JP2009013374A - Dispersion, preparation method thereof, proton conductive material, solid electrolyte film obtained using the proton conductive material as substrate, method for manufacturing the solid electrolyte film and polymer electrolyte fuel cell equipped with the solid electrolyte film - Google Patents

Dispersion, preparation method thereof, proton conductive material, solid electrolyte film obtained using the proton conductive material as substrate, method for manufacturing the solid electrolyte film and polymer electrolyte fuel cell equipped with the solid electrolyte film Download PDF

Info

Publication number
JP2009013374A
JP2009013374A JP2007179887A JP2007179887A JP2009013374A JP 2009013374 A JP2009013374 A JP 2009013374A JP 2007179887 A JP2007179887 A JP 2007179887A JP 2007179887 A JP2007179887 A JP 2007179887A JP 2009013374 A JP2009013374 A JP 2009013374A
Authority
JP
Japan
Prior art keywords
polybenzimidazole
proton conductive
group
solid electrolyte
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007179887A
Other languages
Japanese (ja)
Other versions
JP5012268B2 (en
Inventor
Satoshi Yoshida
怜 吉田
Naotoshi Nakajima
直敏 中嶋
Takehiko Fujigaya
剛彦 藤ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007179887A priority Critical patent/JP5012268B2/en
Publication of JP2009013374A publication Critical patent/JP2009013374A/en
Application granted granted Critical
Publication of JP5012268B2 publication Critical patent/JP5012268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high dispersion of a carbon nanotube which could not be highly dispersed in an aqueous or non-aqueous solvent, to obtain a proton conductive material obtained by improving mechanical strength of polybenzimidazole (PBI) that serves as an alternative to a fluorine electrolyte, has a proton conductivity and is excellent in heat resistance etc. , and to provide a solid polymer electrolyte film particularly suitable for a polymer electrolyte fuel cell. <P>SOLUTION: The dispersion contains (A) a polybenzimidazole or a polybenzimidazole derivative, or a polybenzimidazole or a polybenzimidazole derivative into which a proton conductive group is introduced and (B) the carbon nanotube or the carbon nanotube into which the proton conductive group is introduced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、従来高分散が困難であるとされていたカーボンナノチューブの分散液、その製造方法に関する。また、本発明は、従来のフッ素系高分子電解質の代替となるプロトン伝導性材料に関する。更に、該プロトン伝導性材料を基材とする固体電解質膜、該固体電解質膜の製造方法、及び該固体電解質膜を備えた固体高分子型燃料電池に関する。   The present invention relates to a dispersion of carbon nanotubes, which has been conventionally difficult to achieve high dispersion, and a method for producing the same. The present invention also relates to a proton conductive material that can replace a conventional fluorine-based polymer electrolyte. Furthermore, the present invention relates to a solid electrolyte membrane based on the proton conductive material, a method for producing the solid electrolyte membrane, and a solid polymer fuel cell including the solid electrolyte membrane.

電解質膜として固体高分子電解質膜を用いた固体高分子電解質型燃料電池は、小型化が容易であること、低い温度で作動すること、などの利点があることから、特に携帯用、移動体用電源として注目されている。   A solid polymer electrolyte fuel cell using a solid polymer electrolyte membrane as an electrolyte membrane has advantages such as easy miniaturization and operation at a low temperature. It is attracting attention as a power source.

従来、固体高分子型燃料電池の電解質膜としては、高いプロトン伝導性を有し、また、耐酸化性に優れることから、ナフィオン(商品名、デュポン社製)に代表されるパーフルオロカーボンスルホン酸膜が一般的に用いられてきた。しかし、パーフルオロカーボンスルホン酸膜は、フッ素系樹脂を材料とするため高価であり、燃料電池のコスト削減を阻む要因の一つとなっている。   Conventionally, as an electrolyte membrane of a polymer electrolyte fuel cell, it has high proton conductivity and excellent oxidation resistance, so that it is a perfluorocarbon sulfonic acid membrane represented by Nafion (trade name, manufactured by DuPont). Has been commonly used. However, the perfluorocarbon sulfonic acid membrane is expensive because it uses a fluorine-based resin, and is one of the factors that hinder the cost reduction of the fuel cell.

そのため、安価な材料を用いた電解質膜の開発が進められており、中でも、ポリベンゾイミダゾール(PBI)は、スルホン酸やリン酸等のプロトン伝導性化合物との複合化、又はスルホ基やリン酸基等のプロトン伝導性基の導入が可能であり、また、耐熱性や機械的特性等にも優れることから注目されている。   Therefore, the development of electrolyte membranes using inexpensive materials has been promoted. Among them, polybenzimidazole (PBI) is complexed with proton conductive compounds such as sulfonic acid and phosphoric acid, or sulfo group and phosphoric acid. It is attracting attention because it is possible to introduce a proton conductive group such as a group and is excellent in heat resistance and mechanical properties.

例えば、ポリベンズイミダゾール膜にプロトン伝導性化合物である酸をドープしてなる電解質膜(特許文献1)や、ポリベンズイミダゾールにプロトン伝導性基を有する側鎖を導入した電解質膜(特許文献2)等が提案されている。   For example, an electrolyte membrane obtained by doping a polybenzimidazole membrane with an acid that is a proton conductive compound (Patent Document 1), or an electrolyte membrane in which a side chain having a proton conductive group is introduced into polybenzimidazole (Patent Document 2) Etc. have been proposed.

ポリベンズイミダゾールを用いた電解質膜のプロトン伝導性を向上させるために、ポリベンズイミダゾール膜への酸のドープ量を増加したり、ポリベンズイミダゾールに導入するプロトン伝導性基の量を増加することが行われている。しかしながら、酸のドープ量又はプロトン伝導性基の導入量の増加に伴い、電解質膜の機械的強度が低下してしまうという問題がある。   In order to improve the proton conductivity of the electrolyte membrane using polybenzimidazole, it is possible to increase the amount of acid doped into the polybenzimidazole membrane or increase the amount of proton conductive groups introduced into the polybenzimidazole. Has been done. However, there is a problem in that the mechanical strength of the electrolyte membrane decreases with an increase in the acid doping amount or the introduction amount of proton conductive groups.

つまり、ポリベンズイミダゾールはリン酸をドープすることで、無加湿条件下においてもプロトン伝導性を示すことから、無加湿用燃料電池電解質膜への応用が期待されている。しかし、(1)酸(液)をドープすると酸自体が可塑剤として働き、電解質膜が軟化し、機械的強度が低下する、(2)ドープした酸が電解質膜内に長期安定的に保持できないため、電解質膜から溶出する、という問題から実用化が困難であった。   In other words, polybenzimidazole is doped with phosphoric acid, and exhibits proton conductivity even under non-humidified conditions. Therefore, application to a non-humidified fuel cell electrolyte membrane is expected. However, when (1) the acid (liquid) is doped, the acid itself acts as a plasticizer, and the electrolyte membrane softens and mechanical strength decreases. (2) The doped acid cannot be stably retained in the electrolyte membrane for a long period of time. Therefore, it was difficult to put it to practical use due to the problem of elution from the electrolyte membrane.

他方、スルホ基を有するポリアリーレンにオゾン処理したカーボン材料を添加することにより、高温での耐久性を向上させたプロトン伝導性膜が提案されている(特許文献3)。   On the other hand, there has been proposed a proton conductive membrane that has improved durability at high temperatures by adding an ozone-treated carbon material to a polyarylene having a sulfo group (Patent Document 3).

特許文献3の方法では、オゾン処理によってカーボンに修飾される親水性基では混合するポリアリーレンが溶解する有機溶媒には十分な分散度が得られないために、均一な分散状態が得られず、電解質膜の機械的強度が低下するという問題がある。   In the method of Patent Document 3, since a sufficient dispersibility cannot be obtained in an organic solvent in which polyarylene to be mixed is dissolved in a hydrophilic group modified to carbon by ozone treatment, a uniform dispersion state cannot be obtained. There is a problem that the mechanical strength of the electrolyte membrane is lowered.

特開2006−131731号公報JP 2006-131731 A 特開平09−110982号公報Japanese Patent Laid-Open No. 09-110982 特開2006−335815号公報JP 2006-335815 A

本発明は、従来、水性溶媒にも非水性溶媒中にも高分散しなかったカーボンナノチューブの高分散液を得る。また、本発明は、フッ素系電解質の代替となり、プロトン伝導性を有し、耐熱性等にも優れるポリベンゾイミダゾール(PBI)の機械的強度を向上させた、プロトン伝導性材料を得るとともに、特に固体高分子型燃料電池に適した固体高分子電解質膜を提供することを目的とする。   The present invention obtains a highly dispersed carbon nanotube that has not been highly dispersed in an aqueous solvent or a non-aqueous solvent. In addition, the present invention provides a proton-conducting material that improves the mechanical strength of polybenzimidazole (PBI), which is an alternative to a fluorine-based electrolyte and has proton conductivity and excellent heat resistance. It is an object of the present invention to provide a solid polymer electrolyte membrane suitable for a polymer electrolyte fuel cell.

本発明者らは、ポリベンゾイミダゾール電解質膜のプロトン伝導性と機械的強度の両立を検討する中で、ポリベンズイミダゾール又はプロトン伝導性基が導入されたポリベンズイミダゾールには、特定の補強材が高分散されて、ポリベンズイミダゾールの機械的強度が向上するとともに、酸基の漏れ出しが抑制され、耐久性が向上することを見出し、本発明に到達した。   In the study of compatibility between proton conductivity and mechanical strength of the polybenzimidazole electrolyte membrane, the present inventors have a specific reinforcing material for polybenzimidazole or polybenzimidazole into which a proton conductive group is introduced. As a result of high dispersion, the mechanical strength of polybenzimidazole was improved, leakage of acid groups was suppressed, and durability was improved, and the present invention was achieved.

即ち、第1に、本発明は、分散液の発明であり、(A)ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体と、(B)カーボンナノチューブ又はプロトン伝導性基が導入されたカーボンナノチューブを含有する分散液である。   That is, first, the present invention is an invention of a dispersion, (A) a polybenzimidazole or a polybenzimidazole derivative, a polybenzimidazole or a polybenzimidazole derivative having a proton conductive group introduced therein, and (B) This is a dispersion containing carbon nanotubes or carbon nanotubes having proton conductive groups introduced therein.

従来、カーボンナノチューブは、水性溶媒にも非水性溶媒中にも高分散しなかったが、今回、ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体が、カーボンナノチューブ又はプロトン伝導性基が導入されたカーボンナノチューブを高分散することを発見した。   Conventionally, carbon nanotubes were not highly dispersed in an aqueous solvent or a non-aqueous solvent, but this time, polybenzimidazole or polybenzimidazole derivatives, polybenzimidazole or polybenzimidazole derivatives into which proton conductive groups have been introduced. Discovered that carbon nanotubes or carbon nanotubes having proton conductive groups introduced therein are highly dispersed.

カーボンナノチューブを高分散する分散液により、従来困難であったカーボンナノチューブの均一系又は近均一系での化学的修飾反応が可能となり、カーボンナノチューブの用途の拡大に役立つ。   A dispersion in which carbon nanotubes are highly dispersed enables a chemical modification reaction in a homogeneous or near-homogeneous system of carbon nanotubes, which has been difficult in the past, and is useful for expanding the applications of carbon nanotubes.

ポリベンズイミダゾールやカーボンナノチューブを修飾する、前記プロトン伝導性基としては、硫黄及び/又はリンを含む酸性基が好ましく、スルホン酸基及び/又はリン酸基がより好ましく例示される。   As said proton conductive group which modifies polybenzimidazole and a carbon nanotube, the acidic group containing sulfur and / or phosphorus is preferable, and a sulfonic acid group and / or a phosphoric acid group are illustrated more preferably.

第2に、本発明は、上記分散液の製造方法の発明であり、(A)ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体と、(B)カーボンナノチューブ又はプロトン伝導性基が導入されたカーボンナノチューブを有機溶媒中で攪拌混合することを特徴とする。
前記攪拌混合の方法は特に限定されないが、超音波照射により行うことが好ましい。
2ndly, this invention is invention of the manufacturing method of the said dispersion liquid, (A) The polybenzimidazole or polybenzimidazole derivative, the polybenzimidazole or polybenzimidazole derivative into which the proton conductive group was introduce | transduced, ( B) A carbon nanotube or a carbon nanotube having a proton conductive group introduced therein is stirred and mixed in an organic solvent.
The stirring and mixing method is not particularly limited, but is preferably performed by ultrasonic irradiation.

第3に、本発明は、プロトン伝導性材料の発明であり、(A)ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体と、(B)カーボンナノチューブ又はプロトン伝導性基が導入されたカーボンナノチューブを含有するプロトン伝導性材料である。   Third, the present invention is an invention of a proton conductive material, (A) a polybenzimidazole or a polybenzimidazole derivative, a polybenzimidazole or a polybenzimidazole derivative having a proton conductive group introduced therein, and (B) It is a proton conductive material containing carbon nanotubes or carbon nanotubes into which proton conductive groups have been introduced.

ポリベンズイミダゾール自体はプロトン伝導性を有するが、カーボンナノチューブを高分散する分散液の発見により、補強材としてカーボンナノチューブが作用し、従来のように酸ドープすることなく、優れたプロトン伝導性と機械的強度を両立させたプロトン伝導性材料が得られた。   Although polybenzimidazole itself has proton conductivity, the discovery of a dispersion that highly disperses carbon nanotubes makes carbon nanotubes act as a reinforcing material, and excellent proton conductivity and mechanical properties without acid doping as in the past. Proton-conducting material with good mechanical strength was obtained.

第4に、本発明は、上記のプロトン伝導性材料を基材とする固体電解質膜である。
第5に、本発明は、上記固体電解質膜の製造方法の発明であり、(A)ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体と、(B)カーボンナノチューブ又はプロトン伝導性基が導入されたカーボンナノチューブを有機溶媒中で攪拌混合し、分散液を製膜して得られる固体電解質膜の製造方法である。
前記攪拌混合を超音波照射により行うことが好ましいことは上述の通りである。
4thly, this invention is a solid electrolyte membrane which uses said proton conductive material as a base material.
Fifth, the present invention is an invention of a method for producing the solid electrolyte membrane, wherein (A) a polybenzimidazole or a polybenzimidazole derivative, a polybenzimidazole or a polybenzimidazole derivative into which a proton conductive group is introduced, (B) A method for producing a solid electrolyte membrane obtained by stirring and mixing carbon nanotubes or carbon nanotubes into which a proton conductive group has been introduced in an organic solvent to form a dispersion.
As described above, the stirring and mixing are preferably performed by ultrasonic irradiation.

第6に、本発明は、上記のプロトン伝導性材料を基材とする固体電解質膜を備えた固体高分子型燃料電池である。   Sixth, the present invention is a polymer electrolyte fuel cell comprising a solid electrolyte membrane based on the proton conductive material.

カーボンナノチューブを高分散する分散液の発見により、カーボンナノチューブの均一系又は近均一系での化学的修飾反応が可能となった。   The discovery of dispersions that highly disperse carbon nanotubes has made it possible to perform chemical modification reactions in a homogeneous or near-homogeneous system of carbon nanotubes.

また、フッ素系電解質の代替となり、プロトン伝導性を有し、耐熱性等にも優れるポリベンゾイミダゾール(PBI)の機械的強度を向上させた、プロトン伝導性材料を得ることが可能となった。更に、非フッ素系樹脂のプロトン伝導性膜により、特に固体高分子型燃料電池に適した固体高分子電解質膜が得られた。   In addition, it has become possible to obtain a proton conductive material that has improved the mechanical strength of polybenzimidazole (PBI), which is a substitute for a fluorine-based electrolyte and has proton conductivity and excellent heat resistance. Furthermore, a solid polymer electrolyte membrane particularly suitable for a polymer electrolyte fuel cell was obtained by using a proton conductive membrane of a non-fluorine resin.

本発明で言う「ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体」は、下記一般式(I)で表される。   The “polybenzimidazole or polybenzimidazole derivative, polybenzimidazole or polybenzimidazole derivative into which a proton conductive group is introduced” referred to in the present invention is represented by the following general formula (I).

Figure 2009013374
Figure 2009013374

ここで、一般式(I)中、Rは4価の芳香族基、Rは脂肪族基、脂環族基または芳香族基、R〜Rは同一または異なり、水素原子または炭素数2〜5のアルキルスルホン酸基(またはその塩)又はアルキルリン酸基(またはその塩)であり、かつR〜R中には繰り返し構造単位1ユニット中、0.1〜2個の水素原子、アルキルスルホン酸基(またはその塩)又はアルキルリン酸基(またはその塩)を含み、nは10〜10,000である。 Here, in the general formula (I), R 1 is a tetravalent aromatic group, R 2 is an aliphatic group, an alicyclic group or an aromatic group, and R 3 to R 4 are the same or different, and are a hydrogen atom or carbon 2 to 5 alkyl sulfonic acid groups (or salts thereof) or alkyl phosphoric acid groups (or salts thereof), and R 3 to R 4 include 0.1 to 2 repeating units in one unit of the structural unit. A hydrogen atom, an alkylsulfonic acid group (or a salt thereof) or an alkylphosphoric acid group (or a salt thereof) is included, and n is 10 to 10,000.

ポリベンズイミダゾール又はポリベンズイミダゾール誘導体の具体例を示す。
ポリベンズイミダゾールは下記一般式で表される。
Specific examples of polybenzimidazole or polybenzimidazole derivatives are shown.
Polybenzimidazole is represented by the following general formula.

Figure 2009013374
Figure 2009013374

このポリベンズイミダゾールの具体例としては、ポリ−2,2′−(m−フェニレン)−5,5′−ビベンズイミダゾール、ポリ−2,2′−(ピリジレン−3′,5′)−5,5′−ビベンズイミダゾール、ポリ−2,2′−(フリレン−2′,5′)−5,5′−ビベンズイミダゾール、ポリ−2,2′−(ナフタレン−1′,6′)−5,5′−ビベンズイミダゾール、ポリ−2,2′−(ビフェニレン−4′,4′)−5,5′−ビベンズイミダゾール、ポリ−2,2′−(アミレン)−5,5′−ビベンズイミダゾール、ポリ−2,2′−(オクタメチレン)−5,5′−ビベンズイミダゾール、ポリ−2,2′−(m−フェニレン)−5,5′−ジイミダゾベンゼン、ポリ−2,2′−(m−フェニレン)−5,5′−ジ(ベンズイミダゾール)エーテル、ポリ−2,2′−(m−フェニレン)−5,5′−ジ(ベンズイミダゾール)スルフィド、ポリ−2,2′−(m−フェニレン)−5,5′−ジ(ベンズイミダゾール)スルホン、ポリ−2,2′−(m−フェニレン)−5,5′−ジ(ベンズイミダゾール)メタン、ポリ−2,2′−(m−フェニレン)−5,5′−ジ(ベンズイミダゾール)プロパン−2,2、ポリ−2,2′−(m−フェニレン)−5,5′−ジ(ベンズイミダゾール)−エチレン−1,2などが挙げられる。   Specific examples of this polybenzimidazole include poly-2,2 '-(m-phenylene) -5,5'-bibenzimidazole, poly-2,2'-(pyridylene-3 ', 5')-5. , 5'-bibenzimidazole, poly-2,2 '-(furylene-2', 5 ')-5,5'-bibenzimidazole, poly-2,2'-(naphthalene-1 ', 6') -5,5'-bibenzimidazole, poly-2,2 '-(biphenylene-4', 4 ')-5,5'-bibenzimidazole, poly-2,2'-(amylene) -5,5 '-Bibenzimidazole, poly-2,2'-(octamethylene) -5,5'-bibenzimidazole, poly-2,2 '-(m-phenylene) -5,5'-diimidazobenzene, poly -2,2 '-(m-phenylene) -5,5'-di (ben Imidazole) ether, poly-2,2 '-(m-phenylene) -5,5'-di (benzimidazole) sulfide, poly-2,2'-(m-phenylene) -5,5'-di (benz Imidazole) sulfone, poly-2,2 '-(m-phenylene) -5,5'-di (benzimidazole) methane, poly-2,2'-(m-phenylene) -5,5'-di (benz Examples include imidazole) propane-2,2, poly-2,2 '-(m-phenylene) -5,5'-di (benzimidazole) -ethylene-1,2.

特には、R、Rがベンゼン環、ナフタレン環などのπ共役系の化合物を含むことが必要である。特に環状化合物であることが好ましい。 In particular, R 1 and R 2 need to contain a π-conjugated compound such as a benzene ring or a naphthalene ring. A cyclic compound is particularly preferable.

これらの中で、下記一般式で表される、ポリ−2,2′−(m−フェニレン)−5,5′−ベンズイミダゾールがより好ましく例示される。   Among these, poly-2,2 ′-(m-phenylene) -5,5′-benzimidazole represented by the following general formula is more preferably exemplified.

