JP2009013236A - Electrodeposition-coating composition - Google Patents

Electrodeposition-coating composition Download PDF

Info

Publication number
JP2009013236A
JP2009013236A JP2007174588A JP2007174588A JP2009013236A JP 2009013236 A JP2009013236 A JP 2009013236A JP 2007174588 A JP2007174588 A JP 2007174588A JP 2007174588 A JP2007174588 A JP 2007174588A JP 2009013236 A JP2009013236 A JP 2009013236A
Authority
JP
Japan
Prior art keywords
cationic
resin emulsion
melt viscosity
cationic resin
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007174588A
Other languages
Japanese (ja)
Other versions
JP5343331B2 (en
Inventor
Akitoshi Shirasaka
彰敏 白坂
Satoru Morishita
悟 森下
Takeshi Nomoto
健 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Axalta Shinto Coating Systems Co Ltd
Original Assignee
Nissan Motor Co Ltd
DuPont Shinto Automotive Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, DuPont Shinto Automotive Systems Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007174588A priority Critical patent/JP5343331B2/en
Publication of JP2009013236A publication Critical patent/JP2009013236A/en
Application granted granted Critical
Publication of JP5343331B2 publication Critical patent/JP5343331B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodeposition-coating composition capable of satisfying both excellent coated film smoothness and good corrosion resistance at its edge part. <P>SOLUTION: This composition is formed by mixing 2 kinds of cationic resin emulsions so as to have the lowest melt viscosities in the curing of their coated membranes, obtained by the logarithmic decrement measurement of the coated membranes by using a pendulum type viscoelasticity measuring instrument and the measuring temperatures in the lowest melt viscosity measurements, within prescribe ranges. The cationic resin emulsion A has ≤0.1 lowest melt viscosity in the curing of its coated membrane, and also the measuring temperature in the measurement of the lowest melt viscosity measurement is ≥160°C. The cationic resin emulsion B has ≥0.3 lowest melt viscosity in the curing of its coated membrane, and also the measuring temperature in the measurement of the lowest melt viscosity is ≤155°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、一般の鋼板に広く適用される、優れた塗膜平滑性およびエッジ耐食性を併せ持つカチオン性の電着塗料組成物に関する。   The present invention relates to a cationic electrodeposition coating composition that is widely applied to general steel sheets and has both excellent coating film smoothness and edge corrosion resistance.

カチオン性の電着塗装は、一般に鋼板の防錆を目的に利用されているが、電着塗膜を下層塗膜とし、その上に上塗り塗装を施す自動車外板のような場合には、最終塗膜の外観に対して良好な平滑性、高光沢が要求されている。最終塗膜の平滑性においては、下層塗膜の平滑性の影響を強く受けるため、電着塗膜の平滑性が求められている。   Cationic electrodeposition coating is generally used for the purpose of rust prevention of steel sheets, but in the case of an automobile outer plate where the electrodeposition coating is used as a lower layer coating and overcoating is applied to the lower coating, Good smoothness and high gloss are required for the appearance of the coating film. Since the smoothness of the final coating film is strongly influenced by the smoothness of the lower layer coating film, the smoothness of the electrodeposition coating film is required.

電着塗膜の平滑性を向上させるため、従来の電着塗料は焼付時のフロー性を高める(焼付時の塗膜溶融粘度を下げる)という手法がとられている。塗膜焼付時の粘度測定方法として、振子式粘弾性測定方法があり、平滑性が良好な従来の電着塗料は、振子式粘弾性測定方法による対数減衰率測定から求められる最低溶融粘度が0.15以下であり、その時の温度が160℃以上である。   In order to improve the smoothness of the electrodeposited coating film, the conventional electrodeposition coating has a technique of improving the flowability during baking (lowering the coating film melt viscosity during baking). There is a pendulum viscoelasticity measurement method as a viscosity measurement method at the time of baking a coating film. A conventional electrodeposition paint having good smoothness has a minimum melt viscosity of 0 obtained from logarithmic decay rate measurement by a pendulum viscoelasticity measurement method. .15 or less, and the temperature at that time is 160 ° C. or more.

しかしながら、このような従来の電着塗料においては鋼板のエッジにおいて焼付溶融時に表面張力が作用し、エッジ部の露出が起り、その結果エッジ部の耐食性が劣化してしまう。   However, in such a conventional electrodeposition paint, surface tension acts on the edge of the steel sheet during baking and melting, and the edge portion is exposed, resulting in deterioration of the corrosion resistance of the edge portion.

電着塗料において、エッジ部耐食性を良好にするためには、一般的に溶融時の粘度を高くすればエッジ部のカバー性が向上し、耐食性が良好になることは知られているが、完全な解決には至っていない。例えば、特許文献1記載の発明においては、顔料の種類、量によりエッジ部の耐食性を向上させているが、顔料による方法は顔料の比重が大きいため塗装物の水平部、垂直部などの塗装部位により塗膜の顔料濃度が異なり、安定したエッジ耐食性が得難いという問題がある。また、水平部の外観品質が低下する。特許文献2記載の発明においては、低温硬化性を利用し、溶融粘度を高くしてエッジ部の耐食性を向上させている。   In electrodeposition coatings, in order to improve the edge corrosion resistance, it is generally known that increasing the viscosity at the time of melting improves the edge coverage and improves the corrosion resistance. No solution has been reached. For example, in the invention described in Patent Document 1, the corrosion resistance of the edge portion is improved by the type and amount of the pigment, but the method using the pigment has a large specific gravity of the pigment, so that the coating portion such as the horizontal portion and the vertical portion of the coated object is applied. The pigment concentration of the coating film differs depending on the type, and there is a problem that it is difficult to obtain stable edge corrosion resistance. In addition, the appearance quality of the horizontal portion is degraded. In the invention described in Patent Document 2, low-temperature curability is used to increase the melt viscosity and improve the corrosion resistance of the edge portion.

電着塗料の場合には常に塗装に使用され消費された分の塗料を補給する方法で管理されるため塗料浴液の安定性が重要となり、低温硬化成分はどうしても長期安定性に難が残る。このため安定したエッジ耐食性と外観品質を得ることが難しい。   In the case of an electrodeposition coating, the stability of the paint bath liquid is important because it is always managed by a method of replenishing the amount of paint used and consumed for painting, and the low-temperature curing component inevitably suffers from long-term stability. For this reason, it is difficult to obtain stable edge corrosion resistance and appearance quality.

特許文献3〜5記載の発明においては、内部架橋微小樹脂粒子を用いることにより電着塗料の溶融粘度を高めている。この手法を用いてエッジ耐食性を改良した多くの発明が考案されているが、そのような架橋微小粒子と電着塗料中に含まれる他の樹脂粒子との電気特性(荷電粒子特性)が異なり、また十分なエッジ耐食性を得るためには架橋微小粒子の比率が多くなるため外観品質に問題を起こすことが多い。特許文献6,7記載の発明は、塗装方法にてエッジ耐食性を向上させたものであり、電着塗装を2回実施することによりエッジ耐食性を向上させている。このような方法の場合、塗装工程が複雑となり、実用性に乏しい。   In the inventions described in Patent Documents 3 to 5, the melt viscosity of the electrodeposition paint is increased by using internally crosslinked fine resin particles. Many inventions that improve edge corrosion resistance using this technique have been devised, but the electrical characteristics (charged particle characteristics) of such crosslinked microparticles and other resin particles contained in the electrodeposition paint are different, Further, in order to obtain sufficient edge corrosion resistance, the ratio of the crosslinked microparticles increases, which often causes problems in appearance quality. In the inventions described in Patent Documents 6 and 7, the edge corrosion resistance is improved by a coating method, and the edge corrosion resistance is improved by performing electrodeposition coating twice. In the case of such a method, the coating process is complicated and the practicality is poor.

特開昭63−62897号公報JP 63-62897 A 特開昭63−39972号公報JP 63-39972 A 特開昭63−63761号公報JP-A-63-63761 特開平2−303831号公報Japanese Patent Laid-Open No. 2-303831 特開平2−305995号公報Japanese Patent Laid-Open No. 2-305995 特開2000−239576号公報JP 2000-239576 A 特開平1−8291号公報Japanese Patent Laid-Open No. 1-8291

本発明の目的は、優れた塗膜平滑性およびエッジ部の耐食性を両立させることが可能な電着塗料組成物を提供することである。   An object of the present invention is to provide an electrodeposition coating composition capable of achieving both excellent coating film smoothness and edge portion corrosion resistance.

本発明は、振子式粘弾性測定器を用いた塗膜の対数減衰率測定から求められる塗膜硬化時の最低溶融粘度が0.1以下であり、かつ最低溶融粘度測定時の測定温度が160℃以上であるカチオン性樹脂乳化物Aと、
振子型粘弾性測定器を用いた塗膜の対数減衰率測定から求められる塗膜硬化時の最低溶融粘度が0.3以上であり、かつ最低溶融粘度測定時の測定温度が155℃以下であるカチオン性樹脂乳化物Bとを含むことを特徴とする電着塗料組成物である。
In the present invention, the minimum melt viscosity at the time of curing the coating film determined from the logarithmic decay rate measurement of the coating film using a pendulum viscoelasticity measuring instrument is 0.1 or less, and the measurement temperature at the time of measuring the minimum melt viscosity is 160. A cationic resin emulsion A having a temperature of not lower than ° C.,
The minimum melt viscosity at the time of curing the coating film determined from the logarithmic decay rate measurement of the coating film using a pendulum type viscoelasticity measuring device is 0.3 or more, and the measurement temperature at the time of measuring the minimum melt viscosity is 155 ° C. or less. It is an electrodeposition coating composition characterized by containing cationic resin emulsion B.

また本発明は、カチオン性樹脂乳化物Aの前記最低溶融粘度測定時の温度が165℃以上であり、かつ樹脂乳化物Bの前記最低溶融粘度測定時の温度が150℃以下であることを特徴とする。   Further, the present invention is characterized in that the temperature at the time of measuring the minimum melt viscosity of the cationic resin emulsion A is 165 ° C. or more and the temperature at the time of measuring the minimum melt viscosity of the resin emulsion B is 150 ° C. or less. And

また本発明は、カチオン性樹脂乳化物Aとカチオン性樹脂乳化物Bの含有量の比率が、固形分重量比A/Bで、95/5〜50/50であることを特徴とする。   Further, the present invention is characterized in that the ratio of the content of the cationic resin emulsion A and the cationic resin emulsion B is 95/5 to 50/50 in terms of solid content weight ratio A / B.

また本発明は、カチオン性樹脂乳化物Aとカチオン性樹脂乳化物Bの含有量の比率が、固形分重量比A/Bで、95/5〜70/30であることを特徴とする。   Further, the present invention is characterized in that the ratio of the content of the cationic resin emulsion A and the cationic resin emulsion B is 95/5 to 70/30 in terms of solid content weight ratio A / B.

本発明によれば、塗膜硬化時の最低溶融粘度および最低溶融粘度測定時の測定温度が所定の範囲となるようなカチオン性樹脂乳化物Aおよびカチオン性樹脂乳化物Bを用いることで、各種の要求性能、耐水性、耐薬品性、素地密着性、上塗り適正、塗装作業性等の塗膜特性を損なうことなく、優れた塗膜平滑性およびエッジ耐食性を両立させることができる。   According to the present invention, by using the cationic resin emulsion A and the cationic resin emulsion B such that the minimum melt viscosity during coating film curing and the measurement temperature during minimum melt viscosity measurement are within a predetermined range, Excellent film smoothness and edge corrosion resistance can be achieved without impairing coating film characteristics such as required performance, water resistance, chemical resistance, substrate adhesion, top coatability, and coating workability.

また本発明によれば、カチオン性樹脂乳化物Aとカチオン性樹脂乳化物Bの含有量の比率が、固形分重量比A/Bで、95/5〜50/50が好ましく、95/5〜70/30がより好ましい。   Further, according to the present invention, the ratio of the content of the cationic resin emulsion A and the cationic resin emulsion B is preferably a solid content weight ratio A / B of 95/5 to 50/50, preferably 95/5 to 70/30 is more preferable.

固形分重量比を上記のような範囲とすることで、塗膜平滑性およびエッジ耐食性をさらに向上させることができる。   By setting the solid content weight ratio in the above range, the coating film smoothness and the edge corrosion resistance can be further improved.

本発明の電着塗料組成物は、2種類のカチオン性樹脂乳化物を含んで構成される。
一方のカチオン性樹脂乳化物Aは、振子式粘弾性測定器を用いた塗膜の対数減衰率測定から求められる塗膜硬化時の最低溶融粘度が0.1以下であり、かつ最低溶融粘度測定時の測定温度が160℃以上である。
The electrodeposition coating composition of the present invention comprises two types of cationic resin emulsions.
On the other hand, the cationic resin emulsion A has a minimum melt viscosity of 0.1 or less at the time of curing the coating film determined from logarithmic decay rate measurement of the coating film using a pendulum viscoelasticity measuring device, and the minimum melt viscosity measurement. The measured temperature at that time is 160 ° C or higher.

もう一方のカチオン性樹脂乳化物Bは、振子型粘弾性測定器を用いた塗膜の対数減衰率測定から求められる塗膜硬化時の最低溶融粘度が0.3以上であり、かつ最低溶融粘度測定時の測定温度が155℃以下である。   The other cationic resin emulsion B has a minimum melt viscosity of 0.3 or more at the time of coating film curing determined from logarithmic decay rate measurement of the coating film using a pendulum viscoelasticity measuring device, and the minimum melt viscosity. The measurement temperature at the time of measurement is 155 ° C. or lower.

このような2種類のカチオン性樹脂乳化物を含むことにより、電着塗料組成物に通常求められる各種の要求性能、耐水性、耐薬品性、素地密着性、上塗り適正、塗装作業性等の特性を損なうことなく、優れた塗膜平滑性およびエッジ部耐食性をも両立させることができる。   By including these two types of cationic resin emulsions, various required performance, water resistance, chemical resistance, substrate adhesion, top coatability, coating workability, etc. that are usually required for electrodeposition coating compositions. Excellent film smoothness and edge portion corrosion resistance can be achieved at the same time without impairing the resistance.

以下、本発明の電着塗料組成物について詳細に説明する。
本発明の電着塗料組成物に含まれるカチオン性樹脂乳化物Aとしては、カチオン性基を有する基剤樹脂および、これを硬化させる硬化剤を水に分散させることによって得られる。
Hereinafter, the electrodeposition coating composition of the present invention will be described in detail.
The cationic resin emulsion A contained in the electrodeposition coating composition of the present invention can be obtained by dispersing a base resin having a cationic group and a curing agent for curing the base resin in water.

基剤樹脂としては、エポキシ樹脂のエポキシ環にアミン等活性水素化合物を反応させ、そのエポキシ基を開環してカチオン性基を導入したカチオン性エポキシ樹脂を用いることが好ましい。   As the base resin, it is preferable to use a cationic epoxy resin in which an active hydrogen compound such as an amine is reacted with the epoxy ring of the epoxy resin, the epoxy group is opened, and a cationic group is introduced.

硬化剤としては、ポリイソシアネートのイソシアネート基をブロックしたブロック化ポリイソシアネートを用いることが好ましい。   As the curing agent, it is preferable to use a blocked polyisocyanate obtained by blocking the isocyanate group of the polyisocyanate.

カチオン性樹脂乳化物Aの基剤樹脂であるカチオン性エポキシ樹脂としては、ビスフェノール型エポキシ樹脂をポリエステルポリオール、ポリエーテルポリオール等の可撓性変性剤と反応させることにより可撓性を付与したカチオン性エポキシ樹脂、ビスフェノール型エポキシ樹脂と可撓性を有するエポキシ、例えばエポキシ基含有ポリオールとを反応させ可撓性を付与したカチオン性エポキシ樹脂を挙げることができる。   As a cationic epoxy resin which is a base resin of the cationic resin emulsion A, a cationic property imparted with flexibility by reacting a bisphenol type epoxy resin with a flexible modifier such as polyester polyol or polyether polyol. Examples thereof include a cationic epoxy resin imparted with flexibility by reacting an epoxy resin or a bisphenol type epoxy resin with a flexible epoxy, for example, an epoxy group-containing polyol.

ビスフェノール型エポキシ樹脂としては、エピコート828(ジャパンエポキシレジン株式会社製、エポキシ当量184〜194)、エピコート1001(ジャパンエポキシレジン株式会社製、エポキシ当量450〜500)、エピコート1002(ジャパンエポキシレジン株式会社製、エポキシ当量600〜700)などの市販品を用いることもできる。   As the bisphenol type epoxy resin, Epicoat 828 (manufactured by Japan Epoxy Resin Co., Ltd., epoxy equivalent 184 to 194), Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd., epoxy equivalent 450 to 500), Epicoat 1002 (manufactured by Japan Epoxy Resin Co., Ltd.) In addition, commercially available products such as epoxy equivalents of 600 to 700) can also be used.

また可撓性を有するエポキシについては、例えばグリシエールPP−300P(三洋化成工業株式会社製、アデカレジンEP−4058(旭電化工業株式会社製)などを使用することもできる。   Moreover, about flexible epoxy, for example, Glicier PP-300P (manufactured by Sanyo Kasei Kogyo Co., Ltd., Adeka Resin EP-4058 (manufactured by Asahi Denka Kogyo Co., Ltd.) can be used.

また、これらのエポキシ樹脂はエポキシ基とジオールまたはジカルボン酸との反応を利用して鎖延長することができる。   In addition, these epoxy resins can be chain-extended using a reaction between an epoxy group and a diol or dicarboxylic acid.

カチオン性樹脂乳化物Aに使用するエポキシ樹脂にカチオン性基を導入するに当たっては、エポキシ基の開環後、カチオン性基が0.3〜4.0ミリ当量/gとなるようにカチオン化剤を使用する。またそのカチオン性基のうち5〜50%を1級アミノ基が占めるようにするのが望ましい。   In introducing a cationic group into the epoxy resin used in the cationic resin emulsion A, a cationizing agent is used so that the cationic group becomes 0.3 to 4.0 meq / g after ring opening of the epoxy group. Is used. Further, it is desirable that the primary amino group occupies 5 to 50% of the cationic group.

カチオン化剤としては、基剤樹脂中にカチオン性基を導入できるもの、例えば脂肪族、脂環族、芳香族等の1級アミン、2級アミン、3級アミンの酸塩、2級スルフィド酸塩等が挙げられる。   Examples of the cationizing agent include those capable of introducing a cationic group into the base resin, for example, primary amines such as aliphatic, alicyclic, and aromatic, secondary amines, acid salts of tertiary amines, and secondary sulfide acids. Examples include salts.

具体例としては、ブチルアミン、オクチルアミン、ジエチルアミン、ジブチルアミン、メチルブチルアミン、モノエタノールアミン、ジエタノールアミン、N−メチルエタノールアミン、トリエチルアミン塩酸塩、N,N−ジメチルエタノールアミン酢酸塩、ジエチルジスルフィド・酢酸混合物などのほか、アミノエチルエタノールアミンのケチミン、ジエチレントリアミンのジケチミンなどの1級アミンをブロックした2級アミンがある。アミン類は、これらから選ばれる1種または2種以上を併用して用いてもよい。   Specific examples include butylamine, octylamine, diethylamine, dibutylamine, methylbutylamine, monoethanolamine, diethanolamine, N-methylethanolamine, triethylamine hydrochloride, N, N-dimethylethanolamine acetate, diethyl disulfide / acetic acid mixture, etc. In addition, there are secondary amines in which primary amines such as aminoethylethanolamine ketimine and diethylenetriamine diketimine are blocked. One or more amines selected from these may be used in combination.

硬化剤には、公知の各種ブロックイソシアネート型硬化剤を使用することができる。ポリイソシアネートとしては、例えば、脂肪族系、脂環族系、芳香族系および芳香族−脂肪族系等のうちのいずれのものであってもよい。ポリイソシアネートをエチレングリコール、プロピレングリコール、トリメチロールプロパン、ヘキサントリオールなどの多価アルコールとNCO/OH当量比2以上で反応させて得られる、付加体ないしプレポリマーもブロック化ポリイソシアネート硬化剤に使用することができる。ブロック剤としては、ε−カプロラクタムやブチルセロソルブ等通常使用されるものを用いることができる。硬化剤の使用量としては、基剤であるエポキシのOH基に対しNCO基の割合が30〜80%となるように調製する。   As the curing agent, various known block isocyanate type curing agents can be used. The polyisocyanate may be, for example, any of aliphatic, alicyclic, aromatic and aromatic-aliphatic. Adducts or prepolymers obtained by reacting polyisocyanates with polyhydric alcohols such as ethylene glycol, propylene glycol, trimethylolpropane and hexanetriol at an NCO / OH equivalent ratio of 2 or more are also used as blocked polyisocyanate curing agents. be able to. As the blocking agent, those usually used such as ε-caprolactam and butyl cellosolve can be used. As a usage-amount of a hardening | curing agent, it prepares so that the ratio of NCO group may become 30 to 80% with respect to the OH group of the epoxy which is a base.

上記に示したような基剤樹脂および硬化剤を用いることにより、カチオン性樹脂乳化物Aの特性として、塗膜硬化時の最低溶融粘度が0.1以下で、かつ最低溶融粘度測定時の測定温度が160℃以上、さらに好ましくは165℃以上を達成することができ、塗膜の流動性による硬化塗膜の平滑性を確保し、その他の塗膜物性を確保することができるが、これに限定されるものではない。   By using the base resin and the curing agent as shown above, as the characteristics of the cationic resin emulsion A, the minimum melt viscosity at the time of curing the coating film is 0.1 or less, and the measurement at the time of measuring the minimum melt viscosity The temperature can be 160 ° C. or higher, more preferably 165 ° C. or higher, the smoothness of the cured coating film can be ensured by the fluidity of the coating film, and other coating film properties can be secured. It is not limited.

本発明の電着塗料組成物に含まれるカチオン性樹脂乳化物Bとしては、カチオン性基を有する基剤樹脂、およびこれを硬化させる硬化剤またはゲル化剤より成り、これらを水に分散させることによって得られる。   The cationic resin emulsion B contained in the electrodeposition coating composition of the present invention comprises a base resin having a cationic group and a curing agent or a gelling agent for curing the base resin, and these are dispersed in water. Obtained by.

基剤樹脂としては、ビスフェノール型エポキシ樹脂のエポキシ環にアミン等活性水素化合物を反応させ、そのエポキシ基を開環してカチオン性基を導入したカチオン性エポキシ樹脂を用いることが好ましい。   As the base resin, it is preferable to use a cationic epoxy resin in which an active hydrogen compound such as an amine is reacted with the epoxy ring of the bisphenol-type epoxy resin and the epoxy group is opened to introduce a cationic group.

硬化剤としては、ポリイソシアネートのイソシアネート基をブロックしたブロック化ポリイソシアネートを用いることができる。   As the curing agent, a blocked polyisocyanate obtained by blocking the isocyanate group of the polyisocyanate can be used.

また、ゲル化剤としては、1分子中に2個以上のエポキシ基を含有し、かつ2個以上のα、β-エチレン性不飽和基を含有するエポキシ化ポリブタジエンのアミン付加物を用いることができる。   The gelling agent may be an amine adduct of epoxidized polybutadiene containing two or more epoxy groups in one molecule and two or more α, β-ethylenically unsaturated groups. it can.

カチオン性樹脂乳化物Bの基剤樹脂であるカチオン性エポキシ樹脂としては、ビスフェノール型エポキシ樹脂のエポキシ基に、アミン等活性水素含有化合物を反応させてカチオン性基を導入したカチオン性エポキシ樹脂を挙げることができる。   Examples of the cationic epoxy resin that is a base resin of the cationic resin emulsion B include a cationic epoxy resin in which an active hydrogen-containing compound such as an amine is reacted with an epoxy group of a bisphenol type epoxy resin to introduce a cationic group. be able to.

ビスフェノール型エポキシ樹脂としては、エピコート1004(ジャパンエポキシレジン株式会社製、エポキシ当量875〜975)、エピコート1007(ジャパンエポキシレジン株式会社製、エポキシ当量1750〜2200)などの市販品を用いることもできる。その他、軟化点が70℃以上、エポキシ当量が600〜3000のエポキシ樹脂を用いることができる。   As the bisphenol type epoxy resin, commercially available products such as Epicoat 1004 (manufactured by Japan Epoxy Resin Co., Ltd., epoxy equivalent 875-975) and Epicoat 1007 (Japan Epoxy Resin Co., Ltd., epoxy equivalent 1750-2200) can also be used. In addition, an epoxy resin having a softening point of 70 ° C. or higher and an epoxy equivalent of 600 to 3000 can be used.

エポキシ樹脂のカチオン化剤としては、樹脂中にカチオン性基を導入できるもの、例えば脂肪族、脂環族、芳香族等の1級アミン、2級アミン、3級アミンの酸塩、2級スルフィド酸塩等が挙げられる。具体的にはカチオン性樹脂乳化物Aで挙げたカチオン化剤を同様に用いることができる。   As a cationizing agent for epoxy resin, those capable of introducing a cationic group into the resin, for example, primary amine such as aliphatic, alicyclic, aromatic, secondary amine, tertiary amine acid salt, secondary sulfide Examples include acid salts. Specifically, the cationizing agent exemplified in the cationic resin emulsion A can be used in the same manner.

硬化剤のポリイソシアネートのブロック剤としてはメチルエチルケトオキシム等の低温解離ブロック剤が好ましいが、基剤樹脂の硬化開始温度が130℃以下、好ましくは110℃以下であればポリイソシアネートの種類、ブロック剤の種類、また触媒の有無により選択することが出来る。硬化剤の使用量としては、基剤であるエポキシのOH基に対しNCO基の割合が30〜80%となるように調製する。   As the polyisocyanate blocking agent of the curing agent, a low-temperature dissociation blocking agent such as methyl ethyl ketoxime is preferable. However, if the curing start temperature of the base resin is 130 ° C. or less, preferably 110 ° C. or less, the type of polyisocyanate and the blocking agent It can be selected depending on the type and the presence or absence of a catalyst. As a usage-amount of a hardening | curing agent, it prepares so that the ratio of NCO group may become 30 to 80% with respect to the OH group of the epoxy which is a base.

またゲル化剤としては、1分子中に2個以上のエポキシ基を含有したエポキシ化ポリブタジエンの誘導体であって、かつ2個以上のα、β-エチレン性不飽和基を含有する誘導体が挙げられる。安定性を高めるため更に2級アミンを反応させることが好ましい。α、β-エチレン性不飽和基導入のための化合物としてはアクリル酸等を用いることができる。2級アミンとしては、ジメチルアミン、ジエチルアミンなどの脂肪族アミン、メチルエタノールアミンなどが好ましい。基剤樹脂とゲル化剤との含有量の割合は重量比で80/20〜60/40が好ましい。   Examples of the gelling agent include derivatives of epoxidized polybutadiene containing two or more epoxy groups in one molecule, and derivatives containing two or more α, β-ethylenically unsaturated groups. . In order to improve stability, it is preferable to further react with a secondary amine. As the compound for introducing the α, β-ethylenically unsaturated group, acrylic acid or the like can be used. As the secondary amine, aliphatic amines such as dimethylamine and diethylamine, methylethanolamine and the like are preferable. The ratio of the content of the base resin and the gelling agent is preferably 80/20 to 60/40 by weight ratio.

上記に示したような基剤樹脂および硬化剤を用いることにより、カチオン性樹脂乳化物Aの特性として、塗膜硬化時の最低溶融粘度が0.3以上であり、かつ最低溶融粘度測定時の測定温度が155℃以下、さらに好ましくは150℃以下を達成することができ、エッジ部の耐食性を確保し、その他の塗膜物性を確保することができるが、これに限定されるものではない。   By using the base resin and the curing agent as shown above, as the characteristics of the cationic resin emulsion A, the minimum melt viscosity at the time of curing the coating film is 0.3 or more, and the minimum melt viscosity is measured. The measurement temperature can be 155 ° C. or lower, more preferably 150 ° C. or lower, and the corrosion resistance of the edge portion can be secured and the other coating film properties can be secured, but it is not limited thereto.

カチオン性樹脂乳化物Aおよびカチオン性樹脂乳化物Bに使用するカチオン性基を有する基剤樹脂、硬化剤、ゲル化剤などの合成は、後の工程で溶剤除去することを考慮し、水と共沸可能な有機溶剤の存在下で行うことが好ましい。使用した有機溶剤のうち殆どが除去されるため反応時の溶剤含有量は特に限定しないが、樹脂の取り扱いのしやすさと脱溶剤工程に要する時間短縮のため、20〜40重量%程度が好ましい。   In the synthesis of the base resin having a cationic group, the curing agent, the gelling agent, etc. used in the cationic resin emulsion A and the cationic resin emulsion B, the solvent is removed in a later step, It is preferable to carry out in the presence of an azeotropic organic solvent. Since most of the used organic solvent is removed, the solvent content during the reaction is not particularly limited, but is preferably about 20 to 40% by weight for easy handling of the resin and shortening the time required for the solvent removal step.

次に、カチオン性樹脂乳化物Aおよびカチオン性樹脂乳化物Bの調製方法を示す。
実際には、カチオン性樹脂乳化物Aとカチオン性樹脂乳化物Bとはそれぞれ個別に調製するが、調製方法自体は類似の方法で調製できる。
Next, the preparation method of the cationic resin emulsion A and the cationic resin emulsion B will be shown.
Actually, the cationic resin emulsion A and the cationic resin emulsion B are prepared separately, but the preparation method itself can be prepared by a similar method.

カチオン性基を有する基剤樹脂と、硬化剤またはゲル化剤と、必要に応じて乳化剤を溶剤中で混合し中和処理をした後、樹脂組成物の固形分含有率が20〜40重量%になるように水で希釈する。   After the base resin having a cationic group, a curing agent or a gelling agent, and if necessary, an emulsifier is mixed in a solvent and neutralized, the solid content of the resin composition is 20 to 40% by weight. Dilute with water to

希釈後に、常圧下または減圧下において、組成物中の溶剤を除去する。水を加えた時点では、当然樹脂組成物の水への分散は不十分であるが、共沸脱溶剤中の十分な混合により、塗料粒子は水中に安定化する。   After dilution, the solvent in the composition is removed under normal pressure or reduced pressure. When the water is added, naturally the dispersion of the resin composition in water is insufficient, but the paint particles are stabilized in water by sufficient mixing in the azeotropic solvent removal.

なお、カチオン性樹脂乳化物Bは低温反応性を有していることから、塗料液中での十分な化学安定性を確保するためには、塗装使用時の状態で溶剤量が1重量%以下になるようにカチオン性樹脂乳化物Aおよびカチオン性樹脂乳化物B中の溶剤量を調整することが好ましい。さらに好ましくは0.5重量%以下に調整する。   In addition, since the cationic resin emulsion B has low temperature reactivity, in order to ensure sufficient chemical stability in the coating liquid, the amount of solvent is 1% by weight or less in the state of coating use. It is preferable to adjust the amount of the solvent in the cationic resin emulsion A and the cationic resin emulsion B so as to be. More preferably, it is adjusted to 0.5% by weight or less.

ここで、前記中和処理に用いる中和剤としては、カチオン性エポキシ樹脂を中和できるものであれば特に限定しないが、蟻酸、酢酸、乳酸、スルファミン酸等の有機酸を用いることが好ましい。基剤樹脂を均一に中和できるように、中和剤は、なるべく低濃度で使用し、樹脂固形分100gに対して15〜40ミリ当量、好ましくは20〜30ミリ当量となるように混合する。   Here, the neutralizing agent used for the neutralization treatment is not particularly limited as long as it can neutralize the cationic epoxy resin, but it is preferable to use an organic acid such as formic acid, acetic acid, lactic acid, and sulfamic acid. In order to uniformly neutralize the base resin, the neutralizing agent is used at a concentration as low as possible, and is mixed so as to be 15 to 40 milliequivalents, preferably 20 to 30 milliequivalents with respect to 100 g of the resin solid content. .

カチオン性樹脂乳化物Aおよびカチオン性樹脂乳化物Bは一定の比率で混合する。好ましい混合比率は、固形分重量比A/Bで、95/5〜50/50であり、より好ましくは95/5〜70/30であり、さらに好ましくは85/15〜75/25である。   Cationic resin emulsion A and cationic resin emulsion B are mixed at a constant ratio. A preferable mixing ratio is 95/5 to 50/50, more preferably 95/5 to 70/30, and still more preferably 85/15 to 75/25 in terms of a solid content weight ratio A / B.

振子式粘弾性測定器を用いた電着塗膜の最低溶融粘度および粘度測定時の測定温度について説明する。   The minimum melt viscosity of the electrodeposition coating film using a pendulum viscoelasticity measuring device and the measurement temperature at the time of viscosity measurement will be described.

振子式粘弾性測定装置には、たとえば東洋ボールドウィン社製、レオバイブロンDDV−OPA型を使用する。振子には、重量22g、慣性モーメント859g・cmのものを使用する。昇温速度を20℃/minで測定し、対数減衰率が最も低下した時(λmin)の粘度の値を最低溶融粘度とし、その時の塗膜温度を最低溶融粘度測定時の測定温度とする。 For the pendulum viscoelasticity measuring device, for example, Leo Vibron DDV-OPA type manufactured by Toyo Baldwin Company is used. A pendulum having a weight of 22 g and an inertia moment of 859 g · cm 2 is used. The temperature increase rate is measured at 20 ° C./min, and the viscosity value when the logarithmic decay rate is the lowest (λmin) is defined as the minimum melt viscosity, and the coating temperature at that time is defined as the measurement temperature at the time of measuring the minimum melt viscosity.

このような測定方法は、特開平2−303831号公報、特開平2−305995号公報などにも同様の方法が記載されている。   Such measurement methods are also described in JP-A-2-303831, JP-A-2-305995 and the like.

これらの組成を含有して成る本発明のカチオン電着塗料組成物には、さらに必要に応じて通常の塗料添加物、例えば、酸化チタン(チタンホワイト)、カーボンブラック、ベンガラ等の着色顔料、タルク、炭酸カルシウム、マイカ、カオリン(クレー)、シリカ等の体質顔料、リンモリブデン酸アルミニウム、トリポリリン酸アルミニウム、亜リン酸アルミニウム、リン酸亜鉛、ビスマス化合物等の防錆顔料、硬化触媒、消泡剤、ハジキ防止剤、レオロジーコントロール剤等を含有することができる。顔料の含有量としては、塗膜中に10〜40重量%となるような範囲とすることが好ましい。   The cationic electrodeposition coating composition of the present invention containing these compositions may further contain, if necessary, conventional coating additives such as coloring pigments such as titanium oxide (titanium white), carbon black, bengara, and talc. Extender pigments such as calcium carbonate, mica, kaolin (clay), silica, rust preventive pigments such as aluminum phosphomolybdate, aluminum tripolyphosphate, aluminum phosphite, zinc phosphate, bismuth compound, curing catalyst, antifoaming agent, A repellency inhibitor, a rheology control agent, and the like can be contained. The pigment content is preferably in the range of 10 to 40% by weight in the coating film.

本発明の電着塗料組成物は、公知の電着塗装方法によって所望の素材表面に塗装することができる。具体的には、塗料の固形分濃度は5〜40重量%が好ましく、より好ましくは15〜25重量%であり、pHは中和酸の使用量により5〜8に調整し、浴温は20〜35℃、負荷電圧は50〜400Vの条件で塗装できるが、この条件に限定されるものではない。塗装された塗膜を水洗後、焼付け炉中で130〜200℃の温度で5〜20分焼付けることにより硬化塗膜を得る。   The electrodeposition coating composition of the present invention can be applied to the surface of a desired material by a known electrodeposition coating method. Specifically, the solid content concentration of the coating is preferably 5 to 40% by weight, more preferably 15 to 25% by weight, the pH is adjusted to 5 to 8 depending on the amount of neutralizing acid used, and the bath temperature is 20%. Although it can coat on the conditions of -35 degreeC and a load voltage of 50-400V, it is not limited to this condition. The coated coating film is washed with water and then baked at a temperature of 130 to 200 ° C. for 5 to 20 minutes in a baking oven to obtain a cured coating film.

以下では、本発明の実施例および比較例について説明する。
基本的な組成としては、基剤樹脂としてアミン変性エポキシ樹脂を用い、硬化剤としてブロック化ポリイソシアネート、ゲル化剤を用いる。なお、下記における配合量等の数値は特別な記載のない限り、重量部、重量%を表す。
Hereinafter, examples and comparative examples of the present invention will be described.
As a basic composition, an amine-modified epoxy resin is used as a base resin, and a blocked polyisocyanate and a gelling agent are used as a curing agent. In addition, unless otherwise indicated, the numerical values, such as the compounding quantity in the following, represent a weight part and weight%.

[製造例1] カチオン性基剤樹脂Aの製造
表1に示す原料を用い、下記に示す方法によりカチオン性樹脂乳化物Aに使用する基剤樹脂を製造し、これをカチオン性基剤樹脂Aとする。
[Production Example 1] Production of Cationic Base Resin A Using the raw materials shown in Table 1, a base resin used for the cationic resin emulsion A was produced by the method shown below, and this was used as the cationic base resin A. And

Figure 2009013236
Figure 2009013236

ここで、原料(1)は、三洋化成工業株式会社製 グリシエールPP−300P、原料(2)は、ジャパンエポキシレジン株式会社製 エピコート828を用いた。   Here, Glyciere PP-300P manufactured by Sanyo Chemical Industries, Ltd. was used as the raw material (1), and Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd. was used as the raw material (2).

撹拌機、温度計、冷却管を備えた反応容器に、原料(1)、(2)、(3)、(4)を仕込み、攪拌、加熱を行って、室温から1時間で150℃まで昇温した。150℃で6時間保持した後、原料(5)を徐々に投入し、30分間で80℃まで冷却した。次いで原料(6)を投入し10分間で100℃まで昇温した。100℃で2時間保持した後、10分間で80℃まで冷却して取り出した。得られたアミン変性エポキシ樹脂をカチオン性基剤樹脂Aとする。得られたカチオン性基剤樹脂Aの固形分濃度は70.0%であった。   Raw materials (1), (2), (3), (4) were charged into a reaction vessel equipped with a stirrer, thermometer, and cooling tube, stirred and heated, and the temperature was raised from room temperature to 150 ° C. in 1 hour. Warm up. After holding at 150 ° C. for 6 hours, the raw material (5) was gradually added and cooled to 80 ° C. in 30 minutes. Next, the raw material (6) was added and the temperature was raised to 100 ° C. in 10 minutes. After maintaining at 100 ° C. for 2 hours, it was cooled to 80 ° C. in 10 minutes and taken out. The obtained amine-modified epoxy resin is referred to as “cationic base resin A”. Solid content concentration of the obtained cationic base resin A was 70.0%.

[製造例2] 硬化剤Aの製造
表2に示す原料を用い、下記に示す方法によりカチオン性樹脂乳化物Aに使用する硬化剤を製造し、これを硬化剤Aとする。
[Production Example 2] Production of Curing Agent A Using the raw materials shown in Table 2, a curing agent used for the cationic resin emulsion A is produced by the method shown below, and this is designated as curing agent A.

Figure 2009013236
Figure 2009013236

ここで、原料(1)は、日本ポリウレタン工業株式会社製 ミリオネートMR−400を用いた。   Here, Nippon Polyurethane Industry Co., Ltd. Millionate MR-400 was used for the raw material (1).

撹拌機、温度計、冷却管を備えた反応容器に、原料(1)、(2)を仕込み、攪拌、加熱を行って室温から30分間で100℃まで昇温した。その後反応容器内温度を100℃に保ちながら、予め原料(3)に溶解した原料(4)の溶液を1時間かけて仕込み、100℃で2時間反応させた。次いで同温度を保持して原料(5)を1時間かけて滴下し、滴下後100℃でさらに2時間保持した後、10分間で80℃まで冷却して取り出した。得られたブロック化ポリイソシアネートを硬化剤Aとする。得られた硬化剤Aの固形分濃度は65.0%であった。   The raw materials (1) and (2) were charged into a reaction vessel equipped with a stirrer, a thermometer, and a cooling tube, and the mixture was stirred and heated, and the temperature was raised from room temperature to 100 ° C. in 30 minutes. Thereafter, while keeping the temperature in the reaction vessel at 100 ° C., a solution of the raw material (4) previously dissolved in the raw material (3) was charged over 1 hour and reacted at 100 ° C. for 2 hours. Subsequently, the same temperature was maintained, and the raw material (5) was dropped over 1 hour. After dropping, the raw material (5) was further maintained at 100 ° C. for 2 hours, and then cooled to 80 ° C. for 10 minutes and taken out. Let the obtained blocked polyisocyanate be the curing agent A. The solid content concentration of the resulting curing agent A was 65.0%.

[製造例3] カチオン性樹脂乳化物Aの製造
製造例1で得たカチオン性基剤樹脂A100部、製造例2で得た硬化剤A40部、HN−120(合成アルコール系ノニオン性界面活性剤、HLB14.2、三洋化成工業株式会社製)0.5部を、攪拌機、温度計、冷却器及び減圧装置を備えた反応容器に仕込んだ。十分混合した後、脱イオン水で希釈した50%乳酸4.5部を加えて40〜70℃で30分間攪拌し、次いで脱イオン水85部を添加した。約70℃で300〜500mmHg(ゲージ圧)の圧力下で所定量の脱溶剤を行った。その後脱イオン水125.5部を加え、固形分濃度31.5%の乳化物を得た。これをカチオン性樹脂乳化物Aとする。
[Production Example 3] Production of cationic resin emulsion A 100 parts of cationic base resin A obtained in Production Example 1, 40 parts of curing agent A obtained in Production Example 2, HN-120 (synthetic alcohol-based nonionic surfactant) , HLB14.2, manufactured by Sanyo Chemical Industries, Ltd.) was charged into a reaction vessel equipped with a stirrer, thermometer, cooler and decompression device. After mixing well, 4.5 parts of 50% lactic acid diluted with deionized water was added and stirred at 40-70 ° C. for 30 minutes, and then 85 parts of deionized water was added. A predetermined amount of solvent was removed at a pressure of 300 to 500 mmHg (gauge pressure) at about 70 ° C. Thereafter, 125.5 parts of deionized water was added to obtain an emulsion having a solid concentration of 31.5%. This is designated as cationic resin emulsion A.

このカチオン性樹脂乳化物Aの最低溶融粘度(最低減衰率λmin)は0.05、最低溶融粘度測定時の測定温度は168℃であった。   This cationic resin emulsion A had a minimum melt viscosity (minimum damping rate λmin) of 0.05, and a measurement temperature at the time of measuring the minimum melt viscosity was 168 ° C.

[製造例4] カチオン性基剤樹脂Bの製造
表3に示す原料を用い、下記に示す方法により本発明のカチオン性樹脂乳化物Bに使用する基剤樹脂を製造し、これをカチオン性基剤樹脂Bとする。
[Production Example 4] Production of Cationic Base Resin B Using the raw materials shown in Table 3, a base resin used for the cationic resin emulsion B of the present invention was produced by the method shown below, and this was converted into a cationic group. Agent resin B.

Figure 2009013236
Figure 2009013236

ここで、原料(1)は、ジャパンエポキシレジン株式会社製 エピコート1004を用いた。   Here, Epicoat 1004 manufactured by Japan Epoxy Resin Co., Ltd. was used as the raw material (1).

温度計、攪拌機、還流冷却器を取り付けた反応容器に、原料(1)、(2)を仕込み、室温から30分間で加熱してエポキシ樹脂を溶解させた後、70℃で(3)、次いで(4)を加え、100℃で2時間反応後、さらに(5)を添加した。得られたアミン変性エポキシ樹脂をカチオン性基剤樹脂Bとする。得られたカチオン性基剤樹脂Bの固形分濃度は55.0%であった。   Into a reaction vessel equipped with a thermometer, a stirrer and a reflux condenser, the raw materials (1) and (2) were charged and heated from room temperature for 30 minutes to dissolve the epoxy resin, then at 70 ° C. (3), then (4) was added, and after 2 hours of reaction at 100 ° C., (5) was further added. The obtained amine-modified epoxy resin is referred to as “cationic base resin B”. The resulting cationic base resin B had a solid content concentration of 55.0%.

[製造例5] ゲル化剤Bの製造
表4に示す原料を用い、下記に示す方法により本発明のカチオン性樹脂乳化物Bに使用するゲル化剤を製造し、これをゲル化剤Bとする。
[Production Example 5] Production of gelling agent B Using the raw materials shown in Table 4, a gelling agent used for the cationic resin emulsion B of the present invention was produced by the method shown below. To do.

Figure 2009013236
Figure 2009013236

ここで、原料(1)は、サートマー社製 Ricon 657を用いた。
原料(1)、(2)、および(3)を仕込み、窒素ガス気流中攪拌下、室温から170℃まで1時間で昇温し、170℃で6時間保持した。次いで、30分間で120℃まで冷却し、(4)、(5)を投入し、120℃4時間保持して得られた組成物をゲル化剤Bとした。得られたゲル化剤Bの固形分濃度は75.0%であった。
Here, Ricon 657 manufactured by Sartomer was used as the raw material (1).
The raw materials (1), (2), and (3) were charged, and the temperature was raised from room temperature to 170 ° C. over 1 hour with stirring in a nitrogen gas stream, and maintained at 170 ° C. for 6 hours. Subsequently, it cooled to 120 degreeC in 30 minutes, (4) and (5) were thrown in, and the composition obtained by hold | maintaining at 120 degreeC for 4 hours was used as the gelatinizer B. The gelling agent B obtained had a solid content concentration of 75.0%.

[製造例6] 硬化剤Bの製造
表5に示す原料を用い、下記に示す方法によりカチオン性樹脂乳化物Bに使用する硬化剤を製造し、これを硬化剤Bとする。
[Production Example 6] Production of Curing Agent B Using the raw materials shown in Table 5, a curing agent used for the cationic resin emulsion B is produced by the method shown below, and this is designated as curing agent B.

Figure 2009013236
Figure 2009013236

撹拌機、温度計、冷却管を備えた反応容器に、原料(1)、(2)を仕込み、攪拌、加熱を行い、室温から30分間で70℃まで昇温した。その後フラスコ内温度を60〜70℃に保ちながら原料(3)を徐々に滴下し、70℃で1.5時間反応させた後(4)を投入した。得られたブロック化ポリイソシアネートを硬化剤Bとする。固形分65.0%であった。   Raw materials (1) and (2) were charged into a reaction vessel equipped with a stirrer, a thermometer, and a cooling tube, stirred and heated, and heated from room temperature to 70 ° C. in 30 minutes. Thereafter, while keeping the temperature in the flask at 60 to 70 ° C., the raw material (3) was gradually added dropwise, and after reacting at 70 ° C. for 1.5 hours, (4) was added. Let the obtained blocked polyisocyanate be the curing agent B. The solid content was 65.0%.

[製造例7] カチオン性樹脂乳化物B1の製造
製造例4で得たカチオン性基剤樹脂Bを1000部、製造例5で得たゲル化剤Bを200部、HN−120(合成アルコール系ノニオン性界面活性剤、HLB14.2、三洋化成工業株式会社製)7部を、攪拌機、温度計、冷却器および減圧装置を備えた反応容器に仕込んだ。十分混合した後、脱イオン水で希釈した50%乳酸31.5部を加えて40〜60℃で30分攪拌し、次いで脱イオン水680部を添加した。約65℃で100〜400mmHg(ゲージ圧)の圧力下で所定量の脱溶剤を行った。その後脱イオン水1346.5部を加え、固形分濃度25.0%の乳化物を得た。これをカチオン性樹脂乳化物B1とする。
[Production Example 7] Production of cationic resin emulsion B1 1000 parts of the cationic base resin B obtained in Production Example 4, 200 parts of the gelling agent B obtained in Production Example 5, HN-120 (synthetic alcohol type) 7 parts of a nonionic surfactant (HLB14.2, manufactured by Sanyo Chemical Industries, Ltd.) was charged into a reaction vessel equipped with a stirrer, thermometer, cooler and decompression device. After thorough mixing, 31.5 parts of 50% lactic acid diluted with deionized water was added and stirred at 40-60 ° C. for 30 minutes, and then 680 parts of deionized water was added. A predetermined amount of solvent was removed at a pressure of 100 to 400 mmHg (gauge pressure) at about 65 ° C. Thereafter, 1346.5 parts of deionized water was added to obtain an emulsion having a solid content concentration of 25.0%. This is designated as cationic resin emulsion B1.

得られたカチオン性樹脂乳化物B1の最低溶融粘度(最低減衰率λmin)は0.33、最低溶融粘度測定時の測定温度は150℃であった。   The obtained cationic resin emulsion B1 had a minimum melt viscosity (minimum damping rate λmin) of 0.33, and a measurement temperature at the time of measuring the minimum melt viscosity was 150 ° C.

[製造例8] カチオン性樹脂乳化物B2の製造
製造例4で得たカチオン性基剤樹脂Bを1000部、製造例6で得た硬化剤Bを250部、HN−120(合成アルコール系ノニオン性界面活性剤、HLB14.2、三洋化成工業株式会社製)10部を、攪拌機、温度計、冷却器および減圧装置を備えた反応容器に仕込んだ。十分混合した後、脱イオン水で希釈した50%乳酸38.5部を加えて50〜65℃で30分攪拌し、次いで脱イオン水720部を添加した。約65℃で100〜400mmHg(ゲージ圧)の圧力下で所定量の脱溶剤を行った。その後脱イオン水1331部を加え、固形分25.0%の乳化物を得た。これをカチオン性樹脂乳化物B2とする。
[Production Example 8] Production of cationic resin emulsion B2 1000 parts of the cationic base resin B obtained in Production Example 4, 250 parts of the curing agent B obtained in Production Example 6, and HN-120 (synthetic alcohol-based nonion) 10 parts of a surfactant, HLB14.2, manufactured by Sanyo Chemical Industries, Ltd.) was charged into a reaction vessel equipped with a stirrer, thermometer, cooler and decompression device. After thorough mixing, 38.5 parts of 50% lactic acid diluted with deionized water was added and stirred at 50-65 ° C. for 30 minutes, and then 720 parts of deionized water was added. A predetermined amount of solvent was removed at a pressure of 100 to 400 mmHg (gauge pressure) at about 65 ° C. Thereafter, 1331 parts of deionized water was added to obtain an emulsion having a solid content of 25.0%. This is designated as cationic resin emulsion B2.

このカチオン性樹脂乳化物B2の最低溶融粘度(最低減衰率λmin)は0.37、最低溶融粘度測定時の測定温度は148℃であった。   This cationic resin emulsion B2 had a minimum melt viscosity (minimum damping rate λmin) of 0.37, and a measurement temperature at the time of measuring the minimum melt viscosity was 148 ° C.

[製造例9] カチオン性基剤樹脂Cの製造
表6に示す原料を用い、下記に示す方法によりカチオン性樹脂乳化物Cに使用する基剤樹脂を製造し、これをカチオン性基剤樹脂Cとする。
[Production Example 9] Production of Cationic Base Resin C Using the raw materials shown in Table 6, a base resin used for the cationic resin emulsion C was produced by the method shown below, and this was used as the cationic base resin C. And

Figure 2009013236
Figure 2009013236

ここで、原料(1)は、三洋化成工業株式会社製 グリシエールPP−300P、原料(2)は、ジャパンエポキシレジン株式会社製 エピコート828、原料(7)は、ジエチレントリアミンとメチルイソブチルケトンのジケチミンを用いた。   Here, the raw material (1) is Glycier PP-300P manufactured by Sanyo Chemical Industries, Ltd., the raw material (2) is Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd., and the raw material (7) uses diethylenetriamine and diketimine of methyl isobutyl ketone. It was.

撹拌機、温度計、冷却管を備えた反応容器に、原料(1)、(2)、(3)、(4)を仕込み、攪拌、加熱を行い、室温から1時間で150℃まで昇温した。150℃で6時間保持した後、原料(5)を徐々に投入し、30分間で80℃まで冷却した。次いで原料(6),(7)を投入し10分間で100℃まで昇温した。100℃で2時間保持した後、10分間で80℃まで冷却して取り出した。得られたアミン変性エポキシ樹脂をカチオン性基剤樹脂Cとする。得られたカチオン性基剤樹脂Cの固形分濃度は、70.0%であった。   Raw materials (1), (2), (3), and (4) are charged into a reaction vessel equipped with a stirrer, thermometer, and cooling tube, stirred, heated, and heated from room temperature to 150 ° C. in 1 hour. did. After holding at 150 ° C. for 6 hours, the raw material (5) was gradually added and cooled to 80 ° C. in 30 minutes. Next, the raw materials (6) and (7) were added and the temperature was raised to 100 ° C. in 10 minutes. After maintaining at 100 ° C. for 2 hours, it was cooled to 80 ° C. in 10 minutes and taken out. The obtained amine-modified epoxy resin is referred to as “cationic base resin C”. The solid content concentration of the obtained cationic base resin C was 70.0%.

[製造例10] カチオン性樹脂乳化物Cの製造
製造例9で得たカチオン性基剤樹脂C100部、製造例2で得た硬化剤Aを20部、製造例6で得た硬化剤B20部、HN−120(合成アルコール系ノニオン性界面活性剤、HLB14.2、三洋化成工業(株)製)0.5部を、攪拌機、温度計、冷却器及び減圧装置を備えた反応容器に仕込んだ。十分混合した後、脱イオン水で希釈した50%乳酸4.5部を加えて40〜70℃で30分攪拌し、次いで脱イオン水85部を添加した。約70℃で300〜500mmHg(ゲージ圧)の圧力下で所定量の脱溶剤を行った。その後脱イオン水125.5部を加え、固形分31.5%の乳化物を得た。これをカチオン性樹脂乳化物Cとする。
[Production Example 10] Production of Cationic Resin Emulsion C 100 parts of cationic base resin C obtained in Production Example 9, 20 parts of curing agent A obtained in Production Example 2, and 20 parts of curing agent B obtained in Production Example 6 , 0.5 part of HN-120 (synthetic alcohol-based nonionic surfactant, HLB14.2, manufactured by Sanyo Chemical Industries, Ltd.) was charged into a reaction vessel equipped with a stirrer, thermometer, cooler and decompression device. . After mixing well, 4.5 parts of 50% lactic acid diluted with deionized water was added and stirred at 40-70 ° C. for 30 minutes, and then 85 parts of deionized water was added. A predetermined amount of solvent was removed at a pressure of 300 to 500 mmHg (gauge pressure) at about 70 ° C. Thereafter, 125.5 parts of deionized water was added to obtain an emulsion having a solid content of 31.5%. This is designated as cationic resin emulsion C.

このカチオン性樹脂乳化物Cの最低溶融粘度(最低減衰率λmin)は0.15、記録時の測定温度は157℃であった。得られたカチオン性樹脂乳化物Cは、最低溶融粘度および最低溶融粘度測定時の測定温度が、カチオン性乳化物Aおよびカチオン性乳化物Bのいずれの範囲からも外れるような物性を有したものである。   This cationic resin emulsion C had a minimum melt viscosity (minimum damping ratio λmin) of 0.15 and a measurement temperature during recording of 157 ° C. The obtained cationic resin emulsion C has physical properties such that the minimum melt viscosity and the measurement temperature at the time of measuring the minimum melt viscosity deviate from any of the ranges of the cationic emulsion A and the cationic emulsion B. It is.

[製造例11]
別途準備した顔料分散樹脂(アミン変性エポキシ樹脂)、酢酸、脱イオン水、ジエチレングリコールモノブチルエーテル、カーボンブラック、酸化チタン、カオリン、ジブチル錫オキサイド、防錆顔料をディゾルバーで充分攪拌した後、横型サンドミルで粒ゲージ粒度10μm以下になるまで分散し、顔料ペーストを得た。
[Production Example 11]
Separately prepared pigment dispersion resin (amine-modified epoxy resin), acetic acid, deionized water, diethylene glycol monobutyl ether, carbon black, titanium oxide, kaolin, dibutyltin oxide, and rust preventive pigment are thoroughly stirred with a dissolver and then granulated with a horizontal sand mill. A pigment paste was obtained by dispersing until the gauge particle size became 10 μm or less.

[電着塗料の調製]
[実施例1〜5 比較例1〜8]
上記で準備したカチオン性樹脂乳化物A、カチオン性樹脂乳化物B1、B2、カチオン性樹脂乳化物C,顔料ペースト、その他を使用し、表7(実施例1〜5)、表8(比較例1〜4)、表9(比較例5〜8)に示すような割合で調製した電着塗料液を得た。
[Preparation of electrodeposition paint]
Examples 1-5 Comparative Examples 1-8
Table 7 (Examples 1 to 5) and Table 8 (Comparative Examples) were prepared using the cationic resin emulsion A, the cationic resin emulsions B1 and B2, the cationic resin emulsion C, the pigment paste, and others prepared above. 1-4) and the electrodeposition coating liquid prepared in the ratio as shown in Table 9 (Comparative Examples 5-8) were obtained.

[試験板の作製方法、試験方法]
上記で得られた電着塗料液を用いてカーボン電極を陽極とし、脱脂した冷延鋼板(株式会社パルテック製、0.8×70×150mm、脱脂および燐酸亜鉛処理実施)を陰極とし、焼付け後の膜厚が15〜18μmとなる条件で電着塗装を行った。電着塗装後、脱イオン水で水洗し、170℃で20分間焼付けを行った。塗膜性能の評価結果を、それぞれ表7(実施例1〜5)、表8(比較例1〜4)、表9(比較例5〜8)に示す。
[Test plate production method and test method]
After baking, using the electrodeposition coating liquid obtained above as a cathode with a carbon electrode as an anode and a degreased cold rolled steel sheet (manufactured by Partec Co., Ltd., 0.8 × 70 × 150 mm, degreasing and zinc phosphate treatment) The electrodeposition coating was performed under the condition that the film thickness of the film was 15 to 18 μm. After electrodeposition coating, it was washed with deionized water and baked at 170 ° C. for 20 minutes. The evaluation results of the coating film performance are shown in Table 7 (Examples 1 to 5), Table 8 (Comparative Examples 1 to 4), and Table 9 (Comparative Examples 5 to 8), respectively.

[塗装外観評価]
(表面粗さ)
表面粗度計を用いて算術平均粗さRaを測定した。Raが小さいほど平滑性が良好であることを示している。
[Paint appearance evaluation]
(Surface roughness)
Arithmetic mean roughness Ra was measured using a surface roughness meter. It shows that smoothness is so favorable that Ra is small.

(目視評価)
また、目視による表面の平滑状態も評価した。評価基準は、◎:最良、○:良好、△:やや悪い、×:悪い、とした。
(Visual evaluation)
Moreover, the smooth state of the surface by visual observation was also evaluated. The evaluation criteria were ◎: best, ○: good, Δ: somewhat bad, x: bad.

[カッター刃錆評価]
(錆個数)
ナイフカッター刃(OLFA 型番LB−10K)を脱脂し、その後燐酸亜鉛処理をしたものを塗装し、塩水噴霧試験168時間でエッジ部に発生した錆部分の個数を測定した。
[Cutter blade rust evaluation]
(Number of rust)
A knife cutter blade (OLFA model number LB-10K) was degreased and then coated with zinc phosphate, and the number of rust portions generated at the edge portion in a salt spray test 168 hours was measured.

(目視評価)
また、目視による表面の錆状態も評価した。評価基準は、◎:錆殆どなし、○:錆僅かにあり、△:やや錆あり、×:ほぼ全面錆、とした。
(Visual evaluation)
Moreover, the rust state of the surface by visual observation was also evaluated. The evaluation criteria were as follows: ◎: almost no rust, ○: slightly rust, Δ: slightly rust, ×: almost rust.

Figure 2009013236
Figure 2009013236

Figure 2009013236
Figure 2009013236

Figure 2009013236
Figure 2009013236

比較例1は、カチオン性樹脂乳化物Aのみを用いているので、塗膜平滑性は得られたが、エッジ部では錆が発生した。比較例2は、カチオン性樹脂乳化物AにRC剤を加えて粘度を上げたが、その結果エッジ部の耐食性は比較例1から改善されたものの塗膜平滑性は大きく劣化した。比較例3は、カチオン性樹脂乳化物Cのみを用いており、塗膜平滑性は良好であったが、エッジ部では錆が発生した。比較例4は、カチオン性樹脂乳化物B1のみを用いているので、エッジ部の耐食性は得られたが、表面粗さも大きく表面状態は悪かった。比較例5は、カチオン性樹脂乳化物B2のみを用いているので、エッジ部の耐食性は得られたが、表面粗さも大きく表面状態は悪かった。   Since Comparative Example 1 uses only the cationic resin emulsion A, the coating film smoothness was obtained, but rust was generated at the edge portion. In Comparative Example 2, the RC agent was added to the cationic resin emulsion A to increase the viscosity. As a result, although the corrosion resistance of the edge portion was improved from Comparative Example 1, the smoothness of the coating film was greatly deteriorated. In Comparative Example 3, only the cationic resin emulsion C was used and the coating film smoothness was good, but rust was generated at the edge portion. In Comparative Example 4, since only the cationic resin emulsion B1 was used, the corrosion resistance of the edge portion was obtained, but the surface roughness was large and the surface state was poor. Since Comparative Example 5 uses only the cationic resin emulsion B2, the corrosion resistance of the edge portion was obtained, but the surface roughness was large and the surface state was poor.

比較例6は、カチオン性樹脂乳化物Aとカチオン性樹脂乳化物Cとを混合したものであり、塗膜平滑性は得られたが、エッジ部では錆が発生した。比較例7は、カチオン性樹脂乳化物B1とカチオン性樹脂乳化物Cとを混合したものであり、エッジ部の耐食性は得られたが、表面粗さも大きく表面状態はやや悪かった。比較例8は、カチオン性樹脂乳化物B2とカチオン性樹脂乳化物Cとを混合したものであり、エッジ部の耐食性は得られたが、表面粗さも大きく表面状態は悪かった。   In Comparative Example 6, the cationic resin emulsion A and the cationic resin emulsion C were mixed, and the coating film smoothness was obtained, but rust was generated at the edge portion. In Comparative Example 7, the cationic resin emulsion B1 and the cationic resin emulsion C were mixed, and the corrosion resistance of the edge portion was obtained, but the surface roughness was large and the surface state was slightly poor. In Comparative Example 8, the cationic resin emulsion B2 and the cationic resin emulsion C were mixed, and the corrosion resistance of the edge portion was obtained, but the surface roughness was large and the surface state was poor.

これらの比較例に対して、実施例1〜4は、カチオン性樹脂乳化物Aとカチオン性樹脂乳化物Bとを混合することで、塗膜平滑性およびエッジ部の耐食性ともに良好であった。特に、実施例2,3は評価が優れており、固形分重量比A/Bを85/15〜75/25の範囲とすることで、さらに好ましい塗膜特性が得られることがわかった。   In contrast to these comparative examples, Examples 1-4 were good in both coating film smoothness and edge portion corrosion resistance by mixing cationic resin emulsion A and cationic resin emulsion B. In particular, Examples 2 and 3 were excellent in evaluation, and it was found that more preferable coating properties can be obtained by setting the solid content weight ratio A / B in the range of 85/15 to 75/25.

Claims (4)

振子式粘弾性測定器を用いた塗膜の対数減衰率測定から求められる塗膜硬化時の最低溶融粘度が0.1以下であり、かつ最低溶融粘度測定時の測定温度が160℃以上であるカチオン性樹脂乳化物Aと、
振子型粘弾性測定器を用いた塗膜の対数減衰率測定から求められる塗膜硬化時の最低溶融粘度が0.3以上であり、かつ最低溶融粘度測定時の測定温度が155℃以下であるカチオン性樹脂乳化物Bとを含むことを特徴とする電着塗料組成物。
The minimum melt viscosity at the time of curing the coating film determined from the logarithmic decay rate measurement of the coating film using a pendulum viscoelasticity measuring instrument is 0.1 or less, and the measurement temperature at the time of measuring the minimum melt viscosity is 160 ° C. or more. A cationic resin emulsion A;
The minimum melt viscosity at the time of curing the coating film determined from the logarithmic decay rate measurement of the coating film using a pendulum type viscoelasticity measuring device is 0.3 or more, and the measurement temperature at the time of measuring the minimum melt viscosity is 155 ° C. or less. An electrodeposition coating composition comprising a cationic resin emulsion B.
カチオン性樹脂乳化物Aの前記最低溶融粘度測定時の温度が165℃以上であり、かつ樹脂乳化物Bの前記最低溶融粘度測定時の温度が150℃以下であることを特徴とする請求項1記載の電着塗料組成物。   The temperature at the time of the minimum melt viscosity measurement of the cationic resin emulsion A is 165 ° C or higher, and the temperature at the time of the minimum melt viscosity measurement of the resin emulsion B is 150 ° C or lower. The electrodeposition coating composition as described. カチオン性樹脂乳化物Aとカチオン性樹脂乳化物Bの含有量の比率が、固形分重量比A/Bで、95/5〜50/50であることを特徴とする請求項1または2記載の電着塗料組成物。   The ratio of the content of the cationic resin emulsion A and the cationic resin emulsion B is 95/5 to 50/50 as a solid content weight ratio A / B. Electrodeposition paint composition. カチオン性樹脂乳化物Aとカチオン性樹脂乳化物Bの含有量の比率が、固形分重量比A/Bで、95/5〜70/30であることを特徴とする請求項1または2記載の電着塗料組成物。   The ratio of the content of the cationic resin emulsion A and the cationic resin emulsion B is 95/5 to 70/30 as a solid content weight ratio A / B. Electrodeposition paint composition.
JP2007174588A 2007-07-02 2007-07-02 Electrodeposition coating composition Expired - Fee Related JP5343331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174588A JP5343331B2 (en) 2007-07-02 2007-07-02 Electrodeposition coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007174588A JP5343331B2 (en) 2007-07-02 2007-07-02 Electrodeposition coating composition

Publications (2)

Publication Number Publication Date
JP2009013236A true JP2009013236A (en) 2009-01-22
JP5343331B2 JP5343331B2 (en) 2013-11-13

Family

ID=40354548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174588A Expired - Fee Related JP5343331B2 (en) 2007-07-02 2007-07-02 Electrodeposition coating composition

Country Status (1)

Country Link
JP (1) JP5343331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016047458A1 (en) * 2014-09-22 2017-06-29 荒川化学工業株式会社 Modified epoxy resin for paints and one-pack / lacquer type paints

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192897A (en) * 1987-02-06 1988-08-10 Kansai Paint Co Ltd Electrodeposition coating method
JPH02305995A (en) * 1989-05-18 1990-12-19 Nissan Motor Co Ltd Laminated coating film
JPH03223496A (en) * 1989-11-27 1991-10-02 Kansai Paint Co Ltd Cation electrodeposition coating method
JPH0665790A (en) * 1992-08-17 1994-03-08 Kansai Paint Co Ltd Forming of coating film
JPH06346290A (en) * 1993-06-11 1994-12-20 Kansai Paint Co Ltd Coating method
JPH09291233A (en) * 1996-04-26 1997-11-11 Nippon Paint Co Ltd Production of resin dispersion for cationic electrodeposition coating material
JP2004190111A (en) * 2002-12-12 2004-07-08 Kansai Paint Co Ltd Corrosion prevention method for edge part
JP2006002001A (en) * 2004-06-16 2006-01-05 Nippon Paint Co Ltd Cathodic electrodeposition coating composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192897A (en) * 1987-02-06 1988-08-10 Kansai Paint Co Ltd Electrodeposition coating method
JPH02305995A (en) * 1989-05-18 1990-12-19 Nissan Motor Co Ltd Laminated coating film
JPH03223496A (en) * 1989-11-27 1991-10-02 Kansai Paint Co Ltd Cation electrodeposition coating method
JPH0665790A (en) * 1992-08-17 1994-03-08 Kansai Paint Co Ltd Forming of coating film
JPH06346290A (en) * 1993-06-11 1994-12-20 Kansai Paint Co Ltd Coating method
JPH09291233A (en) * 1996-04-26 1997-11-11 Nippon Paint Co Ltd Production of resin dispersion for cationic electrodeposition coating material
JP2004190111A (en) * 2002-12-12 2004-07-08 Kansai Paint Co Ltd Corrosion prevention method for edge part
JP2006002001A (en) * 2004-06-16 2006-01-05 Nippon Paint Co Ltd Cathodic electrodeposition coating composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016047458A1 (en) * 2014-09-22 2017-06-29 荒川化学工業株式会社 Modified epoxy resin for paints and one-pack / lacquer type paints

Also Published As

Publication number Publication date
JP5343331B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP6441126B2 (en) Method for preparing cationic electrodeposition coating composition
JP4088371B2 (en) Cationic electrodeposition coating composition
WO2016143707A1 (en) Cationic electrodeposition coating composition
WO2018174134A1 (en) Cationic electrodeposition coating material composition
WO2017051901A1 (en) Method for preparing cationic electrodeposition coating composition
WO2021256193A1 (en) Method for producing epoxy viscous agent for cationic electrodeposition coating material
JP2022183490A (en) Cationic electrodeposition coating composition, electrodeposited material and method for producing electrodeposited material
JP5343331B2 (en) Electrodeposition coating composition
JP2022129794A (en) Cationic electro-deposition coating composition
WO2022014277A1 (en) Cationic electrodeposition coating composition
JP2006348316A (en) Method for forming electrodeposition coating film
JP7161335B2 (en) Coating method of cationic electrodeposition paint
JP2006002003A (en) Cathodic electrodeposition coating composition
US20020132969A1 (en) Cationic electrodeposition coating composition comprising phosphonium group-containing compound
WO2021006220A1 (en) Cationic electrodeposition coating composition
JP2002129100A (en) Cationic electrodeposition paint composition
JP4378222B2 (en) Novel cationic electrodeposition coating composition and coating method using the same
JP2002285391A (en) Electrodeposition coating method
JP7333198B2 (en) Method for preparing cationic electrodeposition coating composition
JP2006348076A (en) Cationic electrodeposition coating composition
JP2003268315A (en) Leadless cationic electrodeposition paint composition
JP2002294146A (en) Non-lead cationic electrodeposition coating material composition
JP2007314688A (en) Resin for aqueous coating, method for producing the same and aqueous coating composition
WO2022092288A1 (en) Cationic electrodeposition coating composition
JP2006002002A (en) Cathodic electrodeposition coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees