JP2009013841A - Back pressure regulating valve - Google Patents

Back pressure regulating valve Download PDF

Info

Publication number
JP2009013841A
JP2009013841A JP2007175363A JP2007175363A JP2009013841A JP 2009013841 A JP2009013841 A JP 2009013841A JP 2007175363 A JP2007175363 A JP 2007175363A JP 2007175363 A JP2007175363 A JP 2007175363A JP 2009013841 A JP2009013841 A JP 2009013841A
Authority
JP
Japan
Prior art keywords
pressure
back pressure
valve body
tank
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007175363A
Other languages
Japanese (ja)
Other versions
JP4462296B2 (en
Inventor
Hisaharu Takeuchi
久晴 竹内
Masaaki Kato
正明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007175363A priority Critical patent/JP4462296B2/en
Priority to CN2008101295885A priority patent/CN101338720B/en
Publication of JP2009013841A publication Critical patent/JP2009013841A/en
Application granted granted Critical
Publication of JP4462296B2 publication Critical patent/JP4462296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid fluctuation of a valve opening pressure Pb of a back pressure regulating valve 1 for inhibiting evaporation of a liquefied gas fuel in a back pressure chamber of an injector in a fuel injection device for supplying injection to an internal combustion engine by introducing the liquefied gas fuel to the injector. <P>SOLUTION: The back pressure regulating valve 1 is equipped with a first spring 38 for biasing a valve element 31 in the valve opening direction, and a piston 37 for supporting an end out of both ends of the first spring 38 opposite to the end supported by the valve element 31. Further, biasing force of the first spring 38 is made variable by the inner pressure Pt of the tank 5 and the atmospheric pressure acting in the reverse direction from each other on a large diameter sliding part 35 of the piston 37, and the piston 37 being displaced in response to the inner pressure Pt of the tank 5. Therefore, the valve opening pressure Pb of the back pressure regulating valve 1 can be prevented from fluctuating because even when the inner pressure Pt of the tank 5 fluctuates, resultant force of the biasing force acting on the valve element 31 in the valve closing direction can be kept constant. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、インジェクタの弁体に作用する背圧を規制する背圧規制弁に関する(以下、インジェクタの弁体を噴射弁体と呼ぶ)。   The present invention relates to a back pressure regulating valve that regulates back pressure acting on a valve body of an injector (hereinafter, the valve body of the injector is referred to as an injection valve body).

従来から、内燃機関に燃料を噴射供給するインジェクタは、噴孔を開閉する噴射弁体を備え、この噴射弁体に作用する燃料圧を操作することで噴孔を開閉して燃料の噴射を開始したり停止したりする。   Conventionally, an injector that injects and supplies fuel to an internal combustion engine has been provided with an injection valve body that opens and closes an injection hole, and by operating a fuel pressure acting on the injection valve body, the injection hole is opened and closed to start fuel injection. To stop or stop.

すなわち、インジェクタには、噴射弁体を開弁方向に付勢する燃料圧を形成するノズル室と、噴射弁体を閉弁方向に付勢する燃料圧(背圧)を形成する背圧室とが設けられている。そして、噴射弁体は、背圧室への燃料の流出入が操作されて背圧が増減することで、開弁方向または閉弁方向に変位して噴孔を開閉する。また、背圧室から流出した燃料は、燃料を貯留するタンクに戻されて、再度、インジェクタに供給される。   That is, the injector includes a nozzle chamber that forms a fuel pressure that biases the injection valve body in the valve opening direction, and a back pressure chamber that forms a fuel pressure (back pressure) that biases the injection valve body in the valve closing direction. Is provided. The injection valve body is displaced in the valve opening direction or the valve closing direction to open and close the nozzle hole by operating the flow of fuel into and out of the back pressure chamber to increase or decrease the back pressure. Further, the fuel that has flowed out of the back pressure chamber is returned to the tank that stores the fuel, and is supplied to the injector again.

近年、環境問題への関心の高まりから、インジェクタに導入されて内燃機関に噴射供給される燃料として液化気体燃料が注目されている。この液化気体燃料とは、圧縮により常温で液化できる気体燃料であり、例えば、ジメチルエーテル(DME)、液化石油ガス(LPG)および液化天然ガス(LNG)等が公知である。   In recent years, liquefied gaseous fuel has attracted attention as a fuel that is introduced into an injector and injected and supplied to an internal combustion engine because of increased interest in environmental problems. This liquefied gaseous fuel is a gaseous fuel that can be liquefied at room temperature by compression, and for example, dimethyl ether (DME), liquefied petroleum gas (LPG), liquefied natural gas (LNG) and the like are known.

ところで、液化気体燃料は、例えば数MPaのような高圧下でないと液体として存在できず、圧力低下により容易に気化してしまう。そして、背圧を形成する背圧室の液化気体燃料が気化すると、噴射弁体による噴孔の開閉操作が不安定になり、インジェクタによる噴射量のばらつきが大きくなってしまう。   By the way, the liquefied gaseous fuel cannot exist as a liquid unless it is under a high pressure such as several MPa, and easily vaporizes due to a pressure drop. When the liquefied gaseous fuel in the back pressure chamber that forms the back pressure is vaporized, the opening and closing operation of the injection hole by the injection valve body becomes unstable, and the variation in the injection amount by the injector becomes large.

そこで、背圧を高圧に保って背圧室の液化気体燃料が気化するのを阻止するため、背圧室とタンクとを連結する戻り流路に簡易な逆止弁構造の背圧規制弁を配して、背圧が所定の規制値以下に低下するのを阻止する技術が検討されている。この背圧規制弁は、例えば、戻り流路を開閉する弁体と、この弁体を閉弁方向に付勢する付勢部材としてのスプリングとにより構成され、理想的にはスプリングの設定荷重のみに応じて背圧の規制値、すなわち、開弁圧を定める。   Therefore, in order to prevent the liquefied gaseous fuel in the back pressure chamber from vaporizing while maintaining the back pressure at a high pressure, a back pressure regulating valve with a simple check valve structure is provided in the return flow path connecting the back pressure chamber and the tank. Therefore, a technique for preventing the back pressure from decreasing below a predetermined regulation value has been studied. This back pressure regulating valve is composed of, for example, a valve body that opens and closes a return flow path and a spring as a biasing member that biases this valve body in the valve closing direction, and ideally only a set load of the spring is set. Accordingly, the regulation value of the back pressure, that is, the valve opening pressure is determined.

しかし、この背圧規制弁によれば、スプリングの付勢力(つまり、付勢部材の付勢力)以外にも、弁体よりも下流側の燃料圧(以下、下流圧と呼ぶ)による付勢力(以下、「下流圧による付勢力」を下流圧付勢力と呼ぶ)が弁体に対して閉弁方向に作用する。そして、この下流圧は、弁体よりも下流側の戻り流路を介してタンクの内圧と略一致する。   However, according to this back pressure regulating valve, in addition to the biasing force of the spring (that is, the biasing force of the biasing member), the biasing force (hereinafter referred to as the downstream pressure) by the fuel pressure downstream of the valve body (hereinafter referred to as the downstream pressure) Hereinafter, “the urging force by the downstream pressure” is referred to as the downstream pressure urging force) acts on the valve body in the valve closing direction. This downstream pressure substantially matches the internal pressure of the tank through the return flow path downstream of the valve body.

ここで、タンクの内圧は液化気体燃料の飽和蒸気圧と略一致するが、液化気体燃料の飽和蒸気圧は温度変化に伴う変化率が大きい。このため、タンクの内圧は温度変化に伴う変動が著しく、結果的に、下流圧も温度変化に伴う変動が著しくなる。したがって、弁体に対し閉弁方向に作用する付勢力(主に、付勢部材の付勢力と下流圧付勢力との合力:以下、閉弁合力と呼ぶ)が温度に応じて大きく変動するので、背圧規制弁の開弁圧も温度に応じて変動してしまう。   Here, the internal pressure of the tank substantially coincides with the saturated vapor pressure of the liquefied gaseous fuel, but the change rate of the saturated vapor pressure of the liquefied gaseous fuel with the temperature change is large. For this reason, the internal pressure of the tank greatly varies with temperature change, and as a result, the downstream pressure also varies significantly with temperature change. Therefore, the urging force acting on the valve body in the valve closing direction (mainly, the resultant force of the urging force of the urging member and the downstream pressure urging force: hereinafter referred to as the valve closing resultant force) varies greatly depending on the temperature. The valve opening pressure of the back pressure regulating valve also varies depending on the temperature.