Figure 2009013374
Figure 2009013374

ポリベンズイミダゾールの重合度(n)は、通常、10〜10,000、好ましくは20〜5,000であり、10未満では機械的強度が劣り問題となり、一方、10,000を超えると溶剤への溶解性が悪くなるため、キャスティングなどの成形性に問題が生じる場合がある。   The degree of polymerization (n) of polybenzimidazole is usually 10 to 10,000, preferably 20 to 5,000. If it is less than 10, the mechanical strength is inferior, while if it exceeds 10,000, it becomes a solvent. Since the solubility of the resin deteriorates, there may be a problem in moldability such as casting.

本発明で用いられる、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体は、上記ポリベンズイミダゾールにアルキルスルホン酸基やアルキルリン酸基を導入することにより得ることができる。アルキルスルホン酸基やアルキルリン酸基を導入する方法としては、公知の方法を採用することができる。   The polybenzimidazole or polybenzimidazole derivative having a proton conductive group used in the present invention can be obtained by introducing an alkylsulfonic acid group or an alkylphosphoric acid group into the polybenzimidazole. As a method for introducing an alkylsulfonic acid group or an alkylphosphoric acid group, a known method can be adopted.

本発明の分散液を製造される際に用いられる有機溶媒としては、「ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体」を溶解するものであれば特に限定されない。溶媒量は「ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体」を溶解するものであれば特に限定されない。   As an organic solvent used when the dispersion of the present invention is produced, “a polybenzimidazole or a polybenzimidazole derivative, a polybenzimidazole or a polybenzimidazole derivative having a proton conductive group introduced” is dissolved. If there is no particular limitation. The amount of the solvent is not particularly limited as long as it dissolves “polybenzimidazole or polybenzimidazole derivative, polybenzimidazole or polybenzimidazole derivative having a proton conductive group introduced”.

有機溶剤の具体例としては、例えば、n−ヘキサンなどの炭化水素溶剤、テトラヒドロフラン、ジオキサンなどのエーテル系溶剤、ジメチルアセトアミド(DMAC)、ジメチルホルムアミドのようなアミド系溶剤、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドンなどが挙げられ、好ましくはジメチルスルホキシド(DMSO)である。   Specific examples of the organic solvent include hydrocarbon solvents such as n-hexane, ether solvents such as tetrahydrofuran and dioxane, amide solvents such as dimethylacetamide (DMAC) and dimethylformamide, dimethyl sulfoxide (DMSO), N -Methyl-2-pyrrolidone and the like can be mentioned, and dimethyl sulfoxide (DMSO) is preferred.

重合体中のスルホ基又はリン酸基の対イオンとしては、プロトン、リチウム、ナトリウムなどのアルカリ金属、カルシウム、マグネシウムなどのアルカリ土類金属、アンモニア、有機アミンなど特に制限はない。プロトン伝導性高分子固体電解質として使用する場合には、対イオンはプロトンが好ましい。   The counter ion of the sulfo group or phosphate group in the polymer is not particularly limited, such as alkali metals such as protons, lithium and sodium, alkaline earth metals such as calcium and magnesium, ammonia and organic amines. When used as a proton conductive polymer solid electrolyte, the counter ion is preferably a proton.

「プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体」中の水素原子、スルホ基又はリン酸基量は、重合体を構成する1ユニットに対して、通常、0.1〜2個である。0.1個未満では、プロトン伝導性基の絶対数が少ないため、プロトン伝導性が上がらないなど充分な性能が得られず、2個を超えるものはポリベンズイミダゾールの構造上得難い。   The amount of hydrogen atom, sulfo group or phosphate group in the “polybenzimidazole or polybenzimidazole derivative having a proton-conducting group introduced” is usually 0.1 to 2 per unit constituting the polymer. It is a piece. If it is less than 0.1, the absolute number of proton conductive groups is small, so that sufficient performance cannot be obtained, for example, proton conductivity does not increase, and those exceeding 2 are difficult to obtain due to the structure of polybenzimidazole.

本発明で用いられるカーボンナノチューブ(CNT)としては、シングルウオールカーボンナノチューブ(SWNT)、ダブルウオールナノカーボンナノチューブ(DWNT)、マルチウオールカーボンナノチューブ(MWNT)などカーボンナノチューブ(CNT)類であれば種類はとわない。また、微細なカーボンファイバー(CF)などもこれに含む。   As carbon nanotubes (CNT) used in the present invention, there are various types of carbon nanotubes (CNTs) such as single wall carbon nanotubes (SWNT), double wall nano carbon nanotubes (DWNT), and multi wall carbon nanotubes (MWNT). I don't know. Also included are fine carbon fibers (CF).

本発明で採用する混合攪拌方法は特に限定されないが、超音波を照射することが好ましい。超音波の種類は特に限りはないが、バス型の超音波洗浄機で間接的に照射するよりも、プローブ型の振動子を直接溶媒の中に入れ、照射するほうがより効率的である。   The mixing and stirring method employed in the present invention is not particularly limited, but it is preferable to irradiate ultrasonic waves. The type of ultrasonic wave is not particularly limited, but it is more efficient to irradiate the probe type vibrator directly in the solvent than to indirectly irradiate with a bath type ultrasonic cleaner.

超音波照射時間としては、装置、分散させる量などにもよるが、1分〜3時間ほどが適当であり、特に10分から1時間程度が望ましい。   Although it depends on the apparatus and the amount to be dispersed, the ultrasonic irradiation time is suitably about 1 minute to 3 hours, and particularly preferably about 10 minutes to 1 hour.

分散溶液の回収方法は特に限定されないが、超音波照射後、望ましくは1000G〜150000Gで遠心分離し、上澄みを回収する方法が好ましく例示される。ただし、遠心分離の有無、遠心強度はこれに限定されない。   Although the collection method of a dispersion solution is not specifically limited, The method of preferably centrifuging at 1000G-150,000G after ultrasonic irradiation, and collect | recovering supernatants is illustrated preferably. However, the presence / absence of centrifugation and the centrifugal strength are not limited thereto.

プロトン伝導性高分子固体電解質膜を調製するには、例えば本発明の分散液をブレンドしたのち、キャスティングによりフィルム状に成形する方法、圧力をかけて成形するなどの方法が挙げられる。   In order to prepare the proton conductive polymer solid electrolyte membrane, for example, after blending the dispersion liquid of the present invention, a method of forming into a film by casting, a method of forming by applying pressure, and the like can be mentioned.

本発明のプロトン伝導性材料の用途として、高分子固体電解質が挙げられ、一次電池用電解質、二次電池用電解質、燃料電池用電解質、表示素子、エレクトロクロミック素子(窓)、各種センサー、信号伝達媒体、固体コンデンサーなどに利用可能である。   Applications of the proton conductive material of the present invention include solid polymer electrolytes. Primary battery electrolytes, secondary battery electrolytes, fuel cell electrolytes, display elements, electrochromic elements (windows), various sensors, signal transmission It can be used for a medium, a solid capacitor, and the like.

他の用途としては、例えば塩化ナトリウムの電解膜、各種カチオンの交換樹脂(膜)、透析膜、ガス選択透過膜、水蒸気選択透過膜、抗血液凝固材料などの医療材料、電池用セパレーター、電極素子、電気化学センサー、帯電防止剤などが好ましく挙げられる。   Other applications include, for example, sodium chloride electrolytic membranes, various cation exchange resins (membranes), dialysis membranes, gas selective permeable membranes, water vapor selective permeable membranes, anti-blood coagulation materials, and other medical materials, battery separators, and electrode elements. Preferred examples include an electrochemical sensor and an antistatic agent.

以下、本発明の実施例を示す。
[実施例1:PBI−CNT分散液]
ポリ−2,2′−(m−フェニレン)−5,5′−ベンズイミダゾール20mgをジメチルスルホキシド(DMSO)10mlに加え溶解させる。そこに、シングルウオールカーボンナノチューブ(SWNT)を0.2mg加え、超音波を10分間照射し、混合攪拌し、均一な分散溶液を得た。
Examples of the present invention will be described below.
[Example 1: PBI-CNT dispersion]
20 mg of poly-2,2 '-(m-phenylene) -5,5'-benzimidazole is added to 10 ml of dimethyl sulfoxide (DMSO) and dissolved. Thereto, 0.2 mg of single wall carbon nanotube (SWNT) was added, irradiated with ultrasonic waves for 10 minutes, mixed and stirred to obtain a uniform dispersion solution.

図1に、得られたPBI−CNTを含むDMSO分散液のUV(紫外)−vis−NIR(近赤外)スペクトルを示す。本来、シングルウオールカーボンナノチューブには3個の異なる構造が知られているが、通常のシングルウオールカーボンナノチューブ非分散液又は低分散液では、これらのスペクトルはなだらかな曲線を描くのに対し、本実施例では三箇所にピークが見られることより、シングルウオールカーボンナノチューブがばらばらに高分散していることが分かる。   FIG. 1 shows a UV (ultraviolet) -vis-NIR (near infrared) spectrum of the obtained DMSO dispersion containing PBI-CNT. Originally, three different structures are known for single wall carbon nanotubes, but in the case of ordinary single wall carbon nanotube non-dispersion liquid or low dispersion liquid, these spectra draw a gentle curve. In the example, it can be seen that single wall carbon nanotubes are disperse highly dispersed from the fact that peaks are observed at three locations.

[実施例2:PBI−CNT補強膜]
実施例1のように、ポリ−2,2′−(m−フェニレン)−5,5′−ベンズイミダゾール50mgをジメチルスルホキシド(DMSO)10mlに加え溶解させる。そこに、シングルウオールカーボンナノチューブ0.2mg加え、超音波を10分照射し分散させ、分散溶液を得た。
[Example 2: PBI-CNT reinforcing membrane]
As in Example 1, 50 mg of poly-2,2 ′-(m-phenylene) -5,5′-benzimidazole is added to 10 ml of dimethyl sulfoxide (DMSO) and dissolved. Thereto, 0.2 mg of single wall carbon nanotubes was added, and ultrasonic waves were irradiated for 10 minutes to disperse to obtain a dispersion solution.

この溶液を脱泡し、ガラス基盤の上にキャストで、100℃真空乾燥を行い、100μmの膜を得た。   This solution was degassed and cast on a glass substrate and vacuum dried at 100 ° C. to obtain a 100 μm film.

本実施例の膜(0.4wt%SWNT/PBI)の引っ張り強度(ヤング率)が1850MPaであったのに対して、PBI単独膜の引っ張り強度(ヤング率)は1630MPaであった。この比較より、CNTの混合でPBI膜の強度を向上できることが分かる。   The tensile strength (Young's modulus) of the film of this example (0.4 wt% SWNT / PBI) was 1850 MPa, whereas the tensile strength (Young's modulus) of the PBI single film was 1630 MPa. From this comparison, it can be seen that the strength of the PBI film can be improved by mixing CNTs.

図2に、図1と同様に、得られたPBI+SWNTキャスト膜のUV(紫外)−vis−NIR(近赤外)スペクトルを示す。スペクトルが3個のピークを有することから、SWNTがPBI中に均一に分散していることが分かる。   FIG. 2 shows the UV (ultraviolet) -vis-NIR (near infrared) spectrum of the obtained PBI + SWNT cast film, as in FIG. Since the spectrum has three peaks, it can be seen that SWNTs are uniformly dispersed in PBI.

PBIに対するCNTの重量比(CNT/PBI(wt%))は、0.0001〜10wt%程度が好ましく、0.01〜5wt%がさらに好ましい。   The weight ratio of CNT to PBI (CNT / PBI (wt%)) is preferably about 0.0001 to 10 wt%, and more preferably 0.01 to 5 wt%.

溶存、または気泡として存在する気体を液外へ排出する脱法方法は問わない。具体的には超音波、遠心、減圧などがあげられる。また、この工程はなくてもよい。   There is no limitation on the degassing method for discharging the dissolved or bubbled gas out of the liquid. Specific examples include ultrasonic waves, centrifugation, and reduced pressure. Further, this step may be omitted.

製膜方法は、必要な膜厚に伸ばすことができれば特に問わない。具体的には溶液をスピンコートやドクターブレード、キャストなどで必要な厚さに伸ばす。   The film forming method is not particularly limited as long as it can be extended to a required film thickness. Specifically, the solution is stretched to the required thickness by spin coating, doctor blade, casting or the like.

乾燥方法は、溶媒を除去できれば特に問わない。具体的には減圧、過熱、風乾、などがある。   The drying method is not particularly limited as long as the solvent can be removed. Specifically, there are decompression, overheating, air drying, and the like.

[実施例3:PBI−化学修飾CNT]
CNTを酸官能基で修飾し、それをPBIと混合し、酸をドープする必要のないPBI電解質膜、もしくは触媒層の電解質として利用する。
[Example 3: PBI-chemically modified CNT]
CNT is modified with an acid functional group, mixed with PBI, and used as a PBI electrolyte membrane that does not need to be doped with an acid, or as an electrolyte for a catalyst layer.

酸基を導入したCNTをPBI中に均一分散することによって、酸のドープが必要なくなる。酸のドープが必要なくなるのでPBI自体の膜強度の低下を抑制できるのに加え、CNTの混合によって機械的強度を向上することができる。   By uniformly dispersing the CNTs introduced with acid groups in PBI, no acid doping is required. Since no acid doping is required, a decrease in film strength of PBI itself can be suppressed, and in addition, mechanical strength can be improved by mixing CNTs.

このようにして得た化学修飾CNTをPBI中に分散させ、溶媒を蒸発させて固形分を電解質膜あるいは触媒層電解質として使用する。また、これに後工程でリン酸を含浸させても、もちろんよい。   The chemically modified CNT thus obtained is dispersed in PBI, the solvent is evaporated, and the solid content is used as an electrolyte membrane or a catalyst layer electrolyte. Of course, it may be impregnated with phosphoric acid in a later step.

フッ素化カーボンナノチューブ(F−CNT)50mgをエチレンジアミン100mlにいれ、超音波洗浄機で15分攪拌した。それを80℃で24h攪拌し、CNT−(F)(NH−C−NHを得た。得たCNT−(F)(NH−C−NH10mgと1,3−プロパンスルトンを超音波洗浄機で15分攪拌し、125℃で3h反応させ、CNT−(F)(NH−C−NH2−SOH)を得た。 50 mg of fluorinated carbon nanotube (F-CNT) was put into 100 ml of ethylenediamine, and stirred for 15 minutes with an ultrasonic cleaner. It was stirred at 80 ° C. for 24 hours to obtain CNT- (F) m (NH 2 —C 2 H 4 —NH 2 ) n . The obtained CNT- (F) m (NH 2 —C 2 H 4 —NH 2 ) n 10 mg and 1,3-propane sultone were stirred with an ultrasonic cleaner for 15 minutes, reacted at 125 ° C. for 3 hours, and CNT- ( F) was obtained m (NH 2 -C 2 H 4 -NH 2- C 3 H 6 SO 3 H) y.

CNT−(F)(NH−C−NH2−SOH)を実施例2と同様の方法でPBIと混合し、酸化学修飾CNT/PB1複合電解質を得ることができた。 CNT- (F) m (NH 2 —C 2 H 4 —NH 2 —C 3 H 6 SO 3 H) y was mixed with PBI in the same manner as in Example 2 to prepare an acid chemically modified CNT / PB1 composite electrolyte. I was able to get it.

本実施例の酸化学修飾CNT/PB1複合電解質には、それ自体で優れたプロトン伝導性を有するので酸をドープする必要がないが、更に、本電解質に後工程でリン酸などを含浸させてもよい。   The acid-chemically modified CNT / PB1 composite electrolyte of this example does not need to be doped with an acid because it has excellent proton conductivity, but the electrolyte is impregnated with phosphoric acid or the like in a later step. Also good.

まず、CNTを酸官能基で修飾する。修飾は直接CNTに化学結合をさせる(CNTの直接修飾方法)か、もしくはハロゲン化したCNTのハロゲンとの置換反応によって末端にスルホン酸、もしくはホスホン酸をもつ官能基などを修飾する(CNTの置換修飾方法)ことによって得る。図3に、化学修飾されたCNTの立体模式図を示す。   First, CNT is modified with an acid functional group. For modification, the CNT is directly chemically bonded to the CNT (direct modification method of the CNT), or a functional group having a sulfonic acid or a phosphonic acid at the terminal is modified by a substitution reaction of the halogenated CNT with the halogen (substitution of the CNT). Modification method). FIG. 3 shows a three-dimensional schematic diagram of chemically modified CNT.

CNTの直接修飾方法としては、末端に酸官能基が結合しているものをCNTに修飾できれば公知の方法でかまわないが、望ましくは求核反応、求電子反応、ラジカル反応が望ましい。CNTの置換修飾方法としては、F化、Cl化などハロゲン化されたCNTを原料とするのが望ましく、そのハロゲンとの置換反応を経由して、最終的に末端に酸官能基をCNTに修飾できれば公知の方法でかまわない。修飾官能基数としては、
CNT由来の炭素数/修飾されている官能基数(n+m or x+y)≦2
である。
As a direct modification method of CNT, a known method may be used as long as an acid functional group bonded to the terminal can be modified to CNT, but nucleophilic reaction, electrophilic reaction, and radical reaction are desirable. As a substitution modification method of CNT, it is desirable to use halogenated CNT such as F-formation and Cl-formation as raw materials, and finally the acid functional group is modified to CNT at the terminal via substitution reaction with the halogen. If possible, a known method may be used. As the number of modified functional groups,
CNT-derived carbon number / modified functional group number (n + m or x + y) ≦ 2
It is.

[実施例4:PBI−化学修飾CNT複合膜の酸漏れ出し評価]
PBI−化学修飾CNT複合膜からの酸漏れ出しが如何程であるか実験した。
[Example 4: Evaluation of acid leakage of PBI-chemically modified CNT composite film]
An experiment was conducted to determine how much acid leakage occurred from the PBI-chemically modified CNT composite film.

図4に、スルホン化SWNT(SWNT−SO)の合成法を示す。また、図5に、化学修飾CNTとしてスルホン化SWNTをPBIに混合して、スルホン化SWNT/PBI複合膜(複合フィルム)の作製法を示す。同様に、図6に、化学修飾CNTとしてスルホン化SWNTをPBIに混合して、スルホン化SWNT/PBI複合膜(複合フィルム)の作製工程を化学式で示す。 FIG. 4 shows a synthesis method of sulfonated SWNT (SWNT-SO 3 ). FIG. 5 shows a method for preparing a sulfonated SWNT / PBI composite film (composite film) by mixing sulfonated SWNTs as PBI with chemically modified CNTs. Similarly, in FIG. 6, a process for producing a sulfonated SWNT / PBI composite membrane (composite film) by mixing sulfonated SWNTs as chemically modified CNTs with PBI is shown by a chemical formula.

得られたスルホン化SWNT/PBI複合膜(複合フィルム)を煮沸せずに蛍光X線測定による硫黄(S)含有量を測定したところ、0.05%であった。このスルホン化SWNT/PBI複合膜(複合フィルム)を6時間煮沸した後に蛍光X線測定による硫黄(S)含有量を測定したところ、0.05%であった。このように、煮沸前後で硫黄含有量に変化はないことから、酸の漏れ出しはなかったことが分かる。即ち、本発明のPBI−化学修飾CNT複合膜は酸漏れ出しがない系だと言える。   When the obtained sulfonated SWNT / PBI composite membrane (composite film) was not boiled, the sulfur (S) content measured by fluorescent X-ray measurement was 0.05%. When this sulfonated SWNT / PBI composite membrane (composite film) was boiled for 6 hours and the sulfur (S) content was measured by fluorescent X-ray measurement, it was 0.05%. Thus, since there is no change in the sulfur content before and after boiling, it can be seen that there was no leakage of acid. That is, it can be said that the PBI-chemically modified CNT composite film of the present invention is a system that does not leak acid.

カーボンナノチューブを高分散する分散液の発見により、カーボンナノチューブの均一系又は近均一系での化学的修飾反応が可能となった。また、フッ素系電解質の代替となり、プロトン伝導性を有し、耐熱性等にも優れるポリベンゾイミダゾール(PBI)の機械的強度を向上させた、プロトン伝導性材料を得ることが可能となった。更に、非フッ素系樹脂のプロトン伝導性膜により、特に固体高分子型燃料電池に適した固体高分子電解質膜が得られた。   The discovery of dispersions that highly disperse carbon nanotubes has made it possible to perform chemical modification reactions in a homogeneous or near-homogeneous system of carbon nanotubes. In addition, it has become possible to obtain a proton conductive material that has improved the mechanical strength of polybenzimidazole (PBI), which is a substitute for a fluorine-based electrolyte and has proton conductivity and excellent heat resistance. Furthermore, a solid polymer electrolyte membrane particularly suitable for a polymer electrolyte fuel cell was obtained by using a proton conductive membrane of a non-fluorine resin.

PBI−CNTを含むDMSO分散液のUV(紫外)−vis−NIR(近赤外)スペクトルを示す。The UV (ultraviolet) -vis-NIR (near infrared) spectrum of the DMSO dispersion liquid containing PBI-CNT is shown. PBI+SWNTキャスト膜のUV(紫外)−vis−NIR(近赤外)スペクトルを示す。The UV (ultraviolet) -vis-NIR (near infrared) spectrum of a PBI + SWNT cast film is shown. 化学修飾されたCNTの立体模式図を示す。A three-dimensional schematic diagram of chemically modified CNT is shown. スルホン化SWNT(SWNT−SO)の合成法を示す。Shows the synthesis of sulfonated SWNT (SWNT-SO 3). 化学修飾CNTとしてスルホン化SWNTをPBIに混合して、スルホン化SWNT/PBI複合膜(複合フィルム)の作製法を示す。A method for preparing a sulfonated SWNT / PBI composite membrane (composite film) by mixing sulfonated SWNT as PBI with chemically modified CNT is shown. 化学修飾CNTとしてスルホン化SWNTをPBIに混合して、スルホン化SWNT/PBI複合膜(複合フィルム)の作製工程を化学式で示す。A process for preparing a sulfonated SWNT / PBI composite membrane (composite film) by mixing sulfonated SWNTs with PBI as chemically modified CNTs is shown by a chemical formula.

Claims (12)

(A)ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体と、(B)カーボンナノチューブ又はプロトン伝導性基が導入されたカーボンナノチューブを含有する分散液。   (A) Dispersion containing polybenzimidazole or polybenzimidazole derivative, polybenzimidazole or polybenzimidazole derivative introduced with a proton conductive group, and (B) carbon nanotube or carbon nanotube introduced with a proton conductive group liquid. 前記プロトン伝導性基が、硫黄及び/又はリンを含む酸性基であることを特徴とする請求項1に記載の分散液。   The dispersion liquid according to claim 1, wherein the proton conductive group is an acidic group containing sulfur and / or phosphorus. 前記プロトン伝導性基が、スルホ基及び/又はリン酸基であることを特徴とする請求項1に記載の分散液。   The dispersion according to claim 1, wherein the proton conductive group is a sulfo group and / or a phosphate group. (A)ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体と、(B)カーボンナノチューブ又はプロトン伝導性基が導入されたカーボンナノチューブを有機溶媒中で攪拌混合することを特徴とする分散液の製造方法。   (A) a polybenzimidazole or a polybenzimidazole derivative, a polybenzimidazole or a polybenzimidazole derivative having a proton conductive group introduced therein, and (B) a carbon nanotube or a carbon nanotube having a proton conductive group introduced therein in an organic solvent. A method for producing a dispersion, which comprises stirring and mixing. 前記攪拌混合を超音波照射により行うことを特徴とする請求項4に記載の分散液の製造方法。   The method for producing a dispersion according to claim 4, wherein the stirring and mixing is performed by ultrasonic irradiation. (A)ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体と、(B)カーボンナノチューブ又はプロトン伝導性基が導入されたカーボンナノチューブを含有するプロトン伝導性材料。   (A) Polybenzimidazole or a polybenzimidazole derivative, a polybenzimidazole or polybenzimidazole derivative having a proton conductive group introduced therein, and (B) a carbon nanotube or a proton containing a carbon nanotube having a proton conductive group introduced therein Conductive material. 前記プロトン伝導性基が、硫黄及び/又はリンを含む酸性基であることを特徴とする請求項6に記載のプロトン伝導性材料。   The proton conductive material according to claim 6, wherein the proton conductive group is an acidic group containing sulfur and / or phosphorus. 前記プロトン伝導性基が、スルホ基及び/又はリン酸基であることを特徴とする請求項6に記載のプロトン伝導性材料。   The proton conductive material according to claim 6, wherein the proton conductive group is a sulfo group and / or a phosphate group. 請求項6乃至8のいずれかに記載のプロトン伝導性材料を基材とする固体電解質膜。   A solid electrolyte membrane comprising the proton conductive material according to claim 6 as a base material. (A)ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体と、(B)カーボンナノチューブ又はプロトン伝導性基が導入されたカーボンナノチューブを有機溶媒中で攪拌混合し、分散液を製膜して得られる固体電解質膜の製造方法。   (A) a polybenzimidazole or a polybenzimidazole derivative, a polybenzimidazole or a polybenzimidazole derivative having a proton conductive group introduced therein, and (B) a carbon nanotube or a carbon nanotube having a proton conductive group introduced therein in an organic solvent. A method for producing a solid electrolyte membrane obtained by stirring and mixing in a step and forming a dispersion film. 前記攪拌混合を超音波照射により行うことを特徴とする請求項10に記載の固体電解質膜の製造方法。   The method for producing a solid electrolyte membrane according to claim 10, wherein the stirring and mixing is performed by ultrasonic irradiation. 請求項6乃至8のいずれかに記載のプロトン伝導性材料を基材とする固体電解質膜を備えた固体高分子型燃料電池。   A solid polymer fuel cell comprising a solid electrolyte membrane based on the proton conductive material according to claim 6.
JP2007179887A 2007-07-09 2007-07-09 Dispersion, method for producing the same, proton conductive material, solid electrolyte membrane based on the proton conductive material, method for producing the solid electrolyte membrane, and polymer electrolyte fuel cell provided with the solid electrolyte membrane Expired - Fee Related JP5012268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007179887A JP5012268B2 (en) 2007-07-09 2007-07-09 Dispersion, method for producing the same, proton conductive material, solid electrolyte membrane based on the proton conductive material, method for producing the solid electrolyte membrane, and polymer electrolyte fuel cell provided with the solid electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007179887A JP5012268B2 (en) 2007-07-09 2007-07-09 Dispersion, method for producing the same, proton conductive material, solid electrolyte membrane based on the proton conductive material, method for producing the solid electrolyte membrane, and polymer electrolyte fuel cell provided with the solid electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2009013374A true JP2009013374A (en) 2009-01-22
JP5012268B2 JP5012268B2 (en) 2012-08-29

Family

ID=40354667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007179887A Expired - Fee Related JP5012268B2 (en) 2007-07-09 2007-07-09 Dispersion, method for producing the same, proton conductive material, solid electrolyte membrane based on the proton conductive material, method for producing the solid electrolyte membrane, and polymer electrolyte fuel cell provided with the solid electrolyte membrane

Country Status (1)

Country Link
JP (1) JP5012268B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223365B1 (en) * 2011-05-25 2013-01-16 경북대학교 산학협력단 A preparation method of functionalized carbon nanotubes reinforced perfluorinated sulfonic acid nanocomposite membranes
JP2013036021A (en) * 2011-07-08 2013-02-21 Ube Industries Ltd Carbon nanotube dispersant including polyamic acid
US8802315B2 (en) 2011-11-16 2014-08-12 Samsung Electronics Co., Ltd. Composition, composite prepared from the composition, electrode using the composition or the composite, composite membrane including the composite, and fuel cell including the composite membrane
KR20160029598A (en) * 2014-09-05 2016-03-15 삼성전자주식회사 Membrane electrode assembly and fuel cell using the same
JP2016514354A (en) * 2013-07-29 2016-05-19 ジョーダン グリーン テクノロジー (ディージー) カンパニー リミテッドJordan Green Technology (Dg) Co., Ltd. Electrode plate, method of forming electrode plate, and method of forming lithium battery core including electrode plate
WO2019124389A1 (en) * 2017-12-19 2019-06-27 株式会社リケン Piston ring for internal combustion engine
CN116344879A (en) * 2023-05-30 2023-06-27 佛山科学技术学院 Nano composite film with metal-organic framework and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208416A (en) * 2000-11-13 2002-07-26 Toyobo Co Ltd Compound of polyimidazole containing sulfonic acid and its molded product
JP2003178772A (en) * 2001-12-07 2003-06-27 Toyota Motor Corp Solid electrolyte material
JP2004152615A (en) * 2002-10-30 2004-05-27 Asahi Glass Co Ltd Solid polymer electrolyte film, its manufacturing method, and film electrode assembly
JP2005336341A (en) * 2004-05-27 2005-12-08 Mitsubishi Rayon Co Ltd Composition containing carbon nanotube, composite material having coating film made thereof and method for producing the same
JP2006131731A (en) * 2004-11-05 2006-05-25 Toyota Motor Corp Solid electrolyte material, membrane-electrode conjugate and fuel cell
JP2006176667A (en) * 2004-12-22 2006-07-06 Toyobo Co Ltd Polybenzazole film
JP2006335815A (en) * 2005-05-31 2006-12-14 Honda Motor Co Ltd Proton conductor composition and proton-conductive composite membrane
JP2008007699A (en) * 2006-06-30 2008-01-17 Teijin Ltd Heat-resistant resin composite composition and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208416A (en) * 2000-11-13 2002-07-26 Toyobo Co Ltd Compound of polyimidazole containing sulfonic acid and its molded product
JP2003178772A (en) * 2001-12-07 2003-06-27 Toyota Motor Corp Solid electrolyte material
JP2004152615A (en) * 2002-10-30 2004-05-27 Asahi Glass Co Ltd Solid polymer electrolyte film, its manufacturing method, and film electrode assembly
JP2005336341A (en) * 2004-05-27 2005-12-08 Mitsubishi Rayon Co Ltd Composition containing carbon nanotube, composite material having coating film made thereof and method for producing the same
JP2006131731A (en) * 2004-11-05 2006-05-25 Toyota Motor Corp Solid electrolyte material, membrane-electrode conjugate and fuel cell
JP2006176667A (en) * 2004-12-22 2006-07-06 Toyobo Co Ltd Polybenzazole film
JP2006335815A (en) * 2005-05-31 2006-12-14 Honda Motor Co Ltd Proton conductor composition and proton-conductive composite membrane
JP2008007699A (en) * 2006-06-30 2008-01-17 Teijin Ltd Heat-resistant resin composite composition and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223365B1 (en) * 2011-05-25 2013-01-16 경북대학교 산학협력단 A preparation method of functionalized carbon nanotubes reinforced perfluorinated sulfonic acid nanocomposite membranes
JP2013036021A (en) * 2011-07-08 2013-02-21 Ube Industries Ltd Carbon nanotube dispersant including polyamic acid
US8802315B2 (en) 2011-11-16 2014-08-12 Samsung Electronics Co., Ltd. Composition, composite prepared from the composition, electrode using the composition or the composite, composite membrane including the composite, and fuel cell including the composite membrane
JP2016514354A (en) * 2013-07-29 2016-05-19 ジョーダン グリーン テクノロジー (ディージー) カンパニー リミテッドJordan Green Technology (Dg) Co., Ltd. Electrode plate, method of forming electrode plate, and method of forming lithium battery core including electrode plate
KR20160029598A (en) * 2014-09-05 2016-03-15 삼성전자주식회사 Membrane electrode assembly and fuel cell using the same
KR102277903B1 (en) * 2014-09-05 2021-07-15 삼성전자주식회사 Membrane electrode assembly and fuel cell using the same
WO2019124389A1 (en) * 2017-12-19 2019-06-27 株式会社リケン Piston ring for internal combustion engine
CN116344879A (en) * 2023-05-30 2023-06-27 佛山科学技术学院 Nano composite film with metal-organic framework and preparation method thereof
CN116344879B (en) * 2023-05-30 2023-08-08 佛山科学技术学院 Nano composite film with metal-organic framework and preparation method thereof

Also Published As

Publication number Publication date
JP5012268B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5012268B2 (en) Dispersion, method for producing the same, proton conductive material, solid electrolyte membrane based on the proton conductive material, method for producing the solid electrolyte membrane, and polymer electrolyte fuel cell provided with the solid electrolyte membrane
Kowsari et al. Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane
Weissbach et al. Simultaneous, synergistic control of ion exchange capacity and cross-linking of sterically-protected poly (benzimidazolium) s
JP2020059862A (en) Novel polymers and methods for manufacturing the same
JP6005065B2 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
JP4411479B2 (en) Method for producing membrane made of crosslinked polymer and fuel cell
JP4611956B2 (en) Solid acid, polymer electrolyte membrane and fuel cell
JP7001284B2 (en) Hydroxide-stable polybenzimidazolium and polyimidazolium membranes and ionomer cross-linking
JP2011040363A (en) Reforming electrolyte and method of manufacturing the same, and reforming agent
WO2010047251A1 (en) Polymer electrolyte synthesis method, polymer electrolyte membrane, and solid polymer fuel cell
Xu et al. Novel ether-free sulfonated poly (biphenyl) tethered with tertiary amine groups as highly stable amphoteric ionic exchange membranes for vanadium redox flow battery
KR101461417B1 (en) Perfluorosulfonic acid membrane modified with amine compounds and method for the preparation thereof
JP2007504303A (en) Composite electrolyte containing cross-linking agent
Li et al. In situ implantation of cross-linked functional POSS blocks in Nafion® for high performance direct methanol fuel cells
Fan et al. Incorporating self-anchored phosphotungstic acid@ triazole-functionalized covalent organic framework into sulfonated poly (ether ether ketone) for enhanced proton conductivity
Yang et al. Phosphoric acid doped imidazolium silane crosslinked poly (epichlorihydrin)/PTFE as high temperature proton exchange membranes
JP2003288916A (en) Direct methanol fuel cell membrane and its manufacturing method
Zhao et al. Fabrication of composite polymer electrolyte membrane using acidic metal-organic frameworks-functionalized halloysite nanotubes modified chitosan
Poongan et al. Effect of ZrO2 nanoparticles on phosphoric acid-doped poly (Ethylene imine)/Polyvinyl alcohol) membrane for medium-temperature polymer electrolyte membrane fuel cell applications
Wu et al. Hydrogen bonding: a channel for protons to transfer through acid− base pairs
US10270115B2 (en) Membrane for a proton exchange membrane fuel cell
JP2003234014A (en) Polymer electrolyte film and solid polymer fuel cell
JP5194509B2 (en) Composite electrolyte and method for producing the same
Charradi et al. Incorporating of sulfo ethyl cellulose to augment the performance of sulfonated poly (ether ether ketone) composite for proton exchange membrane fuel cells
JP4959115B2 (en) Proton conducting electrolyte and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5012268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees