JP2009015253A - Optical device, optical system with the same and endoscope using the same - Google Patents

Optical device, optical system with the same and endoscope using the same Download PDF

Info

Publication number
JP2009015253A
JP2009015253A JP2007180150A JP2007180150A JP2009015253A JP 2009015253 A JP2009015253 A JP 2009015253A JP 2007180150 A JP2007180150 A JP 2007180150A JP 2007180150 A JP2007180150 A JP 2007180150A JP 2009015253 A JP2009015253 A JP 2009015253A
Authority
JP
Japan
Prior art keywords
central axis
optical system
image
optical
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007180150A
Other languages
Japanese (ja)
Other versions
JP5025354B2 (en
Inventor
Kokichi Kenno
孝吉 研野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007180150A priority Critical patent/JP5025354B2/en
Priority to CN2008800241053A priority patent/CN101688970B/en
Priority to PCT/JP2008/062663 priority patent/WO2009008536A1/en
Priority to EP08778134.0A priority patent/EP2172798B1/en
Publication of JP2009015253A publication Critical patent/JP2009015253A/en
Priority to US12/655,910 priority patent/US8254038B2/en
Application granted granted Critical
Publication of JP5025354B2 publication Critical patent/JP5025354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive optical device capable of imaging an omnidirectional image in the direction substantially orthogonally crossing with a central axis on an imaging device in a simple constitution, and being a small type having less strain in image and favorable F-θ characteristics; to provide an optical system with the same; and to provide an endoscope using the same. <P>SOLUTION: The optical device consists of a transparent medium L1 having a field angle of one side approximately 90° about the direction orthogonal to the central axis 2 in the cross section including the central axis 2, being rotation symmetry about the central axis 2 and having a refraction index larger than 1, wherein the transparent medium L1 has a first transmission face 11 disposed in the outermost circumference from the central axis, a first reflecting surface 12 disposed closer to the central axis 2 than the first transmission face 11, a second reflecting surface 13 disposed in the opposite side of an image plane 5 relative to the first reflecting surface 12, and a second transmission face 14 disposed closer to the image plane 5 than the second reflecting surface 13. The optical device is characterized in that an optical flux entering the transparent medium L1 passes the first transmission face 1, the first reflecting face 12, the second reflecting face 13 and the second transmission face 14 in the order of tracing a normal light and outgoes to the side of image plane 5, wherein the optical path A consists of one side alone relative to the central axis 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は光学素子、それを備えた光学系及びそれを用いた内視鏡に関し、特に、回転対称軸周りの映像を撮像素子に円環状の映像として結像する機能を有する結像光学系又は投影光学系に関するものである。   The present invention relates to an optical element, an optical system including the optical element, and an endoscope using the optical element, and in particular, an imaging optical system having a function of forming an image around a rotationally symmetric axis as an annular image on an image sensor. The present invention relates to a projection optical system.

屈折光学系と、反射光学系と、結像光学系とが配置され、2つの光路を有し、パノラマ画像及び軸方向画像の撮像が可能な撮像光学系として特許文献1がある。また、同様に2つの光路を有する内視鏡として特許文献2がある。さらに、周囲全方位を観察できる内視鏡として特許文献3、周囲全方位を観察できるカプセル内視鏡として特許文献4がある。また、周囲全方位と前方を同時に撮像できる撮像装置として特許文献5がある。さらに、全方位の光学系として特許文献6乃至13がある。
特表2003−042743号公報 米国特許公開2004−0254424号公報 特開昭60−42728号公報 特開2001−174713号公報 特開2002−341409号公報 米国特許第3505465号公報 米国特許第5854713号公報 米国特許第6115193号公報 米国特許第6175454号公報 米国特許第6356296号公報 米国特許第6392687号公報 米国特許第6449103号公報 米国特許第6597520号公報
Patent Document 1 discloses an imaging optical system in which a refractive optical system, a reflection optical system, and an imaging optical system are arranged and has two optical paths and can capture panoramic images and axial images. Similarly, there is Patent Document 2 as an endoscope having two optical paths. Further, there is Patent Document 3 as an endoscope that can observe all surrounding directions, and Patent Document 4 as a capsule endoscope that can observe all surrounding directions. Further, Patent Document 5 is an imaging apparatus capable of simultaneously imaging all surrounding directions and the front. Further, there are Patent Documents 6 to 13 as omnidirectional optical systems.
Special Table 2003-042743 US Patent Publication No. 2004-0254424 JP 60-42728 A JP 2001-174713 A JP 2002-341409 A U.S. Pat. No. 3,505,465 US Pat. No. 5,854,713 US Pat. No. 6,115,193 US Pat. No. 6,175,454 US Pat. No. 6,356,296 US Pat. No. 6,392,687 US Pat. No. 6,449,103 US Pat. No. 6,597,520

しかしながら、どの特許文献に記載された光学系も小型で解像力の良い映像を得ることはできなかった。   However, the optical systems described in any of the patent documents cannot obtain an image with a small size and good resolution.

本発明は、従来技術のこのような状況に鑑みてなされたものであり、その目的は、簡単な構成で中心軸と略直交する方向の全方位の画像を撮像素子上に撮像することが可能であり、像歪が少なくF−θ特性の良い小型で解像力が高く安価な光学素子、それを備えた光学系及びそれを用いた内視鏡を提供することである。   The present invention has been made in view of such a situation in the prior art, and an object of the present invention is to be able to take an image of an omnidirectional image in a direction substantially orthogonal to the central axis on an image sensor with a simple configuration. It is an object of the present invention to provide a compact optical element with low image distortion and good F-θ characteristics, high resolving power and low cost, an optical system including the optical element, and an endoscope using the optical element.

上記目的を達成する本発明の光学素子は、中心軸を含む断面内で、中心軸に直交する方向を中心に片側約90°の画角を有し、中心軸の周りで回転対称な屈折率が1より大きい透明媒体からなり、前記透明媒体は、前記中心軸に対して最外周に配置された第1透過面と、第1透過面より中心軸側に配置された第1反射面と、前記第1反射面より像面と反対側に配置された第2反射面と、前記第2反射面より像面側に配置された第2透過面と、を有し、前記透明媒体に入射する光束は、順光線追跡の順に、前記第1透過面を経て前記透明媒体内に入り、前記第1反射面で像面と反対側に反射され、前記第2反射面で像面側に反射され、前記第2透過面を経て前記透明媒体から像面側に外へ出る略Z字状の光路を構成し、前記光路は、前記中心軸に対して片側のみで構成されることを特徴とする。   The optical element of the present invention that achieves the above object has an angle of view of about 90 ° on one side about a direction orthogonal to the central axis in a cross section including the central axis, and a refractive index that is rotationally symmetric around the central axis. Is made of a transparent medium greater than 1, the transparent medium is a first transmission surface disposed on the outermost periphery with respect to the central axis, a first reflection surface disposed on the central axis side from the first transmission surface, A second reflecting surface disposed on the opposite side of the image surface from the first reflecting surface; and a second transmitting surface disposed on the image surface side of the second reflecting surface, and is incident on the transparent medium. The luminous flux enters the transparent medium through the first transmission surface in the order of forward ray tracing, is reflected on the opposite side to the image surface by the first reflection surface, and is reflected on the image surface side by the second reflection surface. A substantially Z-shaped optical path exiting from the transparent medium to the image plane side through the second transmission surface, and the optical path is the central axis Characterized in that it is composed of only one side for.

また、前記光学素子のメリジオナル断面の角倍率をβωとするとき、
0.01<βω<0.5 ・・・(1)
なる条件を満足することを特徴とする。
When the angular magnification of the meridional section of the optical element is βω,
0.01 <βω <0.5 (1)
It satisfies the following condition.

また、前記第2透過面のメリジオナル断面のパワーは負であり、前記第2透過面のパワーをP2、中心主光線のメリジオナル断面の光学系全体のパワーをPmとするとき、
−10<P2/Pm<−1 ・・・(2)
なる条件を満足することを特徴とする。
Further, when the power of the meridional section of the second transmission surface is negative, the power of the second transmission surface is P2, and the power of the entire meridional section of the central principal ray is Pm,
−10 <P2 / Pm <−1 (2)
It satisfies the following condition.

また、前記光学素子は、屈折率1.5以上の透明媒質で構成されていることを特徴とする。   The optical element is formed of a transparent medium having a refractive index of 1.5 or more.

また、前記第1反射面及び前記第2反射面のうちの少なくとも1つは、全反射作用を有することを特徴とする。   Further, at least one of the first reflection surface and the second reflection surface has a total reflection function.

また、前記第1反射面と前記第2反射面のうち少なくとも1面は、対称面を持たない任意形状の線分を中心軸の周りで回転させて形成される拡張回転自由曲面で構成されていることを特徴とする。   Further, at least one of the first reflecting surface and the second reflecting surface is composed of an extended rotation free-form surface formed by rotating an arbitrary-shaped line segment having no symmetry plane around the central axis. It is characterized by being.

また、前記透明媒体の有する面のうち少なくとも1面は、奇数次項を含む任意形状の線分を中心軸の周りで回転させて形状される拡張回転自由曲面で構成されていることを特徴とする。   In addition, at least one of the surfaces of the transparent medium is formed of an extended rotation free-form surface that is formed by rotating an arbitrary-shaped line segment including an odd-numbered term around the central axis. .

さらに、上記目的を達成する本発明の光学素子を備えた光学系は、前群と、前記前群より像面側に配置された後群と、前記前群と前記後群の間に配置された開口とを備え、前記光学素子は、前記前群に配置され、前記中心軸を囲むように配置された物体の像を形成し、あるいは前記中心軸から放射する方向に物体の像を投影することを特徴とする。   Furthermore, an optical system including the optical element of the present invention that achieves the above object is disposed between the front group, the rear group disposed on the image plane side from the front group, and the front group and the rear group. The optical element is disposed in the front group and forms an image of an object disposed so as to surround the central axis, or projects an image of the object in a direction radiating from the central axis It is characterized by that.

また、前記光学系は、中心軸の周囲の円環状の物体の像を中心軸と直交する平面内に形成することを特徴とする。   The optical system is characterized in that an image of an annular object around the central axis is formed in a plane orthogonal to the central axis.

また、前記第1反射面及び前記第2反射面は、前記開口側に凹面を向けて配置されることを特徴とする。   The first reflecting surface and the second reflecting surface may be disposed with a concave surface facing the opening.

また、前記第2透過面は、前記開口側に凹面を向けて配置されることを特徴とする。   Further, the second transmission surface is arranged with a concave surface facing the opening side.

また、前記光学系は、光路中で中間像を形成しないことを特徴とする。   Further, the optical system does not form an intermediate image in the optical path.

また、前記光学素子は開口に対して像面と反対側に配置されることを特徴とする。   The optical element may be disposed on the opposite side of the image plane with respect to the aperture.

また、前記光学素子は、前記光学素子直前を観察する直視光路と中心軸と直行する方向を観察する側視光路とを有し、前記直視光路及び前記側視光路の像を同一平面内に結像することを特徴とする。   The optical element has a direct-view optical path for observing immediately before the optical element and a side-view optical path for observing a direction perpendicular to the central axis, and connects the images of the direct-view optical path and the side-view optical path in the same plane. It is characterized by imaging.

また、前記光学素子の外径をD、像の外径をDrとするとき、
D/Dr<10 ・・・(3)
なる条件を満足することを特徴とする。
When the outer diameter of the optical element is D and the outer diameter of the image is Dr,
D / Dr <10 (3)
It satisfies the following condition.

また、前記光学素子の外径Dは、
D<20mm ・・・(4)
なる条件を満足することを特徴とする。
The outer diameter D of the optical element is
D <20mm (4)
It satisfies the following condition.

さらに、上記目的を達成する本発明は、前記光学系を用いた内視鏡であることを特徴とする。   Furthermore, the present invention for achieving the above object is an endoscope using the optical system.

以上の本発明の光学系においては、簡単な構成で異なる方向を観察又は異なる方向に映像を投影することが可能な小型で収差が良好に補正された解像力の良い光学系を得ることができる。   In the above optical system of the present invention, it is possible to obtain a compact optical system with good resolving power that can be observed in a different direction or projected an image in a different direction with a simple configuration and in which aberrations are well corrected.

以下、実施例に基づいて本発明の光学素子及びそれを備えた光学系について説明する。   Hereinafter, an optical element of the present invention and an optical system including the optical element will be described based on examples.

図3は、後述する実施例1の光学系1の中心軸(回転対称軸)2に沿ってとった断面図である。なお、以下の説明は、結像光学系として説明するが、光路を逆にとって投影光学系として用いることもできる。   FIG. 3 is a cross-sectional view taken along the central axis (rotation symmetry axis) 2 of the optical system 1 of Example 1 described later. In the following description, the imaging optical system will be described. However, it can be used as a projection optical system with the optical path reversed.