なお、特許文献1には、燃料噴射ポンプからの戻りの燃料圧を規制する調圧弁が開示されているが、この調圧弁でも下流圧が閉弁方向に作用している。このため、液化気体燃料を燃料として使用する場合、上記と同様に開弁圧が変動してしまう。
特開2003−65186号公報
Patent Document 1 discloses a pressure regulating valve that regulates the return fuel pressure from the fuel injection pump. Even in this pressure regulating valve, the downstream pressure acts in the valve closing direction. For this reason, when using liquefied gaseous fuel as a fuel, a valve opening pressure will fluctuate similarly to the above.
JP 2003-65186 A

本発明は、上記の問題点を解決するためになされたものであり、その目的は、液化気体燃料をインジェクタに導入して内燃機関に噴射供給する燃料噴射装置において、インジェクタの背圧室で液化気体燃料の気化を阻止する背圧規制弁の開弁圧が変動するのを回避することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel injection device that introduces liquefied gaseous fuel into an injector and injects it into an internal combustion engine, and liquefies it in a back pressure chamber of the injector. The object is to avoid fluctuations in the valve opening pressure of the back pressure regulating valve that prevents vaporization of the gaseous fuel.

〔請求項1の手段〕
請求項1に記載の背圧規制弁は、インジェクタの背圧室から流出した液化気体燃料をタンクに戻すための戻り流路に配されて、インジェクタの噴射弁体を閉弁方向に付勢する背圧を規制するものである。また、この背圧規制弁は、戻り流路を開閉する弁体と、弁体を閉弁方向に付勢する付勢部材とを備え、弁体に作用する付勢部材の付勢力を、タンクの内部圧力(内圧)または内部温度に応じて可変する。
これにより、タンクの内圧の変動に伴う下流圧付勢力の変動を、付勢部材の付勢力の変化により相殺することができる。このため、タンクの内圧が変動しても、閉弁合力を一定に保つことができるので、背圧規制弁の開弁圧が変動することを回避できる。
[Means of Claim 1]
The back pressure regulating valve according to claim 1 is arranged in a return flow path for returning the liquefied gaseous fuel flowing out from the back pressure chamber of the injector to the tank, and urges the injector valve body in the valve closing direction. It regulates back pressure. The back pressure regulating valve includes a valve body that opens and closes the return flow path, and an urging member that urges the valve body in a valve closing direction, and the urging force of the urging member that acts on the valve body is It varies according to the internal pressure (internal pressure) or internal temperature.
Thereby, the fluctuation | variation of the downstream pressure urging | biasing force accompanying the fluctuation | variation of the internal pressure of a tank can be offset by the change of the urging | biasing force of an urging | biasing member. For this reason, even if the internal pressure of the tank fluctuates, the valve closing force can be kept constant, so that the valve opening pressure of the back pressure regulating valve can be prevented from fluctuating.

〔請求項2の手段〕
請求項2に記載の背圧規制弁は、付勢部材の両端の内で弁体に支持される端部とは逆の端部を支持する座部材を備える。そして、座部材にタンクの内圧および大気圧が互いに逆方向に作用し、タンクの内圧と大気圧との差分に応じて座部材が変位することで付勢部材の付勢力が可変される。
この手段は、付勢部材の付勢力をタンクの内圧に応じて可変する一形態を示すものである。この手段によれば、座部材にタンクの内圧および大気圧を互いに逆方向に作用させ、タンクの内圧に応じて座部材を変位させることで、座部材に一端を支持される付勢部材を伸縮して付勢部材の付勢力を可変する。
[Means of claim 2]
According to a second aspect of the present invention, the back pressure regulating valve includes a seat member that supports an end of the biasing member opposite to the end supported by the valve body. Then, the internal pressure and atmospheric pressure of the tank act on the seat member in opposite directions, and the urging force of the urging member is varied by displacing the seat member according to the difference between the internal pressure of the tank and the atmospheric pressure.
This means shows one form in which the urging force of the urging member is varied according to the internal pressure of the tank. According to this means, the internal pressure and atmospheric pressure of the tank are applied to the seat member in opposite directions, and the seat member is displaced according to the internal pressure of the tank, so that the biasing member supported at one end by the seat member is expanded and contracted. Thus, the urging force of the urging member is varied.

〔請求項3の手段〕
請求項3に記載の背圧規制弁は、自身の温度に応じて伸縮するサーミスタと、付勢部材の両端の内で弁体に支持される端部とは逆の端部を支持するとともに、サーミスタの伸縮により変位する座部材とを備える。そして、サーミスタの温度はタンクの内部温度に応じて変化し、サーミスタの温度に応じて座部材が変位することで付勢部材の付勢力が可変される。
この手段も、付勢部材の付勢力をタンクの内圧に応じて可変する一形態を示すものである。この手段によれば、タンクの内圧とともに変動するタンクの内部温度に応じてサーミスタの温度を変化させ、サーミスタの伸縮に応じて座部材を変位させることで、座部材に一端を支持される付勢部材を伸縮して付勢部材の付勢力を可変する。
[Means of claim 3]
The back pressure regulating valve according to claim 3 supports a thermistor that expands and contracts according to its own temperature, and an end opposite to the end supported by the valve body in both ends of the urging member, And a seat member that is displaced by expansion and contraction of the thermistor. The temperature of the thermistor changes according to the internal temperature of the tank, and the urging force of the urging member is varied by the displacement of the seat member according to the temperature of the thermistor.
This means also shows one form in which the urging force of the urging member is varied according to the internal pressure of the tank. According to this means, the temperature of the thermistor is changed according to the internal temperature of the tank, which fluctuates with the internal pressure of the tank, and the seat member is displaced according to the expansion and contraction of the thermistor, so that the bias is supported at one end by the seat member The urging force of the urging member is varied by expanding and contracting the member.

〔請求項4の手段〕
請求項4に記載の背圧規制弁は、通電により磁気吸引力を発生するソレノイドコイルと、付勢部材の両端の内で弁体に支持される端部とは逆の端部を支持するとともに、ソレノイドコイルの磁気吸引力により変位する座部材とを備える。そして、ソレノイドコイルへの通電量は、タンクの内圧または内部温度に応じて可変され、ソレノイドコイルへの通電量に応じて座部材が変位することで付勢部材の付勢力が可変される。
この手段も、付勢部材の付勢力をタンクの内圧に応じて可変する一形態を示すものである。この手段によれば、タンクの内圧または内部温度に応じてソレノイドコイルへの通電量を可変し、ソレノイドコイルの磁気吸引力に応じて座部材を変位させることで、座部材に一端を支持される付勢部材を伸縮して付勢部材の付勢力を可変する。
[Means of claim 4]
The back pressure regulating valve according to claim 4 supports a solenoid coil that generates a magnetic attractive force when energized and an end opposite to the end supported by the valve body at both ends of the urging member. And a seat member that is displaced by the magnetic attraction force of the solenoid coil. The energization amount to the solenoid coil is varied according to the internal pressure or the internal temperature of the tank, and the urging force of the urging member is varied by displacing the seat member according to the energization amount to the solenoid coil.
This means also shows one form in which the urging force of the urging member is varied according to the internal pressure of the tank. According to this means, the energizing amount to the solenoid coil is varied according to the internal pressure or the internal temperature of the tank, and one end is supported by the seat member by displacing the seat member according to the magnetic attractive force of the solenoid coil. The biasing force of the biasing member is varied by expanding and contracting the biasing member.

最良の形態1の背圧規制弁は、インジェクタの背圧室から流出した液化気体燃料をタンクに戻すための戻り流路に配されて、インジェクタの噴射弁体を閉弁方向に付勢する背圧を規制するものである。また、この背圧規制弁は、戻り流路を開閉する弁体と、弁体を閉弁方向に付勢する付勢部材とを備え、弁体に作用する付勢部材の付勢力を、タンクの内圧または内部温度に応じて可変する。   The back pressure regulating valve of the best mode 1 is arranged in a return flow path for returning the liquefied gaseous fuel flowing out from the back pressure chamber of the injector to the tank, and biases the injector valve body of the injector in the valve closing direction. It regulates the pressure. The back pressure regulating valve includes a valve body that opens and closes the return flow path, and an urging member that urges the valve body in a valve closing direction, and the urging force of the urging member that acts on the valve body is It varies according to the internal pressure or internal temperature of the.

また、この背圧規制弁は、付勢部材の両端の内で弁体に支持される端部とは逆の端部を支持する座部材を備える。そして、座部材にタンクの内圧および大気圧が互いに逆方向に作用し、タンクの内圧と大気圧との差分に応じて座部材が変位することで付勢部材の付勢力が可変される。   The back pressure regulating valve includes a seat member that supports an end portion opposite to an end portion supported by the valve body in both ends of the urging member. Then, the internal pressure and atmospheric pressure of the tank act on the seat member in opposite directions, and the urging force of the urging member is varied by displacing the seat member according to the difference between the internal pressure of the tank and the atmospheric pressure.

最良の形態2の背圧規制弁は、自身の温度に応じて伸縮するサーミスタと、付勢部材の両端の内で弁体に支持される端部とは逆の端部を支持するとともに、サーミスタの伸縮により変位する座部材とを備える。そして、サーミスタの温度はタンクの内部温度に応じて変化し、サーミスタの温度に応じて座部材が変位することで付勢部材の付勢力が可変される。   The back pressure regulating valve of the best mode 2 supports a thermistor that expands and contracts according to its own temperature, and an end opposite to the end supported by the valve body in both ends of the urging member. And a seat member that is displaced by expansion and contraction. The temperature of the thermistor changes according to the internal temperature of the tank, and the urging force of the urging member is varied by the displacement of the seat member according to the temperature of the thermistor.

最良の形態3の背圧規制弁は、通電により磁気吸引力を発生するソレノイドコイルと、付勢部材の両端の内で弁体に支持される端部とは逆の端部を支持するとともに、ソレノイドコイルの磁気吸引力により変位する座部材とを備える。そして、ソレノイドコイルへの通電量は、タンクの内圧または内部温度に応じて可変され、ソレノイドコイルへの通電量に応じて座部材が変位することで付勢部材の付勢力が可変される。   The back pressure regulating valve of the best mode 3 supports a solenoid coil that generates a magnetic attractive force by energization, and an end opposite to the end supported by the valve body in both ends of the urging member, And a seat member that is displaced by the magnetic attractive force of the solenoid coil. The energization amount to the solenoid coil is varied according to the internal pressure or the internal temperature of the tank, and the urging force of the urging member is varied by displacing the seat member according to the energization amount to the solenoid coil.

〔実施例1の構成〕
実施例1の背圧規制弁1の構成を、図面を用いて説明する。
まず、背圧規制弁1、および背圧規制弁1により背圧が規制されるインジェクタ2を備え、内燃機関(図示せず)に燃料を噴射供給する燃料噴射装置3について説明する。なお、燃料噴射装置3は、液化気体燃料であるジメチルエーテル(DME)を内燃機関に噴射供給するものである。
[Configuration of Example 1]
A configuration of the back pressure regulating valve 1 according to the first embodiment will be described with reference to the drawings.
First, a fuel injection device 3 that includes a back pressure regulating valve 1 and an injector 2 whose back pressure is regulated by the back pressure regulating valve 1 and that injects fuel to an internal combustion engine (not shown) will be described. The fuel injection device 3 supplies dimethyl ether (DME), which is a liquefied gaseous fuel, to the internal combustion engine.

燃料噴射装置3は、図1に示すように、DMEを貯留するタンク5と、タンク5からDMEを吸引して吐出するフィードポンプ6と、フィードポンプ6から吐出されたDMEを高圧化して吐出する高圧ポンプ7と、高圧ポンプ7から吐出されたDMEを高圧状態で蓄圧するとともに複数のインジェクタ2に分配するコモンレール8と、コモンレール8から分配されたDMEを噴射するインジェクタ2と、インジェクタ2等の動作を制御する電子制御装置(ECU)9とを備える。そして、背圧規制弁1は、DMEをインジェクタ2からタンク5に戻すための戻り流路10に配されている。   As shown in FIG. 1, the fuel injection device 3 has a tank 5 that stores DME, a feed pump 6 that sucks and discharges DME from the tank 5, and discharges the DME discharged from the feed pump 6 at a high pressure. Operation of the high pressure pump 7, the common rail 8 that accumulates the DME discharged from the high pressure pump 7 in a high pressure state and distributes it to the plurality of injectors 2, the injector 2 that injects the DME distributed from the common rail 8, and the operation of the injector 2, etc. And an electronic control unit (ECU) 9 for controlling the motor. The back pressure regulating valve 1 is disposed in a return flow path 10 for returning DME from the injector 2 to the tank 5.

なお、タンク5は、約90℃で3MPaもの高圧に達するDMEの飽和蒸気圧に耐えうるように高耐圧性に設けられている。そして、タンク5の内部では、DMEの気液2相平衡状態が形成され、タンク5の内部圧力(内圧)Ptは、内部温度に応じた飽和蒸気圧に略一致する。   The tank 5 is provided with high pressure resistance so that it can withstand the saturated vapor pressure of DME which reaches a high pressure of about 3 MPa at about 90 ° C. A gas-liquid two-phase equilibrium state of DME is formed inside the tank 5, and the internal pressure (internal pressure) Pt of the tank 5 substantially matches the saturated vapor pressure corresponding to the internal temperature.

また、フィードポンプ6、高圧ポンプ7、コモンレール8およびインジェクタ2も、DMEが90℃近い高温でも気化しないように3MPa以上の圧力でDMEを流動させることができるように設けられている。なお、コモンレール8には、蓄圧されたDMEの圧力(レール圧)を検出してECU9に出力するレール圧センサ13、およびレール圧を迅速に低下させるための減圧弁14等が装備されている。   The feed pump 6, the high pressure pump 7, the common rail 8, and the injector 2 are also provided so that the DME can flow at a pressure of 3 MPa or more so that the DME does not vaporize even at a high temperature close to 90 ° C. The common rail 8 is equipped with a rail pressure sensor 13 for detecting the pressure of accumulated DME (rail pressure) and outputting it to the ECU 9, a pressure reducing valve 14 for quickly reducing the rail pressure, and the like.

また、ECU9は、制御機能および演算機能を具備するCPU、ROMおよびRAM等の記憶装置、入力装置ならびに出力装置を有する周知のコンピュータとして構成され、レール圧センサ13等の各種センサから得られる検出信号に基づいてインジェクタ2等の動作を制御する。   The ECU 9 is configured as a well-known computer having a storage device such as a CPU, a ROM and a RAM having a control function and an arithmetic function, an input device, and an output device, and detection signals obtained from various sensors such as the rail pressure sensor 13. Based on the above, the operation of the injector 2 and the like is controlled.

インジェクタ2は、図2に示すように、噴孔16を開閉する噴射弁体17と、噴射弁体17を閉弁方向に付勢するスプリング18とを有し、噴射弁体17に作用するDMEの液圧を操作することで噴孔16を開閉してDMEの噴射を開始したり停止したりするものである。   As shown in FIG. 2, the injector 2 includes an injection valve body 17 that opens and closes the injection hole 16 and a spring 18 that biases the injection valve body 17 in the valve closing direction, and acts on the injection valve body 17. Is operated to open and close the nozzle hole 16 to start or stop the DME injection.

すなわち、インジェクタ2には、噴射弁体17を開弁方向に付勢する液圧を形成するとともに噴射弁体17の先端部により噴孔16との間を開閉されるノズル室20と、噴射弁体17を閉弁方向に付勢する液圧(背圧)を形成する背圧室21とが設けられている。そして、噴射弁体17は、背圧室21へのDMEの流出入が操作されて背圧が増減することで、開弁方向または閉弁方向に変位して噴孔16を開閉する。   That is, the injector 2 forms a hydraulic pressure that urges the injection valve body 17 in the valve opening direction and is opened and closed between the nozzle hole 16 by the tip of the injection valve body 17, and the injection valve A back pressure chamber 21 for forming a hydraulic pressure (back pressure) for urging the body 17 in the valve closing direction is provided. The injection valve body 17 is displaced in the valve opening direction or the valve closing direction to open and close the nozzle hole 16 by operating the flow of DME into and out of the back pressure chamber 21 to increase or decrease the back pressure.

ここで、背圧室21の流入口は、入側オリフィス22を介してコモンレール8からDMEが流入するように設けられ、背圧室21の流出口は、出側オリフィス23を介して戻り流路10にDMEが流出するとともに電磁弁24により開閉されるように設けられている。また、入側、出側オリフィス22、23は、流出口が開放されているときに、出側オリフィス23を通過するDMEの流量が入側オリフィス22を通過するDMEの流量よりも大きくなるように設けられている。   Here, the inlet of the back pressure chamber 21 is provided so that DME flows from the common rail 8 via the inlet orifice 22, and the outlet of the back pressure chamber 21 is returned via the outlet orifice 23. 10, DME flows out and is opened and closed by a solenoid valve 24. Further, the inlet and outlet orifices 22 and 23 are configured such that the flow rate of DME passing through the outlet orifice 23 is larger than the flow rate of DME passing through the inlet orifice 22 when the outlet is open. Is provided.

さらに、電磁弁24は、ECU9からの指令により通電されて磁気吸引力を発生するソレノイドコイル27と、この磁気吸引力により駆動されて背圧室21の流出口を開放する弁機能付きのアーマチャ28と、アーマチャ28を閉弁側(つまり、背圧室21の流出口を閉鎖する方向)に付勢するスプリング29とを有する。
また、ノズル室20は、オリフィス等により絞られることなく、コモンレール8からDMEが流入するように設けられている。
Further, the solenoid valve 24 is energized by a command from the ECU 9 to generate a magnetic attraction force and a solenoid coil 27 that is driven by the magnetic attraction force to open the outlet of the back pressure chamber 21 with a valve function. And a spring 29 that biases the armature 28 toward the valve closing side (that is, the direction in which the outflow port of the back pressure chamber 21 is closed).
The nozzle chamber 20 is provided so that DME flows from the common rail 8 without being restricted by an orifice or the like.

以上により、ソレノイドコイル27に通電が行われると、背圧室21からDMEが流出して背圧が低下するので、噴射弁体17に作用する閉弁方向の付勢力(背圧による付勢力とスプリング18による付勢力との合力)が噴射弁体17に作用する開弁方向の付勢力(ノズル室20の液圧による付勢力)よりも小さくなる。この結果、噴射弁体17は、開弁方向に変位して噴孔16を開放する。   As described above, when the solenoid coil 27 is energized, DME flows out from the back pressure chamber 21 and the back pressure is lowered. Therefore, the energizing force in the valve closing direction acting on the injection valve body 17 (the energizing force due to the back pressure) The resultant force with the urging force of the spring 18 is smaller than the urging force in the valve opening direction acting on the injection valve body 17 (the urging force due to the hydraulic pressure of the nozzle chamber 20). As a result, the injection valve body 17 is displaced in the valve opening direction to open the injection hole 16.

また、ソレノイドコイル27への通電が停止されると、背圧室21からのDMEの流出が止まり背圧が上昇するので、噴射弁体17に作用する閉弁方向の付勢力が開弁方向の付勢力よりも大きくなる。この結果、噴射弁体17は、閉弁方向に変位して噴孔16を閉鎖する。   When the energization of the solenoid coil 27 is stopped, the outflow of DME from the back pressure chamber 21 stops and the back pressure rises, so that the urging force in the valve closing direction acting on the injection valve body 17 is increased in the valve opening direction. It becomes larger than the urging force. As a result, the injection valve body 17 is displaced in the valve closing direction to close the injection hole 16.

背圧規制弁1は、図3に示すように、ボール状の弁体31と、大小異径かつ同軸であってシールリング32、33を介して弁ボディ34に摺接する2つの摺動部35、36からなるピストン37と、弁体31とピストン37との間に介在する第1スプリング38と、ピストン37と弁ボディ34との間に介在する第2スプリング39とを有する。   As shown in FIG. 3, the back pressure regulating valve 1 has a ball-like valve body 31 and two sliding portions 35 that are different in size and coaxial and have sliding contact with the valve body 34 via seal rings 32 and 33. , 36, a first spring 38 interposed between the valve body 31 and the piston 37, and a second spring 39 interposed between the piston 37 and the valve body 34.

ここで、弁ボディ34には、弁体31、第1スプリング38、ピストン37、および第2スプリング39を収容するシリンダ43が設けられている。そして、シリンダ43には、図示左側から右側に向かって順次に、弁体31、第1スプリング38、ピストン37、および第2スプリング39が直列に収容され、弁体31およびピストン37の変位方向、ならびに第1、第2スプリング38、39の伸縮方向は全て略一致する。   Here, the valve body 34 is provided with a cylinder 43 that houses the valve body 31, the first spring 38, the piston 37, and the second spring 39. In the cylinder 43, the valve body 31, the first spring 38, the piston 37, and the second spring 39 are accommodated in series from the left side to the right side in the drawing, and the displacement direction of the valve body 31 and the piston 37, In addition, the expansion and contraction directions of the first and second springs 38 and 39 are substantially the same.

また、シリンダ43は、大小異径かつ同軸の径大部44と径小部45とからなり、径大部44に弁体31、第1スプリング38および径大の摺動部(以下、大径摺動部とする)35が収容され、径小部45に第2スプリング39が収容されている。また、径小の摺動部(以下、小径摺動部とする)36は、径大部44と径小部45とにまたがって収容されている。   The cylinder 43 includes a large diameter portion 44 and a small diameter portion 45 that are large and different in diameter and coaxial. The large diameter portion 44 includes a valve body 31, a first spring 38, and a large diameter sliding portion (hereinafter referred to as a large diameter). 35) is housed, and the second spring 39 is housed in the small diameter portion 45. The small-diameter sliding portion (hereinafter referred to as a small-diameter sliding portion) 36 is accommodated across the large-diameter portion 44 and the small-diameter portion 45.

そして、径大部44の内部で大径摺動部35により区画され弁体31および第1スプリング38を収容する空間(第1スプリング室47とする)には、戻り流路10の一部をなす2つの開口部48、49が接続している。そして、弁体31は、上流側の開口部48に配され、第1スプリング38により開口部48を閉じる方向に付勢されている。   A part of the return flow path 10 is formed in a space (referred to as a first spring chamber 47) that is partitioned by the large-diameter sliding portion 35 inside the large-diameter portion 44 and accommodates the valve body 31 and the first spring 38. Two openings 48 and 49 are connected. The valve body 31 is disposed in the opening 48 on the upstream side and is biased by the first spring 38 in a direction to close the opening 48.

また、第1スプリング室47には下流側の開口部49からタンク5のDMEが導入され、第1スプリング室47の液圧はタンク5の内圧Ptと略一致する。そして、第1スプリング室47の液圧は、弁体31を図示左方向(つまり、閉弁方向)に付勢するとともに、ピストン37を図示右方向に付勢する。すなわち、タンク5の内圧Ptと略一致する第1スプリング室47の液圧は、弁体31を下流側から付勢する液圧(下流圧)をなす。そして、第1スプリング室47の液圧による弁体31に対する付勢力(下流圧付勢力)は、第1スプリング38による付勢力(第1スプリング力)とともに閉弁合力をなす。   Further, the DME of the tank 5 is introduced into the first spring chamber 47 from the downstream opening 49, and the hydraulic pressure in the first spring chamber 47 substantially matches the internal pressure Pt of the tank 5. The hydraulic pressure in the first spring chamber 47 urges the valve body 31 in the left direction in the figure (that is, the valve closing direction) and urges the piston 37 in the right direction in the figure. That is, the hydraulic pressure in the first spring chamber 47 that substantially matches the internal pressure Pt of the tank 5 forms a hydraulic pressure (downstream pressure) that urges the valve body 31 from the downstream side. The urging force (downstream pressure urging force) against the valve body 31 due to the hydraulic pressure in the first spring chamber 47 forms a valve closing force together with the urging force (first spring force) due to the first spring 38.

また、径大部44の内部で大径摺動部35により区画される図示右側の空間は、大気に開放されて大気圧と略一致する圧力を示す大気室50をなす。そして、大径摺動部35は、大気室50に導かれた大気圧により図示左方向に付勢される。
さらに、径小部45の内部で小径摺動部36により封鎖され第2スプリング39を収容する空間(第2スプリング室51とする)には、タンク5からDMEを導入するために1つの開口部52が接続している。これにより、第2スプリング室51の液圧はタンク5の内圧Ptと略一致し、第2スプリング室51の液圧は、ピストン37を図示左方向に付勢する。
A space on the right side of the figure defined by the large-diameter sliding portion 35 inside the large-diameter portion 44 forms an atmospheric chamber 50 that is open to the atmosphere and exhibits a pressure that substantially matches the atmospheric pressure. The large-diameter sliding portion 35 is urged in the left direction in the figure by the atmospheric pressure guided to the atmospheric chamber 50.
Further, in the space (referred to as the second spring chamber 51) that is sealed by the small-diameter sliding portion 36 inside the small-diameter portion 45 and accommodates the second spring 39, there is one opening portion for introducing DME from the tank 5. 52 is connected. As a result, the hydraulic pressure in the second spring chamber 51 substantially matches the internal pressure Pt of the tank 5, and the hydraulic pressure in the second spring chamber 51 urges the piston 37 in the left direction in the figure.

以上により、戻り流路10は弁体31により開閉され、弁体31は第1スプリング38により閉弁方向に付勢される(つまり、第1スプリング38は、弁体31を閉弁方向に付勢する付勢部材として機能する)。また、ピストン37は、第1スプリング38の両端の内で弁体31に支持される端部とは逆の端部を支持する座部材として機能し、ピストン37の大径摺動部35には、タンク5の内圧Ptおよび大気圧が互いに逆方向に作用する。   Thus, the return flow path 10 is opened and closed by the valve body 31, and the valve body 31 is urged in the valve closing direction by the first spring 38 (that is, the first spring 38 applies the valve body 31 in the valve closing direction). Functions as a biasing member). Further, the piston 37 functions as a seat member that supports the end opposite to the end supported by the valve body 31 in both ends of the first spring 38, and the large-diameter sliding portion 35 of the piston 37 includes The internal pressure Pt and the atmospheric pressure in the tank 5 act in opposite directions.

そして、タンク5の内圧Ptと大気圧との差分に応じて、つまりタンク5の内圧Ptに応じてピストン37が変位することで第1スプリング力が可変される。なお、タンク5の内圧Ptは、タンク5の内部温度に応じた飽和蒸気圧に略一致するから、第1スプリング力は、タンク5の内部温度に応じても可変する。   The first spring force is varied by the displacement of the piston 37 according to the difference between the internal pressure Pt of the tank 5 and the atmospheric pressure, that is, according to the internal pressure Pt of the tank 5. Since the internal pressure Pt of the tank 5 substantially matches the saturated vapor pressure corresponding to the internal temperature of the tank 5, the first spring force varies depending on the internal temperature of the tank 5.

そして、この背圧規制弁1によれば、以下の計算に示すとおり、下流圧の値に係わらず(つまり、タンク5の内圧Ptの値に係わらず)、弁体31の開弁圧Pbを一定値にすることができる。   According to the back pressure regulating valve 1, as shown in the following calculation, the valve opening pressure Pb of the valve body 31 is set regardless of the value of the downstream pressure (that is, regardless of the value of the internal pressure Pt of the tank 5). Can be a constant value.

〔実施例1の開弁圧算出〕
実施例1の背圧規制弁1の開弁圧Pbを、各種パラメータを用いて算出する。
この算出に使用するパラメータは、弁体31のシート面積A、第1スプリング室47の液圧の大径摺動部35における受圧面積A1、第2スプリング室51の液圧の小径摺動部36における受圧面積A2、第1スプリング38のバネ定数K1、第2スプリング39のバネ定数K2、第1スプリング38の初期圧縮量X1、第2スプリング39の初期圧縮量X2、およびタンク5の内圧Pt等である(なお、初期圧縮量X1、X2は、第1、第2スプリング室47、51の液圧が大気圧に略一致するときの第1、第2スプリング38、39の圧縮量であり、内圧Ptは大気圧に対する相対圧である)。
[Valve opening pressure calculation of Example 1]
The valve opening pressure Pb of the back pressure regulating valve 1 of the first embodiment is calculated using various parameters.
The parameters used for this calculation are the seat area A of the valve body 31, the pressure receiving area A 1 in the large-diameter sliding portion 35 of the hydraulic pressure of the first spring chamber 47, and the small-diameter sliding portion 36 of the hydraulic pressure in the second spring chamber 51. Pressure receiving area A2, spring constant K1 of first spring 38, spring constant K2 of second spring 39, initial compression amount X1 of first spring 38, initial compression amount X2 of second spring 39, internal pressure Pt of tank 5, etc. (Note that the initial compression amounts X1 and X2 are compression amounts of the first and second springs 38 and 39 when the hydraulic pressures of the first and second spring chambers 47 and 51 substantially match the atmospheric pressure, The internal pressure Pt is a relative pressure with respect to the atmospheric pressure).

そして、図示左右方向にX軸を想定するとともに図示右方向をXの正方向と想定し、第1、第2スプリング室47、51の液圧が大気圧に略一致するときの大径摺動部35の右端の位置をX=0と規定する。
まず、第1、第2スプリング室47、51の液圧が大気圧に略一致するとき、ピストン37は、正方向にK1・X1なる強さの第1スプリング力が作用し、負方向にK2・X2なる強さの第2スプリング39による付勢力(第2スプリング力)が作用して静止する。このため、ピストン37に関する力のバランスから下記の数式1が成立する。
〔数式1〕
K1・X1=K2・X2
A large-diameter slide is assumed when the hydraulic pressure in the first and second spring chambers 47 and 51 is substantially equal to the atmospheric pressure, assuming the X axis in the horizontal direction in the figure and the right direction in the figure as the positive direction of X. The position of the right end of the part 35 is defined as X = 0.
First, when the hydraulic pressures of the first and second spring chambers 47 and 51 substantially coincide with the atmospheric pressure, the piston 37 is acted on by a first spring force having a strength of K1 · X1 in the positive direction and K2 in the negative direction. The urging force (second spring force) by the second spring 39 having the strength of X2 acts and stops. For this reason, the following numerical formula 1 is established from the balance of the force related to the piston 37.
[Formula 1]
K1 / X1 = K2 / X2

次に、第1、第2スプリング室47、51にタンク5の内圧Ptが導入され、ピストン37が正方向にXだけ変位して静止した場合を考える。この場合、第1、第2スプリング室47、51の液圧は内圧Ptに略一致し、ピストン37には、正方向にK1(X1―X)なる強さの第1スプリング力が作用するとともに、Pt・A1なる強さの第1スプリング室47の液圧による付勢力が作用する。また、ピストン37には、負方向にK2(X2+X)なる強さの第2スプリング力が作用するとともに、Pt・A2なる強さの第2スプリング室51の液圧による付勢力が作用する。   Next, consider the case where the internal pressure Pt of the tank 5 is introduced into the first and second spring chambers 47 and 51 and the piston 37 is displaced by X in the positive direction and is stationary. In this case, the hydraulic pressures in the first and second spring chambers 47 and 51 substantially coincide with the internal pressure Pt, and the first spring force having a strength of K1 (X1-X) acts on the piston 37 in the positive direction. , A biasing force due to the hydraulic pressure of the first spring chamber 47 having a strength of Pt · A1 is applied. Further, a second spring force having a strength of K2 (X2 + X) acts in the negative direction on the piston 37, and a biasing force due to the hydraulic pressure of the second spring chamber 51 having a strength of Pt · A2 acts on the piston 37.

このため、ピストン37に関する力のバランスから下記の数式2が成立する。
〔数式2〕
K1(X1―X)+Pt・A1=K2(X2+X)+Pt・A2
そして、数式2をXについて解くと、下記の数式3が得られる。
〔数式3〕
X={Pt(A1−A2)+(K1・X1−K2・X2)}/(K1+K2)
さらに、数式3に数式1を適用すれば、下記の数式4が得られる。
〔数式4〕
X=Pt(A1−A2)/(K1+K2)
For this reason, the following mathematical formula 2 is established from the balance of the force related to the piston 37.
[Formula 2]
K1 (X1-X) + Pt.A1 = K2 (X2 + X) + Pt.A2
Then, when Equation 2 is solved for X, the following Equation 3 is obtained.
[Formula 3]
X = {Pt (A1-A2) + (K1 * X1-K2 * X2)} / (K1 + K2)
Furthermore, if Formula 1 is applied to Formula 3, the following Formula 4 is obtained.
[Formula 4]
X = Pt (A1-A2) / (K1 + K2)

また、弁体31には、負方向にK1(X1−X)なる強さの第1スプリング力が作用するとともに、Pt・Aなる強さの下流圧付勢力が作用し、これら負方向の合力(閉弁合力)と同等の力が弁ボディ34および開口部48の液圧(インジェクタ2の背圧に略一致する)により正方向に加えられている。   Further, the first spring force having the strength of K1 (X1-X) acts in the negative direction on the valve body 31 and the downstream pressure urging force having the strength of Pt · A acts on the valve body 31. A force equivalent to (valve closing force) is applied in the positive direction by the hydraulic pressure of the valve body 34 and the opening 48 (which substantially matches the back pressure of the injector 2).

したがって、開口部48の液圧が大きくなって弁体31が弁ボディ34から離脱するとき、開口部48の液圧(つまり、インジェクタ2の背圧)は開弁圧Pbに略一致するので、弁体31に関する力のバランスから下記の数式5が成立する。
〔数式5〕
Pb・A=K1(X1−X)+Pt・A
そして、数式5を開弁圧Pbについて解くと、下記の数式6が得られる。
〔数式6〕
Pb=K1(X1−X)/A+Pt
Therefore, when the hydraulic pressure in the opening 48 increases and the valve body 31 is detached from the valve body 34, the hydraulic pressure in the opening 48 (that is, the back pressure of the injector 2) substantially matches the valve opening pressure Pb. The following formula 5 is established from the balance of force related to the valve body 31.
[Formula 5]
Pb · A = K1 (X1−X) + Pt · A
Then, when Equation 5 is solved for the valve opening pressure Pb, the following Equation 6 is obtained.
[Formula 6]
Pb = K1 (X1-X) / A + Pt

さらに、数式6のXに数式4を適用し、内圧Ptを含む項と内圧Ptを含まない項とに分けると下記の数式7が得られる。
〔数式7〕
Pb=K1・X1/A+Pt{1−K1(A1−A2)/(K1+K2)/A}
Further, when Expression 4 is applied to X of Expression 6, and divided into a term including the internal pressure Pt and a term not including the internal pressure Pt, the following Expression 7 is obtained.
[Formula 7]
Pb = K1 * X1 / A + Pt {1-K1 (A1-A2) / (K1 + K2) / A}

よって、数式7の内圧Ptを含む項の内、内圧Pt以外の係数の部分がゼロとなるように、すなわち、下記の数式8が成立するように各パラメータを設定すれば、開弁圧Pbは、一定の値K1・X1/Aとなる。
〔数式8〕
A(K1+K2)=K1(A1−A2)
Therefore, if each parameter is set so that the coefficient part other than the internal pressure Pt in the term including the internal pressure Pt in Formula 7 is zero, that is, the following Formula 8 is satisfied, the valve opening pressure Pb is The constant value K1 · X1 / A.
[Formula 8]
A (K1 + K2) = K1 (A1-A2)

つまり、数式8を満たすように、シート面積A、受圧面積A1、A2、バネ定数K1、K2を設定すれば、タンク5の内圧Ptに係わらず、開弁圧Pbを一定の値K1・X1/Aに設定することができる。   That is, if the seat area A, the pressure receiving areas A1 and A2, and the spring constants K1 and K2 are set so as to satisfy Formula 8, the valve opening pressure Pb is set to a constant value K1 · X1 / regardless of the internal pressure Pt of the tank 5. A can be set.

なお、実施例1の背圧規制弁1によれば、受圧面積A1がシート面積Aよりも大きいので、タンク5の内圧Ptの変動に対する開弁圧Pbの応答性が高い。つまり、タンク5の内圧Ptが変動しても、開弁圧Pbは迅速に一定の値K1・X1/Aに収束する。
また、第2スプリング室51にタンク5の内圧Ptが導入されることにより、大気室50におけるピストン37の大気圧の受圧面積は、受圧面積A1と受圧面積A2との差分に等しくなる。
According to the back pressure regulating valve 1 of the first embodiment, since the pressure receiving area A1 is larger than the seat area A, the responsiveness of the valve opening pressure Pb to the fluctuation of the internal pressure Pt of the tank 5 is high. That is, even if the internal pressure Pt of the tank 5 fluctuates, the valve opening pressure Pb quickly converges to a constant value K1 · X1 / A.
Further, by introducing the internal pressure Pt of the tank 5 into the second spring chamber 51, the pressure receiving area of the atmospheric pressure of the piston 37 in the atmospheric chamber 50 becomes equal to the difference between the pressure receiving area A1 and the pressure receiving area A2.

〔実施例1の効果〕
実施例1の背圧規制弁1は、戻り流路10を開閉する弁体31と、弁体31を閉弁方向に付勢する第1スプリング38と、第1スプリング38の両端の内で弁体31に支持される端部とは逆の端部を支持するピストン37とを備える。そして、ピストン37の大径摺動部35に、タンク5の内圧Ptおよび大気圧が互いに逆方向に作用し、タンク5の内圧Ptと大気圧との差分に応じてピストン37が変位することで第1スプリング力が可変される。
これにより、タンク5の内圧Ptの変動に伴う下流圧付勢力の変動を、第1スプリング力の変化により相殺することができる。このため、内圧Ptが変動しても、閉弁合力を一定に保つことができるので、背圧規制弁1の開弁圧Pbが変動することを回避できる。
[Effect of Example 1]
The back pressure regulating valve 1 according to the first embodiment includes a valve body 31 that opens and closes the return flow path 10, a first spring 38 that biases the valve body 31 in the valve closing direction, and a valve that is located at both ends of the first spring 38. The piston 37 which supports the edge part opposite to the edge part supported by the body 31 is provided. The internal pressure Pt and atmospheric pressure of the tank 5 act in opposite directions on the large-diameter sliding portion 35 of the piston 37, and the piston 37 is displaced according to the difference between the internal pressure Pt of the tank 5 and the atmospheric pressure. The first spring force is varied.
Thereby, the fluctuation | variation of the downstream pressure energizing force accompanying the fluctuation | variation of the internal pressure Pt of the tank 5 can be canceled by the change of the 1st spring force. For this reason, even if the internal pressure Pt fluctuates, the valve closing force can be kept constant, so that the valve opening pressure Pb of the back pressure regulating valve 1 can be avoided from fluctuating.

実施例2の背圧規制弁1によれば、図4に示すように、シリンダ43は単一径に形成され、ピストン37も単一径に設けられている。また、弁体31は、スプール状に設けられてシリンダ43に摺動自在に収容されている。また、シリンダ43の内周面には環状溝55が設けられ、環状溝55に下流側の開口部49が接続している。そして、弁体31の開弁方向への変位により、上流側の開口部48が環状溝55および下流側の開口部49に連通する。   According to the back pressure regulating valve 1 of the second embodiment, as shown in FIG. 4, the cylinder 43 is formed with a single diameter, and the piston 37 is also provided with a single diameter. The valve body 31 is provided in a spool shape and is slidably accommodated in the cylinder 43. An annular groove 55 is provided on the inner peripheral surface of the cylinder 43, and a downstream opening 49 is connected to the annular groove 55. The upstream opening 48 communicates with the annular groove 55 and the downstream opening 49 due to the displacement of the valve body 31 in the valve opening direction.

また、シリンダ43は、ピストン37により第1スプリング室47と第2スプリング室51とに区画され、第1スプリング室47は、開口部57により戻り流路10と連結され、第2スプリング室51は大気に開放される。これにより、第1スプリング室47の液圧(下流圧)は、タンク5の内圧Ptに略一致し、第2スプリング室51の圧力は大気圧に略一致する(つまり、第2スプリング室51は大気室50の機能を具備する)。   The cylinder 43 is divided into a first spring chamber 47 and a second spring chamber 51 by a piston 37, and the first spring chamber 47 is connected to the return flow path 10 by an opening 57, and the second spring chamber 51 is Open to the atmosphere. Thereby, the hydraulic pressure (downstream pressure) of the first spring chamber 47 substantially matches the internal pressure Pt of the tank 5, and the pressure of the second spring chamber 51 substantially matches the atmospheric pressure (that is, the second spring chamber 51 is It has the function of the atmospheric chamber 50).

以上により、戻り流路10は弁体31により開閉され、弁体31は第1スプリング38により閉弁方向に付勢される。また、ピストン37は、第1スプリング38の両端の内で弁体31に支持される端部とは逆の端部を支持する座部材として機能し、ピストン37には、タンク5の内圧Ptおよび大気圧が互いに逆方向に作用する。そして、タンク5の内圧Ptと大気圧との差分に応じて、つまりタンク5の内圧Ptに応じてピストン37が変位することで第1スプリング力が可変される。   As described above, the return flow path 10 is opened and closed by the valve body 31, and the valve body 31 is urged in the valve closing direction by the first spring 38. Further, the piston 37 functions as a seat member that supports the end opposite to the end supported by the valve body 31 in both ends of the first spring 38, and the piston 37 includes an internal pressure Pt and a tank 5. Atmospheric pressure acts in opposite directions. The first spring force is varied by the displacement of the piston 37 according to the difference between the internal pressure Pt of the tank 5 and the atmospheric pressure, that is, according to the internal pressure Pt of the tank 5.

また、実施例2の背圧規制弁1によれば、第2スプリング室51に大気圧が導入されているので、数式8において受圧面積A2を実質的にゼロとみなすことで、開弁圧Pbを一定の値K1・X1/Aに設定することができる条件式を下記の数式9のように求めることができる。
〔数式9〕
A(K1+K2)=K1・A1
Further, according to the back pressure regulating valve 1 of the second embodiment, since the atmospheric pressure is introduced into the second spring chamber 51, the valve opening pressure Pb can be determined by regarding the pressure receiving area A2 as substantially zero in Expression 8. A conditional expression that can be set to a constant value K1 · X1 / A can be obtained as in Expression 9 below.
[Formula 9]
A (K1 + K2) = K1 · A1

すなわち、数式9を満たすようにシート面積A、受圧面積A1、およびバネ定数K1、K2を設定すれば、タンク5の内圧Ptに係わらず、背圧規制弁1の開弁圧Pbが変動することを回避できる。   That is, if the seat area A, the pressure receiving area A1, and the spring constants K1 and K2 are set so as to satisfy Formula 9, the valve opening pressure Pb of the back pressure regulating valve 1 varies regardless of the internal pressure Pt of the tank 5. Can be avoided.

なお、実施例2の背圧規制弁1によれば、第2スプリング室51が大気室50として機能し、第2スプリング室51におけるピストン37の大気圧の受圧面積は受圧面積A1に略一致する。   According to the back pressure regulating valve 1 of the second embodiment, the second spring chamber 51 functions as the atmospheric chamber 50, and the pressure receiving area of the atmospheric pressure of the piston 37 in the second spring chamber 51 substantially matches the pressure receiving area A1. .

実施例3の背圧規制弁1は、図5に示すように、自身の温度に応じて伸縮するサーミスタ59と、第1スプリング38の両端の内で弁体31に支持される端部とは逆の端部を支持するとともに、サーミスタ59の伸縮により変位する座部材60とを備える。そして、シリンダ43には、図示左側から右側に向かって順次に弁体31、第1スプリング38、座部材60、第2スプリング39が直列に収容され、サーミスタ59は第1スプリング38と並列に収容され、弁体31および座部材60の変位方向、サーミスタ59および第1、第2スプリング38、39の伸縮方向は全て略一致する。   As shown in FIG. 5, the back pressure regulating valve 1 according to the third embodiment includes a thermistor 59 that expands and contracts according to its own temperature, and an end portion that is supported by the valve body 31 within both ends of the first spring 38. And a seat member 60 that supports the opposite end and is displaced by expansion and contraction of the thermistor 59. In the cylinder 43, the valve body 31, the first spring 38, the seat member 60, and the second spring 39 are accommodated in series sequentially from the left side to the right side in the figure, and the thermistor 59 is accommodated in parallel with the first spring 38. The displacement directions of the valve body 31 and the seat member 60 and the expansion / contraction directions of the thermistor 59 and the first and second springs 38 and 39 are all substantially the same.

また、第2スプリング力は、第1スプリング力よりも充分に大きな強さに設定されており、この強力な第2スプリング力により座部材60とサーミスタ59とは常に当接状態を維持する。このため、サーミスタ59が自身の温度に応じて伸縮すると、座部材60が変位して第1スプリング力が可変される。   The second spring force is set to be sufficiently larger than the first spring force, and the seat member 60 and the thermistor 59 are always kept in contact with each other by the strong second spring force. For this reason, when the thermistor 59 expands and contracts according to its own temperature, the seat member 60 is displaced and the first spring force is varied.

また、シリンダ43には開口部49を介してタンク5の内圧Ptが導入される。そして、シリンダ43の内部温度(つまり、シリンダ43に満たされたDMEの液温)は、タンク5の内圧Pt、すなわちDMEの飽和蒸気圧に応じて変化するから、結果的に、シリンダ43の内部温度はタンク5の内部温度に応じて変化する。つまり、サーミスタ59の温度はタンク5の内部温度やタンク5の内圧Ptに応じて変化する。   Further, the internal pressure Pt of the tank 5 is introduced into the cylinder 43 through the opening 49. The internal temperature of the cylinder 43 (that is, the liquid temperature of DME filled in the cylinder 43) changes according to the internal pressure Pt of the tank 5, that is, the saturated vapor pressure of DME. The temperature changes according to the internal temperature of the tank 5. That is, the temperature of the thermistor 59 changes according to the internal temperature of the tank 5 and the internal pressure Pt of the tank 5.

以上により、実施例3の背圧規制弁1は、タンク5の内部温度に応じてサーミスタ59の温度を変化させ、この温度変化に伴うサーミスタ59の伸縮に応じて座部材60を変位させることで、第1スプリング38を伸縮して第1スプリング力を可変する。
なお、実施例3の背圧規制弁1は、タンク5の内部温度とサーミスタ59の温度との間で高い相関を維持する必要があるので、背圧規制弁1とタンク5との距離をできるだけ小さくすることが好ましい。このため、例えば、タンク5の内部温度とサーミスタ59の温度とが略一致するように、背圧規制弁1をタンク5の内部に装備してもよい。
As described above, the back pressure regulating valve 1 according to the third embodiment changes the temperature of the thermistor 59 according to the internal temperature of the tank 5 and displaces the seat member 60 according to the expansion and contraction of the thermistor 59 accompanying this temperature change. The first spring force is varied by extending and contracting the first spring 38.
Since the back pressure regulating valve 1 of the third embodiment needs to maintain a high correlation between the internal temperature of the tank 5 and the temperature of the thermistor 59, the distance between the back pressure regulating valve 1 and the tank 5 can be as long as possible. It is preferable to make it small. For this reason, for example, the back pressure regulating valve 1 may be provided inside the tank 5 so that the internal temperature of the tank 5 and the temperature of the thermistor 59 substantially coincide.

実施例4の背圧規制弁1は、図6に示すように、通電により磁気吸引力を発生するソレノイドコイル62と、第1スプリング38の両端の内で弁体31に支持される端部とは逆の端部を支持して座部材として機能するとともに、ソレノイドコイル62の磁気吸引力により変位するアーマチャ63とを備える。そして、シリンダ43には、図示左側から右側に向かって順次に、弁体31、第1スプリング38、アーマチャ63、および第2スプリング39が直列に収容され、弁体31およびアーマチャ63の変位方向、ならびに第1、第2スプリング38、39の伸縮方向は全て略一致する。   As shown in FIG. 6, the back pressure regulating valve 1 of the fourth embodiment includes a solenoid coil 62 that generates a magnetic attractive force when energized, and an end portion that is supported by the valve body 31 within both ends of the first spring 38. Is provided with an armature 63 that supports the opposite end and functions as a seat member and is displaced by the magnetic attractive force of the solenoid coil 62. In the cylinder 43, the valve body 31, the first spring 38, the armature 63, and the second spring 39 are accommodated in order from the left side to the right side in the figure, and the displacement direction of the valve body 31 and the armature 63, In addition, the expansion and contraction directions of the first and second springs 38 and 39 are substantially the same.

また、ソレノイドコイル62への通電量は、タンク5の内圧Ptを検出する圧力センサ64からの出力に応じてECU9により可変される。すなわち、ECU9は、ソレノイドコイル62、可変抵抗器65および電源66からなる電気回路において、圧力センサ64からの出力に応じて可変抵抗器65の抵抗値を操作することでソレノイドコイル62への通電量を可変する。そして、ソレノイドコイル62への通電量が可変されることでアーマチャ63に作用する磁気吸引力が変化するので、アーマチャ63が変位して第1スプリング力が可変される。   The energization amount to the solenoid coil 62 is varied by the ECU 9 according to the output from the pressure sensor 64 that detects the internal pressure Pt of the tank 5. That is, the ECU 9 operates the resistance value of the variable resistor 65 in accordance with the output from the pressure sensor 64 in the electric circuit including the solenoid coil 62, the variable resistor 65, and the power source 66, thereby energizing the solenoid coil 62. Is variable. And since the magnetic attraction force which acts on the armature 63 changes by changing the energization amount to the solenoid coil 62, the armature 63 is displaced and the first spring force is changed.

以上により、実施例4の背圧規制弁1は、タンク5の内圧Ptに応じてソレノイドコイル62への通電量を可変し、この通電量の可変に伴う磁気吸引力の変化に応じてアーマチャ63を変位させることで、第1スプリング38を伸縮して第1スプリング力を可変する。   As described above, the back pressure regulating valve 1 of the fourth embodiment varies the energization amount to the solenoid coil 62 according to the internal pressure Pt of the tank 5, and the armature 63 according to the change of the magnetic attraction force accompanying the variation of the energization amount. Is displaced to expand and contract the first spring 38 to vary the first spring force.

なお、実施例4の背圧規制弁1によれば、ソレノイドコイル62への通電量を増やして磁気吸引力を強化することで、第1スプリング力を強制的に弱めることができる。このため、例えば、エンジン停止時等に、第1スプリング力を強制的に弱めて弁体31を開弁方向に変位させ、戻り流路10のDMEをパージすることができる。つまり、背圧規制弁1をパージ弁として機能させることができる。   Note that, according to the back pressure regulating valve 1 of the fourth embodiment, the first spring force can be forcibly weakened by increasing the energization amount to the solenoid coil 62 and strengthening the magnetic attractive force. For this reason, for example, when the engine is stopped, the first spring force is forcibly weakened to displace the valve body 31 in the valve opening direction, and the DME in the return flow path 10 can be purged. That is, the back pressure regulating valve 1 can function as a purge valve.

〔変形例〕
実施例1、3、4の背圧規制弁1によれば弁体31はボール状であり、実施例2の背圧規制弁1によれば弁体31はスプール状であったが、弁体31の形状はこれらの形態に限定されず、実施例1、3、4の弁体31をスプール状にしてもよく、実施例2の弁体31をボール状にしてもよい。
[Modification]
According to the back pressure regulating valve 1 of the first, third, and fourth embodiments, the valve body 31 has a ball shape, and according to the back pressure regulating valve 1 of the second embodiment, the valve body 31 has a spool shape. The shape of 31 is not limited to these forms, and the valve body 31 of the first, third, and fourth embodiments may be a spool shape, and the valve body 31 of the second embodiment may be a ball shape.

また、実施例4のECU9はタンク5の内圧Ptを検出する圧力センサ64からの出力に基づいてソレノイドコイル62への通電量を可変したが、タンク5に内部温度を検出する温度センサを装備し、タンク5の内部温度に応じてソレノイドコイル62への通電量を可変するようにしてもよい。
また、実施例4のECU9は可変抵抗器65の抵抗値を操作することでソレノイドコイル62への通電量を可変したが、ECU9から出力される制御信号をオンオフ信号とし、このオンオフ信号のデューティ比を操作することでソレノイドコイル62への通電量を可変してもよい。
Further, the ECU 9 of the fourth embodiment varies the energization amount to the solenoid coil 62 based on the output from the pressure sensor 64 that detects the internal pressure Pt of the tank 5, but the tank 5 is equipped with a temperature sensor that detects the internal temperature. The energization amount to the solenoid coil 62 may be varied according to the internal temperature of the tank 5.
In addition, the ECU 9 of the fourth embodiment changes the energization amount to the solenoid coil 62 by operating the resistance value of the variable resistor 65. The control signal output from the ECU 9 is used as an on / off signal, and the duty ratio of the on / off signal is set. The amount of energization to the solenoid coil 62 may be varied by operating.

また、実施例1〜4の背圧規制弁1によれば、弁体31を閉弁方向に付勢する付勢部材は、コイル状に設けられて軸方向に付勢力を及ぼす第1スプリング38であったが、このような形態に限定されず、例えば、板バネのように板状に設けられて弾性を発揮する部材を付勢部材として採用してもよく、蛇腹状に設けられて圧縮反力を蓄えることができる部材を付勢部材として採用してもよい。   Further, according to the back pressure regulating valve 1 of the first to fourth embodiments, the biasing member that biases the valve body 31 in the valve closing direction is provided in a coil shape and exerts a biasing force in the axial direction. However, the present invention is not limited to such a form. For example, a member provided in a plate shape such as a leaf spring and exhibiting elasticity may be employed as a biasing member, or provided in a bellows shape and compressed. You may employ | adopt the member which can accumulate reaction force as an urging | biasing member.

燃料噴射装置の全体図である(実施例1)。1 is an overall view of a fuel injection device (Example 1). インジェクタの説明図である(実施例1)。(Example 1) which is explanatory drawing of an injector. 背圧規制弁の説明図である(実施例1)。(Example 1) which is explanatory drawing of a back pressure control valve. 背圧規制弁の説明図である(実施例2)。(Example 2) which is explanatory drawing of a back pressure control valve. 背圧規制弁の説明図である(実施例3)。(Example 3) which is explanatory drawing of a back pressure control valve. 背圧規制弁の説明図である(実施例4)。(Example 4) which is explanatory drawing of a back pressure control valve.

符号の説明Explanation of symbols

1 背圧規制弁
2 インジェクタ
5 タンク
10 戻り流路
17 噴射弁体
21 背圧室
31 弁体
37 ピストン(座部材)
38 第1スプリング(付勢部材)
59 サーミスタ
60 座部材
62 ソレノイドコイル
63 アーマチャ(座部材)
Pt 内圧(タンクの内部圧力)
DESCRIPTION OF SYMBOLS 1 Back pressure control valve 2 Injector 5 Tank 10 Return flow path 17 Injection valve body 21 Back pressure chamber 31 Valve body 37 Piston (seat member)
38 First spring (biasing member)
59 Thermistor 60 Seat member 62 Solenoid coil 63 Armature (seat member)
Pt internal pressure (internal tank pressure)

Claims (4)

インジェクタの背圧室から流出した液化気体燃料をタンクに戻すための戻り流路に配されて、前記インジェクタの噴射弁体を閉弁方向に付勢する背圧を規制する背圧規制弁において、
前記戻り流路を開閉する弁体と、この弁体を閉弁方向に付勢する付勢部材とを備え、
前記弁体に作用する前記付勢部材の付勢力を、前記タンクの内部圧力または内部温度に応じて可変することを特徴とする背圧規制弁。
In the back pressure regulating valve which is arranged in a return flow path for returning the liquefied gaseous fuel flowing out from the back pressure chamber of the injector to the tank and regulates the back pressure for urging the injector valve body in the valve closing direction,
A valve body that opens and closes the return flow path, and a biasing member that biases the valve body in a valve closing direction,
A back pressure regulating valve characterized in that an urging force of the urging member acting on the valve body is varied in accordance with an internal pressure or an internal temperature of the tank.
請求項1に記載の背圧規制弁において、
前記付勢部材の両端の内で前記弁体に支持される端部とは逆の端部を支持する座部材を備え、
この座部材に前記タンクの内部圧力および大気圧が互いに逆方向に作用し、
前記タンクの内部圧力と大気圧との差分に応じて前記座部材が変位することで、前記弁体に作用する前記付勢部材の付勢力が可変されることを特徴とする背圧規制弁。
The back pressure regulating valve according to claim 1,
A seat member for supporting an end opposite to the end supported by the valve body in both ends of the biasing member;
The internal pressure and atmospheric pressure of the tank act on the seat member in opposite directions,
The back pressure regulating valve according to claim 1, wherein the urging force of the urging member acting on the valve body is changed by the displacement of the seat member according to a difference between the internal pressure of the tank and the atmospheric pressure.
請求項1に記載の背圧規制弁において、
自身の温度に応じて伸縮するサーミスタと、
前記付勢部材の両端の内で前記弁体に支持される端部とは逆の端部を支持するとともに、前記サーミスタの伸縮により変位する座部材とを備え、
前記サーミスタの温度は前記タンクの内部温度に応じて変化し、
前記サーミスタの温度に応じて前記座部材が変位することで、前記弁体に作用する前記付勢部材の付勢力が可変されることを特徴とする背圧規制弁。
The back pressure regulating valve according to claim 1,
A thermistor that expands and contracts according to its own temperature,
A support member that supports an end opposite to the end supported by the valve body in both ends of the biasing member, and a seat member that is displaced by expansion and contraction of the thermistor;
The temperature of the thermistor changes according to the internal temperature of the tank,
The back pressure regulating valve according to claim 1, wherein the urging force of the urging member acting on the valve body is varied by the displacement of the seat member in accordance with the temperature of the thermistor.
請求項1に記載の背圧規制弁において、
通電により磁気吸引力を発生するソレノイドコイルと、
前記付勢部材の両端の内で前記弁体に支持される端部とは逆の端部を支持するとともに、前記ソレノイドコイルの磁気吸引力により変位する座部材とを備え、
前記ソレノイドコイルへの通電量は、前記タンクの内部圧力または内部温度に応じて可変され、
前記ソレノイドコイルへの通電量に応じて前記座部材が変位することで、前記弁体に作用する前記付勢部材の付勢力が可変されることを特徴とする背圧規制弁。
The back pressure regulating valve according to claim 1,
A solenoid coil that generates a magnetic attractive force when energized;
A seat member that supports an end opposite to the end supported by the valve body in both ends of the biasing member, and is displaced by a magnetic attractive force of the solenoid coil;
The energization amount to the solenoid coil is variable according to the internal pressure or the internal temperature of the tank,
The back pressure regulating valve according to claim 1, wherein the urging force of the urging member acting on the valve body is varied by displacing the seat member in accordance with an energization amount to the solenoid coil.
JP2007175363A 2007-07-03 2007-07-03 Back pressure regulating valve Expired - Fee Related JP4462296B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007175363A JP4462296B2 (en) 2007-07-03 2007-07-03 Back pressure regulating valve
CN2008101295885A CN101338720B (en) 2007-07-03 2008-07-02 Back pressure adjusting valve for fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175363A JP4462296B2 (en) 2007-07-03 2007-07-03 Back pressure regulating valve

Publications (2)

Publication Number Publication Date
JP2009013841A true JP2009013841A (en) 2009-01-22
JP4462296B2 JP4462296B2 (en) 2010-05-12

Family

ID=40212869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175363A Expired - Fee Related JP4462296B2 (en) 2007-07-03 2007-07-03 Back pressure regulating valve

Country Status (2)

Country Link
JP (1) JP4462296B2 (en)
CN (1) CN101338720B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043655A1 (en) * 2010-09-28 2012-04-05 株式会社Ihi Gas injection valve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107524551B (en) * 2017-08-31 2020-01-31 重庆红江机械有限责任公司 micro-injection electric control oil injector with pressure maintaining structure
JP6982439B2 (en) * 2017-09-08 2021-12-17 川崎重工業株式会社 Ship
CN108317031B (en) * 2018-02-09 2020-07-17 中国第一汽车股份有限公司 Fuel supply holding valve
CN109728327A (en) * 2019-02-26 2019-05-07 河北工业大学 Common-rail injection system and fuel cell system and vehicle with it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009528C2 (en) * 1998-06-30 2000-01-04 Vialle Beheer B V Liquefied gas fuel system.
DE10158789A1 (en) * 2001-11-30 2003-07-10 Bosch Gmbh Robert Fuel injector
JP3786002B2 (en) * 2001-12-14 2006-06-14 トヨタ自動車株式会社 High pressure fuel supply device for internal combustion engine
JP2005069135A (en) * 2003-08-26 2005-03-17 Toyota Motor Corp Fuel injection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043655A1 (en) * 2010-09-28 2012-04-05 株式会社Ihi Gas injection valve

Also Published As

Publication number Publication date
CN101338720B (en) 2011-03-02
CN101338720A (en) 2009-01-07
JP4462296B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
US9273638B2 (en) Variable pressure gaseous fuel regulator
US6758233B2 (en) High volume electronic gas regulator
JP4462296B2 (en) Back pressure regulating valve
EP2055925B1 (en) Fuel injection metering valves
US7966994B2 (en) System for metering a fuel supply
US10612503B2 (en) Dual-fuel injector
JP2013204441A (en) Gas fuel pressure control device
US8286611B1 (en) Electronic pressure regulator
JP2010515993A (en) Pressure regulator
JP2008215130A (en) Injector control device for gas engine
US8176897B1 (en) Electronic pressure regulator
US6205981B1 (en) Fuel recirculation for direct injection fuel system using a high pressure variable venturi pump
US20150253783A1 (en) Pressure reducing valve and pressure regulating device
JP2009030563A (en) Injector
KR20010053291A (en) Fuel system for liquefied gas
JP2010158621A (en) Method of mixing fluid using venturi tube and venturi type mixer
JP4877248B2 (en) Fuel injection valve
WO2017145560A1 (en) Fuel injection device
JP5846448B2 (en) Pressure control device for gaseous fuel
JP5434702B2 (en) Fuel injection device
JP6270649B2 (en) Flow regulating valve and pressure regulating device
US10837406B2 (en) Flow control system for a rocket engine with parallel fuel passage network
JP2005048762A (en) Pressure regulating valve for accumulator fuel injection system
KR20090008994A (en) Pressure changable type regulator for fuel system of the lpi engine
JP6828443B2 (en) Fuel injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4462296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees