JP2009014431A - Device for measuring physical quantity of rolling bearing unit - Google Patents

Device for measuring physical quantity of rolling bearing unit Download PDF

Info

Publication number
JP2009014431A
JP2009014431A JP2007174886A JP2007174886A JP2009014431A JP 2009014431 A JP2009014431 A JP 2009014431A JP 2007174886 A JP2007174886 A JP 2007174886A JP 2007174886 A JP2007174886 A JP 2007174886A JP 2009014431 A JP2009014431 A JP 2009014431A
Authority
JP
Japan
Prior art keywords
physical quantity
encoder
phase difference
rolling bearing
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007174886A
Other languages
Japanese (ja)
Inventor
Takeshi Takizawa
岳史 滝澤
Koichiro Ono
浩一郎 小野
Hiroyuki Yamamura
浩之 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007174886A priority Critical patent/JP2009014431A/en
Publication of JP2009014431A publication Critical patent/JP2009014431A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a structure capable of acquiring an external force signal until reaching a high-speed traveling time, even when using an encoder in common with ABS or the like, and when not using an expensive computing unit. <P>SOLUTION: Each detection part of a pair of sensors A, B is faced to a surface to be detected of the encoder, having a phase of a characteristic change changed gradually in the width direction. Each output signal from both sensors A, B is processed successively by a phase difference ratio operation circuit 12, an adaptive filter 13, a low-pass filter 13 and a conversion processing circuit 15, to thereby determine an external force. The phase difference ratio operation circuit 12 calculates a phase difference ratio existing between each output signal from both sensors A, B in each of a plurality of periods relative to a change of each output signal from both sensors A, B. Hereby, even if the number of times of a characteristic change of the encoder is large, a load of the computing unit is suppressed, and the problem can be solved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明に係る転がり軸受ユニットの物理量測定装置は、転がり軸受ユニットを構成する外輪とハブとの間に作用する外力等の物理量を測定する為に利用する。更に、この求めた物理量を、自動車等の車両の走行安定性確保を図る為に利用する。   The physical quantity measuring device for a rolling bearing unit according to the present invention is used to measure a physical quantity such as an external force acting between an outer ring and a hub constituting the rolling bearing unit. Further, the obtained physical quantity is used for ensuring the running stability of a vehicle such as an automobile.

例えば車両の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより回転自在に支持する。又、車両の走行安定性を確保する為に、例えばアンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行なう為には、車輪を介して上記転がり軸受ユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, a vehicle wheel is rotatably supported by a suspension device such as a double-row angular type rolling bearing unit. Moreover, in order to ensure vehicle running stability, for example, anti-lock brake system (ABS), traction control system (TCS), and electronically controlled vehicle stability control system (ESC) etc. The device is in use. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な事情に鑑みて、特許文献1には、特殊なエンコーダを使用して、転がり軸受ユニットに加わる荷重の大きさを測定する発明が記載されている。図11〜13は、この特許文献1に記載された構造と同じ荷重の測定原理を採用している、転がり軸受ユニットの物理量測定装置に関する従来構造の第1例を示している。この従来構造の第1例は、使用時にも回転しない静止側軌道輪である外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転する回転側軌道輪であるハブ2を、複数個の転動体3、3を介して、回転自在に支持している。これら各転動体3、3には、背面組み合わせ型の接触角と共に、予圧を付与している。尚、図示の例では、上記各転動体3、3として玉を使用しているが、重量が嵩む車両用の軸受ユニットの場合には、玉に代えて円すいころを使用する場合もある。   In view of such circumstances, Patent Document 1 describes an invention in which a special encoder is used to measure the magnitude of a load applied to a rolling bearing unit. FIGS. 11 to 13 show a first example of a conventional structure related to a physical quantity measuring device for a rolling bearing unit, which employs the same load measurement principle as the structure described in Patent Document 1. FIG. In the first example of this conventional structure, a hub 2 that is a rotating side race ring that rotates together with the wheel in a state where the wheel is supported and fixed at the time of use is provided on the inner diameter side of the outer race 1 that does not rotate even when used. These are rotatably supported through a plurality of rolling elements 3 and 3. A preload is applied to each of the rolling elements 3 and 3 together with a contact angle of the rear combination type. In the illustrated example, balls are used as the rolling elements 3 and 3. However, in the case of a vehicle bearing unit that is heavy, tapered rollers may be used instead of balls.

又、上記ハブ2の内端部(軸方向に関して「内」とは、車両への組み付け状態で車両の幅方向中央側を言い、図11、14、15、17の右側。反対に、車両への組み付け状態で車両の幅方向外側となる、図11、14、15、17の左側を、軸方向に関して「外」と言う。本明細書全体で同じ。)には、円筒状のエンコーダ4を、上記ハブ2と同心に支持固定している。又、上記外輪1の内端開口を塞ぐ有底円筒状のカバー5の内側に、1対のセンサ6a、6bを包埋したセンサホルダ7を保持すると共に、これら両センサ6a、6bの検出部を、上記エンコーダ4の被検出面である外周面に近接対向させている。   Further, the inner end of the hub 2 ("inner" in the axial direction means the center side in the width direction of the vehicle when assembled to the vehicle, and is the right side of FIGS. 11, 14, 15 and 17. On the contrary, to the vehicle. 11, 14, 15, and 17, which are outside in the width direction of the vehicle in the assembled state, are referred to as “outside” in the axial direction. The same applies to the entire specification). The hub 2 is supported and fixed concentrically. In addition, a sensor holder 7 in which a pair of sensors 6a and 6b are embedded is held inside a bottomed cylindrical cover 5 that closes the inner end opening of the outer ring 1, and a detection unit for both the sensors 6a and 6b. Is placed in close proximity to the outer peripheral surface which is the detected surface of the encoder 4.

このうちのエンコーダ4は、磁性金属板製である。被検出面である、このエンコーダ4の外周面の先半部(軸方向内半部)には、透孔8、8と柱部9、9(図12参照)とを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔8、8と各柱部9、9との境界は、上記被検出面の軸方向(幅方向)に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、上記被検出面の軸方向中間部を境に互いに逆方向としている。従って、上記各透孔8、8と上記各柱部9、9とは、軸方向中間部が円周方向に関して最も突出した「く」字形となっている。そして、上記境界の傾斜方向が互いに異なる、上記被検出面の軸方向外半部と軸方向内半部とのうち、軸方向外半部を第一特性変化部10とし、軸方向内半部を第二特性変化部11としている。尚、これら両特性変化部10、11を構成する各透孔は、図示の様に互いに連続した状態で形成しても良いし、互いに独立した状態で形成(各透孔を「ハ」字形に配置)しても良い。   Of these, the encoder 4 is made of a magnetic metal plate. Through holes 8 and 8 and column portions 9 and 9 (see FIG. 12) are alternately arranged in the circumferential direction in the front half (axially inner half) of the outer circumferential surface of the encoder 4 which is a detected surface. And at equal intervals. The boundaries between the through holes 8 and 8 and the pillars 9 and 9 are inclined by the same angle with respect to the axial direction (width direction) of the detection surface, and the inclination direction with respect to the axial direction is determined by the detection target. The directions are opposite to each other with the axial middle portion of the surface as a boundary. Accordingly, each of the through holes 8 and 8 and each of the column portions 9 and 9 has a "<" shape with an axially intermediate portion protruding most in the circumferential direction. And among the axially outer half part and the axially inner half part of the detected surface, the boundary inclination directions are different from each other, the axially outer half part is defined as the first characteristic changing part 10, and the axially inner half part Is the second characteristic changing unit 11. In addition, each through-hole which comprises both these characteristic change parts 10 and 11 may be formed in the mutually continuous state like illustration, and it forms in the mutually independent state (each through-hole is made into "C" shape. Arrangement).

又、上記両センサ6a、6bは、合成樹脂製のセンサホルダ7により上記カバー5の内部に支持固定したもので、それぞれ、永久磁石と、検出部を構成するホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子とから成る。この様な1対のセンサ6a、6bは、上記センサホルダ7の一部(例えば下端部)に包埋した状態で、一方のセンサ6aの検出部を上記第一特性変化部10に、他方のセンサ6bの検出部を上記第二特性変化部11に、それぞれ近接対向させている。これら両センサ6a、6bの検出部がこれら両特性変化部10、11に対向する位置は、上記エンコーダ4の円周方向に関して同じ位置等、特性変化の位相に関して互いに同じ位置としている。又、上記外輪1とハブ2との間にアキシアル荷重が作用していない、中立状態で、上記各透孔8、8及び柱部9、9の軸方向中間部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、上記両センサ6a、6bの検出部同士の間の丁度中央位置に存在する様に、各部材の設置位置を規制している。   The sensors 6a and 6b are supported and fixed inside the cover 5 by a sensor holder 7 made of synthetic resin. Each of the sensors 6a and 6b includes a permanent magnet and a Hall IC, Hall element, MR element, And a magnetic sensing element such as a GMR element. Such a pair of sensors 6a and 6b is embedded in a part of the sensor holder 7 (for example, the lower end), and the detection unit of one sensor 6a is used as the first characteristic change unit 10 and the other is The detection part of the sensor 6b is made to face and oppose the second characteristic change part 11 respectively. The positions at which the detection units of both the sensors 6a and 6b face both the characteristic change units 10 and 11 are the same as each other with respect to the phase of the characteristic change, such as the same position in the circumferential direction of the encoder 4. Further, in the neutral state where no axial load is applied between the outer ring 1 and the hub 2, the axially intermediate portions of the through holes 8, 8 and the column portions 9, 9 are projected most in the circumferential direction. The position of each member is regulated so that a portion (a portion where the tilt direction of the boundary changes) is located at the center position between the detection portions of the sensors 6a and 6b.

上述の様に構成する転がり軸受ユニットの物理量測定装置の場合、上記外輪1とハブ2との間にアキシアル荷重が作用{これら外輪1とハブ2とがアキシアル方向(軸方向)に相対変位}すると、上記両センサ6a、6bの出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用していない、中立状態では、上記両センサ6a、6bの検出部は、図13の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ6a、6bの出力信号の位相は、同図の(C)に示す様に一致する。   In the case of the physical quantity measuring device for a rolling bearing unit configured as described above, when an axial load acts between the outer ring 1 and the hub 2 (the outer ring 1 and the hub 2 are relatively displaced in the axial direction (axial direction)). The phase at which the output signals of the sensors 6a and 6b change is shifted. That is, in the neutral state where an axial load is not applied between the outer ring 1 and the hub 2, the detecting portions of the sensors 6a and 6b are on the solid lines A and B in FIG. It faces a portion that is shifted by the same amount in the axial direction from the most protruding portion. Therefore, the phases of the output signals of the sensors 6a and 6b coincide as shown in FIG.

これに対して、上記エンコーダ4を固定したハブ2に、図13の(A)で下向きのアキシアル荷重が作用した場合には、上記両センサ6a、6bの検出部は、図13の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ6a、6bの出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4を固定したハブ2に、図13の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ6a、6bの検出部は、図13の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ6a、6bの出力信号の位相は、同図の(D)に示す様に、上記(B)の場合とは逆方向にずれる。   On the other hand, when a downward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 13A, the detecting portions of the sensors 6a and 6b are shown in FIG. , Opposite to the portions where the deviations in the axial direction from the most protruding portion are different from each other. In this state, the phases of the output signals of the sensors 6a and 6b are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 13A, the detecting portions of both the sensors 6a and 6b are connected to the chain line hub shown in FIG. , C, that is, the deviation in the axial direction from the most projecting portion opposes different portions in the opposite direction. In this state, the phases of the output signals of the sensors 6a and 6b are shifted in the opposite direction to the case of (B), as shown in (D) of FIG.

上述の様に、特許文献1に記載される等により従来から知られている転がり軸受ユニットの物理量測定装置の場合には、上記両センサ6a、6bの出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の作用方向(これら外輪1とハブ2との軸方向の相対変位の方向)に応じた向きにずれる。又、このアキシアル荷重(相対変位)により上記両センサ6a、6bの出力信号の位相がずれる程度は、このアキシアル荷重(相対変位)が大きくなる程大きくなる。従って、上記両センサ6a、6bの出力信号の位相ずれの有無、ずれが存在する場合にはその向き及び大きさに基づいて、それぞれが上記外輪1と上記ハブ2との間の物理量である、上記軸方向の相対変位の向き及び大きさ、並びに、上記アキシアル荷重の作用方向及び大きさを求められる。尚、この様な物理量を算出する処理は、図示しない演算器(CPU)により行なう。この為、この演算器のメモリ中に、予め理論計算や実験により調べておいた、上記位相差と、上記軸方向の相対変位又は荷重との関係を、関係式やマップの型式で記憶させておく。   As described above, in the case of a conventionally known physical quantity measuring device for a rolling bearing unit as described in Patent Document 1, the phases of the output signals of both the sensors 6a and 6b are the same as those of the outer ring 1 and the hub. 2 is shifted in a direction corresponding to the direction of action of the axial load applied between the outer ring 1 and the axial direction of the outer ring 1 and the hub 2. Further, the degree of the phase shift of the output signals of the sensors 6a and 6b due to the axial load (relative displacement) increases as the axial load (relative displacement) increases. Therefore, based on the presence and absence of the phase shift of the output signals of the sensors 6a and 6b and the direction and magnitude of the shift, each is a physical quantity between the outer ring 1 and the hub 2. The direction and magnitude of the relative displacement in the axial direction, and the direction and magnitude of the axial load are obtained. Note that the processing for calculating such a physical quantity is performed by an arithmetic unit (CPU) (not shown). For this reason, the relation between the phase difference and the relative displacement or load in the axial direction, which has been examined in advance by theoretical calculation or experiment, is stored in the memory of this arithmetic unit as a relational expression or a map type. deep.

上述した従来構造の第1例の場合には、前記エンコーダ4の被検出面に前記透孔8、8と柱部9、9とを交互に配置して、この被検出面の特性を交互に、且つ、等間隔で変化させている。これに対して、図14に示す様に、被検出面である外周面にS極とN極とを交互に配置した、永久磁石製のエンコーダ4aを備えた転がり軸受ユニットの物理量測定装置も、特許文献2等に記載されて、従来から知られている。上記図14に示した転がり軸受ユニットの物理量測定装置の基本的構造及び作用は、前述した図11〜13に示した従来構造の第1例の場合と同様である。但し、上記図14に示した従来構造の第2例の場合には、エンコーダ4a側に永久磁石を設けている為、センサ6a、6b側には、原則的には磁気検知素子を設ければ良く、永久磁石は不要である。又、図14に示した構造の場合には、ハブ2aを構成するハブ本体と内輪との結合を、図11に示したナットに代えて、ハブ本体の軸方向内端部に形成したかしめ部により行なっている。但し、この様な構造に就いては、従来から周知であり、本発明の要旨とも関係しない。   In the case of the above-described first example of the conventional structure, the through holes 8 and 8 and the column portions 9 and 9 are alternately arranged on the detection surface of the encoder 4, and the characteristics of the detection surface are alternately set. And it is changed at equal intervals. On the other hand, as shown in FIG. 14, a physical quantity measuring device for a rolling bearing unit including an encoder 4a made of a permanent magnet, in which S poles and N poles are alternately arranged on the outer peripheral surface which is a detected surface, It is described in Patent Document 2 and the like and has been conventionally known. The basic structure and operation of the physical quantity measuring apparatus for the rolling bearing unit shown in FIG. 14 are the same as those in the first example of the conventional structure shown in FIGS. However, in the case of the second example of the conventional structure shown in FIG. 14, since a permanent magnet is provided on the encoder 4a side, in principle, if a magnetic detection element is provided on the sensor 6a, 6b side. Good, no permanent magnet is needed. In the case of the structure shown in FIG. 14, a caulking portion formed on the inner end in the axial direction of the hub body, instead of the nut shown in FIG. It is done by. However, such a structure has been conventionally known and is not related to the gist of the present invention.

更に、特許文献3には、図15〜18に示す様な転がり軸受ユニットの物理量測定装置が記載されている。先ず、図15〜16に示した従来構造の第3例の場合、ハブ2の内端部に外嵌固定した、磁性金属板製で円筒状のエンコーダ4bの先半部に、スリット状の透孔8a、8aと柱部9a、9a(図16参照)とを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔8a、8aと各柱部9a、9aとの境界はそれぞれ、上記エンコーダ4bの軸方向に対し同方向に同じ角度だけ傾斜した、直線状である。又、外輪1の内端部にカバー5及びセンサホルダ7を介して支持固定した1対のセンサ6a、6bの検出部を、被検出面である、上記エンコーダ4bの先半部外周面の上下2個所位置(円周方向の位相が互いに180度異なる部分)に近接対向させている。   Furthermore, Patent Document 3 describes a physical quantity measuring device for a rolling bearing unit as shown in FIGS. First, in the case of the third example of the conventional structure shown in FIGS. 15 to 16, a slit-shaped transparent member is formed on the tip half of a cylindrical encoder 4 b made of a magnetic metal plate and fitted and fixed to the inner end of the hub 2. The holes 8a and 8a and the column portions 9a and 9a (see FIG. 16) are alternately arranged at equal intervals in the circumferential direction. The boundaries between the through holes 8a and 8a and the pillars 9a and 9a are linear shapes that are inclined by the same angle in the same direction with respect to the axial direction of the encoder 4b. Further, the detection portions of the pair of sensors 6a and 6b supported and fixed to the inner end portion of the outer ring 1 via the cover 5 and the sensor holder 7 are arranged on the upper and lower sides of the outer peripheral surface of the front half of the encoder 4b, which is the detection surface. The two positions (the portions in which the circumferential phases are different from each other by 180 degrees) are placed close to each other.

車両の車輪支持用転がり軸受ユニットの場合、上記外輪1と上記ハブ2との間に加わるアキシアル荷重は、このハブ2に結合固定した車輪を構成するタイヤの外周面と路面との接地面から入力される。この接地面は、上記外輪1及び上記ハブ2の回転中心よりも径方向外方に存在する為、上記アキシアル荷重はこれら外輪1とハブ2との間に、純アキシアル荷重としてではなく、これら外輪1及びハブ2の中心軸と上記接地面の中心とを含む(鉛直方向の)仮想平面内での、モーメントを伴って加わる。この様なモーメントが上記外輪1と上記ハブ2との間に加わると、このハブ2の中心軸がこの外輪1の中心軸に対して傾く。これに伴い、上記エンコーダ4bの上端部が軸方向に関して何れかの方向に、同じく下端部がこれと逆方向に、それぞれ変位する。この結果、上記エンコーダ4bの外周面の上下両端部にそれぞれの検出部を近接対向させた、上記両センサ6a、6bの出力信号の位相が、それぞれ中立位置に対して、逆方向にずれる。従って、これら両センサ6a、6bの出力信号の位相のずれの向き及び大きさに基づいて、上記アキシアル荷重の向き及び大きさを求められる。   In the case of a rolling bearing unit for supporting wheels of a vehicle, the axial load applied between the outer ring 1 and the hub 2 is input from the ground contact surface between the outer peripheral surface of the tire constituting the wheel coupled to the hub 2 and the road surface. Is done. Since this ground contact surface exists radially outward from the rotation center of the outer ring 1 and the hub 2, the axial load is not between the outer ring 1 and the hub 2 but as a pure axial load. 1 and the center axis of the hub 2 and the center of the grounding surface are applied with a moment in a virtual plane (in the vertical direction). When such a moment is applied between the outer ring 1 and the hub 2, the central axis of the hub 2 is inclined with respect to the central axis of the outer ring 1. Accordingly, the upper end of the encoder 4b is displaced in any direction with respect to the axial direction, and the lower end is similarly displaced in the opposite direction. As a result, the phases of the output signals of the sensors 6a and 6b, in which the detection units are placed close to and opposed to the upper and lower ends of the outer peripheral surface of the encoder 4b, are shifted in the opposite directions with respect to the neutral position. Therefore, the direction and magnitude of the axial load can be obtained based on the direction and magnitude of the phase shift between the output signals of both the sensors 6a and 6b.

更に、図17〜18に示した、従来構造の第4例の場合、ハブ2の内端部に外嵌固定した、磁性金属板製で円筒状のエンコーダ4cの先半部に、透孔8b、8bと柱部9b、9b(図18参照)とを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔8b、8bはそれぞれ、径方向から見た形状を台形として、それぞれの円周方向に関する幅寸法を、軸方向に関して漸次変化させている。又、外輪1の内端部にカバー5及びセンサホルダ7を介して支持固定した1個のセンサ6の検出部を、被検出面である、上記エンコーダ4cの先半部外周面に近接対向させている。この様に構成する従来構造の第4例の場合、アキシアル荷重に基づいて上記外輪1と上記ハブ2とが軸方向に相対変位すると、上記センサ6の出力信号のデューティ比(高電位継続時間/1周期)が変化する。従って、このデューティ比に基づいて、上記相対変位の大きさ、更には上記アキシアル荷重の大きさを求められる。   Further, in the case of the fourth example of the conventional structure shown in FIGS. 17 to 18, the through hole 8 b is formed in the tip half of the cylindrical encoder 4 c made of a magnetic metal plate and fitted and fixed to the inner end of the hub 2. 8b and column portions 9b and 9b (see FIG. 18) are alternately arranged at equal intervals in the circumferential direction. Each of these through holes 8b, 8b has a trapezoidal shape when viewed from the radial direction, and gradually changes the width dimension in the circumferential direction with respect to the axial direction. Further, the detection portion of one sensor 6 supported and fixed to the inner end portion of the outer ring 1 via the cover 5 and the sensor holder 7 is brought close to and opposed to the outer peripheral surface of the front half of the encoder 4c, which is the detected surface. ing. In the fourth example of the conventional structure configured as described above, when the outer ring 1 and the hub 2 are relatively displaced in the axial direction based on the axial load, the duty ratio of the output signal of the sensor 6 (high potential duration / 1 cycle) changes. Therefore, the magnitude of the relative displacement and further the magnitude of the axial load can be obtained based on the duty ratio.

尚、前述の図11〜14に示した従来構造の第1〜2例の場合には、それぞれの検出部を第一、第二両特性変化部10、11に対向させた1対のセンサ6a、6bから成るセンサ組を、1組だけ設けている。これに対し、図示は省略するが、特許文献3及び特願2006−345849には、それぞれが1対のセンサから成るセンサ組を複数組設ける事で、多方向の変位或は外力を求められる構造が記載されている。   In the case of the first and second examples of the conventional structure shown in FIGS. 11 to 14 described above, a pair of sensors 6a in which the respective detection units are opposed to the first and second characteristic change units 10 and 11, respectively. , 6b, only one set is provided. In contrast, although not shown in the drawings, Patent Document 3 and Japanese Patent Application No. 2006-345849 each have a structure in which a plurality of sensor sets each including a pair of sensors are provided so that multidirectional displacement or external force can be obtained. Is described.

更に、特許文献4には、上述の様な転がり軸受ユニットの物理量測定装置に関して、センサの出力信号に適応フィルタ、ノッチフィルタ、ローパスフィルタ等によるフィルタリング処理を施す事により、エンコーダの振れ回り等に基づく誤差を低減する発明が記載されている。即ち、このエンコーダの幾何中心と回転中心とがずれている(偏心している)と、ハブ等の回転側軌道輪の回転に伴って上記エンコーダが振れ回り運動する。そして、このエンコーダの被検出面に検出面を対向させたセンサの出力信号が、この振れ回り運動に基づく、この被検出面の変位に伴って変化する。そして、何らの対策も施さない場合には、上記センサの出力信号に基づく、転がり軸受ユニットを構成する静止側、回転側両軌道輪同士の間の相対変位、或いはこれら両軌道輪同士の間に作用する外力の測定値に誤差が生じる。そこで、上記特許文献4に記載された発明の場合には、上記出力信号にフィルタリング処理を施す事で、上記両中心同士のずれ等が、上記測定値の誤差に結び付く事を防止する様にしている。   Further, in Patent Document 4, regarding the physical quantity measuring device for a rolling bearing unit as described above, filtering processing by an adaptive filter, a notch filter, a low-pass filter, or the like is performed on the output signal of the sensor, thereby based on the whirling of the encoder. An invention for reducing errors is described. That is, if the geometric center and the rotation center of the encoder are deviated (eccentric), the encoder swings with the rotation of the rotating raceway such as the hub. The output signal of the sensor having the detection surface opposed to the detection surface of the encoder changes with the displacement of the detection surface based on the swinging motion. If no countermeasures are taken, the relative displacement between the stationary and rotating bearing wheels constituting the rolling bearing unit based on the output signal of the sensor, or between these bearing rings, is determined. An error occurs in the measured value of the applied external force. Therefore, in the case of the invention described in Patent Document 4, the output signal is subjected to a filtering process so as to prevent the deviation between the two centers from leading to an error in the measured value. Yes.

従来から知られている転がり軸受ユニットの物理量測定装置の構成及び作用は上述の通りであるが、この様な転がり軸受ユニットの物理量測定装置に関する発明を実現可能なコストで実施する場合に、次の様な点を留意する必要がある。即ち、前述した通り、上記転がり軸受ユニットの物理量測定装置は、前記ABS、TCS、ESC等の車両用走行安定化装置の性能向上を図るべく、車輪と懸架装置との間に加わる外力を求める事を意図している。この為、実際の車両用走行安定化装置を構成する場合には、上記ABS、TCS、ESC等の制御用に、車輪の回転速度を表す信号(回転速度信号)が必要になる。そして、この回転速度信号は、上記外力を表す信号(外力信号)を得る場合と同様に、車輪と共に回転するハブ等の回転側軌道輪に設けたエンコーダと、静止側軌道輪等の回転しない部分に支持されたセンサとの組み合わせにより得る。従って、上記回転速度信号を得る為のエンコーダは、上記転がり軸受ユニットの物理量測定装置を構成するエンコーダと共用する事が好ましい。更には、この転がり軸受ユニットの物理量測定装置を構成する1乃至複数個のセンサのうちの何れかのセンサの出力信号に基づいて、上記回転速度信号を得る事が、限られた車輪支持用転がり軸受ユニットの内部空間の有効利用を図ると共に、車両用走行安定化装置全体としてのコストを抑える面から好ましい。   The configuration and operation of a conventionally known physical quantity measuring device for a rolling bearing unit are as described above. When the invention relating to the physical quantity measuring device for a rolling bearing unit is implemented at a feasible cost, It is necessary to pay attention to various points. That is, as described above, the physical quantity measuring device for the rolling bearing unit obtains the external force applied between the wheel and the suspension device in order to improve the performance of the vehicle travel stabilization device such as ABS, TCS, ESC or the like. Is intended. For this reason, when an actual vehicle travel stabilization device is configured, a signal (rotational speed signal) indicating the rotational speed of the wheel is required for control of the ABS, TCS, ESC, and the like. And this rotational speed signal is the same as in the case of obtaining the signal representing the external force (external force signal), the encoder provided on the rotation side raceway such as a hub that rotates with the wheel, and the non-rotation part such as the stationary side raceway. Obtained in combination with a sensor supported by Therefore, the encoder for obtaining the rotational speed signal is preferably shared with the encoder constituting the physical quantity measuring device for the rolling bearing unit. Furthermore, it is possible to obtain the rotational speed signal on the basis of the output signal of any one or more of the sensors constituting the physical quantity measuring device of the rolling bearing unit. This is preferable from the viewpoint of effectively using the internal space of the bearing unit and reducing the cost of the entire vehicle travel stabilization device.

この様な観点から、1個のエンコーダ(更には同一のセンサ)により、上記外力信号の他、上記回転速度信号を求める事を意図した場合、何らの対策も施さない場合には、このうちの外力信号を得る為の計算を行なう為の演算器(CPU)として、高価なものを使用しなければならなくなる。この理由は、次の通りである。   From such a viewpoint, when it is intended to obtain the rotational speed signal in addition to the external force signal by one encoder (and the same sensor), if no countermeasure is taken, As an arithmetic unit (CPU) for performing calculation for obtaining an external force signal, an expensive one must be used. The reason for this is as follows.

即ち、上記回転速度信号は、上記外力信号に比べて、よりリアルタイムで得る必要がある。この為、この回転速度信号を得る為のエンコーダとしては、従来からABS用等として一般的に使用されている、1回転当たり48周期程度で変化するもの(48パルス、永久磁石製のエンコーダの場合には96極のもの)を使用する事が好ましい。センサの出力信号に基づいて回転速度信号を得る為の処理は単純であり、高速走行時、この出力信号の1周期の時間が短くなっても、上記回転速度信号を得る事は、特に処理速度が速い(高価な)演算器を使用しなくても、十分に可能である。   That is, the rotational speed signal needs to be obtained in real time compared to the external force signal. For this reason, as an encoder for obtaining this rotational speed signal, an encoder that has been generally used for ABS or the like and changes in about 48 cycles per revolution (48 pulses, in the case of an encoder made of a permanent magnet) It is preferable to use a 96-pole). The process for obtaining the rotational speed signal based on the output signal of the sensor is simple. When the vehicle travels at high speed, the above rotational speed signal is obtained even if the time of one cycle of the output signal is shortened. However, it is possible even without using a fast (expensive) computing unit.

一方、上記出力信号に基づいて上記外力信号を得る為の処理は、上記回転速度信号を得る場合に比べて遥かに面倒であり、計算量が多くなる。特に、前記フィルタリング処理を行なったり、多方向の外力を求める為にセンサ組を複数組設ける場合には、この計算量が相当に多くなる。この為、高速走行時、上記出力信号の1周期の時間が短くなると、処理速度が速い高価な演算器を使用しないと、上記外力信号を得られなくなる可能性がある。外力信号による走行状態安定化処理を行なえる最高速度を制限すれば、高価な演算器を使用しなくても、走行速度が設定内である限り、上記外力信号を得られる。但し、この様な対策は、高速走行時程、高精度の走行状態安定化処理の必要性が増す事を考えれば、好ましくない。   On the other hand, the process for obtaining the external force signal based on the output signal is much more troublesome than the case of obtaining the rotational speed signal, and the amount of calculation is increased. In particular, when a plurality of sensor groups are provided to perform the filtering process or to obtain external forces in multiple directions, the amount of calculation is considerably increased. For this reason, when the time of one cycle of the output signal is shortened during high-speed running, the external force signal may not be obtained unless an expensive arithmetic unit with a high processing speed is used. By limiting the maximum speed at which the traveling state stabilization process can be performed using an external force signal, the external force signal can be obtained as long as the traveling speed is within the setting without using an expensive calculator. However, such a countermeasure is not preferable in view of the necessity of high-accuracy traveling state stabilization processing at higher speeds.

特開2006−113017号公報JP 2006-1113017 A 特開2006−317420号公報JP 2006-317420 A 特開2007−93580号公報JP 2007-93580 A 特開2007−40954号公報JP 2007-40954 A

本発明の転がり軸受ユニットの物理量測定装置は、上述の様な事情に鑑み、エンコーダをABS等と共用した場合に、高価な演算器を使用しなくても、高速走行時に至るまで、外力信号を得られる構造を実現すべく発明したものである。   The physical quantity measuring device for a rolling bearing unit according to the present invention, in view of the above-described circumstances, when an encoder is shared with ABS or the like, outputs an external force signal until high speed running without using an expensive arithmetic unit. It was invented to realize the resulting structure.

本発明の対象となる転がり軸受ユニットの物理量測定装置は、転がり軸受ユニットと、物理量測定装置とを備える。
このうちの転がり軸受ユニットは、静止側軌道輪と、回転側軌道輪と、複数個の転動体とを備える。このうちの静止側軌道輪は、静止側周面に静止側軌道を有し、使用時にも回転しない。又、上記回転側軌道輪は、この静止側周面と径方向に対向する回転側周面に回転側軌道を有し、使用時に回転する。更に、上記各転動体は、この回転側軌道と上記静止側軌道との間に転動自在に設けられている。
又、上記物理量測定装置は、エンコーダと、少なくとも1個のセンサと、演算器とを備える。
このうちのエンコーダは、上記回転側軌道輪の一部にこの回転側軌道輪と同心に支持固定されたもので、この回転側軌道輪と同心の被検出面を備え、この被検出面の特性を円周方向に関して交互に変化させている。
又、上記センサは、検出部を上記エンコーダの被検出面に対向させた状態で、上記静止側軌道輪、或いは、この静止側軌道輪を支持したハウジング、ナックル等の、回転しない部分に支持されていて、上記被検出面の特性変化に対応して出力信号を変化させる。
更に、上記演算器は、上記センサの出力信号に基づいて、上記静止側、回転側両軌道輪同士の間の相対変位と、これら両軌道輪同士の間に作用する外力とのうちの、少なくとも一方の物理量を算出する機能を有する。
特に、本発明の転がり軸受ユニットの物理量測定装置に於いては、上記演算器は上記物理量を、上記センサの出力信号の変化に関して、複数周期毎に算出する。
A physical quantity measuring device for a rolling bearing unit that is an object of the present invention includes a rolling bearing unit and a physical quantity measuring device.
Of these, the rolling bearing unit includes a stationary-side bearing ring, a rotating-side bearing ring, and a plurality of rolling elements. Of these, the stationary-side raceway has a stationary-side raceway on the stationary-side peripheral surface and does not rotate during use. The rotation-side raceway has a rotation-side raceway on the rotation-side circumferential surface facing the stationary side circumferential surface in the radial direction, and rotates during use. Further, each of the rolling elements is provided between the rotating side track and the stationary side track so as to freely roll.
The physical quantity measuring device includes an encoder, at least one sensor, and a computing unit.
Of these, the encoder is supported and fixed to a part of the rotation side raceway, concentrically with the rotation side raceway, and has a detection surface concentric with the rotation side raceway. Are alternately changed in the circumferential direction.
The sensor is supported by a non-rotating portion such as the stationary raceway, or a housing or knuckle that supports the stationary raceway, with the detection unit facing the detection surface of the encoder. Therefore, the output signal is changed in response to the change in the characteristics of the detected surface.
Further, the computing unit is based on the output signal of the sensor, and at least of the relative displacement between the stationary and rotating side raceways and the external force acting between the raceways. One physical quantity is calculated.
In particular, in the physical quantity measuring apparatus for a rolling bearing unit according to the present invention, the computing unit calculates the physical quantity for each of a plurality of cycles with respect to a change in the output signal of the sensor.

上述の様な本発明の転がり軸受ユニットの物理量測定装置を実施する場合には、請求項2に記載した様に、上記演算器、又は、上記回転側軌道輪の回転速度を求める為にこの演算器とは別に設けられた第二の演算器に、何れか1個のセンサの出力信号を全周期に就いて利用する事で、上記回転側軌道輪の回転速度を表す信号を求める機能を持たせる。   When the physical quantity measuring apparatus for a rolling bearing unit according to the present invention as described above is implemented, as described in claim 2, this calculation is used to obtain the rotational speed of the calculator or the rotating side race. The second arithmetic unit provided separately from the detector has the function of obtaining a signal representing the rotational speed of the rotating raceway by using the output signal of any one sensor for the entire period. Make it.

又、上述の様な本発明の転がり軸受ユニットの物理量測定装置を実施する場合に、例えば請求項3に記載した様に、上記エンコーダの被検出面の特性が変化する境界の円周方向に関する位置を、この被検出面の幅方向に漸次変化させる。又、少なくとも1対のセンサの検出部をこの被検出面の互いに異なる部分にそれぞれ対向させる。又、上記演算器は、上記各センサの出力信号同士の間に存在する位相差に基づいて、荷重、力、変位等の物理量を算出するものとする。
そして、この様な物理量を算出する為に上記演算器は、上記各センサの出力信号同士の間に存在する位相差を連続する複数の周期に関して合計する。更に、この合計値とこの複数の周期全体の長さとに基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する。
この様な請求項3に記載した発明を実施する場合には、例えば請求項4に記載した様に、連続する複数の周期に属する位相差の合計値と、この複数の周期全体の長さとの比にフィルタリング処理を施す。その後、これら合計値と長さとの比に基づいて、上記物理量を算出する。
Further, when the physical quantity measuring device for a rolling bearing unit of the present invention as described above is implemented, for example, as described in claim 3, the position of the boundary where the characteristic of the detection surface of the encoder changes in the circumferential direction Are gradually changed in the width direction of the detected surface. Further, the detection portions of at least one pair of sensors are opposed to different portions of the detection surface. The computing unit calculates physical quantities such as load, force, and displacement based on a phase difference existing between output signals of the sensors.
And in order to calculate such a physical quantity, the said arithmetic unit adds up the phase difference which exists between the output signals of each said sensor regarding the continuous several period. Further, based on the total value and the total length of the plurality of cycles, the physical quantity between the stationary side and rotating side raceways is calculated.
When the invention described in claim 3 is carried out, as described in claim 4, for example, the sum of the phase differences belonging to a plurality of consecutive periods and the total length of the plurality of periods Filter the ratio. Thereafter, the physical quantity is calculated based on the ratio between the total value and the length.

或いは、請求項5に記載した様に、前記エンコーダの被検出面の特性が変化するピッチを、この被検出面の幅方向に関して漸次変化させる。又、前記演算器は、前記センサの出力信号のデューティ比(高電位継続時間/1周期)に基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する。
そして、この様な物理量を算出する為に上記演算器は、上記各センサの出力信号のうちでデューティ比の分子となる値(高電位継続時間)を連続する複数の周期に関して合計し、この合計値とこの複数の周期全体の長さとに基づいて、上記物理量を算出する。
この様な請求項5に記載した発明を実施する場合には、例えば請求項6に記載した様に、連続する複数の周期に属する、デューティ比の分子となる値の合計値と、この複数の周期全体の長さとの比にフィルタリング処理を施す。その後、これら合計値との長さとの比に基づいて、上記物理量を算出する。
Alternatively, as described in claim 5, the pitch at which the characteristic of the detected surface of the encoder changes is gradually changed with respect to the width direction of the detected surface. The computing unit calculates a physical quantity between the stationary side and the rotating side raceways based on the duty ratio (high potential duration / one cycle) of the output signal of the sensor.
In order to calculate such a physical quantity, the computing unit sums up the values (high potential duration) of the duty ratios of the output signals of the sensors with respect to a plurality of successive cycles, The physical quantity is calculated based on the value and the overall length of the plurality of periods.
When carrying out the invention described in claim 5, for example, as described in claim 6, a total value of values that become a numerator of a duty ratio belonging to a plurality of continuous cycles, A filtering process is applied to the ratio to the length of the entire period. Thereafter, the physical quantity is calculated based on the ratio of the length to the total value.

又、前述の様な本発明の転がり軸受ユニットの物理量測定装置を実施する場合に、例えば請求項7に記載した様に、前記演算器は、少なくとも1個のセンサの出力信号に関する情報を間欠的に求め、この求めた情報に基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する。   Further, when the physical quantity measuring device for a rolling bearing unit of the present invention as described above is implemented, for example, as described in claim 7, the computing unit intermittently outputs information on an output signal of at least one sensor. Based on the obtained information, the physical quantity between the stationary side and the rotating side races is calculated.

この様な請求項7に記載した発明を実施する場合には、例えば請求項8に記載した様に、前述の図11〜14に示した従来構造の第1〜2例、或いは図15〜16に示した同第3例の様に、エンコーダの被検出面の特性が変化する境界の円周方向に関する位置を、この被検出面の幅方向に漸次変化させる。これと共に、少なくとも1対のセンサの検出部を、この被検出面の互いに異なる部分にそれぞれ対向させる。又、演算器は、これら各センサの出力信号同士の間に存在する位相差に基づいて物理量を算出する。そして、この物理量を算出する為に上記演算器は、上記各センサの出力信号同士の間に存在する位相差を間欠的に求め、この求めた位相差とこの位相差が属する周期の長さとに基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する。   When the invention described in claim 7 is carried out, for example, as described in claim 8, the first to second examples of the conventional structure shown in FIGS. 11 to 14 described above, or FIGS. As in the third example, the position of the boundary where the characteristic of the detected surface of the encoder changes in the circumferential direction is gradually changed in the width direction of the detected surface. At the same time, the detection portions of at least one pair of sensors are opposed to different portions of the detected surface. The computing unit calculates a physical quantity based on the phase difference existing between the output signals of these sensors. In order to calculate the physical quantity, the computing unit intermittently calculates the phase difference existing between the output signals of the sensors, and calculates the phase difference and the length of the period to which the phase difference belongs. Based on this, the physical quantity between the stationary side and rotating side raceways is calculated.

或いは、上述の請求項7に記載した発明を実施する場合に、例えば請求項9に記載した様に、前述の図17に示した従来構造の第3例の様に、エンコーダの被検出面の特性が変化するピッチを、この被検出面の幅方向に関して漸次変化させる。そして、演算器は、センサの出力信号のデューティ比に基づいて物理量を算出する。そして、この物理量を算出する為に上記演算器は、上記センサの出力信号のデューティ比を間欠的に求め、この求めたデューティ比に基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する。   Alternatively, when the invention described in claim 7 is carried out, as described in claim 9, for example, as in the third example of the conventional structure shown in FIG. The pitch at which the characteristics change is gradually changed with respect to the width direction of the detected surface. Then, the computing unit calculates the physical quantity based on the duty ratio of the output signal of the sensor. In order to calculate the physical quantity, the computing unit intermittently obtains the duty ratio of the output signal of the sensor, and based on the obtained duty ratio, the physical quantity between the stationary side and the rotating side raceway rings. Is calculated.

又、本発明を実施する場合に、例えば請求項10に記載した様に、前記静止側軌道輪を、使用時に車両の懸架装置に支持固定される外輪とし、前記静止側軌道を、この外輪の内周面に設けられた複列の外輪軌道とする。又、前記回転側軌道輪を、使用時に車輪を結合固定した状態でこの車輪と共に回転するハブとし、前記回転側軌道を、このハブの外周面に設けられた複列の外輪軌道とする。そして、前記各転動体を、両列毎に複数個ずつ設ける。   In carrying out the present invention, for example, as described in claim 10, the stationary side raceway is an outer ring that is supported and fixed to a suspension device of a vehicle when in use, and the stationary side raceway is defined as the outer race. A double row outer ring raceway provided on the inner peripheral surface. In addition, the rotating side raceway is a hub that rotates together with the wheel while the wheels are coupled and fixed in use, and the rotating side raceway is a double row outer ring raceway provided on the outer peripheral surface of the hub. A plurality of each rolling element is provided for each row.

上述の様に構成する本発明の転がり軸受ユニットの物理量測定装置によれば、エンコーダをABS等と共用した場合に、高価な演算器を使用しなくても、高速走行時に至るまで、外力信号を得られる構造を実現できる。
即ち、本発明の転がり軸受ユニットの物理量測定装置の場合には演算器が、上記エンコーダの回転に伴うセンサの出力信号の変化に関して、この出力信号の複数周期毎に物理量を算出する。この為、上記ABS等の制御の為、リアルタイムに近い車速信号を得るべく、上記エンコーダの被検出面の特性が変化する1回転当たりの回数(パルス数/1回転)を多くしても、上記物理量を算出する為、上記エンコーダが1回転する間に行なう必要がある計算の回数を抑えられる。この為、比較的安価な演算器を使用しても、高速走行時まで外力信号を得る事ができる。
According to the physical quantity measuring device of the rolling bearing unit of the present invention configured as described above, when the encoder is shared with ABS or the like, the external force signal is output until the high-speed running without using an expensive arithmetic unit. The resulting structure can be realized.
That is, in the case of the physical quantity measuring device for a rolling bearing unit according to the present invention, the computing unit calculates the physical quantity for each of a plurality of cycles of the output signal with respect to the change of the output signal of the sensor accompanying the rotation of the encoder. For this reason, even if the number of times per rotation (number of pulses / 1 rotation) at which the characteristics of the detected surface of the encoder change is increased in order to obtain a vehicle speed signal close to real time for the control of the ABS or the like, Since the physical quantity is calculated, the number of calculations that need to be performed during one rotation of the encoder can be suppressed. For this reason, it is possible to obtain an external force signal even when a relatively inexpensive arithmetic unit is used until the vehicle travels at a high speed.

[実施の形態の第1例]
図1〜9により、請求項1〜4、10に対応する、本発明の実施の形態の第1例に就いて説明する。尚、本例の特徴は、転がり軸受ユニットの物理量測定装置を構成する演算器が、外輪1とハブ2(例えば図11参照)とのアキシアル方向の相対変位量、或いはこれら外輪1とハブ2との間に作用するアキシアル荷重を、1対のセンサ6a、6bの出力信号の変化に関して、複数周期毎に算出する点にある。その他の部分の構造及び作用は、基本的には、前述した従来構造と同様であるから、同等部分に関する重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
A first example of an embodiment of the present invention corresponding to claims 1 to 4 and 10 will be described with reference to FIGS. The feature of this example is that the arithmetic unit constituting the physical quantity measuring device of the rolling bearing unit has a relative displacement amount in the axial direction between the outer ring 1 and the hub 2 (see, for example, FIG. 11), or these outer ring 1 and hub 2. The axial load acting during the period is calculated for each of a plurality of cycles with respect to changes in the output signals of the pair of sensors 6a and 6b. Since the structure and operation of the other parts are basically the same as those of the above-described conventional structure, overlapping illustrations and explanations of equivalent parts will be omitted or simplified, and the following description will focus on the features of this example. .

本例は、図1に示す様に、特性変化の境界(透孔と柱部との境界、或いはS極とN極との境界)が「く」字形であるエンコーダEの被検出面の幅方向2個所位置を1対のセンサA、Bにより走査し、これら両センサA、Bの出力信号同士の間に存在する位相差に基づいて、上記エンコーダEを支持固定した回転部材に加わる荷重を求める構造に、本発明を適用する場合を示している。上記位相差に基づいてこの荷重を求める機構に就いては、前述の図11〜14に示した従来構造の第1〜2例と同様である。即ち、図1の上下方向に荷重が作用すると、上記両センサA、Bに対し上記エンコーダEがこの上下方向に変位し、これら両センサA、Bの出力信号の位相が、図3に示す様にずれる(変化する)。そこで、これら両センサA、Bの出力信号を、図2に示した回路で処理する事により、上記アキシアル荷重(或いは上記アキシアル方向の相対変位量)を求める。   In this example, as shown in FIG. 1, the width of the surface to be detected of the encoder E in which the boundary of the characteristic change (the boundary between the through hole and the column portion, or the boundary between the S pole and the N pole) is a “<” shape. Two positions in the direction are scanned by a pair of sensors A and B. Based on the phase difference existing between the output signals of both sensors A and B, a load applied to the rotating member that supports and fixes the encoder E is applied. The case where the present invention is applied to the required structure is shown. The mechanism for obtaining this load based on the phase difference is the same as the first and second examples of the conventional structure shown in FIGS. That is, when a load is applied in the vertical direction in FIG. 1, the encoder E is displaced in the vertical direction with respect to both the sensors A and B, and the phases of the output signals of both the sensors A and B are as shown in FIG. Shifts (changes). Therefore, the axial load (or the relative displacement in the axial direction) is obtained by processing the output signals of both sensors A and B by the circuit shown in FIG.

上記図2に示した回路では、先ず、位相差比演算回路12により、上記両センサA、Bの出力信号同士の間に存在する位相差を求め、更にこの位相差をこれら両センサA、Bの出力信号の周期により除する事で、これら両センサA、Bの出力信号同士の間の位相差比(=位相差/1周期)を求める。この位相差比を表す信号には、次いで、適応フィルタ13により、上記エンコーダEの形状誤差や取付時の傾き、偏芯等、幾何的な誤差に基づく検出誤差を低減する為の処理を行なう。この適応フィルタ13は、前述の特許文献4に記載されたもので、例えばLMSアルゴリズムや同期式LMSアルゴリズムで作動して、上記幾何的な誤差に基づく検出誤差を低減する。この様な適応フィルタ13による処理を施された、上記位相差比を表す信号は、次いで、ローパスフィルタ14を通過させて、ノイズを除去する。このローパスフィルタ14は、ノイズも除去するが必要な高域成分まで除去する可能性もあるので、適宜カットオフ周波数、或いはカットオフ次数(回転n次)を選定する事が好ましい。或いは、上記ローパスフィルタ14そのものを使用しなくても良い。   In the circuit shown in FIG. 2, first, the phase difference ratio calculation circuit 12 obtains the phase difference existing between the output signals of the two sensors A and B, and further calculates the phase difference between the two sensors A and B. The phase difference ratio (= phase difference / 1 period) between the output signals of both the sensors A and B is obtained by dividing by the period of the output signal. The signal representing the phase difference ratio is then processed by the adaptive filter 13 to reduce detection errors based on geometric errors such as the shape error of the encoder E, the inclination at the time of attachment, and the eccentricity. This adaptive filter 13 is described in Patent Document 4 described above, and operates with, for example, an LMS algorithm or a synchronous LMS algorithm to reduce a detection error based on the geometric error. The signal representing the phase difference ratio that has been processed by the adaptive filter 13 is then passed through the low-pass filter 14 to remove noise. The low-pass filter 14 removes noise, but may remove even a necessary high-frequency component. Therefore, it is preferable to select a cut-off frequency or a cut-off order (rotation n-th order) as appropriate. Alternatively, the low-pass filter 14 itself may not be used.

上記ローパスフィルタ14による処理を施した(ローパスフィルタ14を省略した場合には上記適応フィルタ13による処理を施した)、上記位相差比を表す信号は、変換処理回路15により、上記アキシアル荷重を表す信号に変換する。この変換を可能にする為に、この変換処理回路15には、予め実験或いは解析により求めておいた、上記位相差比と上記アキシアル荷重の大きさとを表す関係を、式或いはマップ等として、メモリ中に記録しておく。上述の各処理に関しては、特許文献4に記載される等により従来から知られている為、詳しい説明は省略する。   The signal representing the phase difference ratio that has undergone processing by the low-pass filter 14 (or processing by the adaptive filter 13 when the low-pass filter 14 is omitted) represents the axial load by the conversion processing circuit 15. Convert to signal. In order to enable this conversion, the conversion processing circuit 15 stores a relationship representing the phase difference ratio and the magnitude of the axial load, which has been obtained in advance by experiment or analysis, as a formula or a map. Record inside. Since each of the above-described processes has been conventionally known, for example, as described in Patent Document 4, detailed description thereof will be omitted.

図2に示した回路により行なう処理のうち、位相差比演算回路12で前記両センサA、Bの出力信号から前記位相差比を求める処理と、上記変換処理回路15によりこの位相差比から上記アキシアル荷重を求める処理は、何れも単純であり、処理数が多少増えても、CPUの能力が不足する可能性は低い。これに対して、上記適応フィルタ13及び上記ローパスフィルタ14による処理は演算量が多く、しかもこれら両フィルタ13、14による処理は、上記変換処理回路15に上記位相差比を表す信号を送り込む度に行なう必要がある。そして、前述の様に、前記エンコーダEを、ABS制御用のものと共用した場合、コストが嵩む高速のCPUを使用しないと、高速走行時の処理を行なえなくなる可能性がある。この様な事情に鑑みて本発明の場合には、上記図2の処理回路で、上記エンコーダEが1回転する間に上記適応フィルタ13以降に位相差比を表す信号を送り出す回数を、このエンコーダEの被検出面に存在する特性変化の周期の数よりも少なく(Nを2以上の自然数とした場合に1/Nに)抑える様にしている。即ち、上記位相差比演算回路12が上記適応フィルタ13に向け、前記両センサA、Bの出力信号に関してN周期毎(N:上記と同じ自然数)に、上記適応フィルタ13に向け、上記位相差比を表す信号を送り出す様にしている。以下、この位相差比を表す信号を送り出す頻度を少なくする(1/Nにする)点に就いて説明する。   Among the processes performed by the circuit shown in FIG. 2, the phase difference ratio calculation circuit 12 obtains the phase difference ratio from the output signals of the sensors A and B, and the conversion processing circuit 15 calculates the phase difference ratio from the phase difference ratio. The processes for obtaining the axial load are all simple, and even if the number of processes increases somewhat, the possibility that the CPU capacity is insufficient is low. On the other hand, the processing by the adaptive filter 13 and the low-pass filter 14 has a large amount of calculation, and the processing by both the filters 13 and 14 each time a signal representing the phase difference ratio is sent to the conversion processing circuit 15. Need to do. As described above, when the encoder E is shared with the one for ABS control, there is a possibility that processing at high speed cannot be performed unless a high-speed CPU with high cost is used. In view of such circumstances, in the case of the present invention, in the processing circuit of FIG. 2, the number of times that the signal representing the phase difference ratio is sent after the adaptive filter 13 during one rotation of the encoder E is determined by the encoder. The number of period of characteristic change existing on the E detection surface is smaller than 1 (when N is a natural number of 2 or more, it is suppressed to 1 / N). That is, the phase difference ratio calculation circuit 12 is directed toward the adaptive filter 13, and the phase difference is directed toward the adaptive filter 13 every N periods (N: the same natural number as described above) with respect to the output signals of the sensors A and B. A signal representing the ratio is sent out. Hereinafter, the point of reducing the frequency of sending out a signal representing the phase difference ratio (set to 1 / N) will be described.

先ず、本発明による技術を適用せず、前記特許文献4等に記載されて従来から知られている処理を、一般的な方法により(パルス毎に)行なう場合に就いて説明する。この場合に、図3に示す様に、センサAのエッジ{図3の場合には降下点(立下り)}から、センサBのエッジまでを位相差x1とする。そして、この位相差x1をセンサAの周期y1(センサBの周期も同じ)で除した値、即ち、x1/y1を、位相差比とし、この位相差比x1/y1を表す信号を、上記適応フィルタ13及び上記ローパスフィルタ14を介して上記変換処理回路15に送り、上記アキシアル荷重を求める。以下、上記エンコーダEの回転に伴って次々に得られる、その時点での位相差比x2/y2、x3/y3を表す信号を、順次上記適応フィルタ13及び上記ローパスフィルタ14を介して上記変換処理回路15に送り、上記アキシアル荷重を求める。   First, a description will be given of a case where the processing known in the prior art described in Patent Document 4 and the like is performed by a general method (for each pulse) without applying the technique according to the present invention. In this case, as shown in FIG. 3, the phase difference x1 is from the edge of the sensor A {in the case of FIG. 3, the descending point (falling point)} to the edge of the sensor B. Then, a value obtained by dividing the phase difference x1 by the period y1 of the sensor A (same as the period of the sensor B), that is, x1 / y1 is a phase difference ratio, and a signal representing the phase difference ratio x1 / y1 is The data is sent to the conversion processing circuit 15 through the adaptive filter 13 and the low-pass filter 14, and the axial load is obtained. Hereinafter, signals representing the phase difference ratios x2 / y2 and x3 / y3 obtained one after another along with the rotation of the encoder E are sequentially converted through the adaptive filter 13 and the low-pass filter 14 into the conversion process. It sends to the circuit 15 and calculates | requires the said axial load.

この様な一般的な処理を行なうと、前述した通り、上記図2に示した処理回路の負担が過大になる場合がある。即ち、例えばABS制御の為に必要となる、上記エンコーダEが1回転する間の特性変化の周期(パルス)の数を48とすると、このエンコーダEが1回転する間に、上記図2に示した処理回路が、上記適応フィルタ13及び上記ローパスフィルタ14を含めて、48回処理を行なう必要を生じる。高速走行時に上記エンコーダEが1回転する為に要する時間は短時間であり、その間に48回もの処理を行なう為には、高価なCPUが必要になる。これに対して、走行安定化を考慮しても、上記アキシアル荷重を表す信号を、上記エンコーダEが1回転する間に48回も必要とする事は、余程の高性能車でない限り、殆ど必要ないものと考えられる。そこで本例の場合には、前記位相差比演算回路12が次の様な処理を行なう事で、図2に示した回路の負担軽減を図る。   When such general processing is performed, as described above, the burden on the processing circuit shown in FIG. 2 may become excessive. That is, for example, when the number of characteristic change periods (pulses) during one rotation of the encoder E required for ABS control is 48, the encoder E is rotated as shown in FIG. The processing circuit needs to perform the processing 48 times including the adaptive filter 13 and the low-pass filter 14. The time required for one rotation of the encoder E during high-speed traveling is short, and an expensive CPU is required to perform processing 48 times during that time. On the other hand, even if traveling stability is taken into consideration, the signal indicating the axial load requires 48 times during one rotation of the encoder E, unless it is an extremely high-performance vehicle. It is considered unnecessary. Therefore, in the case of this example, the phase difference ratio calculation circuit 12 performs the following processing to reduce the load on the circuit shown in FIG.

上記エンコーダEの回転に伴って前記両センサA、Bが、このエンコーダEの被検出面に存在する特性変化の境界の情報(パルスのエッジ情報)、即ち、位相差x1、x2、x3…を表す情報と、当該位相差x1、x2、x3…が属する周期y1、y2、y3…を表す情報を検出する。この点は、特許文献4等に記載されて従来から知られている処理の場合と同様である。但し、本例の場合には、上記位相差比演算回路12が、上記各位相差x1、x2、x3…及び上記各周期y1、y2、y3…に基づいて、そのまま位相差比x1/y1、x2/y2、x3/y3…を表す信号を造り出さず、N周期毎(N:2以上の自然数)に、位相差比x/yを表す信号を造り出す。   As the encoder E rotates, both the sensors A and B obtain information on boundary of characteristic change (pulse edge information) existing on the detected surface of the encoder E, that is, phase differences x1, x2, x3. And information indicating the periods y1, y2, y3... To which the phase differences x1, x2, x3. This point is the same as the case of the process described in Patent Document 4 and the like and conventionally known. However, in the case of this example, the phase difference ratio calculation circuit 12 does not change the phase difference ratios x1 / y1, x2 based on the phase differences x1, x2, x3... And the periods y1, y2, y3. / Y2, x3 / y3... Are not generated, but a signal indicating the phase difference ratio x / y is generated every N periods (N: natural number of 2 or more).

例えば、2周期毎に位相差比x/yを表す信号を造り出す場合には、センサAとセンサBの出力信号に関して、隣り合う周期での位相差であるx1とx2とを足し合わせると共に、これら両位相差x1、x2が属する周期の長さであるy1とy2とを足し合わせる。そして、この2周期分の長さ「y1+y2」で、上記2周期分の位相差「x1+x2」を除して、上記隣り合う2周期分での位相差比(2周期分の位相差比の平均値)「(x1+x2)/(y1+y2)」を求め、この平均値を表す信号を、前記適応フィルタ13及び前記ローパスフィルタ14を介して、前記変換処理回路15に送り、上記アキシアル荷重を求める。   For example, when a signal representing the phase difference ratio x / y is created every two periods, the output signals of the sensor A and the sensor B are added together with the phase differences x1 and x2 in the adjacent periods. Add together y1 and y2, which are the lengths of the periods to which both phase differences x1 and x2 belong. Then, with the length “y1 + y2” for the two cycles, the phase difference ratio “x1 + x2” for the two cycles is divided and the phase difference ratio for the two adjacent cycles (the average of the phase difference ratios for the two cycles). Value) “(x1 + x2) / (y1 + y2)” is obtained, and a signal representing this average value is sent to the conversion processing circuit 15 via the adaptive filter 13 and the low-pass filter 14 to obtain the axial load.

この様な処理を行なう事で、上記適応フィルタ13及び上記ローパスフィルタ14によるフィルタリング処理、並びに、上記変換処理回路15によるアキシアル荷重算出の為の処理の量が、前述した様な、パルス毎に処理を行なう場合に比べて1/2になる。上記位相差比演算回路12の処理量は多少増えるが、この位相差比演算回路12が行なう処理は単純である為、高価なCPUを使用しなくても、十分に対処できる。尚、本例の場合、上記両センサA、Bの出力信号(パルス)を間引きをして上記位相差比x/yを表す信号を造り出すのではなく、隣り合う周期の平均値として造り出している。この為、前記エンコーダEの被検出面の特性変化のピッチに誤差が存在した様な場合でも、平均化によりこの誤差の影響を低減できる。即ち、上記位相差比x/yに関して、誤差を増加させる事なく、上記アキシアル荷重を精度良く求めつつ、このアキシアル荷重算出の為の処理量を削減できる。   By performing such processing, the amount of processing for the filtering processing by the adaptive filter 13 and the low-pass filter 14 and the processing for calculating the axial load by the conversion processing circuit 15 is processed for each pulse as described above. It becomes 1/2 compared with the case where it performs. Although the processing amount of the phase difference ratio calculation circuit 12 is slightly increased, the processing performed by the phase difference ratio calculation circuit 12 is simple and can be sufficiently handled without using an expensive CPU. In this example, the output signals (pulses) of the sensors A and B are not thinned out to generate a signal representing the phase difference ratio x / y, but as an average value of adjacent periods. . For this reason, even when an error exists in the pitch of the characteristic change of the detected surface of the encoder E, the influence of this error can be reduced by averaging. That is, regarding the phase difference ratio x / y, the amount of processing for calculating the axial load can be reduced while accurately obtaining the axial load without increasing an error.

上述の説明は、N=2として、隣り合う周期の位相差x1、x2、及び、周期の長さy1、y2を足し合わせ場合に就いて行なったが、N=3として、連続する3周期分の位相差x1、x2、x3、及び、周期の長さy1、y2、y3を足し合わせる事もできる。即ち、連続する3周期に関して、上記両センサA、Bの位相差x1、x2、x3を足し合わせると共に、これら3周期の長さy1、y2、y3を足し合わせて、これら3周期での位相差比の平均値「(x1+x2+x3)/(y1+y2+y3)」を求める事もできる。この様な、3周期分の位相差比の平均値「(x1+x2+x3)/(y1+y2+y3)」を表す信号を、上記適応フィルタ13及び上記ローパスフィルタ14を介して、上記変換処理回路15に送り、上記アキシアル荷重を求めれば、これら両フィルタ13、14での処理の量が、パルス毎に処理を行なう場合に比べて1/3になる。   The above description is made when N = 2 and the phase differences x1 and x2 of adjacent periods and the lengths y1 and y2 of the periods are added, but N = 3 and three consecutive periods. The phase differences x1, x2, x3 and the cycle lengths y1, y2, y3 can be added together. That is, with respect to three consecutive cycles, the phase differences x1, x2, and x3 of the sensors A and B are added together, and the lengths y1, y2, and y3 of these three cycles are added together to obtain the phase difference in these three cycles. The average value “(x1 + x2 + x3) / (y1 + y2 + y3)” can also be obtained. Such a signal representing the average value “(x1 + x2 + x3) / (y1 + y2 + y3)” of the phase difference ratios for three periods is sent to the conversion processing circuit 15 via the adaptive filter 13 and the low-pass filter 14. If the axial load is obtained, the amount of processing in both the filters 13 and 14 becomes 1/3 compared to the case where processing is performed for each pulse.

上述の様に、位相差x及び周期の長さyを足し合わせる、連続する周期の数Nを多くする程、上記アキシアル荷重を求める為に要する処理の量を少なくできる反面、この数Nを増やす程、このアキシアル荷重を表す信号を得られるまでに要する時間(荷重演算出力の遅れ=センサA、Bの出力信号が入力されてから、アキシアル荷重を表す信号が出力されるまでに要する時間)が大きくなる。又、このアキシアル荷重が連続的に変化する様な状況で、このアキシアル荷重を表す信号の大きさが階段状に変化する(センサA、Bの出力信号に基づいて求められる、アキシアル荷重を表す信号が間引きされた如く、このアキシアル荷重を表す出力が階段状になる)。そして、この様な状況が著しくなる(階段の段差が大きくなる)と、上記アキシアル荷重を勘案しての、走行状態安定化の為の制御の精度が悪化する。従って、上記数Nは、徒に大きくはできない。そこで、この数Nの適正値を知る為に行なった考察に就いて、以下に説明する。   As described above, the amount of processing required to obtain the axial load can be reduced as the number N of consecutive periods in which the phase difference x and the period length y are added is increased, but the number N is increased. The time required to obtain a signal representing the axial load (the delay in load calculation output = the time required from the input of the output signals of the sensors A and B to the output of the signal representing the axial load). growing. In a situation where the axial load changes continuously, the magnitude of the signal indicating the axial load changes stepwise (a signal indicating the axial load obtained based on the output signals of the sensors A and B). The output representing this axial load becomes a stepped shape, as is thinned out). And if such a situation becomes remarkable (the step difference of the stairs becomes large), the accuracy of the control for stabilizing the running state in consideration of the axial load is deteriorated. Therefore, the number N cannot be increased. Therefore, the following discussion will be made on the consideration made to know the appropriate value of the number N.

図4〜6は、被検出面の特性が1回転当たり48周期で変化するエンコーダEを組み込んだ転がり軸受ユニットの物理量測定装置を搭載した車両が80km/hで走行中に両方向のアキシアル荷重が加わり、1対のセンサA、Bの出力信号同士の間の位相差比x/yが−1.0から1.0まで(これら両センサA、Bの出力信号が、1周期ずれた状態から一致した状態を経て、逆側に1周期ずれた状態まで)、0.2sec の間に変化した場合に就いて示している。尚、この様な変化は、実際上は生じない程の急激なものである。図4〜6中の実線は、上記位相差比x/y(に結び付くアキシアル荷重)の変化状況を示している。又、破線は、N=1として、上記両センサA、Bの全周期毎に位相差比x/yを求めた場合に、前記位相差比演算回路12から送り出される、この位相差比x/yを表す信号(前記変換処理回路15から送り出される、上記アキシアル荷重を表す信号)を表している。又、一点鎖線は、N=2として、上記両センサA、Bの2周期毎に位相差比x/yを求めた場合に、前記位相差比演算回路12から送り出される、この位相差比x/yを表す信号を表している。又、二点鎖線は、N=3として、上記両センサA、Bの3周期毎に位相差比x/yを求めた場合に、前記位相差比演算回路12から送り出される、この位相差比x/yを表す信号を表している。更に、三点鎖線は、N=4として、上記両センサA、Bの3周期毎に位相差比x/yを求めた場合に、前記位相差比演算回路12から送り出される、この位相差比x/yを表す信号を表している。   4 to 6 show that the axial load in both directions is applied while a vehicle equipped with a physical quantity measuring device for a rolling bearing unit incorporating an encoder E in which the characteristics of the surface to be detected change at 48 cycles per revolution is traveling at 80 km / h. The phase difference ratio x / y between the output signals of the pair of sensors A and B is from -1.0 to 1.0 (the output signals of both the sensors A and B coincide with each other from the state shifted by one cycle) In this case, the state is changed for 0.2 sec. Such a change is so rapid that it does not actually occur. The solid line in FIGS. 4-6 has shown the change condition of the said phase difference ratio x / y (axial load tied to). The broken line indicates that the phase difference ratio x / y is sent from the phase difference ratio calculation circuit 12 when N = 1 and the phase difference ratio x / y is obtained for every cycle of the sensors A and B. A signal representing y (a signal representing the axial load sent from the conversion processing circuit 15). The one-dot chain line indicates that the phase difference ratio x / y is sent from the phase difference ratio calculation circuit 12 when N = 2 and the phase difference ratio x / y is obtained every two cycles of the sensors A and B. A signal representing / y is represented. The two-dot chain line indicates that the phase difference ratio is sent from the phase difference ratio calculation circuit 12 when N = 3 and the phase difference ratio x / y is obtained every three cycles of the sensors A and B. It represents a signal representing x / y. Further, the three-dot chain line indicates that the phase difference ratio sent out from the phase difference ratio calculation circuit 12 when N = 4 and the phase difference ratio x / y is obtained every three cycles of the sensors A and B. It represents a signal representing x / y.

この様な図4〜6から明らかな通り、上記両センサA、Bの出力信号に基づいて上記位相差比x/yを求めると、実際にはこの位相差比x/yが連続して変化する場合でも、この位相差比x/yが階段状に変化しているが如き信号を得られる。又、この階段状の変化の段差は、上記数Nが多くなる程著しくなる。そして、この段差が大きくなる程、上記アキシアル荷重の測定値に生じる誤差が大きくなるだけでなく、このアキシアル荷重を求められるまでの応答遅れ(上記両センサA、Bの出力信号が上記位相差比演算回路12に入力されてから、上記変換処理回路15から上記アキシアル荷重を表す信号が出力されるまでに要する時間)が大きくなる。   As apparent from FIGS. 4 to 6, when the phase difference ratio x / y is obtained based on the output signals of the sensors A and B, the phase difference ratio x / y actually changes continuously. Even in this case, it is possible to obtain a signal such that the phase difference ratio x / y changes stepwise. Further, the step difference of the step-like change becomes more remarkable as the number N increases. As the step becomes larger, not only the error generated in the measured value of the axial load increases, but also the response delay until the axial load is obtained (the output signals of the sensors A and B are the phase difference ratio). The time required from when the signal is input to the arithmetic circuit 12 to when the signal representing the axial load is output from the conversion processing circuit 15 increases.

図6に、前記適応フィルタ13及び前記ローパスフィルタ14の処理時間を勘案して求めた、上記数Nと上記応答遅れとの関係を示している。この図6に示す様に、この応答遅れは、N=1とした場合に1.4msec に止まるのに対して、N=2の場合には3.5msec 、N=3の場合には6msec 、N=4の場合には8.6msec となる。
上述のシミュレーションは、車速が80km/hの場合であるが、図7〜8に車速40km/hの場合のシミュレーションの結果を示している。図4〜5と図7〜8とを比較すれば明らかな通り、車速が遅くなると、応答遅れが更に大きくなる。具体的には、N=1とした場合の応答遅れが2msec になり、N=2の場合に5msec 、N=3の場合に12msec 、N=3の場合に16msec となる。
FIG. 6 shows the relationship between the number N and the response delay obtained by taking into account the processing time of the adaptive filter 13 and the low-pass filter 14. As shown in FIG. 6, this response delay stops at 1.4 msec when N = 1, whereas 3.5 msec when N = 2, 6 msec when N = 3, In the case of N = 4, it is 8.6 msec.
The above-mentioned simulation is for the case where the vehicle speed is 80 km / h. FIGS. 7 to 8 show the simulation results for the case where the vehicle speed is 40 km / h. As is apparent from a comparison between FIGS. 4 to 5 and FIGS. 7 to 8, the response delay increases further as the vehicle speed decreases. Specifically, the response delay when N = 1 is 2 msec, 5 msec when N = 2, 12 msec when N = 3, and 16 msec when N = 3.

図9に、Nの数と車速とが応答遅れに及ぼす影響をまとめて示している。この様な図9から明らかな通り、応答遅れは、位相差比及び周期の長さを足し合わせる数であるNに比例して増加し、車速に反比例する。
尚、図6にその結果を示したシミュレーションでの応答遅れの絶対値は、上記適応フィルタ13及び上記ローパスフィルタ14によるフィルタリングの方式等により変化する。従って、上記図6で示した応答遅れの具体的数値は、参考値ではあるが、上記フィルタリング方式が変わっても、Nの数及び車速に基づく、上記応答遅れの長短の傾向は同じである。何れにしても、前記アキシアル荷重を使用して車両の走行状態を安定させる為の制御を行なう事を考慮した場合、応答遅れを少なくする事が、高精度の制御を行なう面からは好ましい。これらの事を考慮すれば、CPUの調達コストを抑えられる範囲で、上記Nの数をできる限り小さく抑える事が好ましい。N=1の場合には、前述した理由により、CPUの調達コストが嵩む可能性が高い。そこで、N=2とする事が、演算量を削減できる割合を大きくし(N=1→N=2とする事でほぼ1/2)にできて、計算量の低減によるコスト削減を図りつつ、応答遅れを最小限に抑えられて、走行状態安定化の為の制御を、十分な精度を確保しつつ行なえる面から、最もバランスが良いものと考えられる。
FIG. 9 collectively shows the influence of the number of N and the vehicle speed on the response delay. As is apparent from FIG. 9, the response delay increases in proportion to N, which is the sum of the phase difference ratio and the length of the period, and is inversely proportional to the vehicle speed.
The absolute value of the response delay in the simulation whose result is shown in FIG. 6 varies depending on the filtering method using the adaptive filter 13 and the low-pass filter 14. Therefore, although the specific numerical value of the response delay shown in FIG. 6 is a reference value, even if the filtering method is changed, the tendency of the response delay based on the number of N and the vehicle speed is the same. In any case, in consideration of performing control for stabilizing the traveling state of the vehicle using the axial load, it is preferable from the aspect of performing highly accurate control to reduce the response delay. Considering these things, it is preferable to keep the number of N as small as possible within a range where the procurement cost of the CPU can be suppressed. In the case of N = 1, there is a high possibility that the procurement cost of the CPU will increase due to the reasons described above. Therefore, setting N = 2 can increase the rate at which the amount of computation can be reduced (N = 1 → N = 2 by setting N = 2), while reducing costs by reducing the amount of calculation. It is considered that the balance is the best from the viewpoint that the response delay can be minimized and the control for stabilizing the running state can be performed while ensuring sufficient accuracy.

[実施の形態の第2例]
本発明の請求項1〜3、7、8、10に対応する実施の形態の第2例に就いて、図10を参照しつつ説明する。本発明を実施するには、上述した実施の形態の第1例の様に、連続するN周期分(好ましくは2周期分)の位相差をN周期分の長さで除する事で、このN周期分の位相差比の平均値を求める事が、エンコーダEの被検出面に存在する特性変化の境界に関するピッチ誤差を抑える面から好ましい。但し、この特性変化のピッチの精度が十分に高ければ、上記第1例の様に、センサA、Bの出力信号の変化(パルス)を全周期に関して位相差比演算回路12(図2参照)に取り入れるのではなく、このパルスを間引いてこの位相差比演算回路12に取り入れる、所謂分周を行なっても、上記平均値を求める場合と同様の効果を得られる。即ち、上記パルスを、1周期置きに(2周期に1回)、或いは2周期置きに(3周期に1回)上記位相差比演算回路12に取り入れる事で、上記平均値を求める場合と同様に、適応フィルタ13及びローパスフィルタ14によるフィルタリング処理、並びに、変換処理回路15(図2参照)によるアキシアル荷重算出の為の処理の量を削減して、比較的安価な演算器を使用しても、高速走行時まで、アキシアル荷重等の外力の大きさを表す信号を得る事ができる。
[Second Example of Embodiment]
A second example of the embodiment corresponding to claims 1 to 3, 7, 8, and 10 of the present invention will be described with reference to FIG. In order to implement the present invention, as in the first example of the embodiment described above, the phase difference of N consecutive periods (preferably two periods) is divided by the length of N periods. Obtaining the average value of the phase difference ratios for N periods is preferable from the viewpoint of suppressing the pitch error related to the boundary of the characteristic change existing on the detected surface of the encoder E. However, if the accuracy of the pitch of the characteristic change is sufficiently high, the change (pulse) of the output signals of the sensors A and B is converted into the phase difference ratio calculation circuit 12 for the entire period (see FIG. 2) as in the first example. Even if the so-called frequency division is performed in which the pulses are thinned out and taken into the phase difference ratio calculation circuit 12, the same effect as in the case of obtaining the average value can be obtained. That is, the same as the above-mentioned average value is obtained by incorporating the pulse into the phase difference ratio calculation circuit 12 every other period (once every two periods) or every other period (once every three periods). In addition, it is possible to reduce the amount of processing for the filtering process by the adaptive filter 13 and the low-pass filter 14 and the axial load calculation by the conversion processing circuit 15 (see FIG. 2), and use a relatively inexpensive arithmetic unit. It is possible to obtain a signal representing the magnitude of an external force such as an axial load until traveling at a high speed.

但し、パルスを間引く、分周を行なう場合は、上記エンコーダEの被検出面に存在する特性変化の境界に関するピッチの精度が十分に高い事が必要である。この点に就いて、図10を参照しつつ説明する。尚、この図10に示したC、Dは、それぞれ特性変化の1周期分を表している。分周する場合、分周数をNとすると1/Nに分周される。1/2分周に就いて考えると、パルスを1個飛びで使用する為、1対のセンサA、B(図2参照)同士の間で、最初のパルス及び周期がCに関する境界(例えば回転方向前端縁)から始まる場合と、Dに関する境界から始まる場合との2種類に分かれてしまう。この事は、上記両センサA、B同士の間で互いに独立した、1対のエンコーダを使用する事と同じになる。従って、上記エンコーダEとして被検出面の精度(特性変化の境界に関するピッチ及び形状の精度)が良好なものを使用し、上記パルス及び周期がCから始まってもDから始まっても、異なる周期を使用する事の影響を受けない様にする必要がある。逆に言えば、被検出面の精度が良好なエンコーダEを使用すれば、分周により処理量を削減する事が可能になる。   However, in the case of performing pulse division and frequency division, it is necessary that the pitch accuracy regarding the boundary of the characteristic change existing on the detection surface of the encoder E is sufficiently high. This point will be described with reference to FIG. Note that C and D shown in FIG. 10 each represent one cycle of characteristic change. In the case of frequency division, if the frequency division number is N, the frequency is divided into 1 / N. Considering the 1/2 frequency division, since one pulse is used by skipping, a boundary between the pair of sensors A and B (see FIG. 2) and the first pulse and period is C (for example, rotation). It is divided into two types: a case starting from the front edge in the direction) and a case starting from the boundary relating to D. This is the same as using a pair of encoders independent of each other between the sensors A and B. Therefore, the encoder E having a good accuracy of the surface to be detected (pitch and shape accuracy with respect to the boundary of the characteristic change) is used, and the pulse and the cycle have different periods regardless of whether they start from C or D. It is necessary not to be affected by the use. In other words, if the encoder E having a good detection surface accuracy is used, the amount of processing can be reduced by frequency division.

本発明は、軸方向に離隔して配置した1対のセンサの出力信号同士の間に存在する位相差に基づいて、軸方向に関する相対変位量やアキシアル荷重を求める構造に限らず実施できる。例えば、前述の図15〜16に示した様な、径方向反対側2個所位置に配置した1対のセンサのエンコーダの傾斜を出力信号同士の間に存在する位相差に基づいて、モーメントやアキシアル荷重を求める構造で実施できる。更には、前述の図17〜18に示した様な、1個のセンサの出力信号のデューティ比に基づいて、軸方向に関する相対変位量やアキシアル荷重を求める構造でも実施できる。   The present invention can be implemented not only in the structure for obtaining the relative displacement amount and the axial load in the axial direction based on the phase difference existing between the output signals of the pair of sensors arranged apart in the axial direction. For example, as shown in FIGS. 15 to 16 described above, the inclination of the encoders of a pair of sensors arranged at two positions on the opposite side in the radial direction is calculated based on the phase difference existing between the output signals. It can be implemented with a structure for obtaining a load. Furthermore, the present invention can also be implemented with a structure for obtaining the relative displacement amount and the axial load in the axial direction based on the duty ratio of the output signal of one sensor as shown in FIGS.

本発明を説明する為の、エンコーダの被検出面と1対のセンサの走査位置との関係を示す模式図。The schematic diagram which shows the relationship between the to-be-detected surface of an encoder and the scanning position of a pair of sensor for demonstrating this invention. 上記両センサの出力信号を処理する回路を示すブロック図。The block diagram which shows the circuit which processes the output signal of the said both sensors. これら両センサの出力信号を示す線図。The diagram which shows the output signal of both these sensors. 80km/hでの走行時に、上記両センサの出力信号同士の間に存在する位相差が変化した場合に於ける、これら両センサの出力信号のサンプリングの頻度と応答遅れとの関係を示す線図。Diagram showing the relationship between the sampling frequency of the output signals of both sensors and the response delay when the phase difference existing between the output signals of both sensors changes during traveling at 80 km / h. . 図4の中央部を拡大して示す線図。The diagram which expands and shows the center part of FIG. 出力信号を得られるまでの応答遅れの時間を説明する為の、図5の中央部に相当する線図。FIG. 6 is a diagram corresponding to the central portion of FIG. 5 for explaining a response delay time until an output signal is obtained. 40km/hでの走行時に、上記両センサの出力信号同士の間に存在する位相差が変化した場合に於ける、これら両センサの出力信号のサンプリングの頻度と応答遅れとの関係を示す線図。A diagram showing the relationship between the sampling frequency of the output signals of both sensors and the response delay when the phase difference existing between the output signals of the two sensors changes during traveling at 40 km / h. . 図7の中央部を拡大して示す線図。The diagram which expands and shows the center part of FIG. 走行速度と、上記両センサの出力信号のサンプリングの頻度と、応答遅れとの関係を示す線図。The diagram which shows the relationship between travel speed, the sampling frequency of the output signal of both said sensors, and a response delay. 1個のセンサの出力信号に関する情報を間欠的に求める状態を説明する為、エンコーダの被検出面を示す模式図。The schematic diagram which shows the to-be-detected surface of an encoder, in order to demonstrate the state which calculates | requires the information regarding the output signal of one sensor intermittently. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. この第1例に組み込むエンコーダの一部を径方向から見た図。The figure which looked at a part of encoder incorporated in this 1st example from the diameter direction. アキシアル荷重に基づいて1対のセンサの出力信号が変化する状態を説明する為の線図。The diagram for demonstrating the state from which the output signal of a pair of sensor changes based on an axial load. 従来構造の第2例を示す断面図。Sectional drawing which shows the 2nd example of a conventional structure. 同第3例を示す断面図。Sectional drawing which shows the 3rd example. この第3例に組み込むエンコーダの一部を径方向から見た図。The figure which looked at a part of encoder incorporated in this 3rd example from the diameter direction. 従来構造の第4例を示す断面図。Sectional drawing which shows the 4th example of a conventional structure. この第4例に組み込むエンコーダの一部を径方向から見た図。The figure which looked at a part of encoder incorporated in this 4th example from the diameter direction.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4、4a〜4c エンコーダ
5 カバー
6、6a、6b センサ
7、7a センサホルダ
8、8a、8b 透孔
9 柱部
10 第一特性変化部
11 第二特性変化部
12 位相差比演算回路
13 適応フィルタ
14 ローパスフィルタ
15 変換処理回路
A センサ
B センサ
E エンコーダ
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4, 4a-4c Encoder 5 Cover 6, 6a, 6b Sensor 7, 7a Sensor holder 8, 8a, 8b Through-hole 9 Column part 10 First characteristic change part 11 Second characteristic change part 12th place Phase difference ratio calculation circuit 13 Adaptive filter 14 Low pass filter 15 Conversion processing circuit A Sensor B Sensor E Encoder

Claims (10)

転がり軸受ユニットと、物理量測定装置とを備え、
このうちの転がり軸受ユニットは、静止側周面に静止側軌道を有し、使用時にも回転しない静止側軌道輪と、この静止側周面と径方向に対向する回転側周面に回転側軌道を有し、使用時に回転する回転側軌道輪と、この回転側軌道と上記静止側軌道との間に転動自在に設けられた複数個の転動体とを備えたものであり、
上記物理量測定装置は、エンコーダと、少なくとも1個のセンサと、演算器とを備えたものであって、
このうちのエンコーダは、上記回転側軌道輪の一部にこの回転側軌道輪と同心に支持固定されたもので、この回転側軌道輪と同心の被検出面を備え、この被検出面の特性を円周方向に関して交互に変化させており、
上記センサは、検出部を上記エンコーダの被検出面に対向させた状態で、回転しない部分に支持されていて、上記被検出面の特性変化に対応して出力信号を変化させるものであり、
上記演算器は、上記センサの出力信号に基づいて、上記静止側、回転側両軌道輪同士の間の相対変位と、これら両軌道輪同士の間に作用する外力とのうちの、少なくとも一方の物理量を算出する機能を有するものである、
転がり軸受ユニットの物理量測定装置に於いて、
上記演算器は上記物理量を、上記センサの出力信号の変化に関して、複数周期毎に算出する事を特徴とする転がり軸受ユニットの物理量測定装置。
A rolling bearing unit and a physical quantity measuring device;
Of these, the rolling bearing unit has a stationary side raceway on the stationary side circumferential surface, and a stationary side raceway that does not rotate during use, and a rotational side raceway on the rotational side circumferential surface that faces the stationary side circumferential surface in the radial direction. A rotating side race ring that rotates when in use, and a plurality of rolling elements provided between the rotating side raceway and the stationary side raceway so as to be freely rollable.
The physical quantity measuring device includes an encoder, at least one sensor, and a computing unit,
Of these, the encoder is supported and fixed to a part of the rotation side raceway, concentrically with the rotation side raceway, and has a detection surface concentric with the rotation side raceway. Are alternately changed in the circumferential direction,
The sensor is supported by a portion that does not rotate with the detection unit facing the detection surface of the encoder, and changes an output signal in response to a change in the characteristics of the detection surface.
The computing unit is based on the output signal of the sensor, and at least one of the relative displacement between the stationary and rotating side raceways and the external force acting between the raceways. It has a function to calculate physical quantities.
In the physical quantity measuring device for rolling bearing units,
The apparatus for measuring a physical quantity of a rolling bearing unit, wherein the computing unit calculates the physical quantity for each of a plurality of cycles with respect to a change in an output signal of the sensor.
演算器、又は、回転側軌道輪の回転速度を求める為にこの演算器とは別に設けられた第二の演算器は、何れか1個のセンサの出力信号を、全周期に就いて利用する事で、上記回転速度を表す信号を求める機能を有する、請求項1に記載した転がり軸受ユニットの物理量測定装置。   The second computing unit provided separately from this computing unit or the computing unit in order to obtain the rotational speed of the rotating side race ring uses the output signal of any one sensor for the entire period. Thus, the physical quantity measuring device for a rolling bearing unit according to claim 1, which has a function of obtaining a signal representing the rotational speed. エンコーダの被検出面の特性が変化する境界の円周方向に関する位置を、この被検出面の幅方向に漸次変化させると共に、少なくとも1対のセンサの検出部をこの被検出面の互いに異なる部分にそれぞれ対向させており、演算器は、これら各センサの出力信号同士の間に存在する位相差に基づいて物理量を算出するものであり、この物理量を算出する為に上記演算器は、上記各センサの出力信号同士の間に存在する位相差を連続する複数の周期に関して合計し、この合計値とこの複数の周期全体の長さとに基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する、請求項1〜2のうちの何れか1項に記載した転がり軸受ユニットの物理量測定装置。   The position in the circumferential direction of the boundary where the characteristic of the detected surface of the encoder changes is gradually changed in the width direction of the detected surface, and the detection parts of at least one pair of sensors are changed to different parts of the detected surface. The computing unit calculates a physical quantity based on a phase difference existing between the output signals of each sensor. In order to calculate the physical quantity, the computing unit The phase difference existing between the output signals is summed for a plurality of consecutive periods, and the physical quantity between both stationary and rotating raceways is calculated based on the total value and the length of the entire periods. The physical quantity measuring device for a rolling bearing unit according to any one of claims 1 to 2, wherein 連続する複数の周期に属する位相差の合計値と、この複数の周期全体の長さとの比にフィルタリング処理を施した後、これら合計値との長さとの比に基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する、請求項3に記載した転がり軸受ユニットの物理量測定装置。   After filtering the ratio of the total value of phase differences belonging to a plurality of consecutive periods and the total length of the plurality of periods, based on the ratio of the length to these total values, the stationary side and the rotating side The physical quantity measuring device for a rolling bearing unit according to claim 3, wherein the physical quantity between the two bearing rings is calculated. エンコーダの被検出面の特性が変化するピッチがこの被検出面の幅方向に関して漸次変化しており、演算器は、センサの出力信号のデューティ比に基づいて物理量を算出するものであり、この物理量を算出する為に上記演算器は、上記各センサの出力信号のうちでデューティ比の分子となる値を連続する複数の周期に関して合計し、この合計値とこの複数の周期全体の長さとに基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する、請求項1〜2のうちの何れか1項に記載した転がり軸受ユニットの物理量測定装置。   The pitch at which the characteristics of the detected surface of the encoder change gradually changes in the width direction of the detected surface, and the computing unit calculates a physical quantity based on the duty ratio of the output signal of the sensor. In order to calculate the above, the arithmetic unit sums up the values that become the numerator of the duty ratio among the output signals of the respective sensors with respect to a plurality of consecutive periods, and based on the total value and the length of the whole of the plurality of periods. The physical quantity measuring device for a rolling bearing unit according to any one of claims 1 to 2, wherein a physical quantity between both stationary and rotating side raceways is calculated. 連続する複数の周期に属する、デューティ比の分子となる値の合計値と、この複数の周期全体の長さとの比にフィルタリング処理を施した後、これら合計値との長さとの比に基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する、請求項5に記載した転がり軸受ユニットの物理量測定装置。   Based on the ratio of the total value of the values that are the numerator of the duty ratio belonging to a plurality of consecutive periods and the ratio of the total length of the plurality of periods to the length of the total value. The physical quantity measuring device for a rolling bearing unit according to claim 5, wherein the physical quantity between the stationary side and rotating side raceways is calculated. 演算器は、少なくとも1個のセンサの出力信号に関する情報を間欠的に求め、この求めた情報に基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する、請求項1〜2のうちの何れか1項に記載した転がり軸受ユニットの物理量測定装置。   The computing unit intermittently obtains information related to an output signal of at least one sensor, and calculates a physical quantity between the stationary and rotating side raceways based on the obtained information. The physical-quantity measuring apparatus of the rolling bearing unit described in any one of these. エンコーダの被検出面の特性が変化する境界の円周方向に関する位置を、この被検出面の幅方向に漸次変化させると共に、少なくとも1対のセンサの検出部をこの被検出面の互いに異なる部分にそれぞれ対向させており、演算器は、これら各センサの出力信号同士の間に存在する位相差に基づいて物理量を算出するものであり、この物理量を算出する為に上記演算器は、上記各センサの出力信号同士の間に存在する位相差を間欠的に求め、この求めた位相差とこの位相差が属する周期の長さとに基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する、請求項7に記載した転がり軸受ユニットの物理量測定装置。   The position in the circumferential direction of the boundary where the characteristic of the detected surface of the encoder changes is gradually changed in the width direction of the detected surface, and the detection parts of at least one pair of sensors are changed to different parts of the detected surface. The computing unit calculates a physical quantity based on a phase difference existing between the output signals of each sensor. In order to calculate the physical quantity, the computing unit The phase difference existing between the output signals is intermittently obtained, and based on the obtained phase difference and the length of the period to which the phase difference belongs, the physical quantity between the stationary and rotating raceways is calculated. The physical quantity measuring device of a rolling bearing unit according to claim 7 for calculation. エンコーダの被検出面の特性が変化するピッチがこの被検出面の幅方向に関して漸次変化しており、演算器は、センサの出力信号のデューティ比に基づいて物理量を算出するものであり、この物理量を算出する為に上記演算器は、上記センサの出力信号のデューティ比を間欠的に求め、この求めたデューティ比に基づいて、静止側、回転側両軌道輪同士の間の物理量を算出する、請求項7に記載した転がり軸受ユニットの物理量測定装置。   The pitch at which the characteristics of the detected surface of the encoder change gradually changes in the width direction of the detected surface, and the computing unit calculates a physical quantity based on the duty ratio of the output signal of the sensor. In order to calculate the above, the computing unit intermittently obtains the duty ratio of the output signal of the sensor, and based on the obtained duty ratio, calculates a physical quantity between the stationary and rotating side raceways. The physical quantity measuring apparatus of the rolling bearing unit according to claim 7. 静止側軌道輪が使用時に車両の懸架装置に支持固定される外輪であり、静止側軌道がこの外輪の内周面に設けられた複列の外輪軌道であり、回転側軌道輪が使用時に車輪を結合固定した状態でこの車輪と共に回転するハブであり、回転側軌道がこのハブの外周面に設けられた複列の外輪軌道であり、転動体が両列毎に複数個ずつ設けられている、請求項1〜9のうちの何れか1項に記載した転がり軸受ユニットの物理量測定装置。   The stationary raceway is an outer ring that is supported and fixed to the suspension system of the vehicle when in use. Is a hub that rotates together with this wheel in a state of being coupled and fixed, the rotation side track is a double row outer ring raceway provided on the outer peripheral surface of the hub, and a plurality of rolling elements are provided for each row. The physical quantity measuring device for a rolling bearing unit according to any one of claims 1 to 9.
JP2007174886A 2007-07-03 2007-07-03 Device for measuring physical quantity of rolling bearing unit Pending JP2009014431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174886A JP2009014431A (en) 2007-07-03 2007-07-03 Device for measuring physical quantity of rolling bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007174886A JP2009014431A (en) 2007-07-03 2007-07-03 Device for measuring physical quantity of rolling bearing unit

Publications (1)

Publication Number Publication Date
JP2009014431A true JP2009014431A (en) 2009-01-22

Family

ID=40355527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174886A Pending JP2009014431A (en) 2007-07-03 2007-07-03 Device for measuring physical quantity of rolling bearing unit

Country Status (1)

Country Link
JP (1) JP2009014431A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084678A1 (en) 2009-01-26 2010-07-29 日本電気株式会社 Mobile terminal, anti-peeping method and anti-peeping program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084678A1 (en) 2009-01-26 2010-07-29 日本電気株式会社 Mobile terminal, anti-peeping method and anti-peeping program

Similar Documents

Publication Publication Date Title
JP4940937B2 (en) Rotating machine state quantity measuring device
JP4433688B2 (en) Load measuring device for rolling bearing unit and rolling bearing unit for load measurement
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP2006242241A (en) Ball bearing unit
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2007085742A (en) Rolling bearing unit with load measuring device
JP2009014431A (en) Device for measuring physical quantity of rolling bearing unit
JP4269669B2 (en) Load measuring device for rolling bearing units
JP2009019880A (en) State quantity measuring device for rolling bearing unit
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP5098379B2 (en) Bearing load measuring device
JP4821331B2 (en) Displacement measuring device for rolling bearing unit and load measuring device for rolling bearing unit
JP2004340579A (en) Instrument for measuring load of rolling bearing unit, and rolling bearing unit for measuring load
JP2008224397A (en) Load measuring device for roller bearing unit
JP4457701B2 (en) Rolling bearing unit with rolling element revolution speed detector
JP4843958B2 (en) Load measuring device for rolling bearing units
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2005091073A (en) Rotation speed detector and load measuring instrument for roller bearing unit
JP2008122171A (en) Method of exchanging sensor of bearing unit with state quantity measuring device
JP4962027B2 (en) Load measuring device for rolling bearing units
JP2005181265A (en) Load measuring device for rolling bearing unit
JP4735526B2 (en) State quantity measuring device for rolling bearing units
JP2008122119A (en) Load measuring apparatus of wheel supporting ball bearing
JP4305123B2 (en) Wheel rotation detector
JP5007534B2 (en) Load measuring device for rotating machinery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100310