実施例1の光学系1は、中心軸2に対して回転対称で、負のパワーを有する前群Gfと、開口Sと、正のパワーを有する後群Gbとからなり、中間像を光路中に形成することなく像を形成又は投影する光学系1である。像面5近傍の平行平板は撮像素子のカバーガラスC等である。     The optical system 1 according to the first exemplary embodiment includes a front group Gf having a negative power and rotational symmetry with respect to a central axis 2, an aperture S, and a rear group Gb having a positive power. This is an optical system 1 that forms or projects an image without forming the image. The parallel flat plate near the image plane 5 is a cover glass C of the image sensor or the like.

また、前群Gfを負,後群Gbを正にすることにより、所謂レトロフォーカスタイプとなり、特に観察画角を広く取りたい場合に有効である。   Also, by setting the front group Gf to be negative and the rear group Gb to be positive, a so-called retrofocus type is obtained, which is particularly effective when a wide observation angle of view is desired.

本発明の光学素子は、中心軸2を含む断面内で、中心軸2に直交する方向を中心に片側約180°の画角を有し、中心軸2の周りで回転対称な屈折率が1より大きい透明媒体L1からなり、透明媒体L1は、中心軸2に対して最外周に配置された第1透過面11と、第1透過面より中心軸側に配置された第1反射面12と、第1反射面12に対して像面5と反対側に配置された第2反射面13と、第2反射面13より像面5側に配置された第2透過面14と、を有し、透明媒体L1に入射する光束は、順光線追跡の順に、第1透過面11を経て透明媒体L1内に入り、第1反射面12で像面5と反対側に反射され、第2反射面13で像面5側に反射され、第2透過面14を経て透明媒体L1から像面5側に外へ出る略Z字状の光路Aを構成し、光路Aは、中心軸2に対して片側のみで構成される。   The optical element of the present invention has an angle of view of about 180 ° on one side about a direction orthogonal to the central axis 2 within a cross section including the central axis 2, and a rotationally symmetric refractive index around the central axis 2. The transparent medium L1 is composed of a larger transparent medium L1. The transparent medium L1 includes a first transmission surface 11 disposed on the outermost periphery with respect to the central axis 2, and a first reflection surface 12 disposed on the central axis side from the first transmission surface. The second reflecting surface 13 disposed on the opposite side of the image surface 5 with respect to the first reflecting surface 12, and the second transmitting surface 14 disposed on the image surface 5 side with respect to the second reflecting surface 13. The light beam incident on the transparent medium L1 enters the transparent medium L1 via the first transmission surface 11 in the order of forward ray tracing, and is reflected by the first reflection surface 12 on the side opposite to the image surface 5 to be second reflection surface. 13 constitutes a substantially Z-shaped optical path A which is reflected to the image plane 5 side and exits from the transparent medium L1 to the image plane 5 side through the second transmission surface 14. Optical path A is configured on only one side with respect to the central axis 2.

この構成により、片側約90°の大きな画角をもちながら、光路Aの第1反射面12及び第2反射面13への入射角度を比較的小さくすることが可能となり、反射面で発生する偏心収差の発生を少なくすることが可能となる。また、光路Aを中心軸の片側のみで構成することにより、光学素子内の光路が中心軸2を跨ぐことがなくなり、光学素子を薄くすることが可能となる。   With this configuration, it is possible to make the incident angle of the optical path A to the first reflecting surface 12 and the second reflecting surface 13 relatively small while having a large angle of view of about 90 ° on one side, and eccentricity generated on the reflecting surface. Occurrence of aberration can be reduced. Further, by configuring the optical path A only on one side of the central axis, the optical path in the optical element does not straddle the central axis 2, and the optical element can be made thin.

さらに、本発明の光学素子のメリジオナル断面の角倍率をβωとするとき、
0.01<βω<0.5 ・・・(1)
なる条件を満足することが好ましい、この条件はメリジオナル断面での縮小角倍率を表しており、条件式(1)の下限を超えると本発明の光学素子にかかる負担が大きくなってしまい、光学素子が異常に大型化したり、屈折率が異常に高い高価なガラスが必要になったりする。また、条件式(1)の上限を超えると光学素子の画角縮小効果が無くなり、後群に入射する画角が広くなってしまい後群の負担が大きくなる。
Furthermore, when the angular magnification of the meridional section of the optical element of the present invention is βω,
0.01 <βω <0.5 (1)
It is preferable that this condition is satisfied. This condition represents the reduction angle magnification in the meridional section, and if the lower limit of the conditional expression (1) is exceeded, the burden on the optical element of the present invention increases, and the optical element Becomes abnormally large, or requires expensive glass having an abnormally high refractive index. If the upper limit of conditional expression (1) is exceeded, the effect of reducing the angle of view of the optical element is lost, and the angle of view incident on the rear group becomes wider, increasing the burden on the rear group.

さらに好ましくは
0.02<βω<0.2 ・・・(1−1)
なる条件を満足するとよい。
More preferably, 0.02 <βω <0.2 (1-1)
It is better to satisfy the following conditions.

また、第2透過面14の近軸のパワーをP、中心主光線の光学系全系のメリジオナル断面のパワーをPmとするとき、
−10<P2/Pm<−1 ・・・(2)
なる条件を満足することが好ましい。この条件式(2)は全体のパワーに占める第2透過面14の占める割合を表しており、条件式(2)の下限を超えると第2透過面14の負のパワーが強くなることを意味し、角倍率を小さくすることが可能となるが、小さくしすぎるとこの面で発生するコマ収差や非点収差の発生が大きくなりすぎてしまい、他の面で補正することが不可能となる。また、条件式(2)の上限を超えると第2透過面14の負のパワーが小さくなりすぎ条件式(1)と同様にメリジオナル断面の角倍率を大きく(縮小率を大きく)取れず、後群の負担が大きくなり光学系が大型になってしまう。
When the paraxial power of the second transmission surface 14 is P, and the power of the meridional section of the entire optical system of the central principal ray is Pm,
−10 <P2 / Pm <−1 (2)
It is preferable to satisfy the following conditions. Conditional expression (2) represents the ratio of the second transmission surface 14 to the total power. When the lower limit of conditional expression (2) is exceeded, the negative power of the second transmission surface 14 becomes stronger. However, it is possible to reduce the angular magnification, but if it is too small, coma and astigmatism occurring on this surface will become too large, and correction on other surfaces becomes impossible. . If the upper limit of conditional expression (2) is exceeded, the negative power of the second transmission surface 14 becomes too small, and the angular magnification of the meridional section cannot be increased (the reduction ratio is increased) similarly to conditional expression (1). The burden on the group increases and the optical system becomes large.

また、光学素子を屈折率1.5以上の媒質にして、反射作用を有する面を内部反射面で構成することにより、反射面で構成するより収差の発生が少なくなる。この構成により小型で高解像の光学系を構成することが可能となると同時に、2つの反射面を一体に構成することが可能となり、組み立て調整上好ましい。   Further, when the optical element is a medium having a refractive index of 1.5 or more and the reflecting surface is configured by an internal reflecting surface, the occurrence of aberration is reduced as compared with the reflecting surface. With this configuration, it is possible to configure a small and high-resolution optical system, and at the same time, it is possible to configure the two reflecting surfaces integrally, which is preferable in terms of assembly and adjustment.

さらに好ましくは屈折率1.7以上の媒質で構成することが好ましい。屈折率を上げるとそれだけ内部反射面の曲率を小さく(曲率半径を大きく)でき、特に本発明のように偏心光学系として構成している場合には、偏心収差の発生が小さくでき、解像力が向上する。   More preferably, it is preferably composed of a medium having a refractive index of 1.7 or more. Increasing the refractive index can decrease the curvature of the internal reflecting surface (increase the radius of curvature). Especially when it is configured as a decentration optical system as in the present invention, the occurrence of decentration aberrations can be reduced and the resolution is improved. To do.

さらに好ましくは、屈折率を1.8以上にすることにより、臨界角は33度となり、特に第1反射面を全反射面として構成することが可能となり、反射コーティングをしなくて良くなるため、加工上と光量の損失の点で好ましい。   More preferably, by setting the refractive index to 1.8 or more, the critical angle becomes 33 degrees. In particular, the first reflection surface can be configured as a total reflection surface, and it is not necessary to perform a reflection coating. It is preferable in terms of processing and loss of light amount.

また、第1反射面12及び第2反射面13のうちの少なくとも1つは、全反射作用を有することにより、反射膜を付ける必要がなくなり、製作が容易になると同時に反射率も100%となり、明るい映像を撮像できる。   In addition, since at least one of the first reflecting surface 12 and the second reflecting surface 13 has a total reflection function, it is not necessary to attach a reflecting film, and the manufacturing becomes easy and the reflectance becomes 100%. Bright images can be taken.

また、第1反射面12と第2反射面13のうち少なくとも1面は、対称面を持たない任意形状の線分を中心軸2の周りで回転させて形成される拡張回転自由曲面で構成されていることにより、画角周辺部分の歪みを補正することが可能となる。   In addition, at least one of the first reflecting surface 12 and the second reflecting surface 13 is composed of an extended rotation free-form surface formed by rotating an arbitrary-shaped line segment having no symmetry plane around the central axis 2. By doing so, it becomes possible to correct the distortion around the angle of view.

また、透明媒体L1の有する面のうち少なくとも1面は、奇数次項を含む任意形状の線分を中心軸2の周りで回転させて形状される拡張回転自由曲面で構成されていることにより、画角中心に対して上下非対称な形状を与えることが可能であり、収差補正上好ましい。   In addition, at least one of the surfaces of the transparent medium L1 is formed of an extended rotation free-form surface that is formed by rotating an arbitrary-shaped line segment including an odd-order term around the central axis 2. It is possible to give a vertically asymmetric shape with respect to the corner center, which is preferable in terms of aberration correction.

この実施例において、反射作用を持つ2つの反射面はいずれも開口Sに凹面を向けている。これにより、反射面のパワー配置が負−正の配置となり、光学素子自身の反射面のパワー配置が所謂レトロフォーカス型となり、広画角を取りやすくなると同時にコマ収差の発生を少なくすることが可能となる。   In this embodiment, the two reflecting surfaces having a reflecting action both have a concave surface facing the opening S. As a result, the power arrangement of the reflecting surface becomes a negative-positive arrangement, and the power arrangement of the reflecting surface of the optical element itself becomes a so-called retrofocus type, which makes it easy to obtain a wide angle of view and reduce the occurrence of coma aberration. It becomes.

また、第2透過面は開口側に凹面を向けた強い負のパワーを持つ面とすることが好ましい。この面を通って光学素子から射出する画角を小さくすることにより、後群に入射する画角を小さくし、後群の収差補正上の負担を減らし、全体として小型で構成枚数の少ない光学系を達成することができる。   The second transmission surface is preferably a surface having a strong negative power with the concave surface facing the opening side. By reducing the angle of view emitted from the optical element through this surface, the angle of view incident on the rear group is reduced, reducing the burden of aberration correction on the rear group, and the overall optical system is small and has a small number of components. Can be achieved.

また、光学素子を開口より物体側に配置することにより、後群とのバランスを取りやすくなり、光学系の小型化と簡素化に良い結果が得られる。開口近傍では、メリジオナル断面の中心光線と画角の大きい光線が接近しているので、開口近傍に光学素子を配置すると、高い角倍率が得られなくなり、他のレンズの負担が増えてしまう。また、開口の像側に光学素子を配置すると、開口より物体側の前群により広い画角を取ることが不可能になる。   In addition, by arranging the optical element on the object side from the opening, it becomes easy to balance with the rear group, and good results can be obtained for miniaturization and simplification of the optical system. In the vicinity of the aperture, the central ray of the meridional section and the ray having a large angle of view are close to each other. Therefore, if an optical element is disposed in the vicinity of the aperture, a high angular magnification cannot be obtained, and the burden on other lenses increases. If an optical element is disposed on the image side of the aperture, it becomes impossible to obtain a wider angle of view in the front group on the object side than the aperture.

図6は、後述する実施例2の光学系1の中心軸(回転対称軸)2に沿って取った断面図である。この実施例では、実施例1について説明したのと同様の、中心軸から見て側方の像を得るための側視光路に加えて、光学素子の中心を通して光学系の中心軸に沿った前方の像を得るための直視光路も備えている。このように、側視光路Aと直視光路Bの2光路を取れるように光学素子を構成すると、他の光学素子も一部共有することにより、光学素子の数を少なくすることが可能となり、光学系を小型に構成することが可能となる。又同一平面上に両光路の映像を投影することにより、ひとつの撮像素子で両方の映像に同時にピントを合わせて鮮明に撮像することが可能となる。   FIG. 6 is a cross-sectional view taken along the central axis (rotation symmetry axis) 2 of the optical system 1 of Example 2 described later. In this example, in addition to the side view optical path for obtaining a side image viewed from the central axis, as described in the first example, the front along the central axis of the optical system passes through the center of the optical element. A direct-view optical path for obtaining the image of As described above, when the optical element is configured to take the two optical paths of the side-viewing optical path A and the direct-viewing optical path B, it is possible to reduce the number of optical elements by partially sharing other optical elements. The system can be made small. In addition, by projecting images of both optical paths on the same plane, it becomes possible to focus on both images simultaneously with a single image sensor and to capture a clear image.

さらに好ましくは、光学素子の外径をD、像の外径をDrとするとき、
D/Dr<10 ・・・(3)
なる条件を満足することが好ましい。
More preferably, when the outer diameter of the optical element is D and the outer diameter of the image is Dr,
D / Dr <10 (3)
It is preferable to satisfy the following conditions.

条件式(3)の上限を超えると撮像素子に対して光学系の外径が大きくなってしまう。撮像素子はその値段と撮像素子のノイズ等によりある程度好ましい大きさが決まってしまう。たとえば1/3インチや1/4インチ等の比較的安価で入手しやすい高解像の撮像素子を使用した場合、条件式(3)の上限を超えると光学系全体をコンパクトに構成することが不可能になる。   If the upper limit of conditional expression (3) is exceeded, the outer diameter of the optical system becomes larger with respect to the image sensor. The preferred size of the image sensor is determined to some extent by the price and noise of the image sensor. For example, when a high-resolution image sensor that is relatively inexpensive and easily available, such as 1/3 inch or 1/4 inch, is used, if the upper limit of conditional expression (3) is exceeded, the entire optical system may be made compact. It becomes impossible.

さらに好ましくは
D/Dr<5 ・・・(3−1)
なる条件を満足することが好ましい。
More preferably, D / Dr <5 (3-1)
It is preferable to satisfy the following conditions.

さらに好ましくは、光学素子の外径Dは、
D<20mm ・・・(4)
なる条件を満足することが好ましい。
More preferably, the outer diameter D of the optical element is
D <20mm (4)
It is preferable to satisfy the following conditions.

特に、内視鏡の撮像系として使用する場合は条件式(4)を満足することが被験者への負担を減らす意味で好ましい。   In particular, when used as an imaging system for an endoscope, satisfying conditional expression (4) is preferable in terms of reducing the burden on the subject.

さらに好ましくは
D<10mm ・・・(4−1)
なる条件を満足することが好ましい。
More preferably, D <10 mm (4-1)
It is preferable to satisfy the following conditions.

以下に、本発明の光学系の実施例1〜4を説明する。これら光学系の構成パラメータは後記する。   Examples 1 to 4 of the optical system of the present invention will be described below. The configuration parameters of these optical systems will be described later.

座標系は、順光線追跡において、例えば図1に示すように、物体面3から第1面に向かう中心主光線の延長が中心軸2と交差する点を偏心光学面の原点Oとし、物体面3とは中心軸2に対して反対側の中心軸2に直交する方向をY軸正方向とし、図1の紙面内をY−Z平面とする。そして、図1の像面5側の方向をZ軸正方向とし、Y軸、Z軸と右手直交座標系を構成する軸をX軸正方向とする。   In the forward ray tracing, for example, as shown in FIG. 1, the coordinate system uses, as the origin O of the decentered optical surface, the point where the extension of the central principal ray from the object surface 3 toward the first surface intersects the central axis 2. 3, the direction orthogonal to the central axis 2 opposite to the central axis 2 is defined as the Y-axis positive direction, and the plane of FIG. 1 is defined as the YZ plane. The direction on the image plane 5 side in FIG. 1 is the Z axis positive direction, and the Y axis, the Z axis, and the axis constituting the right-handed orthogonal coordinate system are the X axis positive direction.

偏心面については、その面が定義される座標系の上記光学系1の原点Oからの偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、光学系1の原点Oに定義される座標系のX軸、Y軸、Z軸それぞれを中心とする各面を定義する座標系の傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、各面を定義する座標系を光学系の原点に定義される座標系のまずX軸の回りで反時計回りにα回転させ、次に、その回転した新たな座標系のY軸の回りで反時計回りにβ回転させ、次いで、その回転した別の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。   For the decentered surface, the decentering amount from the origin O of the optical system 1 of the coordinate system in which the surface is defined (X-axis direction, Y-axis direction, and Z-axis direction are X, Y, and Z, respectively), and the optical system 1 The inclination angles (α, β, γ (°), respectively) of the coordinate system defining the respective planes centered on the X axis, the Y axis, and the Z axis of the coordinate system defined by the origin O are given. . In this case, positive α and β mean counterclockwise rotation with respect to the positive direction of each axis, and positive γ means clockwise rotation with respect to the positive direction of the Z axis. Note that the α, β, and γ rotations of the central axis of the surface are performed by rotating the coordinate system defining each surface counterclockwise around the X axis of the coordinate system defined at the origin of the optical system. Then rotate it around the Y axis of the new rotated coordinate system by β and then rotate it around the Z axis of another rotated new coordinate system by γ. It is.

また、各実施例の光学系を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には面間隔が与えられており、その他、面の曲率半径、媒質の屈折率、アッベ数が慣用法に従って与えられている。   Further, among the optical action surfaces constituting the optical system of each embodiment, when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given, in addition, the curvature radius of the surface, The refractive index and Abbe number of the medium are given according to conventional methods.

また、後記の構成パラメータ中にデータの記載されていない非球面に関する項は0である。屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。各面の偏心は、上記のように、基準面からの偏心量で表わす。   In addition, a term relating to an aspheric surface for which no data is described in the constituent parameters described later is zero. The refractive index and the Abbe number are shown for the d-line (wavelength 587.56 nm). The unit of length is mm. As described above, the eccentricity of each surface is expressed by the amount of eccentricity from the reference surface.

なお、非球面は、以下の定義式で与えられる回転対称非球面である。   The aspheric surface is a rotationally symmetric aspheric surface given by the following definition.

Z=(Y2 /R)/[1+{1−(1+k)Y2 /R2 1 /2
+aY4 +bY6 +cY8 +dY10+・・・
・・・(a)
ただし、Zを軸とし、Yを軸と垂直な方向にとる。ここで、Rは近軸曲率半径、kは円錐定数、a、b、c、d、…はそれぞれ4次、6次、8次、10次の非球面係数である。この定義式のZ軸が回転対称非球面の軸となる。
Z = (Y 2 / R) / [1+ {1- (1 + k) Y 2 / R 2} 1/2]
+ AY 4 + bY 6 + cY 8 + dY 10 +...
... (a)
However, Z is taken as an axis, and Y is taken in a direction perpendicular to the axis. Here, R is a paraxial radius of curvature, k is a conic constant, a, b, c, d,... Are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively. The Z axis of this defining formula is the axis of a rotationally symmetric aspherical surface.

また、拡張回転自由曲面は、以下の定義で与えられる回転対称面である。   The extended rotation free-form surface is a rotationally symmetric surface given by the following definition.

まず、図2に示すように、Y−Z座標面上で原点を通る下記の曲線(b)が定められる。   First, as shown in FIG. 2, the following curve (b) passing through the origin on the YZ coordinate plane is determined.

Z=(Y2 /RY)/[1+{1−(C1 +1)Y2 /RY2 1 /2
+C2 Y+C3 2 +C4 3 +C5 4 +C6 5 +C7 6
+・・・・+C2120+・・・・+Cn+1 n +・・・・
・・・(b)
次いで、この曲線(b)をX軸正方向を向いて左回りを正として角度θ(°)回転した曲線F(Y)が定められる。この曲線F(Y)もY−Z座標面上で原点を通る。
Z = (Y 2 / RY) / [1+ {1- (C 1 +1) Y 2 / RY 2} 1/2]
+ C 2 Y + C 3 Y 2 + C 4 Y 3 + C 5 Y 4 + C 6 Y 5 + C 7 Y 6
+ ··· + C 21 Y 20 + ··· + C n + 1 Y n + ····
... (b)
Next, a curve F (Y) obtained by rotating the curve (b) in the positive direction of the X-axis and turning it counterclockwise to be positive is determined. This curve F (Y) also passes through the origin on the YZ coordinate plane.

その曲線F(Y)をY正方向に距離R(負のときはY負方向)だけ平行移動し、その後にZ軸の周りでその平行移動した曲線を回転させてできる回転対称面を拡張回転自由曲面とする。   The curve F (Y) is translated in the Y positive direction by a distance R (Y negative direction if negative), and then the rotationally symmetric surface is rotated by rotating the translated curve around the Z axis. Let it be a free-form surface.

その結果、拡張回転自由曲面はY−Z面内で自由曲面(自由曲線)になり、X−Y面内で半径|R|の円になる。   As a result, the extended rotation free-form surface becomes a free-form surface (free-form curve) in the YZ plane and a circle with a radius | R | in the XY plane.

この定義からZ軸が拡張回転自由曲面の軸(回転対称軸)となる。   From this definition, the Z-axis becomes the axis of the extended rotation free-form surface (rotation symmetry axis).

ここで、RYはY−Z断面での球面項の曲率半径、C1 は円錐定数、C2 、C3 、C4 、C5 …はそれぞれ1次、2次、3次、4次…の非球面係数である。 Where RY is the radius of curvature of the spherical term in the YZ section, C 1 is the conic constant, C 2 , C 3 , C 4 , C 5 . Aspheric coefficient.

なお、Z軸を中心軸に持つ円錐面は拡張回転自由曲面の1つとして与えられ、RY=∞,C1 ,C2 ,C3 ,C4 ,C5 ,…=0とし、θ=(円錐面の傾き角)、R=(X−Z面内での底面の半径)として与えられる。 A conical surface having the Z axis as the central axis is given as one of the extended rotation free-form surfaces, and RY = ∞, C 1 , C 2 , C 3 , C 4 , C 5 ,... = 0, and θ = ( The inclination angle of the conical surface), R = (the radius of the bottom surface in the XZ plane).

また、後記の構成パラメータ中にデータの記載されていない非球面に関する項は0である。屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。各面の偏心は、上記のように、基準面からの偏心量で表わす。   In addition, a term relating to an aspheric surface for which no data is described in the constituent parameters described later is zero. The refractive index and the Abbe number are shown for the d-line (wavelength 587.56 nm). The unit of length is mm. As described above, the eccentricity of each surface is expressed by the amount of eccentricity from the reference surface.

実施例1の光学系1の中心軸2に沿ってとった断面図を図3に示す。また、この実施例の光学系全体の横収差図を図4、画角に対する像高を表す図を図5に示す。この横収差図において、中央に示された角度は、(水平方向画角、垂直方向の画角)を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。なお、マイナスの画角は、水平方向画角については、Y軸正方向を向いて右回りの角度、垂直方向画角については、X軸正方向を向いて右回りの角度を意味する。以下、同じ。   A cross-sectional view taken along the central axis 2 of the optical system 1 of Example 1 is shown in FIG. Further, FIG. 4 shows a lateral aberration diagram of the entire optical system of this example, and FIG. 5 shows an image height with respect to an angle of view. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show. Note that a negative field angle means a clockwise angle in the Y-axis positive direction for the horizontal field angle, and a clockwise angle in the X-axis positive direction for the vertical field angle. same as below.

本実施例は、光学系1の中心軸2に同心に回転対称な屈折率が1より大きい透明媒体の透過面及び反射面を、光路内で共通に使用することなくすべて異なる面で構成した例である。   In this embodiment, the transparent surface and the reflective surface of the transparent medium having a refractive index larger than 1 and concentric with the central axis 2 of the optical system 1 are all configured as different surfaces without being commonly used in the optical path. It is.

光学系1は、中心軸2の周りで回転対称な前群Gfと、中心軸2の周りで回転対称な後群Gbと、前群Gfと後群Gbの間に中心軸2に同軸に配置された開口Sとからなり、後群Gbは、第1群G1と第2群G2からなる。   The optical system 1 is arranged coaxially on the central axis 2 between the front group Gf and the rear group Gb, and the front group Gf rotationally symmetric about the central axis 2, the rear group Gb rotationally symmetric about the central axis 2. The rear group Gb includes the first group G1 and the second group G2.

前群は、中心軸2の周りで回転対称な屈折率が1より大きい透明媒体L1からなる。透明媒体L1は、物体面に対向し、外側に配置され、中心軸2に平行に形成されたシリンドリカル面からなる第1透過面11と、透明媒体L1の内部に形成され、第1透過面11に対して中心軸2側に配置され、トーリック面からなり、負のパワーをもつ第1反射面12と、透明媒体L1の内部に形成され、第1反射面12に対して像面5と反対側に配置され、トーリック面からなり、正のパワーをもつ第2反射面13と、第2反射面13より像面5側に配置され、非球面からなり、負のパワーをもつ第2透過面14をもつ。   The front group is made of a transparent medium L1 having a refractive index that is rotationally symmetric about the central axis 2 and greater than 1. The transparent medium L1 is opposed to the object surface and is disposed outside and includes a first transmission surface 11 including a cylindrical surface formed parallel to the central axis 2 and the first transmission surface 11 formed inside the transparent medium L1. Is disposed on the central axis 2 side, is formed of a toric surface and has a negative power, and is formed inside the transparent medium L1, and is opposite to the image surface 5 with respect to the first reflective surface 12. A second reflecting surface 13 having a toric surface and having a positive power, and a second transmitting surface having an aspherical surface and having a negative power, which is disposed closer to the image surface 5 than the second reflecting surface 13. 14

第1群は、像面5側に凹面を向けた負メニスカスレンズL2と両凸正レンズL3の接合レンズからなり、第3透過面21と、第3透過面21より像面5側に配置される接合面23と、接合面23より像面5側に配置される第4透過面31をもつ。   The first group includes a cemented lens of a negative meniscus lens L2 and a biconvex positive lens L3 having a concave surface facing the image surface 5 side, and is disposed on the image surface 5 side from the third transmission surface 21 and the third transmission surface 21. And a fourth transmission surface 31 disposed on the image plane 5 side with respect to the bonding surface 23.

第2群は、両凸正レンズL4と両凹負レンズL5の接合レンズとからなり、第5透過面41と、第5透過面41より像面5側に配置される接合面45と、接合面45より像面5側に配置される第6透過面51をもつ。   The second group includes a cemented lens of a biconvex positive lens L4 and a biconcave negative lens L5, a fifth transmission surface 41, a cemented surface 45 disposed on the image plane 5 side with respect to the fifth transmission surface 41, and a cemented lens. A sixth transmission surface 51 is disposed on the image surface 5 side with respect to the surface 45.

光学系1は、光路Aを形成する。光路Aにおいて、光学系1の物体面3から入射する光束は、前群Gfと後群Gbを順に経て中心軸2に垂直な像面5の中心軸2から外れた外側に円環状に映像を形成する。   The optical system 1 forms an optical path A. In the optical path A, a light beam incident from the object plane 3 of the optical system 1 passes through the front group Gf and the rear group Gb in order and forms an image in an annular shape outside the center axis 2 of the image plane 5 perpendicular to the center axis 2. Form.

光路Aとして光学系1に入射する光束は、前群Gfの透明媒体L1内に第1透過面11を経て入り、第1反射面12で像面5と反対側に反射され、第2反射面13で像面5側に反射され、第2透過面14を経て透明媒体L1から外に出る略Z字状の光路を有する。   The light beam incident on the optical system 1 as the optical path A enters the transparent medium L1 of the front group Gf via the first transmission surface 11, is reflected by the first reflection surface 12 on the side opposite to the image surface 5, and is reflected by the second reflection surface. 13 has a substantially Z-shaped optical path that is reflected to the image plane 5 side and exits from the transparent medium L1 through the second transmission surface 14.

その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口Sを経て、後群Gbの第1群の負メニスカスレンズL2と両凸正レンズL3の接合レンズ内に中心軸2を挟んで反対側で第3透過面21を経て入り、接合面23を経て、第4透過面31から外に出て、第2群の両凸正レンズL4と両凹負レンズL5の接合レンズ内に第5透過面41を経て入り、接合面45を経て、第6透過面51から外に出て、像面5の中心軸2から外れた半径方向の所定位置に結像する。   After that, a cemented lens of the negative meniscus lens L2 of the first group of the rear group Gb and the biconvex positive lens L3 is disposed between the front group Gf and the rear group Gb through an aperture S that is coaxially arranged on the central axis 2 and forms a stop. It enters through the third transmission surface 21 on the opposite side across the central axis 2 and exits from the fourth transmission surface 31 through the joint surface 23 and the biconvex positive lens L4 of the second group and the biconcave negative The lens L5 enters the cemented lens through the fifth transmitting surface 41, passes through the cemented surface 45, exits from the sixth transmitting surface 51, and is connected to a predetermined radial position away from the central axis 2 of the image surface 5. Image.

この実施例1の仕様は、
画角 −89°〜89°
像の大きさ φ0.48〜φ2.37
Fナンバー 3.97
である。
The specification of this Example 1 is
Angle of view -89 ° -89 °
Image size φ0.48 to φ2.37
F number 3.97
It is.

実施例2の光学系1の中心軸2に沿ってとった断面図を図6に示す。また、この実施例の光学系全体の側視光路の横収差図を図7、直視光路の横収差図を図8、画角に対する像高を表す図を図9に示す。   A sectional view taken along the central axis 2 of the optical system 1 of Example 2 is shown in FIG. Further, FIG. 7 shows a lateral aberration diagram of the side viewing optical path of the entire optical system of this embodiment, FIG. 8 shows a lateral aberration diagram of the direct viewing optical path, and FIG. 9 shows a diagram representing the image height with respect to the angle of view.

本実施例は、光学系1の中心軸2に同心に回転対称な屈折率が1より大きい透明媒体の透過面及び反射面を、側視光路内で共通に使用することなくすべて異なる面で構成した例である。   In this embodiment, the transmission surface and the reflection surface of a transparent medium having a refractive index larger than 1 that is concentric with the central axis 2 of the optical system 1 are all different surfaces without being commonly used in the side-view optical path. This is an example.

光学系1は、中心軸2の周りで回転対称な前群Gfと、中心軸2の周りで回転対称な後群Gbと、前群Gfと後群Gbの間に中心軸2に同軸に配置された開口5とからなり、後群Gbは、第1群G1と第2群G2からなる。   The optical system 1 is arranged coaxially on the central axis 2 between the front group Gf and the rear group Gb, and the front group Gf rotationally symmetric about the central axis 2, the rear group Gb rotationally symmetric about the central axis 2. The rear group Gb includes a first group G1 and a second group G2.

前群Gfは、中心軸2の周りで回転対称な屈折率が1より大きい透明媒体L1からなり、側視光路Aと、直視光路Bとを合成する光路合成光学系である。   The front group Gf is composed of a transparent medium L1 having a rotational symmetry around the central axis 2 and a refractive index larger than 1, and is an optical path combining optical system that combines the side viewing optical path A and the direct viewing optical path B.

透明媒体L1は、側視物体面3に対向し、外側に配置され、中心軸2に平行なシリンドリカル状の側視第1透過面11と、透明媒体L1の内部に形成され、側視第1透過面11より中心軸2側に形成され、トーリック面からなり、負のパワーをもつ側視第1反射面12と、透明媒体L1の内部に形成され、側視第1反射面12に対して像面5と反対側に配置され、トーリック面からなり、正のパワーをもつ側視第2反射面13と、側視第2反射面13より像面5側に配置され、非球面からなり、負のパワーをもつ側視第2透過面14をもつ。また、球面からなり、正のパワーをもつ直視第3透過面15と、直視第3透過面15より像面5側に配置され、非球面からなり、負のパワーをもつ直視第4透過面16をもつ。なお、側視第2透過面14と直視第4透過面16は同一面である。   The transparent medium L1 is opposed to the side object surface 3 and is disposed outside, and is formed inside the cylindrical side view first transmission surface 11 parallel to the central axis 2 and the transparent medium L1. Formed on the side of the central axis 2 from the transmission surface 11, is formed of a toric surface, has a negative side power first reflection surface 12, and is formed inside the transparent medium L 1, with respect to the side reflection first reflection surface 12. Arranged on the opposite side of the image plane 5, consisting of a toric surface, having a positive power side-viewing second reflecting surface 13, arranged on the image plane 5 side from the side-viewing second reflecting surface 13, consisting of an aspherical surface, It has the 2nd permeation | transmission surface 14 with a negative power. Further, a direct-view third transmitting surface 15 having a spherical power and having a positive power, and a direct-view fourth transmitting surface 16 having an aspherical surface and having a negative power disposed on the image plane 5 side of the direct-viewing third transmitting surface 15. It has. The side view second transmission surface 14 and the direct view fourth transmission surface 16 are the same surface.

第1群は、像面5側に凹面を向けた負メニスカスレンズL2と両凸正レンズL3の接合レンズからなり、第3透過面21と、第3透過面21より像面5側に配置される接合面23と、接合面23より像面5側に配置される第4透過面31をもつ。   The first group includes a cemented lens of a negative meniscus lens L2 and a biconvex positive lens L3 having a concave surface facing the image surface 5 side, and is disposed on the image surface 5 side from the third transmission surface 21 and the third transmission surface 21. And a fourth transmission surface 31 disposed on the image plane 5 side with respect to the bonding surface 23.

第2群は、両凸正レンズL4と両凹負レンズL5の接合レンズとからなり、第5透過面41と、第5透過面41より像面5側に配置される接合面45と、接合面45より像面5側に配置される第6透過面51をもつ。   The second group includes a cemented lens of a biconvex positive lens L4 and a biconcave negative lens L5, a fifth transmission surface 41, a cemented surface 45 disposed on the image plane 5 side with respect to the fifth transmission surface 41, and a cemented lens. A sixth transmission surface 51 is disposed on the image surface 5 side with respect to the surface 45.

光学系1は、側視光路Aと、直視光路Bとを形成する。側視光路Aにおいては、光学系1側方の側視物体面3から入射する光束は、前群Gfと後群Gbを順に経て中心軸2に垂直な像面5の中心軸2から外れた外側に円環状に映像を形成する。また、直視光路Bにおいては、光学系1の中心軸2近傍の直視物体面4から入射する光束は、前群Gfと後群Gbを順に経て中心軸2に垂直な像面5の中心軸2近傍に円形に映像を形成する。   The optical system 1 forms a side viewing optical path A and a direct viewing optical path B. In the side viewing optical path A, the light beam incident from the side viewing object plane 3 on the side of the optical system 1 deviates from the central axis 2 of the image plane 5 perpendicular to the central axis 2 through the front group Gf and the rear group Gb in this order. An image is formed in an annular shape on the outside. In the direct-view optical path B, the light beam incident from the direct-view object surface 4 in the vicinity of the central axis 2 of the optical system 1 passes through the front group Gf and the rear group Gb in this order, and the central axis 2 of the image plane 5 perpendicular to the central axis 2. An image is formed in a circle in the vicinity.

側視光路Aとして光学系1の側方から入射する光束は、前群Gfの透明媒体L1内に側視第1透過面11を経て入り、側視第1反射面12で像面5と反対側に反射され、側視第2反射面13で像面5側に反射され、側視第2透過面14を経て透明媒体L1から外に出る略Z字状の光路を有する。   A light beam incident from the side of the optical system 1 as the side viewing optical path A enters the transparent medium L1 of the front group Gf through the first transmission surface 11 as viewed from the side, and is opposite to the image surface 5 at the first reflection surface 12 as viewed from the side. A substantially Z-shaped optical path that is reflected to the side, reflected to the image plane 5 side by the side-view second reflection surface 13, and exits from the transparent medium L <b> 1 through the side-view second transmission surface 14.

その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口Sを経て、後群Gbの第1群の負メニスカスレンズL2と両凸正レンズL3の接合レンズ内に中心軸2を挟んで反対側で共通第3透過面21を経て入り、接合面23を経て、共通第4透過面31から外に出て、第2群の両凸正レンズL4と両凹負レンズL5の接合レンズ内に共通第5透過面41を経て入り、接合面45を経て、共通第6透過面51から外に出て、像面5の中心軸2から外れた半径方向の所定位置に結像する。   After that, a cemented lens of the negative meniscus lens L2 of the first group of the rear group Gb and the biconvex positive lens L3 is disposed between the front group Gf and the rear group Gb through an aperture S that is coaxially arranged on the central axis 2 and forms a stop. It enters through the common third transmission surface 21 on the opposite side of the central axis 2 and exits from the common fourth transmission surface 31 through the joint surface 23 to both the biconvex positive lens L4 of the second group. The concave negative lens L5 enters the cemented lens through the common fifth transmitting surface 41, passes through the cemented surface 45, exits from the common sixth transmitting surface 51, and deviates from the central axis 2 of the image plane 5. An image is formed at a predetermined position.

また、直視光路Bとして光学系1に入射する光束は、前群Gfの透明媒体L1内に直視第1透過面15を経て入り、直視第1透過面15より像面5側に配置された直視第2透過面16を経て透明媒体L1から外に出る。   Further, the light beam incident on the optical system 1 as the direct-view optical path B enters the transparent medium L1 of the front group Gf through the direct-view first transmission surface 15, and is directly viewed from the first-view first transmission surface 15 on the image plane 5 side. It goes out of the transparent medium L1 through the second transmission surface 16.

その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口Sを経て、後群Gbの第1群の負メニスカスレンズL2と両凸正レンズL3の接合レンズ内に中心軸2を挟んで反対側で共通第3透過面21を経て入り、接合面23を経て、共通第4透過面31から外に出て、第2群の両凸正レンズL4と両凹負レンズL5の接合レンズ内に共通第5透過面41を経て入り、接合面45を経て、共通第6透過面51から外に出て、像面5の中心軸2上に結像する。   After that, a cemented lens of the negative meniscus lens L2 of the first group of the rear group Gb and the biconvex positive lens L3 is disposed between the front group Gf and the rear group Gb through an aperture S that is coaxially arranged on the central axis 2 and forms a stop. It enters through the common third transmission surface 21 on the opposite side of the central axis 2 and exits from the common fourth transmission surface 31 through the joint surface 23 to both the biconvex positive lens L4 of the second group. The light enters the cemented lens of the concave negative lens L5 through the common fifth transmission surface 41, exits from the common sixth transmission surface 51 through the cemented surface 45, and forms an image on the central axis 2 of the image plane 5.

この実施例2の仕様は、
画角(側視) −89°〜89°
(直視) 0°〜60°
像の大きさ(側視) φ0.87〜φ2.76
(直視) φ0.66
Fナンバー(側視) 4.26
(直視) 4.24
実施例3の光学系1の中心軸2に沿ってとった断面図を図10に示す。また、この実施例の光学系全体の横収差図を図11、画角に対する像高を表す図を図12に示す。この横収差図において、中央に示された角度は、(水平方向画角、垂直方向の画角)を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。なお、マイナスの画角は、水平方向画角については、Y軸正方向を向いて右回りの角度、垂直方向画角については、X軸正方向を向いて右回りの角度を意味する。以下、同じ。
The specification of Example 2 is
Angle of view (side view) -89 ° to 89 °
(Direct view) 0 ° -60 °
Image size (side view) φ0.87 to φ2.76
(Direct view) φ0.66
F number (side view) 4.26
(Direct view) 4.24
A sectional view taken along the central axis 2 of the optical system 1 of Example 3 is shown in FIG. Further, FIG. 11 shows a lateral aberration diagram of the entire optical system of this example, and FIG. 12 shows a diagram showing the image height with respect to the angle of view. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show. Note that a negative field angle means a clockwise angle in the Y-axis positive direction for the horizontal field angle, and a clockwise angle in the X-axis positive direction for the vertical field angle. same as below.

本実施例は、光学系1の中心軸2に同心に回転対称な屈折率が1より大きい透明媒体の透過面及び反射面を、光路内で共通に使用することなくすべて異なる面で構成した例である。   In this embodiment, the transparent surface and the reflective surface of the transparent medium having a refractive index larger than 1 and concentric with the central axis 2 of the optical system 1 are all configured as different surfaces without being commonly used in the optical path. It is.

光学系1は、中心軸2の周りで回転対称な前群Gfと、中心軸2の周りで回転対称な後群Gbと、前群Gfと後群Gbの間に中心軸2に同軸に配置された開口Sとからなり、前群Gfは、第1群G1と第2群G2からなり、後群Gbは、第3群G3と第4群G4からなる。   The optical system 1 is arranged coaxially on the central axis 2 between the front group Gf and the rear group Gb, and the front group Gf rotationally symmetric about the central axis 2, the rear group Gb rotationally symmetric about the central axis 2. The front group Gf consists of the first group G1 and the second group G2, and the rear group Gb consists of the third group G3 and the fourth group G4.

第1群は、中心軸2の周りで回転対称な屈折率が1より大きい透明媒体L1からなる。透明媒体L1は、物体面に対向し、外側に配置され、中心軸2に平行に形成されたシリンドリカル面からなる第1透過面11と、透明媒体L1の内部に形成され、第1透過面11に対して中心軸2側に配置され、拡張回転自由曲面からなり、負のパワーをもつ第1反射面12と、透明媒体L1の内部に形成され、第1反射面12に対して像面5と反対側に配置され、拡張回転自由曲面からなり、正のパワーをもつ第2反射面13と、第2反射面13より像面5側に配置され、非球面からなり、負のパワーをもつ第2透過面14をもつ。   The first group is made of a transparent medium L1 having a refractive index that is rotationally symmetric about the central axis 2 and greater than 1. The transparent medium L1 is opposed to the object surface and is disposed outside and includes a first transmission surface 11 including a cylindrical surface formed parallel to the central axis 2 and the first transmission surface 11 formed inside the transparent medium L1. The first reflecting surface 12 is arranged on the central axis 2 side, is composed of an extended rotation free-form surface, has negative power, and is formed inside the transparent medium L1, and has an image plane 5 with respect to the first reflecting surface 12. Is disposed on the opposite side of the second reflecting surface 13 having a positive rotation power and having a positive power. The second reflecting surface 13 is disposed on the image surface 5 side of the second reflecting surface 13 and has an aspherical surface and has a negative power. A second transmission surface 14 is provided.

第2群は、像面5側に凸面を向けた正メニスカスレンズL2からなり、第3透過面21と、第3透過面21より像面5側に配置される第4透過面31をもつ。   The second group includes a positive meniscus lens L2 having a convex surface facing the image surface 5 side, and includes a third transmission surface 21 and a fourth transmission surface 31 disposed on the image surface 5 side with respect to the third transmission surface 21.

第3群は、像面5側に凹面を向けた負メニスカスレンズL3と両凸正レンズL4の接合レンズからなり、第5透過面31と、第5透過面31より像面5側に配置される接合面34と、接合面34より像面5側に配置される第6透過面41をもつ。   The third group includes a cemented lens of a negative meniscus lens L3 and a biconvex positive lens L4 having a concave surface facing the image surface 5 side, and is disposed on the image surface 5 side from the fifth transmission surface 31 and the fifth transmission surface 31. And a sixth transmission surface 41 disposed closer to the image plane 5 than the bonding surface 34.

第4群は、両凸正レンズL5と両凹負レンズL6の接合レンズとからなり、第7透過面51と、第7透過面51より像面5側に配置される接合面56と、接合面56より像面5側に配置される第8透過面61をもつ。   The fourth group includes a cemented lens of a biconvex positive lens L5 and a biconcave negative lens L6, a seventh transmission surface 51, a cemented surface 56 disposed closer to the image plane 5 than the seventh transmission surface 51, and a cemented lens. An eighth transmission surface 61 is provided on the image plane 5 side with respect to the surface 56.

光学系1は、光路Aを形成する。光路Aにおいて、光学系1の物体面3から入射する光束は、前群Gfと後群Gbを順に経て中心軸2に垂直な像面5の中心軸2から外れた外側に円環状に映像を形成する。   The optical system 1 forms an optical path A. In the optical path A, a light beam incident from the object plane 3 of the optical system 1 passes through the front group Gf and the rear group Gb in order and forms an image in an annular shape outside the center axis 2 of the image plane 5 perpendicular to the center axis 2. Form.

光路Aとして光学系1に入射する光束は、前群Gfの第1群の透明媒体L1内に第1透過面11を経て入り、第1反射面12で像面5と反対側に反射され、第2反射面13で像面5側に反射され、第2透過面14を経て透明媒体L1から外に出る略Z字状の光路を有する。続いて、第2群の正メニスカスレンズL2内に、第3透過面21を経て入り、第4透過面31から外に出る。   The light beam incident on the optical system 1 as the optical path A enters the first group of transparent media L1 of the front group Gf through the first transmission surface 11, is reflected by the first reflection surface 12 on the opposite side to the image surface 5, It has a substantially Z-shaped optical path that is reflected by the second reflecting surface 13 toward the image surface 5 and goes out of the transparent medium L1 through the second transmitting surface 14. Subsequently, the light enters the positive meniscus lens L <b> 2 of the second group through the third transmission surface 21 and exits from the fourth transmission surface 31.

その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口Sを経て、後群Gbの第3群の負メニスカスレンズL3と両凸正レンズL4の接合レンズ内に中心軸2を挟んで反対側で第5透過面31を経て入り、接合面34を経て、第6透過面41から外に出て、第4群の両凸正レンズL5と両凹負レンズL6の接合レンズ内に第7透過面51を経て入り、接合面56を経て、第8透過面61から外に出て、像面5の中心軸2から外れた半径方向の所定位置に結像する。   After that, a cemented lens of the negative meniscus lens L3 of the third group of the rear group Gb and the biconvex positive lens L4 passes through an aperture S that is disposed coaxially with the central axis 2 between the front group Gf and the rear group Gb and forms a stop. It enters through the fifth transmission surface 31 on the opposite side across the central axis 2 and exits from the sixth transmission surface 41 through the cementing surface 34 and the biconvex positive lens L5 of the fourth group and the biconcave negative The lens L6 enters the cemented lens through the seventh transmission surface 51, passes through the cemented surface 56, exits from the eighth transmission surface 61, and is connected to a predetermined radial position away from the central axis 2 of the image plane 5. Image.

この実施例3の仕様は、
画角 −89°〜89°
像の大きさ φ0.44〜φ2.38
Fナンバー 5.9
である。
The specification of this Example 3 is
Angle of view -89 ° -89 °
Image size φ0.44 to φ2.38
F number 5.9
It is.

また、光学素子のメリジオナル断面の角倍率をβωとし、第2の透過作用を有する面のメリジオナル断面のパワーをP2、中心主光線のメリジオナル断面の光学系全体のパワーをPm、光学素子の外径をD、像の外径をDrとするとき、
実施例1 実施例2 実施例3
βω 0.099 0.090 0.129
P2/Pm -3.022 -2.427 -3.932
D 7.000 7.000 8.000
Dr 2.366 2.756 2.381
D/Dr 2.959 2.528 3.360
である。
Further, the angle magnification of the meridional section of the optical element is βω, the power of the meridional section of the surface having the second transmission action is P2, the power of the entire optical system of the meridional section of the central principal ray is Pm, and the outer diameter of the optical element Is D and the outer diameter of the image is Dr,
Example 1 Example 2 Example 3
βω 0.099 0.090 0.129
P2 / Pm -3.022 -2.427 -3.932
D 7.000 7.000 8.000
Dr 2.366 2.756 2.381
D / Dr 2.959 2.528 3.360
It is.

以下に、上記実施例1〜4の構成パラメータを示す。なお、以下の表中の“ASS”は非球面、“ERFS”は拡張回転自由曲面、“RE”は反射面を示す。   The configuration parameters of Examples 1 to 4 are shown below. In the table below, “ASS” indicates an aspherical surface, “ERFS” indicates an extended rotation free-form surface, and “RE” indicates a reflecting surface.

実施例1
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞ 偏心(1)
1 ERFS[1] 偏心(2) 1.8348 42.7
2 ERFS[2](RE) 偏心(3) 1.8348 42.7
3 ERFS[3](RE) 偏心(4) 1.8348 42.7
4 ASS[1] 偏心(5)
5 ∞ 0.50 偏心(6) 1.5163 64.1
6 ∞(絞り) 0.35
7 2.82 0.30 1.8467 23.8
8 1.28 1.20 1.7440 44.8
9 -1.85 0.10
10 1.84 1.40 1.4971 69.3
11 -1.14 0.30 1.8467 23.8
12 20.09 0.50
13 ∞ 0.40 1.5163 64.1
14 ∞ 0.10
像 面 ∞
ERFS[1]
RY ∞
θ 90.00
R -3.50
ERFS[2]
RY 4.52
θ 39.68
R -2.18
ERFS[3]
RY 5.72
θ 10.80
R -1.62
ASS[1]
R 0.70
k -1.9423E-01
偏心[1]
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心[2]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心[3]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心[4]
X 0.00 Y 0.00 Z -2.95
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z -1.46
α 0.00 β 0.00 γ 0.00
偏心[6]
X 0.00 Y 0.00 Z -0.10
α 0.00 β 0.00 γ 0.00
Example 1
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞ Eccentricity (1)
1 ERFS [1] Eccentricity (2) 1.8348 42.7
2 ERFS [2] (RE) Eccentricity (3) 1.8348 42.7
3 ERFS [3] (RE) Eccentricity (4) 1.8348 42.7
4 ASS [1] Eccentricity (5)
5 ∞ 0.50 Eccentricity (6) 1.5163 64.1
6 ∞ (Aperture) 0.35
7 2.82 0.30 1.8467 23.8
8 1.28 1.20 1.7440 44.8
9 -1.85 0.10
10 1.84 1.40 1.4971 69.3
11 -1.14 0.30 1.8467 23.8
12 20.09 0.50
13 ∞ 0.40 1.5163 64.1
14 ∞ 0.10
Image plane ∞
ERFS [1]
RY ∞
θ 90.00
R -3.50
ERFS [2]
RY 4.52
θ 39.68
R -2.18
ERFS [3]
RY 5.72
θ 10.80
R -1.62
ASS [1]
R 0.70
k -1.9423E-01
Eccentric [1]
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
Eccentric [2]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentric [3]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentric [4]
X 0.00 Y 0.00 Z -2.95
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z -1.46
α 0.00 β 0.00 γ 0.00
Eccentric [6]
X 0.00 Y 0.00 Z -0.10
α 0.00 β 0.00 γ 0.00

実施例2
側視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞ 偏心(1)
1 ERFS[1] 偏心(2) 1.8348 42.7
2 ERFS[2](RE) 偏心(3) 1.8348 42.7
3 ERFS[3](RE) 偏心(4) 1.8348 42.7
4 ASS[1] 偏心(5)
5 ∞ 0.50 偏心(6) 1.5163 64.1
6 ∞(絞り) 0.35
7 2.77 0.30 1.8467 23.8
8 1.39 1.20 1.7012 44.8
9 -1.79 0.10
10 2.01 1.40 1.4875 70.4
11 -1.25 0.30 1.8467 23.8
12 10.29 0.50
13 ∞ 0.40 1.5163 64.1
14 ∞ 0.10
像 面 ∞
ERFS[1]
RY ∞
θ 90.00
R -3.50
ERFS[2]
RY 3.88
θ 39.86
R -2.34
ERFS[3]
RY 5.61
θ 13.60
R -1.86
ASS[1]
R 0.87
k -1.8327E-01
偏心[1]
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心[2]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心[3]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心[4]
X 0.00 Y 0.00 Z -2.64
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z -1.55
α 0.00 β 0.00 γ 0.00
偏心[6]
X 0.00 Y 0.00 Z 0.13
α 0.00 β 0.00 γ 0.00
直視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞ 偏心(1)
1 5.00 偏心(7) 1.8348 42.7
2 ASS[1] 偏心(5)
3 ∞ 0.50 偏心(6) 1.5163 64.1
4 ∞(絞り) 0.35
5 2.82 0.30 1.8467 23.8
6 1.28 1.20 1.7440 44.8
7 -1.85 0.10
8 1.84 1.40 1.4971 69.3
9 -1.14 0.30 1.8467 23.8
10 20.09 0.50
11 ∞ 0.40 1.5163 64.1
12 ∞ 0.10
像 面 ∞
ASS[1]
R 0.70
k -1.9423E-01
偏心[1]
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心[7]
X 0.00 Y 0.00 Z -2.85
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z -1.55
α 0.00 β 0.00 γ 0.00
偏心[6]
X 0.00 Y 0.00 Z 0.13
α 0.00 β 0.00 γ 0.00
Example 2
Side-viewing optical path number of curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞ Eccentricity (1)
1 ERFS [1] Eccentricity (2) 1.8348 42.7
2 ERFS [2] (RE) Eccentricity (3) 1.8348 42.7
3 ERFS [3] (RE) Eccentricity (4) 1.8348 42.7
4 ASS [1] Eccentricity (5)
5 ∞ 0.50 Eccentricity (6) 1.5163 64.1
6 ∞ (Aperture) 0.35
7 2.77 0.30 1.8467 23.8
8 1.39 1.20 1.7012 44.8
9 -1.79 0.10
10 2.01 1.40 1.4875 70.4
11 -1.25 0.30 1.8467 23.8
12 10.29 0.50
13 ∞ 0.40 1.5163 64.1
14 ∞ 0.10
Image plane ∞
ERFS [1]
RY ∞
θ 90.00
R -3.50
ERFS [2]
RY 3.88
θ 39.86
R -2.34
ERFS [3]
RY 5.61
θ 13.60
R -1.86
ASS [1]
R 0.87
k -1.8327E-01
Eccentric [1]
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
Eccentric [2]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentric [3]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentric [4]
X 0.00 Y 0.00 Z -2.64
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z -1.55
α 0.00 β 0.00 γ 0.00
Eccentric [6]
X 0.00 Y 0.00 Z 0.13
α 0.00 β 0.00 γ 0.00
Direct-view optical path number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞ Eccentricity (1)
1 5.00 Eccentricity (7) 1.8348 42.7
2 ASS [1] Eccentricity (5)
3 ∞ 0.50 Eccentricity (6) 1.5163 64.1
4 ∞ (Aperture) 0.35
5 2.82 0.30 1.8467 23.8
6 1.28 1.20 1.7440 44.8
7 -1.85 0.10
8 1.84 1.40 1.4971 69.3
9 -1.14 0.30 1.8467 23.8
10 20.09 0.50
11 ∞ 0.40 1.5163 64.1
12 ∞ 0.10
Image plane ∞
ASS [1]
R 0.70
k -1.9423E-01
Eccentric [1]
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
Eccentric [7]
X 0.00 Y 0.00 Z -2.85
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z -1.55
α 0.00 β 0.00 γ 0.00
Eccentric [6]
X 0.00 Y 0.00 Z 0.13
α 0.00 β 0.00 γ 0.00

実施例3
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞ 偏心(1)
1 ERFS[1] 偏心(2) 1.8348 42.7
2 ERFS[2](RE) 偏心(3) 1.8348 42.7
3 ERFS[3](RE) 偏心(4) 1.8348 42.7
4 ASS[1] 偏心(5)
5 -1.45 0.50 偏心(6) 1.5163 64.1
6 -1.21 0.10
7 ∞(絞り) 0.70
8 2.51 0.30 1.8467 23.8
9 1.50 0.80 1.5831 62.4
10 -2.32 1.47
11 2.02 1.60 1.6204 60.3
12 -1.38 0.30 1.8467 23.8
13 ∞ 0.31
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
像 面 ∞
ERFS[1]
RY ∞
θ 90.00
R -4.00
ERFS[2]
RY 4.80
θ 40.86
R -2.38
C4 -1.2352E-02
ERFS[3]
RY 6.57
θ 12.25
R -1.84
C4 -3.4641E-03
ASS[1]
R 0.58
k -1.3453E-01
偏心[1]
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心[2]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心[3]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心[4]
X 0.00 Y 0.00 Z -3.73
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z -1.77
α 0.00 β 0.00 γ 0.00
偏心[6]
X 0.00 Y 0.00 Z -0.71
α 0.00 β 0.00 γ 0.00
以上の実施例では、光学系1の中心軸2に同心に回転対称な屈折率が1より大きい透明媒体の透過面及び反射面を、拡張回転自由曲面で設計されている例であるが、拡張回転自由曲面が回転対称面と直交し、高次項を使用していない場合、球面と等価な構成となる。
Example 3
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞ Eccentricity (1)
1 ERFS [1] Eccentricity (2) 1.8348 42.7
2 ERFS [2] (RE) Eccentricity (3) 1.8348 42.7
3 ERFS [3] (RE) Eccentricity (4) 1.8348 42.7
4 ASS [1] Eccentricity (5)
5 -1.45 0.50 Eccentricity (6) 1.5163 64.1
6 -1.21 0.10
7 ∞ (Aperture) 0.70
8 2.51 0.30 1.8467 23.8
9 1.50 0.80 1.5831 62.4
10 -2.32 1.47
11 2.02 1.60 1.6204 60.3
12 -1.38 0.30 1.8467 23.8
13 ∞ 0.31
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
Image plane ∞
ERFS [1]
RY ∞
θ 90.00
R -4.00
ERFS [2]
RY 4.80
θ 40.86
R -2.38
C4 -1.2352E-02
ERFS [3]
RY 6.57
θ 12.25
R -1.84
C4 -3.4641E-03
ASS [1]
R 0.58
k -1.3453E-01
Eccentric [1]
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
Eccentric [2]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentric [3]
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentric [4]
X 0.00 Y 0.00 Z -3.73
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z -1.77
α 0.00 β 0.00 γ 0.00
Eccentric [6]
X 0.00 Y 0.00 Z -0.71
α 0.00 β 0.00 γ 0.00
In the above embodiment, the transmission surface and the reflection surface of a transparent medium having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are designed as extended rotation free-form surfaces. When the rotational free-form surface is orthogonal to the rotationally symmetric surface and does not use a higher-order term, the configuration is equivalent to a spherical surface.

また、前群Gfの反射面、屈折面をそれぞれ任意形状の線分を中心軸2の周りで回転することにより形成され中心軸2上に面頂を有さない拡張回転自由曲面で設計しているが、それぞれ任意の曲面に置き換えてもよい。   In addition, the reflecting surface and the refracting surface of the front group Gf are designed with an extended rotation free-form surface that is formed by rotating a line segment of an arbitrary shape around the central axis 2 and does not have a top on the central axis 2. However, each may be replaced with an arbitrary curved surface.

例えば、第1透過面11は、透明媒体L1の外周部に形成される必要があるが、その形状は、シリンドリカル面に限定されることなく、図13に示すようなトーリック面であってもよい。また、図14に示すような円錐面であってもよい。   For example, the first transmission surface 11 needs to be formed on the outer peripheral portion of the transparent medium L1, but the shape is not limited to the cylindrical surface, and may be a toric surface as shown in FIG. . Further, it may be a conical surface as shown in FIG.

また、本発明の光学系は、回転対称面を形成する任意形状の線分を定義する式に奇数次項を含むものを用いることにより、偏心により発生する像面5の傾きや、絞りの逆投影時の瞳収差を補正している。   In addition, the optical system of the present invention uses an equation that includes an odd-order term in an expression that defines a line segment of an arbitrary shape that forms a rotationally symmetric surface, so that the inclination of the image plane 5 caused by decentering or back projection of the stop The pupil aberration is corrected.

また、本発明の前群Gfを構成する中心軸2の周りで回転対称な透明媒体はそのまま用いることにより、360°全方位の画角を有する画像を撮影したり投影できるが、その透明媒体を中心軸2を含む断面で切断して2分の1、3分の1、3分の2等にすることにより、中心軸2の周りの画角が180°、120°、240°等の画像を撮影したり投影するようにしてもよい。   Also, by using the transparent medium that is rotationally symmetric around the central axis 2 constituting the front group Gf of the present invention as it is, it is possible to shoot or project an image having an angle of view of 360 ° in all directions. By cutting the cross section including the central axis 2 to make it half, one third, two thirds, etc., the angle of view around the central axis 2 is 180 °, 120 °, 240 °, etc. May be taken or projected.

また、本発明の光学系は、中心軸(回転対称軸)2を垂直方向に向けて天頂を含む360°全方位(全周)の画角の画像を得る撮像あるいは観察光学系としてもよい。さらに、本発明は、撮影光学系、観察光学系に限定されず、光路を逆にとって天頂を含む360°全方位(全周)の画角に画像を投影する投影光学系として用いることもできる。また、内視鏡は管内観察装置の全周観察光学系として用いることもできる。   Further, the optical system of the present invention may be an imaging or observation optical system that obtains an image with an angle of view of 360 ° in all directions (all circumferences) including the zenith with the central axis (rotation symmetry axis) 2 in the vertical direction. Further, the present invention is not limited to the photographing optical system and the observation optical system, but can be used as a projection optical system that projects an image on 360 ° omnidirectional (all circumference) angles of view including the zenith with the optical path reversed. The endoscope can also be used as an all-round observation optical system of an in-tube observation apparatus.

図15は、本実施例の画像と撮像素子の配置例を示す。図15(a)は、画面比が16:9の撮像素子を使用した例である。上下方向の画像は使用しない場合、側視光路Aの画像A1の左右の位置に撮像素子50の大きさを合致させると好ましい。図15(b)は、画面比が4:3の撮像素子50を使用し、直視光路Bでの画像B1に撮像素子50の大きさを合致させた例であり、図15(a)と同様に上下方向の映像は使用しない場合を示す。図15(c)は、画面比が4:3の撮像素子50を使用し、側視光路Aでの画像A1に撮像素子50の大きさを合致させた例である。このように、配置をすると、側視光路Aの画像A1と直視光路Bの画像B1の両方をすべて撮像することができる。   FIG. 15 shows an arrangement example of an image and an image sensor in the present embodiment. FIG. 15A shows an example in which an image sensor having a screen ratio of 16: 9 is used. When an image in the vertical direction is not used, it is preferable to match the size of the image sensor 50 with the left and right positions of the image A1 in the side viewing optical path A. FIG. 15B is an example in which the image sensor 50 having a screen ratio of 4: 3 is used, and the size of the image sensor 50 is matched with the image B1 in the direct-view optical path B, as in FIG. Shows the case where the image in the vertical direction is not used. FIG. 15C illustrates an example in which the image sensor 50 having a screen ratio of 4: 3 is used, and the size of the image sensor 50 is matched with the image A1 in the side viewing optical path A. Thus, when arranged, both the image A1 of the side viewing optical path A and the image B1 of the direct viewing optical path B can be captured.

以下に、本発明の光学系1の適用例として、撮影光学系101又は投影光学系102の使用例を説明する。図16は、内視鏡先端の撮影光学系として本発明による撮影光学系101を用いた例を示すための図であり、図16(a)は、硬性内視鏡110の先端101に本発明による撮影光学系を取り付けて360°全方位の画像を撮像観察する例である。図16(b)にその先端の概略の構成を示す。本発明によるパノラマ撮影光学系101の前群Gfの入射面11の周囲には円周方向にスリット状に伸びる開口106を有するケーシング等からなるフレア絞り107が配置され、フレア光が入射するのを防止している。また、図16(c)は、軟性電子内視鏡113の先端に本発明によるパノラマ撮影光学系101を同様に取り付けて、表示装置114に撮影された画像を、画像処理を施して歪みを補正して表示するようにした例である。   Hereinafter, as an application example of the optical system 1 of the present invention, a usage example of the photographing optical system 101 or the projection optical system 102 will be described. FIG. 16 is a diagram for illustrating an example in which the photographing optical system 101 according to the present invention is used as the photographing optical system at the distal end of the endoscope. FIG. 16A illustrates the present invention at the distal end 101 of the rigid endoscope 110. This is an example of imaging and observing 360 ° omnidirectional images by attaching the photographing optical system. FIG. 16B shows a schematic configuration of the tip. Around the entrance surface 11 of the front group Gf of the panoramic imaging optical system 101 according to the present invention, a flare stop 107 made of a casing or the like having an opening 106 extending in a slit shape in the circumferential direction is arranged so that flare light enters. It is preventing. FIG. 16C shows a panoramic imaging optical system 101 according to the present invention attached to the tip of the flexible electronic endoscope 113 in the same manner, and the image captured on the display device 114 is subjected to image processing to correct distortion. This is an example of displaying.

図17は、カプセル内視鏡120に本発明による撮影光学系101を取り付けて360°全方位の画像を撮像観察する例である。本発明による撮影光学系101の側視光路Aにおける前群Gfの側視第1透過面11の周囲には円周方向にスリット状に伸びる開口106、及び、直視光路Bにおける前群Gfの直視第1透過面15の前方に円形状の開口106、を有するケーシング等に、フレア絞り107が形成され、フレア光が入射するのを防止している。   FIG. 17 shows an example in which the photographing optical system 101 according to the present invention is attached to the capsule endoscope 120 and images of 360 ° omnidirectional images are taken and observed. The aperture 106 extending in a slit shape in the circumferential direction around the side-view first transmission surface 11 of the front group Gf in the side-view optical path A of the photographing optical system 101 according to the present invention, and the direct view of the front group Gf in the direct-view optical path B A flare stop 107 is formed in a casing or the like having a circular opening 106 in front of the first transmission surface 15 to prevent flare light from entering.

図16及び図17に示すように、内視鏡に撮影光学系101を用いることにより、撮影光学系101の後方の画像を撮像観察することができ、従来と異なる角度から様々な部位を撮像観察することができる。   As shown in FIGS. 16 and 17, by using the imaging optical system 101 for the endoscope, it is possible to image and observe images behind the imaging optical system 101, and to image and observe various parts from angles different from the conventional ones. can do.

図18(a)は、自動車130の前方に撮影光学系として本発明による撮影光学系101を取り付けて、車内の表示装置に各撮影光学系101を経て撮影された画像を、画像処理を施して歪みを補正して同時に表示するようにした例を示す図であり、図18(b)は、自動車130の各コーナやヘッド部のポールの頂部に撮影光学系として本発明による撮影光学系101を複数取り付けて、車内の表示装置に各撮影光学系101を経て撮影された画像を、画像処理を施して歪みを補正して同時に表示するようにした例を示す図である。この場合、図18(a)に示したように、側視光路Aの画像A1の左右の位置に撮像素子50の大きさを合致させると、左右の画像が広く撮像でき、好ましい。   FIG. 18 (a) shows an image obtained by attaching a photographic optical system 101 according to the present invention as a photographic optical system in front of an automobile 130, and performing image processing on an image photographed through each photographic optical system 101 on a display device in a vehicle. FIG. 18B is a diagram showing an example in which distortion is corrected and simultaneously displayed, and FIG. 18B shows the photographing optical system 101 according to the present invention as a photographing optical system at each corner of the automobile 130 and the top of the pole of the head portion. It is a figure which shows the example which attached the plurality and displayed the image image | photographed through each imaging | photography optical system 101 on the display apparatus in a vehicle, performing image processing and correct | amending distortion simultaneously. In this case, as shown in FIG. 18A, it is preferable to match the size of the image sensor 50 to the left and right positions of the image A1 in the side viewing optical path A, because the left and right images can be captured widely.

また、図19は、投影装置140の投影光学系として本発明による投影光学系102を用い、その像面5に配置した表示素子にパノラマ画像を表示し、投影光学系102を通して360°全方位に配置したスクリーン141に360°全方位画像を投影表示する例である。   Further, FIG. 19 uses the projection optical system 102 according to the present invention as the projection optical system of the projection apparatus 140, displays a panoramic image on a display element arranged on the image plane 5, and 360 ° in all directions through the projection optical system 102. This is an example in which a 360 ° omnidirectional image is projected and displayed on the arranged screen 141.

さらに、図20は、建物150の外部に本発明による撮影光学系101を用いた撮影装置151を取り付け、屋内に本発明による撮影光学系101を用いた投影装置151を配置し、撮影装置151で撮像された映像を電線152を介して投影装置140に送るように接続している。このような配置において、屋外の360°全方位の被写体Pを、撮影光学系101を経て撮影装置151で撮影し、その映像信号を電線152を介して投影装置140に送り、像面に配置した表示素子にその映像を表示して、投影光学系102を通して屋内の壁面等に被写体Pの映像P'を投影表示するようにしている例である。   Further, FIG. 20 shows that the photographing apparatus 151 using the photographing optical system 101 according to the present invention is attached to the outside of the building 150, and the projection apparatus 151 using the photographing optical system 101 according to the present invention is disposed indoors. It connects so that the imaged image may be sent to the projection device 140 via the electric wire 152. In such an arrangement, an outdoor 360 ° omnidirectional subject P is photographed by the photographing device 151 via the photographing optical system 101, and the video signal is sent to the projection device 140 via the electric wire 152 and disposed on the image plane. In this example, the image is displayed on the display element, and the image P ′ of the subject P is projected and displayed on an indoor wall surface or the like through the projection optical system 102.

本発明の光学系の座標系を説明するための図である。It is a figure for demonstrating the coordinate system of the optical system of this invention. 拡張回転自由曲面の原理を示す図である。It is a figure which shows the principle of an extended rotation free-form surface. 本発明の実施例1の光学系の中心軸に沿ってとった断面図である。It is sectional drawing taken along the central axis of the optical system of Example 1 of this invention. 実施例1の光学系全体の横収差図を示す図である。2 is a transverse aberration diagram for the whole optical system of Example 1. FIG. 実施例1の光学系全体のF−θ線図を示す図である。2 is a diagram illustrating an F-θ diagram of the entire optical system according to Example 1. FIG. 本発明の実施例2の光学系の中心軸に沿ってとった断面図である。It is sectional drawing taken along the central axis of the optical system of Example 2 of this invention. 実施例2の光学系全体の側視光路の横収差図を示す図である。6 is a lateral aberration diagram of a side-view optical path of the entire optical system according to Example 2. FIG. 実施例2の光学系全体の直視光路の横収差図を示す図である。FIG. 6 is a diagram illustrating a lateral aberration diagram of a direct-view optical path of the entire optical system according to Example 2. 実施例2の光学系全体のF−θ線図を示す図である。FIG. 6 is an F-θ diagram of the entire optical system according to Example 2. 本発明の実施例3の光学系の中心軸に沿ってとった断面図である。It is sectional drawing taken along the central axis of the optical system of Example 3 of this invention. 実施例3の光学系全体の横収差図を示す図である。FIG. 6 is a transverse aberration diagram for the whole optical system of Example 3. 実施例3の光学系全体のF−θ線図を示す図である。FIG. 6 is an F-θ diagram of the entire optical system of Example 3. 他の実施例を示す図である。It is a figure which shows another Example. 他の実施例を示す図である。It is a figure which shows another Example. 本発明の光学系の画像と撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image of the optical system of this invention, and an image pick-up element. 本発明の光学系を内視鏡先端の撮影光学系として用いた例を示す図である。It is a figure which shows the example which used the optical system of this invention as an imaging | photography optical system of the endoscope front-end | tip. 本発明の光学系をカプセル内視鏡の撮影光学系として用いた例を示す図である。It is a figure which shows the example which used the optical system of this invention as the imaging | photography optical system of a capsule endoscope. 本発明の光学系を自動車の撮影光学系として用いた例を示す図である。It is a figure which shows the example which used the optical system of this invention as the imaging | photography optical system of a motor vehicle. 本発明の光学系を投影装置の投影光学系として用いた例を示す図である。It is a figure which shows the example which used the optical system of this invention as a projection optical system of a projection apparatus. 本発明の光学系を屋外の被写体を撮影する撮影光学系として用いた例を示す図である。It is a figure which shows the example which used the optical system of this invention as an imaging | photography optical system which image | photographs the outdoor to-be-photographed object.

符号の説明Explanation of symbols

1…光学系
2…中心軸
3…物体面
5…像面
DESCRIPTION OF SYMBOLS 1 ... Optical system 2 ... Center axis 3 ... Object surface 5 ... Image surface

Claims (17)

中心軸を含む断面内で、中心軸に直交する方向を中心に、片側約90°の画角を有し、中心軸の周りで回転対称な屈折率が1より大きい透明媒体からなり、前記透明媒体は、前記中心軸に対して最外周に配置された第1透過面と、第1透過面より中心軸側に配置された第1反射面と、前記第1反射面より像面と反対側に配置された第2反射面と、前記第2反射面より像面側に配置された第2透過面と、を有し、前記透明媒体に入射する光束は、順光線追跡の順に、前記第1透過面を経て前記透明媒体内に入り、前記第1反射面で像面と反対側に反射され、前記第2反射面で像面側に反射され、前記第2透過面を経て前記透明媒体から像面側に外へ出る略Z字状の光路を構成し、前記光路は、前記中心軸に対して片側のみで構成されることを特徴とする光学素子。   A transparent medium having an angle of view of about 90 ° on one side and a rotational index around the central axis and having a refractive index greater than 1 in a cross section including the central axis, the direction being perpendicular to the central axis; The medium includes a first transmission surface disposed on the outermost periphery with respect to the central axis, a first reflection surface disposed on the central axis side with respect to the first transmission surface, and a side opposite to the image plane from the first reflection surface. A second reflection surface disposed on the image plane side of the second reflection surface, and a light beam incident on the transparent medium is arranged in the order of tracking the forward ray. The transparent medium enters the transparent medium through one transmission surface, is reflected on the opposite side to the image surface by the first reflection surface, is reflected on the image surface side by the second reflection surface, and passes through the second transmission surface. A substantially Z-shaped optical path going out to the image plane side from the image plane, and the optical path is configured only on one side with respect to the central axis. Optical element to be. 前記光学素子のメリジオナル断面の角倍率をβωとするとき、
0.01<βω<0.5 ・・・(1)
なる条件を満足することを特徴とする請求項1に記載の光学素子。
When the angular magnification of the meridional cross section of the optical element is βω,
0.01 <βω <0.5 (1)
The optical element according to claim 1, wherein the following condition is satisfied.
前記第2透過面のメリジオナル断面のパワーは負であり、前記第2透過面のパワーをP2、中心主光線のメリジオナル断面の光学系全体のパワーをPmとするとき、
−10<P2/Pm<−1 ・・・(2)
なる条件を満足することを特徴とする請求項1又は請求項2に記載の光学素子。
When the power of the meridional section of the second transmission surface is negative, the power of the second transmission surface is P2, and the power of the entire optical system of the meridional section of the central principal ray is Pm,
−10 <P2 / Pm <−1 (2)
The optical element according to claim 1, wherein the following condition is satisfied.
前記光学素子は、屈折率1.5以上の透明媒質で構成されていることを特徴とする請求項1乃至請求項3のいずれかに記載の光学素子。   The optical element according to claim 1, wherein the optical element is made of a transparent medium having a refractive index of 1.5 or more. 前記第1反射面及び前記第2反射面のうちの少なくとも1つは、全反射作用を有することを特徴とする請求項1乃至請求項4のいずれかに記載の光学素子。   5. The optical element according to claim 1, wherein at least one of the first reflecting surface and the second reflecting surface has a total reflection function. 前記第1反射面と前記第2反射面のうち少なくとも1面は、対称面を持たない任意形状の線分を中心軸の周りで回転させて形成される拡張回転自由曲面で構成されていることを特徴とする請求項1乃至請求項5のいずれかに記載の光学素子。   At least one of the first reflecting surface and the second reflecting surface is formed of an extended rotation free-form surface formed by rotating an arbitrary-shaped line segment having no symmetry plane around the central axis. The optical element according to any one of claims 1 to 5, wherein: 前記透明媒体の有する面のうち少なくとも1面は、奇数次項を含む任意形状の線分を中心軸の周りで回転させて形状される拡張回転自由曲面で構成されていることを特徴とする請求項1乃至請求項6のいずれかに記載の光学素子。   The at least one surface among the surfaces of the transparent medium is configured by an extended rotation free-form surface formed by rotating an arbitrary-shaped line segment including an odd-numbered term around a central axis. The optical element according to claim 1. 前群と、前記前群より像面側に配置された後群と、前記前群と前記後群の間に配置された開口とを備え、前記光学素子は、前記前群に配置され、前記中心軸を囲むように配置された物体の像を形成し、あるいは前記中心軸から放射する方向に物体の像を投影することを特徴とする請求項1乃至請求項7のいずれかに記載の光学素子を備えた光学系。   A front group, a rear group disposed closer to the image plane than the front group, and an aperture disposed between the front group and the rear group, and the optical element is disposed in the front group, 8. The optical system according to claim 1, wherein an image of an object arranged so as to surround a central axis is formed, or an image of the object is projected in a direction radiating from the central axis. An optical system equipped with an element. 前記光学系は、中心軸の周囲の円環状の物体の像を中心軸と直交する平面内に形成することを特徴とする請求項8に記載の光学系。   The optical system according to claim 8, wherein the optical system forms an image of an annular object around the central axis in a plane orthogonal to the central axis. 前記第1反射面及び前記第2反射面は、前記開口側に凹面を向けて配置されることを特徴とする請求項8又は9請求項に記載の光学系。   10. The optical system according to claim 8, wherein the first reflecting surface and the second reflecting surface are disposed with a concave surface facing the opening. 前記第2透過面は、前記開口側に凹面を向けて配置されることを特徴とする請求項8乃至請求項10のいずれかに記載の光学系。   The optical system according to claim 8, wherein the second transmission surface is disposed with a concave surface facing the opening. 前記光学系は、光路中で中間像を形成しないことを特徴とする請求項8乃至請求項11のいずれかに記載の光学系。   The optical system according to claim 8, wherein the optical system does not form an intermediate image in the optical path. 前記光学素子は、開口に対して像面と反対側に配置されることを特徴とする請求項8乃至請求項12のいずれかに記載の光学系。   The optical system according to claim 8, wherein the optical element is disposed on the opposite side of the image plane with respect to the opening. 前記光学素子は、前記光学素子直前を観察する直視光路と中心軸と直行する方向を観察する側視光路とを有し、前記直視光路及び前記側視光路の像を同一平面内に結像することを特徴とする請求項8乃至請求項13のいずれかに記載の光学系。   The optical element has a direct-view optical path for observing immediately before the optical element and a side-view optical path for observing a direction orthogonal to the central axis, and forms images of the direct-view optical path and the side-view optical path in the same plane. The optical system according to claim 8, wherein the optical system is an optical system. 前記光学素子の外径をD、像の外径をDrとするとき、
D/Dr<10 ・・・(3)
なる条件を満足することを特徴とする請求項8乃至請求項14のいずれかに記載の光学系。
When the outer diameter of the optical element is D and the outer diameter of the image is Dr,
D / Dr <10 (3)
The optical system according to claim 8, wherein the following condition is satisfied.
前記光学素子の外径Dは、
D<20mm ・・・(4)
なる条件を満足することを特徴とする請求項15に記載の光学系。
The outer diameter D of the optical element is
D <20mm (4)
The optical system according to claim 15, wherein the following condition is satisfied.
請求項8乃至請求項16のいずれかに記載の光学系を用いた内視鏡。   An endoscope using the optical system according to any one of claims 8 to 16.
JP2007180150A 2007-07-09 2007-07-09 Optical element, optical system including the same, and endoscope using the same Expired - Fee Related JP5025354B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007180150A JP5025354B2 (en) 2007-07-09 2007-07-09 Optical element, optical system including the same, and endoscope using the same
CN2008800241053A CN101688970B (en) 2007-07-09 2008-07-08 Optical system and endoscope equipped with same
PCT/JP2008/062663 WO2009008536A1 (en) 2007-07-09 2008-07-08 Optical element, optical system equipped with same and endoscope using same
EP08778134.0A EP2172798B1 (en) 2007-07-09 2008-07-08 Optical element, optical system equipped with same and endoscope using same
US12/655,910 US8254038B2 (en) 2007-07-09 2010-01-07 Optical element, optical system having the same and endoscope using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180150A JP5025354B2 (en) 2007-07-09 2007-07-09 Optical element, optical system including the same, and endoscope using the same

Publications (2)

Publication Number Publication Date
JP2009015253A true JP2009015253A (en) 2009-01-22
JP5025354B2 JP5025354B2 (en) 2012-09-12

Family

ID=40356170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180150A Expired - Fee Related JP5025354B2 (en) 2007-07-09 2007-07-09 Optical element, optical system including the same, and endoscope using the same

Country Status (1)

Country Link
JP (1) JP5025354B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012038601A1 (en) * 2010-09-22 2012-03-29 Teknologian Tutkimuskeskus Vtt Optical system
WO2016189644A1 (en) * 2015-05-26 2016-12-01 オリンパス株式会社 Optical system, imaging device, endoscope system, and distance measuring system
WO2017046901A1 (en) * 2015-09-16 2017-03-23 オリンパス株式会社 Optical system and image pickup device
CN106842508A (en) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106842505A (en) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106842506A (en) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106842507A (en) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106980168A (en) * 2016-12-14 2017-07-25 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN107065132A (en) * 2017-03-03 2017-08-18 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN107167900A (en) * 2017-07-25 2017-09-15 浙江舜宇光学有限公司 Optical imaging lens
WO2018211678A1 (en) * 2017-05-19 2018-11-22 オリンパス株式会社 Optical imaging system, optical unit, and endoscope
CN109324385A (en) * 2017-07-31 2019-02-12 宁波舜宇车载光学技术有限公司 Optical lens
CN112526743A (en) * 2016-11-18 2021-03-19 玉晶光电(厦门)有限公司 Eyepiece optical system
WO2021261615A1 (en) * 2020-06-24 2021-12-30 엘지전자 주식회사 Imaging lens, and camera module and electronic device comprising same
JP7331222B2 (en) 2021-10-27 2023-08-22 京セラ株式会社 Optical device and imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523801A (en) * 1998-08-20 2002-07-30 ビー ヒア コーポレイション Panoramic imaging device
WO2005110186A2 (en) * 2004-05-14 2005-11-24 G.I. View Ltd. Omnidirectional and forward-looking imaging device
JP2006058412A (en) * 2004-08-18 2006-03-02 Olympus Corp Panorama attachment optical system
JP2006113096A (en) * 2004-10-12 2006-04-27 Olympus Corp Optical system
JP2006126322A (en) * 2004-10-27 2006-05-18 Olympus Corp Optical system
JP2006154364A (en) * 2004-11-30 2006-06-15 Olympus Corp Optical system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523801A (en) * 1998-08-20 2002-07-30 ビー ヒア コーポレイション Panoramic imaging device
WO2005110186A2 (en) * 2004-05-14 2005-11-24 G.I. View Ltd. Omnidirectional and forward-looking imaging device
JP2006058412A (en) * 2004-08-18 2006-03-02 Olympus Corp Panorama attachment optical system
JP2006113096A (en) * 2004-10-12 2006-04-27 Olympus Corp Optical system
JP2006126322A (en) * 2004-10-27 2006-05-18 Olympus Corp Optical system
JP2006154364A (en) * 2004-11-30 2006-06-15 Olympus Corp Optical system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012038601A1 (en) * 2010-09-22 2012-03-29 Teknologian Tutkimuskeskus Vtt Optical system
JPWO2016189644A1 (en) * 2015-05-26 2018-03-15 オリンパス株式会社 Optical system, imaging device, endoscope system, and distance measuring system
WO2016189644A1 (en) * 2015-05-26 2016-12-01 オリンパス株式会社 Optical system, imaging device, endoscope system, and distance measuring system
US10653298B2 (en) 2015-05-26 2020-05-19 Olympus Corporation Optical system, imaging apparatus, endoscope system, and rangefinder system
WO2017046901A1 (en) * 2015-09-16 2017-03-23 オリンパス株式会社 Optical system and image pickup device
CN112526743B (en) * 2016-11-18 2022-08-05 玉晶光电(厦门)有限公司 Eyepiece optical system
CN112526743A (en) * 2016-11-18 2021-03-19 玉晶光电(厦门)有限公司 Eyepiece optical system
CN106980168A (en) * 2016-12-14 2017-07-25 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106980168B (en) * 2016-12-14 2019-11-19 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN107065132B (en) * 2017-03-03 2020-02-04 瑞声科技(新加坡)有限公司 Image pickup optical lens
CN107065132A (en) * 2017-03-03 2017-08-18 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106842508A (en) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106842505A (en) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106842508B (en) * 2017-03-03 2019-07-05 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106842506B (en) * 2017-03-03 2019-07-05 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106842505B (en) * 2017-03-03 2019-11-19 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106842506A (en) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106842507B (en) * 2017-03-03 2019-11-19 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN106842507A (en) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 Camera optical camera lens
WO2018211678A1 (en) * 2017-05-19 2018-11-22 オリンパス株式会社 Optical imaging system, optical unit, and endoscope
CN107167900A (en) * 2017-07-25 2017-09-15 浙江舜宇光学有限公司 Optical imaging lens
CN107167900B (en) * 2017-07-25 2022-09-06 浙江舜宇光学有限公司 Optical imaging lens
CN109324385A (en) * 2017-07-31 2019-02-12 宁波舜宇车载光学技术有限公司 Optical lens
WO2021261615A1 (en) * 2020-06-24 2021-12-30 엘지전자 주식회사 Imaging lens, and camera module and electronic device comprising same
JP7331222B2 (en) 2021-10-27 2023-08-22 京セラ株式会社 Optical device and imaging device

Also Published As

Publication number Publication date
JP5025354B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5025354B2 (en) Optical element, optical system including the same, and endoscope using the same
JP5074114B2 (en) Optical element, optical system including the same, and endoscope using the same
JP4780713B2 (en) Optical system
JP4884085B2 (en) Optical system
JP4728034B2 (en) Rotationally asymmetric optical system
JP5030675B2 (en) Optical system and endoscope using the same
WO2008153114A1 (en) Optical element, optical system, and endoscope using same
JP4674906B2 (en) Optical system
WO2009008536A1 (en) Optical element, optical system equipped with same and endoscope using same
JP5030676B2 (en) Optical element, optical system including the same, and endoscope using the same
JP2008152073A (en) Optical system
JP4648758B2 (en) Optical system
JP5214161B2 (en) Transmission optical element and optical system using the same
JP5508694B2 (en) Optical system and endoscope using the same
JP5025355B2 (en) Optical element, optical system including the same, and endoscope using the same
JP2008309860A (en) Optical system and endoscope using the same
JP2009300994A (en) Optical system and endoscope using the same
JP5031631B2 (en) Optical system and endoscope using the same
JP2011257630A (en) Attachment optical system
JP2009080412A (en) Optical system and endoscope using the same
JP2009080410A (en) Optical system and endoscope using the same
JP4493466B2 (en) Optical system
JP4585352B2 (en) Optical system
JP4671758B2 (en) Optical system
JP4849591B2 (en) Optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5025354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees