JP2009013773A - Function separated vulcanizing integrally-molded bearing - Google Patents

Function separated vulcanizing integrally-molded bearing Download PDF

Info

Publication number
JP2009013773A
JP2009013773A JP2007328071A JP2007328071A JP2009013773A JP 2009013773 A JP2009013773 A JP 2009013773A JP 2007328071 A JP2007328071 A JP 2007328071A JP 2007328071 A JP2007328071 A JP 2007328071A JP 2009013773 A JP2009013773 A JP 2009013773A
Authority
JP
Japan
Prior art keywords
elastic
support
steel plate
plate
shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007328071A
Other languages
Japanese (ja)
Other versions
JP4397413B2 (en
Inventor
Kenji Tanaka
健司 田中
Takahiro Koizumi
貴宏 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBM Co Ltd
Original Assignee
BBM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBM Co Ltd filed Critical BBM Co Ltd
Priority to JP2007328071A priority Critical patent/JP4397413B2/en
Publication of JP2009013773A publication Critical patent/JP2009013773A/en
Application granted granted Critical
Publication of JP4397413B2 publication Critical patent/JP4397413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an integrally-molded elastic bearing which is integrated by vulcanizing integral molding, while functions of upper and lower elastic layers are separated. <P>SOLUTION: While shearing strain is constrained at one side of top and down surfaces of a middle separation steel plate 7 located at the middle of upper and lower directions, an elastic bearing layer for rotation 3 which permits rotation in a vertical direction because of a bend of superstructure 30 and an elastic body 4 for shearing bearing which permits and bears shearing strain in a horizontal direction at the other side of the middle separation steel plate 7 are adhered by vulcanizing integral molding. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、橋脚または橋台等の下部構造物と橋梁あるいは桁等の上部構造物との間に介在される支承装置に関し、とくに弾性支承における上下の弾性層の機能を分離していると共にコンパクトに一体型とした機能分離加硫一体型の弾性支承に関する。   The present invention relates to a bearing device interposed between a lower structure such as a pier or an abutment and an upper structure such as a bridge or a girder, and in particular, separates the functions of upper and lower elastic layers in an elastic bearing and is compact. The present invention relates to an elastic bearing of an integrated function separation vulcanization integrated type.

従来、機能が異なりそれぞれ独立した単体の上部支承と下部支承とを、ボルト等により組み立て可能に構成した支承装置が知られている(例えば、特許文献1参照)。
特開平11−303016
2. Description of the Related Art Conventionally, there has been known a bearing device configured such that independent upper and lower bearings having different functions can be assembled by bolts or the like (for example, see Patent Document 1).
JP-A-11-303016

前記従来の場合は、ボルト等により組み立てるため、それぞれ独立した弾性支承が横方向に動くのを拘束する保持部材が必要になったり、上下の独立した支承をボルトにより固定する構造であるので、ボルトが離脱した場合、分離する恐れがあると共に、構造が複雑になり、加工費用が高くなると共に製作費用が高くなるという問題があった。
本発明は、上部構造物を弾性的に緩衝支承する弾性支承を、桁の撓みを許容して支承する回転支承機能と、常時の温度変化による桁の伸縮あるいは地震時の水平方向への桁の動きを弾性層の橋軸方向へのせん断変形により水平方向に緩衝支承する分散支承機能との両方の機能を、構造的に簡素にすることにより、弾性支承を小型で安価にかつより容易に製作可能になるようにした上下弾性層の機能が分離し、加硫一体成形により一体化されている一体型の弾性支承を提供することを目的とする。
In the case of the conventional case, since it is assembled with bolts or the like, a holding member for restraining the independent elastic bearings from moving laterally is required, or the upper and lower independent bearings are fixed with bolts. When the detachment occurs, there is a risk of separation, and the structure becomes complicated, resulting in high processing costs and high manufacturing costs.
The present invention provides an elastic bearing that elastically supports the upper structure with a buffer, a rotational bearing function that supports the bending of the girder, and the expansion and contraction of the girder due to a constant temperature change or the horizontal girder during an earthquake. Elastic support can be made smaller, cheaper and easier by structurally simplifying both the functions of the distributed support function that cushions the movement in the horizontal direction by shear deformation in the direction of the bridge axis of the elastic layer An object of the present invention is to provide an integrated elastic bearing in which the functions of the upper and lower elastic layers are made separate and integrated by vulcanization integrated molding.

前記の課題を有利に解決するために、第1発明の機能分離加硫一体型支承では、上下方向の中間に位置する中間仕切り鋼板の上下面の一方の側に、せん断変形が拘束されると共に上部構造の撓みによる鉛直方向の回転を許容して弾性的に支承する回転用弾性支承層が、前記中間仕切り鋼板の他方の側に、水平方向のせん断変形を許容して支承するせん断支承用弾性体が、それぞれ加硫一体成型により固着されていることを特徴とする。
また、第2発明では、第1発明における機能分離加硫一体型支承において、前記回転用弾性支承層は、前記中間仕切り鋼板との固着面と反対側に加硫一体成型により固着されるプレートを備え、前記プレートに前記中間仕切り鋼板に設けられたせん断拘束用突起と係合する係合部を設け、中間仕切り鋼板に設けられたせん断拘束用突起に、前記プレートが係合して横移動が拘束されていることを特徴とする。
また、第3発明においては、第1または第2発明における機能分離加硫一体型支承において、前記せん断支承用弾性体の前記中間仕切り鋼板との固着面と反対側にプレートが加硫一体成型により固着され、
前記回転用弾性支承層に固着の前記プレートと、前記中間仕切り鋼板と、前記せん断支承用弾性体に固着のプレートとは、回転用弾性支承層またはせん断支承用弾性体との固着面以外の部分は、加硫一体成型による被覆層が設けられていることを特徴とする。
In order to advantageously solve the above-described problem, in the functionally separated vulcanized integrated bearing of the first invention, shear deformation is restrained on one side of the upper and lower surfaces of the intermediate partition steel plate located in the middle in the vertical direction. A resilient elastic layer for rotation which is elastically supported by allowing vertical rotation due to deflection of the superstructure, and is supported on the other side of the intermediate partition steel plate by allowing horizontal shear deformation. Each of the bodies is fixed by vulcanization integral molding.
In the second invention, in the function-separated vulcanized integrated bearing according to the first invention, the elastic bearing layer for rotation is provided with a plate fixed by vulcanization integrated molding on the side opposite to the fixing surface with the intermediate partition steel plate. The plate is provided with an engaging portion that engages with a shear restraining projection provided on the intermediate partition steel plate, and the plate is engaged with the shear restraining projection provided on the intermediate partition steel plate to perform lateral movement. It is restrained.
In the third aspect of the invention, in the functionally separated vulcanized integral type bearing in the first or second aspect of the invention, a plate is formed by vulcanization integral molding on the side opposite to the fixing surface of the elastic body for shear bearing with the intermediate partition steel plate. Fixed,
The plate fixed to the elastic bearing layer for rotation, the intermediate partition steel plate, and the plate fixed to the elastic body for shear support are portions other than the fixing surface of the elastic bearing layer for rotation or the elastic body for shear support. Is provided with a coating layer formed by vulcanization integral molding.

第1発明によると、次のような効果が得られる。
(1)桁の撓みによる回転を許容する回転用弾性支承層と、水平方向のせん断変形を許容して支承するせん断支承用弾性体とが、中間仕切り鋼板の上下面の一方および他方にそれぞれ加硫一体成型により固着されているので、簡単な構造で確実に中間仕切り鋼板に回転用弾性支承層とせん断支承用弾性体とを固着することができ、支承を安価に製作することができる。
また、回転用弾性支承層とせん断支承用弾性支承体がそれぞれ分離されていないので、従来のように、これらをボルト等により一体化する必要がなく、機能分離加硫一体型支承の高さ寸法を低く小型軽量化することができ、その分、安価にまた、搬送容易になると共に容易に設置施工することができる。
また、中間仕切り鋼板により仕切られた回転用弾性支承層およびせん断支承用弾性体により、それぞれの機能が分離されているので、分散または免震等の支承の設計が容易になる。
(2)せん断変形を拘束するように設けられた回転用弾性支承層では、せん断変形をさせない形態であるので、弾性層に鉛直方向の高荷重負担が可能になり、また、せん断支承用弾性体の弾性層の単層厚が薄くされているので、高荷重負担が可能であり、本発明の機能分離加硫一体型支承は、高荷重負担が十分可能であるので、その分、弾性支承装置の平面寸法を小さくすることができるため、装置の小型化が可能になるばかりでなく、下部構造物の上面の平面設置寸法が小さい場合でも容易に設置することができる。
また、前記のような機能分離加硫一体型支承を橋梁における上部構造のソールプレートと下部構造との間に設置した場合、せん断変形が拘束されて桁の微小回転を許容して支承する回転用弾性支承層では、橋軸方向の桁の移動を許容しない固定式の支点であり、また中間仕切り鋼板を挟んで反対側のせん断支承用弾性支承体を有するため、橋軸方向または橋軸直角方向等の水平方向のせん断変形による緩衝支承作用を発揮でき、地震時等に固定式弾性支承装置を多少変位させながら、下部構造物あるいは上部構造物に水平力を緩衝しながら低減して伝達可能な弾性支承装置として機能することができる。そのため、硬質地盤あるいは固定構造物上に構築された橋脚等の下部構造物に本発明の装置を設置して上部構造物を支承した場合は、下部構造物に作用する曲げモーメントの負担を緩衝して低減することができる。また、橋脚または橋台等の下部構造物の曲げ剛性が適度な剛性でない場合、あるいは支持地盤が軟質または硬質地盤である場合には、地震時等に本発明の支承体を使用した弾性支承装置から下部構造物に作用する曲げモーメントは、適度に緩衝支承されながら、支持地盤に伝達させることができる。
第2発明によると、回転用弾性支承層は、前記中間仕切り鋼板との固着面と反対側に加硫一体成型により固着されるプレートを備え、前記プレートに前記中間仕切り鋼板に設けられたせん断拘束用突起と係合する係合部を設け、中間仕切り鋼板に設けられたせん断拘束用突起に、前記プレートが係合して横移動が拘束されているので、簡単な構造で、回転用弾性支承層に固着されたプレートの横移動を拘束して、回転弾性支承層のせん断変形を拘束することができる。
第3発明によると、せん断支承用弾性体の前記中間仕切り鋼板との固着面と反対側にプレートが加硫一体成型により固着され、前記回転用弾性支承層に固着の前記プレートと、前記中間仕切り鋼板と、前記せん断支承用弾性体に固着のプレートとは、回転用弾性支承層またはせん断支承用弾性体との固着面以外の部分は、加硫一体成型による被覆層が設けられているので、すなわち機能分離加硫一体型支承における鋼板部分が、加硫一体成型による被覆層により被覆されているので、加硫一体成型による被覆層により、確実に被覆して、各鋼板の防錆を図ることができると共に、下部構造物側あるいは上部構造物側に多少の不陸があっても、下部プレート下の弾性層による被覆層あるいは、上部プレートの上面側の弾性層による被覆層により不陸に順応して、支承することができる。
According to the first invention, the following effects can be obtained.
(1) An elastic support layer for rotation that allows rotation due to bending of a girder and an elastic body for shear support that supports horizontal shear deformation are applied to one and the other of the upper and lower surfaces of the intermediate partition steel plate, respectively. Since it is fixed by sulfur integral molding, the elastic support layer for rotation and the elastic body for shear support can be securely fixed to the intermediate partition steel plate with a simple structure, and the support can be manufactured at low cost.
In addition, since the elastic support layer for rotation and the elastic support body for shear support are not separated from each other, it is not necessary to integrate them with bolts or the like as in the prior art. Can be reduced in size and weight, and accordingly, it can be easily transported and installed at low cost.
In addition, since the respective functions are separated by the elastic support layer for rotation and the elastic body for shear support partitioned by the intermediate partition steel plate, it is easy to design a support such as dispersion or seismic isolation.
(2) Since the elastic support layer for rotation provided so as to constrain shear deformation has a form that does not cause shear deformation, a high load in the vertical direction can be applied to the elastic layer, and the elastic body for shear support Since the single layer thickness of the elastic layer of the present invention is thin, a high load load is possible, and the function-separated vulcanized integrated type bearing according to the present invention can sufficiently load a high load. Therefore, not only can the apparatus be miniaturized, but the apparatus can be easily installed even when the plane installation dimension on the upper surface of the lower structure is small.
In addition, when such a function-separated vulcanized integrated type bearing is installed between the upper structure sole plate and the lower structure in the bridge, the shear deformation is constrained and the girder is allowed to rotate by allowing a minute rotation. In the elastic bearing layer, it is a fixed fulcrum that does not allow the movement of girders in the bridge axis direction, and has an elastic bearing body for shear support on the opposite side across the intermediate partition steel plate, so the direction of the bridge axis or the direction perpendicular to the bridge axis It is possible to exert a buffer bearing action due to horizontal shear deformation such as, etc., and can transmit while reducing the horizontal force to the lower structure or upper structure while slightly displacing the fixed elastic bearing device in the event of an earthquake, etc. It can function as an elastic bearing device. For this reason, when the apparatus of the present invention is installed on a lower structure such as a bridge pier constructed on hard ground or a fixed structure to support the upper structure, the burden of the bending moment acting on the lower structure is buffered. Can be reduced. Also, if the bending rigidity of the substructure such as the pier or abutment is not appropriate, or if the supporting ground is soft or hard ground, the elastic bearing device using the bearing body of the present invention during an earthquake etc. The bending moment acting on the substructure can be transmitted to the supporting ground while being moderately buffered.
According to the second invention, the elastic bearing layer for rotation includes a plate fixed by vulcanization integral molding on the opposite side to the fixing surface with the intermediate partition steel plate, and the plate is provided with the shear restraint provided on the intermediate partition steel plate. Since the plate is engaged with the shear restraining projection provided on the intermediate partition steel plate and the lateral movement is restrained, the elastic bearing for rotation has a simple structure. It is possible to restrain the shear deformation of the rotationally elastic bearing layer by restraining the lateral movement of the plate fixed to the layer.
According to a third aspect of the invention, a plate is fixed to the opposite side of the surface of the elastic body for shear support with the intermediate partition steel plate by vulcanization integral molding, and the plate is fixed to the elastic support layer for rotation, and the intermediate partition. Since the steel plate and the plate fixed to the elastic member for shear support are provided with a coating layer by vulcanization integral molding, except for the fixing surface of the elastic support layer for rotation or the elastic member for shear support, In other words, since the steel plate part in the functionally separated vulcanized integrated type bearing is covered with a coating layer formed by vulcanization integrated molding, it is surely covered with the coating layer formed by vulcanization integrated molding to prevent rust prevention of each steel plate. Even if there is some unevenness on the lower structure side or the upper structure side, it is possible to use the covering layer with the elastic layer under the lower plate or the covering layer with the elastic layer on the upper surface side of the upper plate. To adapt to the land, it can be supported.

次に、本発明を図示の実施形態に基づいて詳細に説明する。   Next, the present invention will be described in detail based on the illustrated embodiment.

図1〜図3は、本発明の一実施形態の機能分離加硫一体型支承1を示し、図4〜図6には、機能分離加硫一体型支承1を上下の構造物30,34間に使用した形態が示されている。図7には、上部支承鋼板8が示されている。   1 to 3 show a function-separated vulcanization integrated type support 1 according to an embodiment of the present invention. FIGS. 4 to 6 show the function-separated vulcanization integrated type support 1 between upper and lower structures 30 and 34. The form used in is shown. FIG. 7 shows the upper bearing steel plate 8.

図示の形態では、機能分離加硫一体型支承1における上部側の装置として、上部構造物30としての桁2(図5,6参照)の撓みによる回転を許容し、橋軸方向のせん断変形を拘束された回転用弾性支承層3が、中間仕切り鋼板7に加硫一体成型により固着され、下部側の装置として、上部構造物30としての桁2の撓みによる回転はほとんど許容せず、橋軸方向のせん断変形を主に許容するせん断支承用弾性体4が前記中間仕切り鋼板7に加硫一体成型により設けられている。   In the form shown in the figure, as an upper device in the functionally separated vulcanized integrated support 1, rotation by bending of the girder 2 (see FIGS. 5 and 6) as the upper structure 30 is allowed, and shear deformation in the bridge axis direction is performed. The constrained elastic support layer 3 for rotation is fixed to the intermediate partition steel plate 7 by vulcanization integral molding, and as a device on the lower side, the rotation due to the bending of the girder 2 as the upper structure 30 is hardly allowed. A shear support elastic body 4 that mainly allows shear deformation in the direction is provided on the intermediate partition steel plate 7 by vulcanization integral molding.

本発明の機能分離加硫一体型支承1では、上下方向の中間に位置する中間仕切り鋼板7の上下面の一方の側(図示の形態では上面側)に、せん断変形が拘束されると共に上部構造物30の撓みによる鉛直方向の回転を許容して弾性的に支承する回転用弾性支承層3が、前記中間仕切り鋼板7の他方の側(下面側)に、橋軸方向のせん断変形を許容して支承するせん断支承用弾性体4が、それぞれ加硫一体成型により固着されていることを特徴としている。   In the functionally separated vulcanized integrated type support 1 of the present invention, shear deformation is constrained on one side of the upper and lower surfaces of the intermediate partition steel plate 7 located in the middle in the vertical direction (upper surface side in the illustrated form) and the upper structure The elastic support layer 3 for rotation that elastically supports the vertical rotation due to the bending of the object 30 allows shear deformation in the bridge axis direction on the other side (lower surface side) of the intermediate partition steel plate 7. The elastic bodies 4 for shearing bearings are fixed by vulcanization integral molding.

また、前記回転弾性支承層3に上部プレート5がその下面を加硫固着面として加硫一体成型により固着され、中間仕切り鋼板7に固定されたせん断拘束用突起9に、前記上部プレート5が係合して横移動が拘束されている。   Further, the upper plate 5 is fixed to the rotational elastic bearing layer 3 by vulcanization integral molding with the lower surface of the upper plate 5 as the vulcanization fixing surface, and the upper plate 5 is engaged with the shear restraining projection 9 fixed to the intermediate partition steel plate 7. As a result, lateral movement is restricted.

また、前記せん断支承用弾性体4に、下部プレート6がその上面を加硫面として加硫一体成型により固着され、上部プレート5の上面および側周面と、前記中間仕切り鋼板7の上面および側周面と、下部プレート6の強軸直角方向の側部上面および側周面並びに下面とは、加硫一体成型による被覆層12が設けられている。   Further, the lower plate 6 is fixed to the elastic body 4 for shear support by vulcanization integral molding with the upper surface as a vulcanized surface, and the upper surface and side peripheral surface of the upper plate 5 and the upper surface and side of the intermediate partition steel plate 7. The peripheral surface and the side upper surface, the side peripheral surface, and the lower surface in the direction perpendicular to the strong axis of the lower plate 6 are provided with a coating layer 12 formed by vulcanization integral molding.

さらに具体的に説明すると、中間仕切り鋼板7の中央部には、雌ねじ孔11が設けられ、その雌ねじ孔11に、両端部に雄ねじ軸部9a,9cを有する縦軸9bからなる突起9がねじ込み固定され、前記中間仕切り鋼板7の上面の雌ねじ孔11の周囲には、環状溝が設けられ、中間仕切り鋼板7の上部に配置される上部プレート5の下面には、前記環状溝に対向するように環状溝が設けられ、中間仕切り鋼板7の環状溝と上部プレート5の環状溝とを埋め込むように、回転用弾性支承層3が加硫一体成型により固着され、また上部プレート5と中間仕切り鋼板7とは、これらの側周面に弾性材料性の被覆層12が設けられ、また、上部プレート5の上面には、前記被覆層12と同様な被覆層が設けられて、防錆等の耐候性および凸凹等の不陸順応性が高められている。   More specifically, a female screw hole 11 is provided in the central portion of the intermediate partition steel plate 7, and a projection 9 comprising a vertical axis 9b having male screw shaft portions 9a and 9c at both ends is screwed into the female screw hole 11. An annular groove is provided around the female screw hole 11 on the upper surface of the intermediate partition steel plate 7 so that the lower surface of the upper plate 5 disposed on the upper portion of the intermediate partition steel plate 7 faces the annular groove. The rotary elastic support layer 3 is fixed by vulcanization integral molding so that the annular groove of the intermediate partition steel plate 7 and the annular groove of the upper plate 5 are embedded, and the upper plate 5 and the intermediate partition steel plate 7 is provided with a coating layer 12 made of an elastic material on these side peripheral surfaces, and a coating layer similar to the coating layer 12 is provided on the upper surface of the upper plate 5 to provide weather resistance such as rust prevention. Unevenness such as sex and unevenness Refractory is enhanced.

中間仕切り鋼板7の下部に配置される下部プレート6の下面には、前記被覆層12と同様な被覆層が連続して設けられて、防錆等の耐候性および凸凹等の不陸順応性が高められ、中間仕切り鋼板7の側面および上面には、前記被覆層12と同様な被覆層が連続して設けられて、防錆等の耐候性および不陸順応性が高められ、中間仕切り鋼板7と下部プレート6とは、せん断支承用弾性体4における弾性層13が加硫一体成型により固着されている。せん断支承用弾性体4には、耐圧補強鋼板23が1枚埋め込み配置されている。前記の耐圧補強鋼板23は、複数枚埋め込み配置されていてもよい。   A coating layer similar to the coating layer 12 is continuously provided on the lower surface of the lower plate 6 disposed at the lower part of the intermediate partition steel plate 7 to provide weather resistance such as rust prevention and unevenness adaptability such as unevenness. A coating layer similar to the coating layer 12 is continuously provided on the side surface and the top surface of the intermediate partition steel plate 7 to improve weather resistance such as rust prevention and uneven adaptability, and the intermediate partition steel plate 7 The elastic layer 13 of the elastic body 4 for shear support is fixed to the lower plate 6 by vulcanization integral molding. One elastic reinforcing steel plate 23 is embedded in the elastic body 4 for shear support. A plurality of the pressure-proof reinforced steel plates 23 may be embedded.

前記の下部プレート6は、橋軸直角方向に張り出すように設けられ、その4隅部には、アンカーボルト挿通孔33が設けられて、下部構造物34側へ、ボルトまたはアンカーボルト31により取り付け可能にされている。   The lower plate 6 is provided so as to project in a direction perpendicular to the bridge axis, and anchor bolt insertion holes 33 are provided at four corners thereof, and are attached to the lower structure 34 side by bolts or anchor bolts 31. Has been made possible.

前記の中間仕切り鋼板7に加硫接着された回転用弾性支承層3と、せん断力支承用弾性体4と、下部プレート6と、上部プレート5と突起9等により機能分離加硫一体型支承1が構成されている。   The function-separated vulcanized integrated support 1 is constituted by the elastic support layer 3 for vulcanization bonded to the intermediate partition steel plate 7, the elastic body 4 for shear force support, the lower plate 6, the upper plate 5, the protrusion 9, and the like. Is configured.

次に、前記のような機能分離加硫一体型支承1を上部構造物30と下部構造物34との間に設置した形態について、図4、図5および図6並びに図7を参照して説明する。   Next, a mode in which the function-separated vulcanized integrated support 1 as described above is installed between the upper structure 30 and the lower structure 34 will be described with reference to FIGS. 4, 5, 6, and 7. To do.

先ず、前記機能分離加硫一体型支承1上に設置される上部支承鋼板8の構成について説明すると、上部支承鋼板8は、中央部に段突き透孔15を有すると共に橋軸方向の周縁部に強軸直角方向に間隔をおいて多数の雌ねじ孔14を有している。前記の段突き透孔15は、突起9を挿通する係合部としての突起挿通孔またはボルト挿通孔19と、そのボルト挿通孔19の周囲に、突起9にねじ込み固定されるリング状のナット16により支承されて地震時における上揚力に対向するための環状の支承面17と、その周囲に支承鋼板本体から突出する環状支承壁18を備えている。   First, the structure of the upper bearing steel plate 8 installed on the function-separated vulcanized integrated bearing 1 will be described. The upper bearing steel plate 8 has a stepped through hole 15 at the center and a peripheral edge in the bridge axis direction. A large number of female screw holes 14 are provided at intervals in the direction perpendicular to the strong axis. The stepped through-hole 15 includes a projection insertion hole or bolt insertion hole 19 as an engaging portion through which the projection 9 is inserted, and a ring-shaped nut 16 that is screwed and fixed to the projection 9 around the bolt insertion hole 19. Are provided with an annular bearing surface 17 for facing the uplift force during an earthquake, and an annular bearing wall 18 projecting from the bearing steel plate body around the annular bearing surface 17.

そして、前記のように構成された機能分離加硫一体型支承1が、下部構造物34に載置され、下部プレート6が下部構造物34に埋め込み固定されたアンカーボルト31に装着のナット35により固定され、また、上部プレート5の被覆層12上に、前記上部支承鋼板8が突起9に嵌合するように載置されて、前記突起9に装着されたナット16により、上部支承鋼板8は、機能分離加硫一体型支承1に分離可能に取り付けられる。また、ナット16の外周面は環状支承壁18の内周面に近接配置されて、地震時等において、水平力を、ナット16を介して伝達可能にされている。   Then, the function-separated vulcanized integrated support 1 configured as described above is placed on the lower structure 34, and the lower plate 6 is embedded in and fixed to the anchor bolt 31 by the nut 35 attached to the anchor bolt 31. The upper support steel plate 8 is mounted on the covering layer 12 of the upper plate 5 so that the upper support steel plate 8 is fitted to the protrusion 9, and the upper support steel plate 8 is attached by the nut 16 attached to the protrusion 9. The function-separated vulcanized integrated support 1 is separably attached. Further, the outer peripheral surface of the nut 16 is disposed close to the inner peripheral surface of the annular bearing wall 18 so that a horizontal force can be transmitted via the nut 16 in the event of an earthquake or the like.

なお、上部プレート5および上部支承鋼板8における突起挿通孔内周面と、突起9の外周面は、近接配置されており、上部構造物30の撓みによる回転を許容していると共に、水平方向の移動を阻止するようにしいる。   In addition, the protrusion insertion hole inner peripheral surface in the upper plate 5 and the upper support steel plate 8 and the outer peripheral surface of the protrusion 9 are arranged close to each other, permitting rotation due to bending of the upper structure 30, and in the horizontal direction. I try to prevent movement.

H形鋼からなる桁2の下部フランジ27およびその下面に固定されたソールプレート25が、前記上部支承鋼板8に載置されると共に、前記下部フランジ27の透孔およびソールプレート25の透孔に挿通され、上部支承鋼板8の雌ねじ孔14にねじ込み固定されたセットボルト10により取り付けられて、前記の機能分離加硫一体型支承1は、上部の構造物30、34間に設置されている。   The lower flange 27 of the girder 2 made of H-shaped steel and the sole plate 25 fixed to the lower surface thereof are placed on the upper support steel plate 8, and the through holes of the lower flange 27 and the through holes of the sole plate 25 are mounted. The function-separated vulcanized integrated support 1 is installed between the upper structures 30 and 34 by being inserted by a set bolt 10 which is inserted and fixed to the female screw hole 14 of the upper support steel plate 8.

なお、上揚力に対向するために、前記の突起9を上部支承鋼板8に係合させる手段としては、ナットに代えて、突起9に雌ねじ孔を設けて、ボルト頭部を支承面17に係合させるようにしてもよい。   In order to oppose the lifting force, the means for engaging the protrusion 9 with the upper support steel plate 8 is provided with a female screw hole in the protrusion 9 in place of the nut, and the bolt head is engaged with the support surface 17. You may make it match.

本発明を実施形態する場合、橋軸直角方向へのせん断変形を部材(サイドブロック)などにより拘束すると、橋軸方向のみ、せん断変形する支承装置になり、このような支承装置を連続桁の下側に橋軸方向に間隔をおいて複数配置すると、橋軸方向に分散支承する分散支承型の弾性支承装置を構成するようになる。
また、ゴムのような弾性層23の単層厚が薄くなると共に、桁2の撓みを弾性層23により、許容しなくてもよいため、弾性層23の設計が容易になるばかりでなく、弾性層23に、せん断変形のみさせればよいため、設計が単純になる利点がある。
In the embodiment of the present invention, when shear deformation in the direction perpendicular to the bridge axis is constrained by a member (side block) or the like, a bearing device that shears only in the bridge axis direction is formed. If a plurality of them are arranged on the side with an interval in the direction of the bridge axis, a distributed support type elastic support device that performs distributed support in the direction of the bridge axis is configured.
In addition, since the elastic layer 23 such as rubber has a single layer thickness that is thin and the elastic layer 23 does not need to allow the elastic layer 23 to be bent, the design of the elastic layer 23 is facilitated. Since only the shear deformation is required for the layer 23, there is an advantage that the design is simplified.

前記の実施形態では、回転用弾性支承層3を上側に配置し、せん断支承用弾性体4を下側に配置するようにしているが、せん断支承用弾性体4を上側に回転用弾性支承層を下側に配置するようにしてもよい。   In the above-described embodiment, the elastic bearing layer 3 for rotation is arranged on the upper side, and the elastic body 4 for shear support is arranged on the lower side. However, the elastic body 4 for rotation on the upper side is elastic elastic layer for rotation. May be arranged on the lower side.

前記実施形態の変形形態として、桁2がコンクリート製桁である場合には、ソールプレートがアンカーボルトにより固定されるようになる形態では、回転用弾性支承層3またはせん断支承用弾性体4のうち、上位に位置する弾性支承装置における上部支承鋼板を、ソールプレートに対して、ボルトまたは溶接により固定するか、ソールプレートを省略してアンカーボルトにより固定すればよい。
なお、本発明を実施する場合、せん断支承用弾性体4内に柱状鉛を埋め込み配置形態の弾性体4としてもよい。前記弾性体4に高減衰ゴムを使用するようにしてもよい。
As a modified form of the embodiment, when the girder 2 is a concrete girder, the sole plate is fixed by an anchor bolt, and the elastic support layer 3 for rotation or the elastic body 4 for shear support is used. The upper support steel plate in the upper elastic support device may be fixed to the sole plate by bolts or welding, or the sole plate may be omitted and fixed by anchor bolts.
When the present invention is carried out, the columnar lead may be embedded in the elastic body 4 for shear support, and the elastic body 4 may be arranged. High elastic rubber may be used for the elastic body 4.

図8および図9、本発明の他の実施形態の機能分離加硫一体型支承1が示されていると共に、機能分離加硫一体型支承1を上下の構造物30,34間に使用した形態が示されている。
この形態は、図1〜図4に示す形態の機能分離加硫一体型支承を、上下反転配置して、上部プレート5を下部プレートとし、下部プレート6を上部プレートとし、上部支承鋼板8を下部支承鋼板として配置するようにした形態である。
前記実施形態と同様な要素については、同様な符号を付して、相違する部分を主に説明する。
前記実施形態において上部支承鋼板8が下側に配置されて下部支承鋼板8aとされ、かつ下部支承鋼板8aは、前記実施形態の上部支承鋼板8とソールプレート25とを一体化したしたような1枚ものの鋼板により製作されている。前記の下部支承鋼板8aは、橋軸直角方向に張出すように設けられ、その4隅部には、アンカーボルト挿通孔33が設けられ、下部構造物へ、ボルトまたはアンカーボルト31により、取り付け可能にされている。また、下部支承鋼板8aの中央部には、段付き透孔15が設けられている。
前記の段付き透孔15は、突起9を挿通する突起挿通孔またはボルト挿通孔19と、そのボルト挿通孔19の周囲に、突起9にねじ込み固定されるリング状のナット16により支承されて地震時における上揚力に対向するための環状の支承面17と、その周囲に環状支承壁18を備えていると共に、下面側に、雌ねじ孔などの蓋材収容凹部36を備え、その蓋材収容凹部36に蓋37がねじ込み固定等により設けられている。
下部プレート6を上部プレート6aとして、コンクリート製桁2からなる上部構造物30に、ボルトまたはアンカーボルト31により固定されている。
図8および図9に示す形態では、回転用弾性支承層3が、図3に示す実施形態に比べて、下部構造物34側の低レベル位置に配置されるので、桁2を低レベル位置の回転中心とすることができるため、桁の撓みを高レベル位置の場合よりも、常時あるいは地震時において安定した状態で支承することができる。
FIGS. 8 and 9 show a functionally separated vulcanized integrated type support 1 according to another embodiment of the present invention, and a form in which the functionally separated vulcanized integrated type support 1 is used between the upper and lower structures 30 and 34. It is shown.
In this embodiment, the function-separated vulcanized integrated support shown in FIGS. 1 to 4 is vertically inverted, the upper plate 5 is used as the lower plate, the lower plate 6 is used as the upper plate, and the upper support steel plate 8 is used as the lower plate. It is the form arranged as a support steel plate.
The same elements as those in the above embodiment are denoted by the same reference numerals, and different portions will be mainly described.
In the embodiment, the upper support steel plate 8 is arranged on the lower side to be the lower support steel plate 8a, and the lower support steel plate 8a is an integrated 1 of the upper support steel plate 8 and the sole plate 25 of the embodiment. Manufactured from sheet steel. The lower support steel plate 8a is provided so as to extend in a direction perpendicular to the bridge axis, and anchor bolt insertion holes 33 are provided at four corners thereof, and can be attached to the lower structure by bolts or anchor bolts 31. Has been. Further, a stepped through hole 15 is provided in the central portion of the lower support steel plate 8a.
The stepped through-hole 15 is supported by a projection insertion hole or bolt insertion hole 19 through which the projection 9 is inserted, and a ring-shaped nut 16 screwed into the projection 9 around the bolt insertion hole 19 to cause an earthquake. An annular bearing surface 17 for opposing the upward lifting force at the time, an annular bearing wall 18 around the annular bearing surface 17, and a lid material accommodating recess 36 such as a female screw hole on the lower surface side, the lid material accommodating recess 36 is provided with a lid 37 by screwing or the like.
The lower plate 6 is used as the upper plate 6 a and is fixed to the upper structure 30 made of the concrete girder 2 by bolts or anchor bolts 31.
In the form shown in FIG. 8 and FIG. 9, the elastic support layer 3 for rotation is disposed at a lower level position on the lower structure 34 side than the embodiment shown in FIG. Since the center of rotation can be used, the bending of the girder can be supported in a stable state at all times or during an earthquake than in the case of a high level position.

前記実施形態のように、本発明では、回転用弾性支承層3は、前記中間仕切り鋼板7との固着面と反対側に加硫一体成型により固着されるプレート5(5a)を備え、前記プレート5(5a)に前記中間仕切り鋼板7に設けられたせん断拘束用突起9と係合する係合部(突起挿通孔またはボルト挿通孔19)を設け、中間仕切り鋼板7に設けられたせん断拘束用突起9に、前記プレート5(5a)が係合して横移動が拘束されているので、簡単な構造で、回転用弾性支承層3に固着されたプレート5(5a)の横移動を拘束して、回転弾性支承層3のせん断変形を拘束することができる。
また前記各実施形態のように、本発明では、せん断支承用弾性体4の前記中間仕切り鋼板7との固着面と反対側にプレート6(6a)が加硫一体成型により固着され、前記回転用弾性支承層3に固着の前記プレート5(5a)と、前記中間仕切り鋼板7と、前記せん断支承用弾性体4に固着のプレート6(6a)とは、回転用弾性支承層3またはせん断支承用弾性体4との固着面以外の部分は、加硫一体成型による被覆層12が設けられているので、すなわち機能分離加硫一体型支承1における鋼板部分が、加硫一体成型による被覆層12により被覆されているので、加硫一体成型による被覆層12により、確実に被覆して、各鋼板の防錆を図ることができると共に、下部構造物側あるいは上部構造物側に多少の不陸があっても、下部プレート下の弾性層による被覆層12あるいは、上部プレート5の上面側の弾性層による被覆層12により不陸に順応して、支承することができる。
なお、図9に示す形態では、アンカーボルト31の上端部に雌ねじ継手筒が一体に設けられ、その雌ねじ筒38に、下部支承鋼板8のボルト挿通に扁平な頭部39を備えたボルト40がねじ込み固定されている。
As in the above-described embodiment, in the present invention, the elastic support layer 3 for rotation includes the plate 5 (5a) fixed by vulcanization integral molding on the opposite side to the fixing surface with the intermediate partition steel plate 7, and the plate 5 (5a) is provided with an engaging portion (projection insertion hole or bolt insertion hole 19) that engages with the shear restraining projection 9 provided on the intermediate partition steel plate 7, and for shear restraint provided on the intermediate partition steel plate 7. Since the plate 5 (5a) is engaged with the protrusion 9 and the lateral movement is restricted, the lateral movement of the plate 5 (5a) fixed to the rotating elastic support layer 3 is restricted with a simple structure. Thus, the shear deformation of the rotational elastic bearing layer 3 can be restricted.
Further, as in each of the above embodiments, in the present invention, the plate 6 (6a) is fixed to the side opposite to the fixing surface of the elastic body 4 for shear support with the intermediate partition steel plate 7 by vulcanization integral molding, and the rotation The plate 5 (5a) fixed to the elastic support layer 3, the intermediate partition steel plate 7, and the plate 6 (6a) fixed to the elastic body 4 for shear support are the elastic support layer 3 for rotation or the shear support. Since the coating layer 12 by vulcanization integral molding is provided on the portion other than the surface fixed to the elastic body 4, the steel plate portion in the function separation vulcanization integral type support 1 is formed by the coating layer 12 by vulcanization integral molding. Since it is coated, the coating layer 12 by vulcanization integral molding can be surely coated to prevent rust prevention of each steel sheet, and there is some unevenness on the lower structure side or the upper structure side. Even lower play Or a coating layer 12 due to the elastic layer below the coating layer 12 by the upper surface of the elastic layer of the top plate 5 to adapt to uneven surface, can be supported.
In the form shown in FIG. 9, a female threaded joint cylinder is integrally provided at the upper end portion of the anchor bolt 31, and a bolt 40 having a flat head 39 for inserting the bolt of the lower support steel plate 8 is provided in the female thread cylinder 38. It is fixed by screwing.

前記のような形態では、次のような効果が得られる。
(1)桁の撓みによる回転を許容する回転用弾性支承層と、橋軸方向のせん断変形を許容して支承するせん断支承用弾性体とが、中間仕切り鋼板の上下面の一方および他方にそれぞれ
加硫一体成型により固着されているので、簡単な構造で確実に中間仕切り鋼板に回転用弾性支承層とせん断支承用弾性体とを固着することができ、支承を安価に製作することができる。
また、回転用弾性支承層とせん断支承用弾性支承体がそれぞれ分離されていないので、従来のように、これらをボルト等により一体化する必要がなく、機能分離加硫一体型支承の高さ寸法を低く小型軽量化することができ、その分、安価にまた、搬送容易になると共に容易に設置施工することができる。
また、中間仕切り鋼板により仕切られた回転用弾性支承層およびせん断支承用弾性体により、それぞれの機能が分離されているので、分散設計あるいは免震設計等の支承の設計が容易になる。
(2)せん断変形を拘束するように設けられ回転用弾性支承層では、せん断変形をさせない形態であるので、弾性層に鉛直方向の高荷重負担が可能になり、また、せん断支承用弾性体の弾性層の単層厚が薄くされているので、高荷重負担が可能であり、本発明の機能分離加硫一体型支承は、高荷重負担が十分可能であるので、その分、弾性支承装置の平面寸法を小さくすることができるため、装置の小型化が可能になるばかりでなく、下部構造物の上面の平面設置寸法が小さい場合でも容易に設置することができる。
また、前記のような機能分離加硫一体型支承を橋梁における上部構造のソールプレートと下部構造との間に設置した場合、せん断変形が拘束されて桁の微小回転を許容して支承する回転用弾性支承層では、橋軸方向の桁の移動を許容しない固定式の支点であり、また中間仕切り鋼板を挟んで反対側のせん断支承用弾性支承体を有するため、水平方向のせん断変形による緩衝支承作用を発揮でき、固定式弾性支承装置を多少変位させながら、下部構造物あるいは上部構造物に水平力を緩衝しながら低減して伝達することが可能な弾性支承装置として機能することができる。そのため、硬質地盤あるいは固定構造物上に構築された橋脚等の下部構造物に本発明の装置を設置して上部構造物を支承した場合は、下部構造物に作用する曲げモーメントの負担を緩衝して低減することができる。また、橋脚または橋台等の下部構造物の曲げ剛性が適度な剛性でない場合、あるいは支持地盤が軟質または硬質地盤である場合には、地震時等に本発明の支承体を使用した弾性支承装置から下部構造物に作用する曲げモーメントは、適度に緩衝支承されながら、支持地盤に伝達させることができる。
また、回転弾性支承層に上部プレートが加硫一体成型により固着され、中間仕切り鋼板に設けられたせん断拘束用突起に、前記上部プレートが係合して横移動が拘束されているので、簡単な構造で、上部プレートの横移動を拘束して、回転弾性支承層のせん断変形を拘束することができる。
また、上部プレートの上面および側周面と、前記中間仕切り鋼板の上面および側周面と、下部プレートの側部上面および側周面並びに下面とは、加硫一体成型による被覆層が設けられているので、機能分離加硫一体型支承における鋼板部分を、加硫一体成型による被覆層により被覆されているので、加硫一体成型による被覆層により、確実に被覆して、各鋼板の防錆を図ることができると共に、下部構造物側あるいは上部構造物側に多少の不陸があっても、下部プレート下の弾性層による被覆層あるいは、上部プレートの上面側の弾性層による被覆層により不陸に順応して、支承することができる。
In the above-described form, the following effects can be obtained.
(1) An elastic bearing layer for rotation that allows rotation due to bending of a girder and an elastic body for shear support that allows shear deformation in the bridge axis direction are provided on one and the other of the upper and lower surfaces of the intermediate partition steel plate, respectively. Since it is fixed by vulcanization integral molding, the elastic support layer for rotation and the elastic body for shear support can be securely fixed to the intermediate partition steel plate with a simple structure, and the support can be manufactured at low cost.
In addition, since the elastic support layer for rotation and the elastic support body for shear support are not separated from each other, it is not necessary to integrate them with bolts or the like as in the prior art. Can be reduced in size and weight, and accordingly, it can be easily transported and installed at low cost.
In addition, since the respective functions are separated by the elastic bearing layer for rotation and the elastic body for shear bearing partitioned by the intermediate partition steel plate, the design of the bearing such as distributed design or seismic isolation design becomes easy.
(2) Since the elastic support layer for rotation provided so as to constrain shear deformation does not cause shear deformation, the elastic layer can bear a high load in the vertical direction, and the elastic body for shear support Since the single layer thickness of the elastic layer is made thin, it is possible to bear a high load, and the function-separated vulcanized integrated type bearing of the present invention can sufficiently load a high load. Since the planar dimension can be reduced, not only can the apparatus be miniaturized, but the apparatus can be easily installed even when the planar installation dimension of the upper surface of the lower structure is small.
In addition, when such a function-separated vulcanized integrated type bearing is installed between the upper structure sole plate and the lower structure in the bridge, the shear deformation is constrained and the girder is allowed to rotate by allowing a minute rotation. The elastic bearing layer is a fixed fulcrum that does not allow the movement of the girders in the direction of the bridge axis, and has an elastic bearing body for shear bearing on the opposite side across the intermediate partition steel plate. It can function as an elastic bearing device that can reduce and transmit a horizontal force to the lower structure or the upper structure while slightly displacing the fixed elastic bearing device. For this reason, when the apparatus of the present invention is installed on a lower structure such as a bridge pier constructed on hard ground or a fixed structure to support the upper structure, the burden of the bending moment acting on the lower structure is buffered. Can be reduced. Also, if the bending rigidity of the substructure such as the pier or abutment is not appropriate, or if the supporting ground is soft or hard ground, the elastic bearing device using the bearing body of the present invention during an earthquake etc. The bending moment acting on the substructure can be transmitted to the supporting ground while being moderately buffered.
Further, since the upper plate is fixed to the rotary elastic bearing layer by vulcanization integral molding, and the upper plate is engaged with the shear restraining protrusion provided on the intermediate partition steel plate, the lateral movement is restrained, so that the simple movement is simplified. With the structure, it is possible to restrain the lateral deformation of the upper plate and restrain the shear deformation of the rotational elastic bearing layer.
Further, the upper surface and side peripheral surface of the upper plate, the upper surface and side peripheral surface of the intermediate partition steel plate, and the side upper surface, side peripheral surface and lower surface of the lower plate are provided with a coating layer by vulcanization integral molding. Therefore, the steel plate part in the functionally separated vulcanized integrated type bearing is covered with a coating layer formed by vulcanized integrated molding, so that it is reliably covered with the coating layer formed by vulcanized integrated molding to prevent rust prevention of each steel plate. Even if there is some unevenness on the lower structure side or the upper structure side, it is not landed by the covering layer by the elastic layer under the lower plate or the covering layer by the elastic layer on the upper surface side of the upper plate. Can adapt to and support.

本発明の機能分離加硫一体型支承の一実施形態を示す一部縦断斜視図である。It is a partial longitudinal cross-sectional perspective view which shows one Embodiment of the function isolation | separation vulcanization integrated type bearing of this invention. 本発明の機能分離加硫一体型支承の一実施形態を示す一部縦断側面図である。1 is a partially longitudinal side view showing an embodiment of a function-separated vulcanization integrated bearing according to the present invention. 図2に示す機能分離加硫一体型支承の主要部を分解して示す一部縦断正面図である。FIG. 3 is a partially longitudinal front view showing an exploded main part of the function-separated vulcanized integrated bearing shown in FIG. 2. 上部支承鋼板を取り付けた状態を示す一部縦断斜視図である。It is a partially vertical perspective view which shows the state which attached the upper support steel plate. 上部構造物と下部構造物との間に、本発明の機能分離加硫一体型支承を設置した状態を示す縦断側面図である。It is a vertical side view which shows the state which installed the function isolation | separation vulcanization integrated bearing of this invention between the upper structure and the lower structure. 図5の縦断正面図である。It is a vertical front view of FIG. 上部支承鋼板を示すものであって、(a)は平面図、(b)は一部縦断正面図である。An upper support steel plate is shown, Comprising: (a) is a top view, (b) is a partially longitudinal front view. 上部構造物と下部構造物との間に、本発明の他の実施形態の機能分離加硫一体型支承を設置した状態を示す縦断側面図である。It is a vertical side view which shows the state which installed the function isolation | separation vulcanization integrated bearing of other embodiment of this invention between the upper structure and the lower structure. 図8の縦断正面図である。It is a vertical front view of FIG.

符号の説明Explanation of symbols

1 機能分離加硫一体型支承
2 桁
3 回転用弾性支承層
4 せん断支承用弾性体
5 上部プレート
5a 下部プレート
6 下部プレート
6a 上部プレート
7 中間仕切り鋼板
8 上部支承鋼板
8a 下部支承鋼板
9 突起
9a 雄ねじ軸部
9b 縦軸
9c 雄ねじ軸部
10 セットボルト
11 雌ねじ孔
12 被覆層
13 弾性層
14 雌ねじ孔
15 段付き透孔
16 ナット
17 支承面
18 環状支承壁
19 ボルト挿通孔
23 耐圧補強鋼板
25 ソールプレート
27 下部フランジ
30 上部構造物
31 ボルトまたはアンカーボルト
33 ボルト挿通孔
34 下部構造物
35 ナット
36 蓋材収容凹部
37 蓋
38 雌ねじ筒
39 扁平な頭部
40 ボルト
DESCRIPTION OF SYMBOLS 1 Function isolation | separation vulcanization integrated type bearing 2 Girder 3 Elastic support layer 4 for rotation Elastic body 5 for shear support Upper plate 5a Lower plate 6 Lower plate 6a Upper plate 7 Intermediate partition steel plate 8 Upper support steel plate 8a Lower support steel plate 9 Protrusion 9a Male screw Shaft part 9b Vertical axis 9c Male threaded shaft part 10 Set bolt 11 Female threaded hole 12 Cover layer 13 Elastic layer 14 Female threaded hole 15 Stepped through hole 16 Nut 17 Bearing surface 18 Annular bearing wall 19 Bolt insertion hole 23 Pressure reinforced steel plate 25 Sole plate 27 Lower flange 30 Upper structure 31 Bolt or anchor bolt 33 Bolt insertion hole 34 Lower structure 35 Nut 36 Cover material receiving recess 37 Cover 38 Female screw cylinder 39 Flat head 40 Bolt

Claims (3)

上下方向の中間に位置する中間仕切り鋼板の上下面の一方の側に、せん断変形が拘束されると共に上部構造の撓みによる鉛直方向の回転を許容して弾性的に支承する回転用弾性支承層が、前記中間仕切り鋼板の他方の側に、水平方向のせん断変形を許容して支承するせん断支承用弾性体が、それぞれ加硫一体成型により固着されていることを特徴とする機能分離加硫一体型支承。   On one side of the upper and lower surfaces of the intermediate partition steel plate located in the middle of the vertical direction, there is an elastic bearing layer for rotation that is supported elastically by allowing shear deformation to be restricted and allowing vertical rotation due to deflection of the upper structure. A function-separated vulcanization integrated type, wherein elastic bodies for shear support that are supported while allowing horizontal shear deformation are fixed to the other side of the intermediate partition steel plate by vulcanization integral molding, respectively. Support. 前記回転用弾性支承層は、前記中間仕切り鋼板との固着面と反対側に加硫一体成型により固着されるプレートを備え、前記プレートに前記中間仕切り鋼板に設けられたせん断拘束用突起と係合する係合部を設け、中間仕切り鋼板に設けられたせん断拘束用突起に、前記プレートが係合して横移動が拘束されていることを特徴とする請求項1に記載の機能分離加硫一体型支承。   The elastic bearing layer for rotation includes a plate fixed by vulcanization integral molding on a side opposite to a fixing surface with the intermediate partition steel plate, and engages with a shear restraining protrusion provided on the intermediate partition steel plate. 2. The functional separation vulcanization method according to claim 1, wherein an engaging portion is provided, and the plate is engaged with a shear restraining protrusion provided on the intermediate partition steel plate to restrain lateral movement. Body support. 前記せん断支承用弾性体の前記中間仕切り鋼板との固着面と反対側にプレートが加硫一体成型により固着され、前記回転用弾性支承層に固着の前記プレートと、前記中間仕切り鋼板と、前記せん断支承用弾性体に固着のプレートとは、回転用弾性支承層またはせん断支承用弾性体との固着面以外の部分は、加硫一体成型による被覆層が設けられていることを特徴とする請求項2に記載の機能分離加硫一体型支承。   A plate is fixed to the opposite side of the elastic body for shear support with the intermediate partition steel plate by vulcanization integral molding, the plate fixed to the elastic support layer for rotation, the intermediate partition steel plate, and the shear The plate fixed to the elastic body for support is characterized in that a coating layer formed by vulcanization integral molding is provided in a portion other than the surface fixed to the elastic support layer for rotation or the elastic body for shear support. 2. Function-separated vulcanized integrated bearing as described in 2.
JP2007328071A 2007-06-06 2007-12-19 Function separation vulcanized integrated bearing Expired - Fee Related JP4397413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007328071A JP4397413B2 (en) 2007-06-06 2007-12-19 Function separation vulcanized integrated bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007150374 2007-06-06
JP2007328071A JP4397413B2 (en) 2007-06-06 2007-12-19 Function separation vulcanized integrated bearing

Publications (2)

Publication Number Publication Date
JP2009013773A true JP2009013773A (en) 2009-01-22
JP4397413B2 JP4397413B2 (en) 2010-01-13

Family

ID=40354992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328071A Expired - Fee Related JP4397413B2 (en) 2007-06-06 2007-12-19 Function separation vulcanized integrated bearing

Country Status (1)

Country Link
JP (1) JP4397413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092906A (en) * 2010-10-27 2012-05-17 Ihi Infrastructure Systems Co Ltd Bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092906A (en) * 2010-10-27 2012-05-17 Ihi Infrastructure Systems Co Ltd Bearing device

Also Published As

Publication number Publication date
JP4397413B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP4549230B2 (en) Composite bearing for bridge
JP2002038418A (en) Function separation type bridge support device
JP2008014057A (en) Horizontal support device
JP4274557B2 (en) Horizontal load elastic support device
JP4397413B2 (en) Function separation vulcanized integrated bearing
JP4377429B2 (en) Elastic bearing body and elastic bearing device using the same
JP3823241B2 (en) Seismic isolation device installation method and installation structure
JP3727263B2 (en) Horizontal load elastic support device for functionally separated bearings for bridges
KR101386048B1 (en) Spherical bearing for bridge
JP3649791B2 (en) Laminated rubber support structure
KR100489577B1 (en) Level adjusting bearing for bridge
JP2008144516A (en) Horizontal support device
JP4233337B2 (en) Sliding bearing device
KR101341845B1 (en) Disk bearing structure for high load
KR20080019195A (en) Improve elastomeric bearing with high-stiffness in horizontal direction under earthquake
KR20190014686A (en) Replacement method for bridge bearing
JP4190334B2 (en) Repair structure and repair method to repair a function-separated type support device using the base plate of the existing elastic support device
KR101409400B1 (en) Laminated rubber bearing having hat-shaped steel damper
KR100448486B1 (en) Apparatus for supporting bridge structures
JP2001303516A (en) Shift restriction device for bridge
JP2008025180A (en) Horizontal support device
JP2007332664A (en) Elastic bearing device with displacement adjusting function
JP2004068462A (en) Bearing structure for bridge of function separation type, and rubber buffer for bridge
JP2000234308A (en) Supporting device for bridge with slide type elastic supporting device for structure and horizontal force and lift force elastic resistance device, and installing method therefor
JPH11236944A (en) Sliding elastic support device for structure, and high bearing-pressure load support member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090513

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees