部混合し、プラネタリーミキサーにて20分間攪拌混合した。次いで、フッ素系樹脂として、ポリテトラフルオロエチレンディスパージョン(ダイキン工業(株)製、「ルブロンLDW40E」、固形分40重量%)を100重量部添加し、ディゾルバーにて攪拌することにより、実施例1のペースト組成物を調製した。
<Preparation of paste composition>
Example 1
20 parts by weight of “Vulcan xc72R (manufactured by Cabot Corporation)” as carbon particles, 20 parts by weight of “Emulgen MS110 (manufactured by Kao Corporation)” as polyoxyethylene alkylene alkyl ether (thermal decomposition temperature 330 ° C.) and ion-exchanged water as a dispersant. 60 parts by weight was mixed, and mixed with stirring by a planetary mixer for 20 minutes. Next, 100 parts by weight of polytetrafluoroethylene dispersion (manufactured by Daikin Industries, Ltd., “Lublon LDW40E”, solid content 40% by weight) was added as a fluororesin, and the mixture was stirred with a dissolver. A paste composition was prepared.

実施例2
分散剤としてポリオキシエチレンアルキレンアルキルエーテル「エマルゲンMS110(花王社製)」20重量部の代わりにポリオキシエチレン脂肪酸エステル(熱分解温度330℃)「BYK184(ビックケミー社製)」20重量部を用い、フッ素系樹脂としてポリテトラフルオロエチレンディスパージョン(ダイキン工業(株)製、「ルブロンLDW40E」、固形分40重量%)100重量部の代わりにポリテトラフルオロエチレンディスパージョン(ダイキン工業(株)製、「ルブロンLDW40E」、固形分40重量%)70重量部及びポリテトラフルオロエチレンディスパージョン(三井・デュポンフロロケミカル社製、「PTFEエマルジョン 31−J」)30重量部を用いた以外は、実施例1と同様にして、実施例2のペースト組成物を調製した。
Example 2
Instead of 20 parts by weight of polyoxyethylene alkylene alkyl ether “Emulgen MS110 (manufactured by Kao Corporation)” as a dispersant, 20 parts by weight of polyoxyethylene fatty acid ester (thermal decomposition temperature 330 ° C.) “BYK184 (manufactured by Big Chemie)” was used. Instead of 100 parts by weight of polytetrafluoroethylene dispersion (Daikin Kogyo Co., Ltd., “Lublon LDW40E”, solid content 40% by weight) as a fluororesin, polytetrafluoroethylene dispersion (Daikin Kogyo Co., Ltd., “ Example 1 except that 70 parts by weight of “Lublon LDW40E”, solid content 40% by weight) and 30 parts by weight of polytetrafluoroethylene dispersion (Mitsui / DuPont Fluorochemical Co., Ltd., “PTFE emulsion 31-J”) were used. In the same manner, the paper of Example 2 was used. A first composition was prepared.

実施例3
溶剤としてイソプロピルアルコール6重量部を更に添加した以外は、実施例1と同様にして、実施例3のペースト組成物を調製した。
Example 3
A paste composition of Example 3 was prepared in the same manner as in Example 1 except that 6 parts by weight of isopropyl alcohol was further added as a solvent.

実施例4
分散剤としてポリオキシエチレンアルキレンアルキルエーテル「エマルゲンMS110(花王社製)」20重量部の代わりにポリオキシエチレン脂肪酸エステル(熱分解温度330℃)「BYK184(ビックケミー社製)」20重量部を用い、溶剤としてイソプロピルアルコール30重量部を更に添加した以外は、実施例1と同様にして、実施例4のペースト組成物を調製した。
Example 4
Instead of 20 parts by weight of polyoxyethylene alkylene alkyl ether “Emulgen MS110 (manufactured by Kao Corporation)” as a dispersant, 20 parts by weight of polyoxyethylene fatty acid ester (thermal decomposition temperature 330 ° C.) “BYK184 (manufactured by Big Chemie)” was used. A paste composition of Example 4 was prepared in the same manner as in Example 1 except that 30 parts by weight of isopropyl alcohol was further added as a solvent.

比較例1
分散剤としてポリオキシエチレンアルキレンアルキルエーテル「エマルゲンMS110(花王社製)」20重量部の代わりにポリカルボン酸含有ポリエステル系分散剤(熱分解開始温度300℃)「BYK190(ビックケミー社製)」10重量部を用い、イオン交換水の添加量を60重量部の代わりに70重量部とした以外は、実施例1と同様にして、比較例1のペースト組成物を調製した。
Comparative Example 1
Instead of 20 parts by weight of polyoxyethylene alkylene alkyl ether “Emulgen MS110 (manufactured by Kao Corporation)” as a dispersant, polycarboxylic acid-containing polyester-based dispersant (thermal decomposition start temperature 300 ° C.) “BYK190 (manufactured by BYK Chemie)” 10 weights A paste composition of Comparative Example 1 was prepared in the same manner as in Example 1 except that the amount of ion-exchanged water was 70 parts by weight instead of 60 parts by weight.

比較例2
フッ素系樹脂の添加量を100重量部の代わりに50重量部とした以外は、比較例1と同様にして、比較例2のペースト組成物を調製した。
Comparative Example 2
A paste composition of Comparative Example 2 was prepared in the same manner as Comparative Example 1 except that the amount of the fluororesin added was 50 parts by weight instead of 100 parts by weight.

これら実施例1〜4及び比較例1〜2のペースト組成物の表面張力を評価した。その結果を表1に示す。ペースト組成物の表面張力は、ペースト組成物の温度を25℃に調整して、自動表面張力計(協和界面科学(株)製CBVP―Z))を用いてプレート法により測定した。   The surface tensions of the paste compositions of Examples 1 to 4 and Comparative Examples 1 and 2 were evaluated. The results are shown in Table 1. The surface tension of the paste composition was measured by a plate method using an automatic surface tension meter (CBVP-Z manufactured by Kyowa Interface Science Co., Ltd.) after adjusting the temperature of the paste composition to 25 ° C.

<撥水処理>
導電性多孔質基材として、ポリアクリロニトリル製耐炎化紡績糸を炭素化処理(加熱温度950℃、窒素雰囲気中)及び黒鉛化処理(加熱温度2000℃、真空中)した炭素質繊維織布(厚さ:0.246mm、厚さ変動係数:2.3%、目付量:101g/m、嵩密度:0.410g/cc、体積固有抵抗:0.02Ωcm)を用いた。
<Water repellent treatment>
A carbon fiber woven fabric (thickness) obtained by carbonizing a polyacrylonitrile flameproof spun yarn (heating temperature: 950 ° C. in a nitrogen atmosphere) and graphitizing (heating temperature: 2000 ° C., in vacuum) as a conductive porous substrate Thickness: 0.246 mm, thickness variation coefficient: 2.3%, basis weight: 101 g / m 2 , bulk density: 0.410 g / cc, volume resistivity: 0.02 Ωcm).

この導電性多孔質基材を、ポリテトラフルオロエチレンを60wt%含有したフッ素系水性ディスパージョン水溶液(ダイキン工業社製、「ポリフロンD−1E」)に5分間含浸させた後、大気雰囲気中130℃で15分程度乾燥させ、次いで大気雰囲気中350℃で2時間焼成を行うことにより、撥水処理を施した。   The conductive porous substrate was impregnated with a fluorine-based aqueous dispersion aqueous solution (manufactured by Daikin Industries, Ltd., “Polyflon D-1E”) containing 60 wt% of polytetrafluoroethylene for 5 minutes, and then at 130 ° C. in an air atmosphere. For about 15 minutes, followed by baking at 350 ° C. for 2 hours in an air atmosphere to give a water repellent treatment.

この撥水性導電性多孔質基材表面に、表面張力の異なる複数のぬれ指数標準液(和光純薬工業(株)製)(25℃)を順次滴下していき、標準液が基材表面上で、はじかれるか否かを観察することにより、撥水性導電性多孔質基材の表面張力を測定した。測定された表面張力は、37.5mN/mであった。   A plurality of wetting index standard solutions (Wako Pure Chemical Industries, Ltd.) (25 ° C) with different surface tensions are successively dropped onto the surface of the water-repellent conductive porous substrate. Then, the surface tension of the water-repellent conductive porous substrate was measured by observing whether or not it was repelled. The measured surface tension was 37.5 mN / m.

この撥水性導電性多孔質基材と、実施例1〜4又は比較例1〜2のペースト組成物との接触角を測定した。この測定結果を表1に示す。接触角の測定は、自動接触角測定機(英弘精機(株)社製、「OCA20」)を用い、1μl(マイクロリットル)程度のペースト組成物液滴を基材表面に滴下し、30秒後の接触角を観察することにより行った。   The contact angle between this water-repellent conductive porous substrate and the paste compositions of Examples 1 to 4 or Comparative Examples 1 to 2 was measured. The measurement results are shown in Table 1. The contact angle was measured by using an automatic contact angle measuring device (“OCA20” manufactured by Eihiro Seiki Co., Ltd.) and dropping a paste composition droplet of about 1 μl (microliter) on the substrate surface, and after 30 seconds. This was done by observing the contact angle.

Figure 2009016055
Figure 2009016055

<ガス拡散層の製造>
実施例1〜4のペースト組成物を、アプリケータ(Sheen Instruments Ltd社、「Micrometer Adjustable Film Applicator、1117/200」)を用いて塗布量が固形分換算で30g/m程度になるように上記撥水性導電性多孔質基材表面に均一に塗布した。次いで、大気雰囲気中130℃で乾燥した後、大気雰囲気中350℃で2時間焼成することにより、導電性多孔質基材表面に平坦化層が形成された、本実施例1〜4のガス拡散層を製造した。
<Manufacture of gas diffusion layer>
Using the applicator (Shen Instruments Ltd., “Micrometer Adjustable Film Applicator, 1117/200”), the paste composition of Examples 1 to 4 was applied so that the coating amount was about 30 g / m 2 in terms of solid content. It applied uniformly to the surface of a water repellent conductive porous substrate. Next, after drying at 130 ° C. in the air atmosphere, the planarization layer was formed on the surface of the conductive porous substrate by firing at 350 ° C. for 2 hours in the air atmosphere. A layer was produced.

一方、比較例1及び2のペースト組成物も、同様にして基材表面に塗布したが、ペースト組成物がはじかれ、均一に塗布することができなかった。   On the other hand, the paste compositions of Comparative Examples 1 and 2 were similarly applied to the substrate surface, but the paste composition was repelled and could not be applied uniformly.

ペースト組成物の基材への塗布結果を表1に併記する。均一に塗布できた場合を「○」、はじきが生じ、均一に塗布できなかった場合を「×」と評価した。   The results of applying the paste composition to the substrate are also shown in Table 1. The case where the coating could be performed uniformly was evaluated as “◯”, and the case where the repelling occurred and the coating could not be performed uniformly was evaluated as “x”.

参考例
実施例1で得られたペースト組成物を、バーコーター(ROD、No;30)を用いて、塗布量が固形分換算で30g/m程度になるように上記撥水性導電性多孔質基材表面に塗布した。この時、基材裏面にペースト組成物が染み出しているのが観察された。次いで、大気雰囲気中130℃で乾燥した後、大気雰囲気中350℃で2時間焼成することにより、導電性多孔質基材表面に平坦化層が形成した。この導電性多孔質基材の内部には平坦化層成分が侵入したため、ガス拡散性能が劣ることが分かる。
Reference Example Using the bar composition (ROD, No. 30), the paste composition obtained in Example 1 was coated with the above water-repellent conductive porous material so that the coating amount was about 30 g / m 2 in terms of solid content. It apply | coated to the base-material surface. At this time, it was observed that the paste composition exudes to the back surface of the substrate. Subsequently, after drying at 130 degreeC in air | atmosphere atmosphere, the planarization layer was formed in the electroconductive porous base material surface by baking at 350 degreeC in air | atmosphere atmosphere for 2 hours. It can be seen that the gas diffusion performance is inferior because the planarizing layer component has penetrated into the conductive porous substrate.

<燃料電池及び評価試験>
(1)電解質膜−触媒層積層体の製造
白金触媒担持炭素粒子(田中貴金属工業社製、「TEC62E58」)10g、イオン伝導性高分子電解質溶液(Nafion5wt%溶液:「DE−520」デュポン社製)100g、蒸留水30g及びイソプロピルアルコール100gを配合し、分散機にて攪拌混合することにより、アノード用触媒層ペースト組成物を得た。
<Fuel cell and evaluation test>
(1) Manufacture of electrolyte membrane-catalyst layer laminate 10 g of platinum catalyst-supported carbon particles (Tanaka Kikinzoku Kogyo Co., Ltd., “TEC62E58”), ion conductive polymer electrolyte solution (Nafion 5 wt% solution: “DE-520” manufactured by DuPont ) 100 g, 30 g of distilled water and 100 g of isopropyl alcohol were blended and stirred and mixed in a disperser to obtain an anode catalyst layer paste composition.

白金触媒担持炭素粒子(田中貴金属工業社製、「TEC10E50E」)10g、イオン伝導性高分子電解質溶液(Nafion5wt%溶液、「DE−520」、デュポン社製)100g、蒸留水30g、n−ブタノール50g及びt−ブタノール50gを配合し、分散機にて攪拌混合することにより、カソード用触媒層ペースト組成物を得た。   Platinum catalyst-supported carbon particles (Tanaka Kikinzoku Kogyo Co., Ltd., “TEC10E50E”) 10 g, ion conductive polymer electrolyte solution (Nafion 5 wt% solution, “DE-520”, manufactured by DuPont) 100 g, distilled water 30 g, n-butanol 50 g And 50 g of t-butanol were mixed and stirred and mixed in a disperser to obtain a catalyst layer paste composition for a cathode.

アノード用触媒層ペースト組成物及びカソード用触媒層ペースト組成物を、それぞれアプリケータを用いてポリエチレンテレフタレートフィルムからなる転写基材(東レ社製、「ルミナー X44」)上に塗布し、80℃で30分間乾燥させることにより触媒層を形成させて、アノード用触媒層形成転写シート及びカソード用触媒層形成転写シートを作製した。なお、触媒層の塗布量は、カソード用触媒層及びアノード触媒層ともに白金担持量が0.5mg/cmとなるようにした。 The catalyst layer paste composition for the anode and the catalyst layer paste composition for the cathode were each applied onto a transfer substrate made of a polyethylene terephthalate film (“Luminer X44” manufactured by Toray Industries, Inc.) using an applicator, and 30 at 80 ° C. A catalyst layer was formed by drying for a minute to prepare an anode catalyst layer-forming transfer sheet and a cathode catalyst layer-forming transfer sheet. The catalyst layer was applied so that the amount of platinum supported was 0.5 mg / cm 2 for both the cathode catalyst layer and the anode catalyst layer.

上記作製したカソード用触媒層形成転写シート及びアノード用触媒層形成転写シートを用いて、電解質膜(「Nafion112」、デュポン社製)の各面に、プレス(プレス機温度:130℃、プレス圧力:6.5MPa)を行った後、転写フィルムを剥がすことにより、電解質膜−触媒層積層体(カソード用触媒層/電解質膜/アノード用触媒層)を作製した。   Using the prepared catalyst layer forming transfer sheet for cathode and catalyst layer forming transfer sheet for anode, press (press machine temperature: 130 ° C., press pressure) is applied to each surface of the electrolyte membrane (“Nafion 112”, manufactured by DuPont). 6.5 MPa), and then the transfer film was peeled off to prepare an electrolyte membrane-catalyst layer laminate (cathode catalyst layer / electrolyte membrane / anode catalyst layer).

(2)燃料電池の製造
作製した電解質膜−触媒層積層体の両面に、本実施例1のガス拡散層を積層させることにより、膜−電極接合体(MEA:ガス拡散層/カソード用触媒層/電解質膜/アノード用触媒層/ガス拡散層)を得、次いで、得られたMEAを燃料電池セルに組み込むことにより、実施例1の固体高分子型燃料電池を製造した。
(2) Manufacture of fuel cell By laminating the gas diffusion layer of Example 1 on both surfaces of the prepared electrolyte membrane-catalyst layer laminate, a membrane-electrode assembly (MEA: gas diffusion layer / catalyst layer for cathode) / Electrolyte membrane / catalyst layer for anode / gas diffusion layer), and then the obtained MEA was incorporated into a fuel cell to produce a polymer electrolyte fuel cell of Example 1.

実施例2〜4のガス拡散層についても、実施例1と同様にして燃料電池を製造し、それぞれ実施例2〜4の燃料電池とした。   For the gas diffusion layers of Examples 2 to 4, fuel cells were manufactured in the same manner as in Example 1, and the fuel cells of Examples 2 to 4 were obtained.

(3)電池性能評価
これら実施例1〜4の燃料電池のセル性能を評価した。セル評価条件は、下記の通りとした。
セル温度:80℃
加湿温度:カソード80℃、アノード70℃
ガス利用率:カソード40%、アノード70%
実施例1及び2のペースト組成物を用いて得られた燃料電池は、実施例3及び4のペースト組成物を用いて得られた燃料電池よりも優れた電池性能を発揮していた。これは、実施例1及び2のペースト組成物はアルコール(IPA)を含有しないため、導電性多孔質基材内部の空隙をより一層閉塞させずに当該表面に平坦化層を形成でき、ガス拡散性能の劣化を抑制できたことによるものと考えられる。
(3) Battery performance evaluation The cell performance of the fuel cells of Examples 1 to 4 was evaluated. Cell evaluation conditions were as follows.
Cell temperature: 80 ° C
Humidification temperature: cathode 80 ° C, anode 70 ° C
Gas utilization rate: cathode 40%, anode 70%
The fuel cells obtained using the paste compositions of Examples 1 and 2 exhibited better cell performance than the fuel cells obtained using the paste compositions of Examples 3 and 4. This is because, since the paste compositions of Examples 1 and 2 do not contain alcohol (IPA), a planarization layer can be formed on the surface without further closing the voids inside the conductive porous substrate, and gas diffusion This is thought to be due to the ability to suppress the degradation of performance.

Claims (9)

導電性多孔質基材表面にペースト組成物が浸透しないように塗布し、乾燥及び焼成することにより、ガス拡散層を製造する方法であって、
ペースト組成物及び導電性多孔質基材が下記(A)及び(B):
(A)前記ペースト組成物が炭素粒子、フッ素系樹脂、分散剤及び水を含み、その表面張力が35mN/m以下である:
(B)前記ペースト組成物の表面張力が導電性多孔質基材の表面張力よりも小さく、前記導電性多孔質基材とペースト組成物との接触角が90〜120°である:
の要件を満足している、ガス拡散層の製造方法。
A method for producing a gas diffusion layer by applying the paste composition on the surface of the conductive porous substrate so as not to penetrate, drying and firing,
The paste composition and the conductive porous substrate are the following (A) and (B):
(A) The paste composition contains carbon particles, a fluororesin, a dispersant, and water, and the surface tension is 35 mN / m or less:
(B) The surface tension of the paste composition is smaller than the surface tension of the conductive porous substrate, and the contact angle between the conductive porous substrate and the paste composition is 90 to 120 °:
A method for producing a gas diffusion layer that satisfies the above requirements.
ブレードを用いてペースト組成物を塗布する際には、ブレードを導電性多孔質基材表面に接触させないように行う、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein when the paste composition is applied using a blade, the blade is not brought into contact with the surface of the conductive porous substrate. 前記ペースト組成物がアルコールを含有しない、請求項1又は2に記載の製造方法。   The manufacturing method of Claim 1 or 2 with which the said paste composition does not contain alcohol. 前記導電性多孔質基材の表面張力とペースト組成物の表面張力との差が2.5mN/m以上である、請求項1〜3のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-3 whose difference of the surface tension of the said electroconductive porous base material and the surface tension of a paste composition is 2.5 mN / m or more. 前記導電性多孔質基材は予め撥水処理がなされている、請求項1〜4のいずれかに記載の製造方法。   The said conductive porous base material is a manufacturing method in any one of Claims 1-4 by which the water-repellent process was made | formed previously. 前記分散剤の熱分解温度が350℃以下である、請求項1〜5のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-5 whose thermal decomposition temperature of the said dispersing agent is 350 degrees C or less. 請求項1〜6のいずれかに記載の製造方法により得られるガス拡散層。   A gas diffusion layer obtained by the production method according to claim 1. 導電性多孔質基材表面に塗布、乾燥及び焼成してガス拡散層を製造するために使用されるペースト組成物であって、
前記ペースト組成物が炭素粒子、フッ素系樹脂、分散剤及び水を含み、その表面張力(25℃)が35mN/m以下である、ことを特徴とするペースト組成物。
A paste composition used for producing a gas diffusion layer by coating, drying and firing on the surface of a conductive porous substrate,
The paste composition comprising carbon particles, a fluororesin, a dispersant and water, and having a surface tension (25 ° C.) of 35 mN / m or less.
分散剤が、ポリオキシエチレンアルキレンアルキルエーテル、ポリエチレングリコールアルキルエーテル、ポリオキシエチレン脂肪酸エステル及び酸性基含有構造変性ポリアクリレートからなる群から選択される少なくとも1種である、請求項8に記載のペースト組成物。   The paste composition according to claim 8, wherein the dispersant is at least one selected from the group consisting of polyoxyethylene alkylene alkyl ether, polyethylene glycol alkyl ether, polyoxyethylene fatty acid ester and acidic group-containing structurally modified polyacrylate. object.
JP2007173355A 2007-06-29 2007-06-29 Method for producing gas diffusion layer and paste composition for producing gas diffusion layer Expired - Fee Related JP5292729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007173355A JP5292729B2 (en) 2007-06-29 2007-06-29 Method for producing gas diffusion layer and paste composition for producing gas diffusion layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173355A JP5292729B2 (en) 2007-06-29 2007-06-29 Method for producing gas diffusion layer and paste composition for producing gas diffusion layer

Publications (2)

Publication Number Publication Date
JP2009016055A true JP2009016055A (en) 2009-01-22
JP5292729B2 JP5292729B2 (en) 2013-09-18

Family

ID=40356739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173355A Expired - Fee Related JP5292729B2 (en) 2007-06-29 2007-06-29 Method for producing gas diffusion layer and paste composition for producing gas diffusion layer

Country Status (1)

Country Link
JP (1) JP5292729B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121996A1 (en) * 2010-03-31 2011-10-06 株式会社Eneosセルテック Membrane electrode assembly and fuel cell
WO2011136238A1 (en) 2010-04-26 2011-11-03 株式会社日本触媒 Polyacrylate (salt), polyacrylate (salt) water-absorbent resin, and manufacturing method for same
JP5822049B1 (en) * 2014-03-28 2015-11-24 東レ株式会社 Gas diffusion electrode
EP3429004A4 (en) * 2016-03-10 2019-04-10 Panasonic Intellectual Property Management Co., Ltd. Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180727A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Electrode for fuel cell, manufacture thereof, and apparatus therefor
JP2002063911A (en) * 2000-08-18 2002-02-28 Matsushita Electric Ind Co Ltd Manufacturing method of polymer electrolyte fuel cell
JP2004139835A (en) * 2002-10-17 2004-05-13 Matsushita Electric Ind Co Ltd Fuel cell
JP2004214045A (en) * 2003-01-06 2004-07-29 Matsushita Electric Ind Co Ltd Fuel cell and its manufacturing method
JP2005191002A (en) * 2003-12-04 2005-07-14 Matsushita Electric Ind Co Ltd Gas diffusion layer for fuel cell, electrode and membrane-electrode assembly, and manufacturing method of membrane-electrode assembly
JP2006286432A (en) * 2005-04-01 2006-10-19 Matsushita Electric Ind Co Ltd Manufacturing method of membrane-catalyst layer assembly and manufacturing method of membrane-electrode assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180727A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Electrode for fuel cell, manufacture thereof, and apparatus therefor
JP2002063911A (en) * 2000-08-18 2002-02-28 Matsushita Electric Ind Co Ltd Manufacturing method of polymer electrolyte fuel cell
JP2004139835A (en) * 2002-10-17 2004-05-13 Matsushita Electric Ind Co Ltd Fuel cell
JP2004214045A (en) * 2003-01-06 2004-07-29 Matsushita Electric Ind Co Ltd Fuel cell and its manufacturing method
JP2005191002A (en) * 2003-12-04 2005-07-14 Matsushita Electric Ind Co Ltd Gas diffusion layer for fuel cell, electrode and membrane-electrode assembly, and manufacturing method of membrane-electrode assembly
JP2006286432A (en) * 2005-04-01 2006-10-19 Matsushita Electric Ind Co Ltd Manufacturing method of membrane-catalyst layer assembly and manufacturing method of membrane-electrode assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121996A1 (en) * 2010-03-31 2011-10-06 株式会社Eneosセルテック Membrane electrode assembly and fuel cell
US8951693B2 (en) 2010-03-31 2015-02-10 Jx Nippon Oil & Energy Corporation Membrane electrode assembly and fuel cell
WO2011136238A1 (en) 2010-04-26 2011-11-03 株式会社日本触媒 Polyacrylate (salt), polyacrylate (salt) water-absorbent resin, and manufacturing method for same
JP5822049B1 (en) * 2014-03-28 2015-11-24 東レ株式会社 Gas diffusion electrode
EP3429004A4 (en) * 2016-03-10 2019-04-10 Panasonic Intellectual Property Management Co., Ltd. Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly

Also Published As

Publication number Publication date
JP5292729B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
EP2889939B1 (en) Gas-diffusion electrode medium for fuel cell
RU2561720C1 (en) Gas diffusion medium for fuel element, membrane-electrode block and fuel element
JP5482066B2 (en) Microporous layer for fuel cell, gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer and membrane-electrode assembly, and polymer electrolyte fuel cell
CA2962735C (en) Carbon sheet comprising carbon fiber and a binder for gas diffusion electrode substrate and fuel cell
EP2851983B1 (en) Gas diffusion electrode medium for fuel cell
US10411269B2 (en) Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell provided therewith
EP3113264B1 (en) Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell equipped with the same
JP5822428B2 (en) Gas diffusion layer and polymer electrolyte fuel cell using the same
JP2007194004A (en) Method of manufacturing gas diffusion layer for solid polymer fuel cell, and membrane-electrode assembly
JP5292729B2 (en) Method for producing gas diffusion layer and paste composition for producing gas diffusion layer
JP5217256B2 (en) Conductive porous sheet and method for producing the same
JP5608972B2 (en) Water repellent layer forming paste composition and gas diffusion layer manufacturing method
CN108137419B (en) Carbon sheet, gas diffusion electrode substrate, wound body, and fuel cell
JP4985737B2 (en) Gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell for fuel cell
JP5401860B2 (en) Water repellent layer forming paste composition and gas diffusion layer manufacturing method
JP4978578B2 (en) Paste composition for imparting water repellency and method for producing gas diffusion layer
WO2023190160A1 (en) Carbon sheet as well as gas diffusion electrode substrate, membrane electrode assembly, and fuel cell using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees