JP2009013222A - Method of manufacturing modified coal and manufacturing method of coke - Google Patents

Method of manufacturing modified coal and manufacturing method of coke Download PDF

Info

Publication number
JP2009013222A
JP2009013222A JP2007173968A JP2007173968A JP2009013222A JP 2009013222 A JP2009013222 A JP 2009013222A JP 2007173968 A JP2007173968 A JP 2007173968A JP 2007173968 A JP2007173968 A JP 2007173968A JP 2009013222 A JP2009013222 A JP 2009013222A
Authority
JP
Japan
Prior art keywords
coal
low
coke
grade coal
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007173968A
Other languages
Japanese (ja)
Inventor
Kunio Miyazawa
邦夫 宮澤
Hidetoshi Morotomi
秀俊 諸富
Shozo Itagaki
省三 板垣
Joichi Takenaka
穰一 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
JFE Techno Research Corp
Original Assignee
JFE Chemical Corp
JFE Techno Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp, JFE Techno Research Corp filed Critical JFE Chemical Corp
Priority to JP2007173968A priority Critical patent/JP2009013222A/en
Publication of JP2009013222A publication Critical patent/JP2009013222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of reforming low-grade coal containing a large amount of oxygen atoms without generating a large amount of water, and to provide a method of manufacturing coke for iron-making by using the same. <P>SOLUTION: A method of manufacturing modified coal by treating low-grade coal with heavy oils comprises: a catalyst-carrying step of causing low-grade coal containing a large amount of oxygen atoms to carry a metal and/or a metal compound; a porosification step of drying the low-grade coal carrying the catalyst and subsequently porosifying the low-grade coal by heating it at a temperature of 300-1,200°C in an inert atmosphere or in a slightly oxidizing atmosphere; and a modifying step of heating the porous low-grade coal after the porosification step together with heavy oils at a temperature of 300-500°C in an inert atmosphere or in a reducing atmosphere, thereby causing decomposate of heavy oils to adhere to the surface of the porous low-grade coal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、酸素原子を多量に含む低品位炭を改質し、製鉄用コークスの製造に好適な改質炭、即ち、人造粘結炭を製造する方法および、その改質炭を配合炭の原料として用いてコークスを製造する方法に関する。   The present invention modifies low-grade coal containing a large amount of oxygen atoms and is suitable for the production of coke for iron making, that is, a method for producing artificial caking coal, and the reformed coal of the blended coal. The present invention relates to a method for producing coke using as a raw material.

製鉄所の高炉において使用される製鉄用コークスは、瀝青炭に属する粘結炭を含む十数銘柄を混合(配合)して配合炭とし、その配合炭をコークス炉内で1000〜1400℃の温度に20時間前後加熱し、高温乾留を行うことによって製造される。近年、製鉄用コークスを製造するのに必要な前記粘結炭は、不足しているのが実情であり、このことから、低品位炭の利用が検討されている。低品位炭とは、全炭素に対する芳香族炭素の比率が50〜60%の石炭であり、埋蔵量が多く、灰分、硫黄分の含有量が少ない炭種も多いが、水分が多く発熱量が低いことや、酸素含有量が多く、組織が緻密でないため、粉化しやすく、自然発火し易いという問題点がある。   Iron coke used in steelworks blast furnaces is a blended coal by mixing (compounding) dozens of brands including caking coal belonging to bituminous coal, and the blended coal is heated to 1000-1400 ° C in the coke oven. It is manufactured by heating around 20 hours and performing high temperature carbonization. In recent years, the caking coal necessary for producing iron-making coke is actually lacking, and from this, the use of low-grade coal has been studied. Low-grade coal is a coal with a ratio of aromatic carbon to total carbon of 50-60%, and there are many reserves and many coal types with low ash and sulfur content, but there is a lot of moisture and a calorific value. There is a problem that it is low, has a high oxygen content, and is not dense, so that it is easily pulverized and easily ignites.

そのため、亜瀝青炭、褐炭、亜炭、泥炭のような低品位炭は、特許文献1や特許文献2に示すように、水素雰囲気下で、溶剤を使用して400〜450℃で改質して品位を向上させ、これをコークス製造に利用する技術が開示されている。また、特許文献3では、低品位炭と重質炭化水素との混合物を、300〜500℃で加熱処理し、それを塔底温度250〜320℃、圧力40mmHg以下の条件で蒸留し、改質炭およびタール油を得る技術が開示されている。さらに、特許文献4には、低品位炭を400〜450℃で液相分解させることにより、改質炭と軽質油状留分を得る技術が開示されている。
特開昭53−104603号公報 特開昭55−69691号公報 特開昭58−217593号公報 特許3198306号公報
Therefore, low-grade coals such as subbituminous coal, lignite, lignite, and peat are reformed at 400 to 450 ° C. using a solvent in a hydrogen atmosphere as shown in Patent Document 1 and Patent Document 2, and are graded. And a technique for utilizing this for coke production is disclosed. In Patent Document 3, a mixture of low-grade coal and heavy hydrocarbon is heat-treated at 300 to 500 ° C., and distilled under conditions of a tower bottom temperature of 250 to 320 ° C. and a pressure of 40 mmHg or less. Techniques for obtaining charcoal and tar oil are disclosed. Furthermore, Patent Document 4 discloses a technique for obtaining a reformed coal and a light oil fraction by liquid phase decomposition of low-grade coal at 400 to 450 ° C.
JP 53-104603 A Japanese Patent Laid-Open No. 55-69691 JP 58-217593 A Japanese Patent No. 3198306

しかしながら、特許文献1および特許文献2は、低品位炭を、水素雰囲気下で、加熱処理して改質する方法が用いられているため、水素と低品位炭に多量に含有される酸素原子(約27質量%)とが反応し、大量の水が生成する。このため、これらの技術は、改質炭の取得量が少なく、効率が悪いと共に、生成した多量の水を除去するための油水分離器等や、水分中に混入する油分を除去するための高度な廃水処理設備を設けなければならないことに加えて、多量の水素ガスを必要とするため、ガス圧縮・循環設備を大型化する必要があり、経済的な面でも問題点があった。   However, since Patent Document 1 and Patent Document 2 use a method of reforming low-grade coal by heat treatment in a hydrogen atmosphere, oxygen atoms contained in a large amount in hydrogen and low-grade coal ( About 27% by mass) to form a large amount of water. For this reason, these technologies are low in the amount of reformed coal acquired and inefficient, and are equipped with an oil / water separator for removing a large amount of generated water, and an advanced level for removing oil mixed in moisture. In addition to having to install a large wastewater treatment facility, a large amount of hydrogen gas is required, so it is necessary to increase the size of the gas compression / circulation facility.

さらに、特許文献3および特許文献4では、低品位炭の酸素原子と溶剤(重質油)中の水素原子とが反応したり、あるいは低品位炭に含有される酸素原子と水素原子とが反応して多量の水が生成するため、生成物が改質炭、溶剤(重質油)および水の混合状態で得られることになり、生成物の分離操作・処理が煩雑になるほか、設備が大きくなるという問題点があった。   Further, in Patent Document 3 and Patent Document 4, oxygen atoms of low-grade coal react with hydrogen atoms in the solvent (heavy oil), or oxygen atoms and hydrogen atoms contained in the low-grade coal react. Since a large amount of water is generated, the product can be obtained in a mixed state of reformed coal, solvent (heavy oil) and water. There was a problem of becoming larger.

そこで、本発明は、上記問題点に鑑みて開発されたものであり、多量の酸素原子を含む低品位炭を、水を多量に発生させることなく改質する方法、およびこれを用いた製鉄用コークスの製造方法を提供することを目的とする。   Therefore, the present invention was developed in view of the above problems, a method for reforming low-grade coal containing a large amount of oxygen atoms without generating a large amount of water, and for iron making using the same It aims at providing the manufacturing method of coke.

本発明の上記目的を実現するため鋭意検討を重ねた結果、本発明は、低品位炭を重質油類で処理して改質炭を製造する方法において、多量の酸素原子を含む低品位炭に、金属および/または金属化合物を担持する触媒担持工程と、触媒担持後の前記低品位炭を乾燥した後、不活性雰囲気あるいは微酸化性雰囲気下で300〜1200℃の温度に加熱することにより多孔質化する多孔質化工程と、多孔質化工程後の前記多孔質低品位炭を、重質油類と共に不活性雰囲気または還元性雰囲気下で300〜500℃の温度に加熱し、該低品位炭表面に重質油類の分解生成物を付着させる改質工程と、を経ることを特徴とする改質炭の製造方法を提案する。   As a result of intensive studies to achieve the above object of the present invention, the present invention provides a method for producing modified coal by treating low-grade coal with heavy oils. And a catalyst supporting step for supporting a metal and / or a metal compound, and drying the low-grade coal after supporting the catalyst, followed by heating to a temperature of 300 to 1200 ° C. in an inert atmosphere or a slightly oxidizing atmosphere. The porous low-grade coal after the porous formation step and the porous low-grade coal after the porous formation step are heated to a temperature of 300 to 500 ° C. in an inert atmosphere or a reducing atmosphere together with heavy oils. And a reforming step of attaching a decomposition product of heavy oils to the surface of the high-grade coal.

なお、本発明においては、前記改質工程は、水素含有雰囲気下で行われること、前記低品位炭が褐炭であること、前記金属が、鉄であること、多孔質化工程後の前記多孔質低品位炭の比表面積が300〜1500m/gであること、および前記分解生成物の前記多孔質低品位炭表面への付着量が、質量比で、該低品位炭の3〜5倍であることが、より好ましい解決手段を提供できる。 In the present invention, the reforming step is performed in a hydrogen-containing atmosphere, the low-grade coal is lignite, the metal is iron, and the porous after the porosification step. The specific surface area of the low-grade coal is 300 to 1500 m 2 / g, and the adhesion amount of the decomposition products to the surface of the porous low-grade coal is 3 to 5 times that of the low-grade coal. Being present can provide a more preferable solution.

また、本発明は、請求項1〜6のいずれか1項に記載の製造方法によって得られた改質炭を含む配合炭を、コークス炉に装入し、1000〜1200℃で加熱乾留することを特徴とするコークスの製造方法を提案する。   Moreover, this invention charges the coal blend containing the modified coal obtained by the manufacturing method of any one of Claims 1-6 in a coke oven, and heat-distills at 1000-1200 degreeC. We propose a coke production method characterized by

上記のような構成を有する本発明では、原料炭である低品位炭を、改質に先立ち、その酸素含有量が15質量%以下になるように脱酸処理することにより、低品位炭の改質処理過程で水を多量に発生させることがない。そのため、低品位炭を効率よく改質することができると共に、油水分離器や廃水処理設備などの機器を省くことができるため、高品位炭並みあるいはそれ以上の燃料特性と経済性を有する改質炭および製鉄用コークスを得ることができる。
また、脱酸後の低品位炭は、多孔質であるため、その孔中に重質分を多量に付着、保持させることができ、また、その付着力も大きいことから、コークス強度を向上させることができる。
In the present invention having the above-described configuration, the low-grade coal as the raw coal is deoxidized before the reforming so that the oxygen content is 15% by mass or less. Does not generate a large amount of water during the quality treatment process. As a result, low-grade coal can be reformed efficiently, and equipment such as oil-water separators and wastewater treatment facilities can be omitted. Charcoal and steelmaking coke can be obtained.
In addition, since the low-grade coal after deoxidation is porous, it can adhere and retain a large amount of heavy components in the pores, and also has high adhesion, thus improving the coke strength. be able to.

本発明の改質炭の製造方法は、主に低品位炭に金属および/または金属化合物などの触媒を担持する触媒担持工程と、触媒を担持した前記低品位炭を加熱し、多孔質化する多孔質化工程と、多孔質化工程後の前記多孔質低品位炭を重質油類と共に加熱し、該低品位炭表面に重質油類の分解生成物を付着させる改質工程を経ることを特徴とする。   The method for producing modified coal of the present invention mainly comprises a catalyst supporting step for supporting a catalyst such as a metal and / or metal compound on low-grade coal, and heating the low-grade coal supporting the catalyst to make it porous. A porous process and a reforming process in which the porous low-grade coal after the porous process is heated together with heavy oil and a decomposition product of the heavy oil is attached to the surface of the low-grade coal. It is characterized by.

本発明において、改質すべき原料炭としては、亜瀝青炭、褐炭、亜炭、泥炭のような酸素原子含有量の多い低品位炭が対象となる。褐炭としては、豪州産のヤルーン炭、モーエル炭およびロイヤン炭などが好適である。なお、本発明においては、上記の原料炭に加えて、またはこれに代えて、木材やヤシガラなどのバイオマス原料も用いることができる。   In the present invention, the raw coal to be reformed is a low-grade coal having a high oxygen atom content such as subbituminous coal, lignite, lignite, and peat. As the brown coal, Australian-made Yarune coal, Moel coal, Royan coal and the like are suitable. In the present invention, biomass raw materials such as wood and coconut shells can be used in addition to or in place of the raw coal.

本発明では、まず、前記低品位炭に金属および/または金属化合物などの触媒を担持させる。これは、担持された触媒の作用により、重質油類の分解が促進され、軽質留分に効率よく転換されるようになる他、重質類の分解生成物であるコーク、カーボンまたはそれらの前駆体などの重質分が、多孔質炭素材料中の細孔に十分に付着・保持され、品質の高い改質炭を得ることができるようになるためである。   In the present invention, first, a catalyst such as a metal and / or a metal compound is supported on the low-grade coal. This is because the action of the supported catalyst accelerates the decomposition of heavy oils and allows them to be efficiently converted into light fractions, as well as coke, carbon or their decomposition products of heavy products. This is because the heavy components such as the precursor are sufficiently adhered and held in the pores in the porous carbon material, and high quality modified coal can be obtained.

即ち、後述する改質工程において、重質油類は、加熱によって、それを構成する比較的分子量の大きな炭化水素の結合が切断され、それに伴って炭化水素ラジカルが発生する。この反応性の高い炭化水素ラジカルは、連鎖的な反応を引き起こして、お互いに結合し、最終的には重縮合反応を引き起こしてコーク、カーボンまたはそれらの前駆体となる。とりわけ、アスファルテンを多く含む超重質油の分解においては、重縮合反応の進行傾向が強くなってしまう。   That is, in the reforming step described later, heavy oils are broken by heating, and the hydrocarbon bonds having a relatively large molecular weight constituting the heavy oils are generated. This highly reactive hydrocarbon radical causes a chain reaction and bonds to each other, and finally causes a polycondensation reaction to become coke, carbon or a precursor thereof. In particular, in the decomposition of superheavy oil containing a large amount of asphaltenes, the tendency of the polycondensation reaction to proceed is increased.

これに対し、触媒は、炭化水素ラジカルへの水素の添加を促進し、炭化水素ラジカルを安定化させる働きを有する。また、多孔質炭は、炭化水素ラジカルを緩やかに吸着する性質がある。そのため、吸着された炭化水素ラジカルは、担持された触媒によって水素を添加されて安定し、多孔質炭から脱離していき、重質油類が、軽質留分に効率よく転換されることになるのである。   On the other hand, the catalyst has a function of promoting the addition of hydrogen to the hydrocarbon radical and stabilizing the hydrocarbon radical. In addition, porous charcoal has a property of slowly adsorbing hydrocarbon radicals. Therefore, the adsorbed hydrocarbon radicals are stabilized by adding hydrogen by the supported catalyst and desorbed from the porous coal, and heavy oils are efficiently converted into light fractions. It is.

なお、低品位炭表面への触媒の担持は、低品位炭が、最初から細孔を有し、その細孔の中に水が保有された状態にある場合が多いため、水溶性の化合物を添加することにより容易に行うことが可能であり、金属化合物の水溶液を用いて、一般的に知られる含浸法を用いて行うことができる。   Note that the catalyst is supported on the surface of low-grade coal because low-grade coal often has pores from the beginning and water is held in the pores. It can be easily carried out by adding, and can be carried out by using a generally known impregnation method using an aqueous solution of a metal compound.

また、前記触媒となる金属としては、鉄、コバルト、ニッケル等を用いることができ、とくに費用、取り扱いのし易さの点から鉄を用いることが好ましい。また、金属化合物としては、鉄、コバルト、ニッケル等の硝酸塩、塩酸塩、硫酸塩、酢酸塩等を用いることができる。   Moreover, iron, cobalt, nickel or the like can be used as the catalyst metal, and iron is particularly preferable from the viewpoints of cost and ease of handling. Further, as the metal compound, nitrates such as iron, cobalt, nickel, hydrochlorides, sulfates, acetates, and the like can be used.

なお、低品位炭表面への触媒の担持は、低品位炭を未乾燥の状態で行っても、一旦乾燥させた後に行ってもよく、省エネルギーの点から、未乾燥の状態で行うことが好ましい。   The catalyst loading on the surface of the low-grade coal may be performed in an undried state or after being dried once, and is preferably performed in an undried state from the viewpoint of energy saving. .

次に、触媒を担持させた低品位炭を、乾燥した後、加熱して多孔質化する多孔質化工程について説明する。まず、乾燥の方法としては、上述したように低品位炭は、細孔の中に水が保有された状態にある場合が多いため、その細孔を潰さないように行うことが好ましく、これには、超臨界乾燥や凍結乾燥などが好適である。通常の熱風乾燥では、褐炭、亜炭、泥炭などの原料中に細孔を有する褐炭類を乾燥させると、細孔中に埋蔵する水の毛管力によって褐炭が収縮し、細孔構造が破壊されてしまうおそれがある。この点、超臨界乾燥の場合には、乾燥時に気−液界面が出現しない乾燥方法であるため、細孔構造を残したまま水分が取り除かれることになる。   Next, a description will be given of a porosification step in which low-grade coal carrying a catalyst is dried and then heated to make it porous. First, as a drying method, as described above, low-grade coal is often in a state where water is retained in the pores, so it is preferable to carry out so as not to crush the pores. For example, supercritical drying or freeze drying is preferable. In normal hot air drying, when lignite with pores in the raw materials such as lignite, lignite, and peat is dried, the lignite contracts due to the capillary force of the water embedded in the pores, and the pore structure is destroyed. There is a risk that. In this regard, in the case of supercritical drying, since the gas-liquid interface does not appear during drying, moisture is removed while leaving the pore structure.

続いて、上記のようにして乾燥させた低品位炭を加熱処理する。低品位炭中の酸素原子は、加熱処理によって主に一酸化炭素あるいは二酸化炭素等となって放出するため、低品位炭の酸素含有量は、15質量%以下となり、その後の改質工程における水の発生を減少させることができる。なお、低品位炭中の酸素原子の抜けた部分も、空孔となり、多孔質化に寄与する。また、低品位炭に担持させた触媒を活性化させるため、低品位炭を加熱して炭素化した後に、水素雰囲気等の下で加熱して還元し、さらに硫化処理を行う工程を追加してもよい。   Subsequently, the low-grade coal dried as described above is heat-treated. Since oxygen atoms in the low-grade coal are released mainly as carbon monoxide or carbon dioxide by heat treatment, the oxygen content of the low-grade coal becomes 15% by mass or less, and water in the subsequent reforming process Can be reduced. In addition, the part from which oxygen atoms in the low-grade coal are lost becomes pores and contributes to the porous formation. In addition, in order to activate the catalyst supported on the low-grade coal, after adding the carbonization by heating the low-grade coal, heating and reducing under a hydrogen atmosphere, etc. Also good.

なお、上記低品位炭の加熱処理は、窒素、アルゴン、ヘリウム等の不活性雰囲気またはCOを含むような微酸化性雰囲気のもとで、300〜1200℃、好ましくは400〜800℃程度の温度で、固定床炉やトンネル炉、回転炉、流動床炉などを用いて行うことができる。 The heat treatment of the low-grade coal is performed at 300 to 1200 ° C., preferably about 400 to 800 ° C. under an inert atmosphere such as nitrogen, argon, helium or the like, or a slightly oxidizing atmosphere containing CO 2 . Depending on the temperature, it can be carried out using a fixed bed furnace, tunnel furnace, rotary furnace, fluidized bed furnace or the like.

多孔質化工程において、不活性雰囲気または微酸化性雰囲気下で加熱処理を行う理由は、乾燥および加熱処理における一酸化炭素・二酸化炭素の放出によって、多孔質構造が形成されるので、強烈な酸化性雰囲気下で加熱処理を行うと、孔を形造っている壁に相当する部分の炭素までが酸化(燃焼)してしまうためである。   The reason for performing the heat treatment in an inert atmosphere or a slightly oxidizing atmosphere in the porosification process is that a porous structure is formed by the release of carbon monoxide and carbon dioxide in the drying and heat treatment, so that strong oxidation occurs. This is because when the heat treatment is performed in a neutral atmosphere, even the carbon corresponding to the walls forming the pores is oxidized (burned).

また、加熱温度を、300〜1200℃範囲とするのは、加熱温度が300℃以下では、充分に多孔質化が進まず、比表面積が小さく、一方、温度が1200℃超では、収縮によって孔の大きさが減少する他、エネルギー的にも無駄となるからである。   In addition, the heating temperature is set in the range of 300 to 1200 ° C. When the heating temperature is 300 ° C. or less, the porous surface does not sufficiently become porous and the specific surface area is small. This is because, in addition to a decrease in size, the energy is wasted.

なお、多孔質化工程後の前記多孔質低品位炭は、窒素ガスを用いるBET法によって測定される比表面積が300〜1500m/g程度、好ましくは600〜1200m/g程度の多孔質炭であることが好ましい。これは、この比表面積が小さすぎると、低品位炭と重質油類の分解生成物との付着力が弱くなり、これを用いてコークスを製造したときの強度が不足するためである。一方、低品位炭の比表面積が大きすぎると、分解生成物が入らないような細孔径の小さい細孔が多くなるため、コークス強度が低下するためである。 Incidentally, the porous low-grade coal after porous step has a specific surface area measured by the BET method using nitrogen gas 300~1500m 2 / g, preferably about about 600~1200m 2 / g porous coal It is preferable that This is because if the specific surface area is too small, the adhesion between the low-grade coal and the decomposition products of heavy oils becomes weak, and the strength when coke is produced using this is insufficient. On the other hand, when the specific surface area of the low-grade coal is too large, pores having small pore diameters that do not contain decomposition products increase, and the coke strength decreases.

次に、改質工程について説明する。
改質工程では、多孔質化した多孔質低品位炭(以下、「多孔質炭」と言う)を、重質油類(石油系重質油あるいは石炭系重質油)中で加熱することにより、重質油類の熱分解によって生成するコーク、カーボンまたはそれらの前駆体などの非常に重質な成分を、該多孔質炭の細孔内に侵入、吸着させる。
Next, the reforming process will be described.
In the reforming process, the porous porous low-grade coal (hereinafter referred to as “porous coal”) is heated in heavy oil (petroleum heavy oil or coal heavy oil). , Very heavy components such as coke, carbon, or their precursors generated by pyrolysis of heavy oils enter and adsorb into the pores of the porous coal.

なお、この改質工程は、不活性雰囲気または還元性雰囲気で多孔質炭と重質油類とを300〜500℃程度に加熱し、とくに、水素ガスを主体とする還元性雰囲気のもとで380〜460℃に加熱することが好ましい。これは、重質油類の熱分解は、一種の不均化反応であるので、重質成分であるコークまたはカーボン等が生成する一方、軽質成分も生成するが、水素ガスが存在すると、この軽質成分の粘度が低くなり、コーク、カーボンまたはそれらの前駆体などの非常に重質な成分の移動が容易になり、細孔内への侵入や吸着が進みやすくなるためと想像される。   In this reforming step, porous charcoal and heavy oil are heated to about 300 to 500 ° C. in an inert atmosphere or a reducing atmosphere, and particularly in a reducing atmosphere mainly composed of hydrogen gas. It is preferable to heat to 380-460 degreeC. This is because pyrolysis of heavy oils is a kind of disproportionation reaction, so that heavy components such as coke or carbon are produced, while light components are also produced, but when hydrogen gas is present, It is assumed that the viscosity of the light component is lowered, the movement of a very heavy component such as coke, carbon, or a precursor thereof is facilitated, and the penetration and adsorption into the pores are facilitated.

この改質工程は、たとえば固定床、移動床、懸濁液(スラリー床)、沸騰床などの他、懸濁床や沸騰床のような完全混合槽タイプによって好適に行うことができる。   This reforming step can be suitably performed by a complete mixing tank type such as a fixed bed, a moving bed, a suspension (slurry bed), a boiling bed, and the like, as well as a suspension bed and a boiling bed.

分解生成物(重質分)の多孔質炭への付着量は、多孔質炭の5倍(質量比)以下とすることが好ましい。これは、分解生成物の付着量が多くなりすぎると、オイルコークスの物性と変わらなくなってしまい、原料炭として用いることができなくなるためである。   The amount of the decomposition product (heavy content) attached to the porous coal is preferably 5 times (mass ratio) or less of the porous coal. This is because if the amount of decomposition products deposited becomes too large, the physical properties of oil coke will not change, and it will not be possible to use as raw coal.

ここで、石油系重質油とは、石油精製に関連する重質油および超重質油であり、重質油は、たとえば、原油、石油系の常圧蒸留残油、減圧蒸留残油、接触分解残油等の残油等あるいはオイルサンド油、オイルシェール油等であり、超重質油は、たとえば、メキシコに産するマヤ、カナダに産するアサバスカオイルサンドビチューメン、コールドレイクオイルサンドビチューメン、ベネゼエラに産するオリノコタール、セロネグロ、ズアタ、バッチャケロ、ボスカン、ブラジルに産するマリム等の油種である。また、石炭系重質油とは、コークス炉から発生するコールタールの蒸留で分留される重質留分のことであり、たとえば、クレオソート油、アントラセン油、ピッチなどである。さらに、石炭の液化で得られる液化油の重質留分もある。   Here, petroleum heavy oil is heavy oil and super heavy oil related to petroleum refining, and heavy oil is, for example, crude oil, petroleum-based atmospheric distillation residue, vacuum distillation residue, contact Residual oil such as cracked residual oil or oil sand oil, oil shale oil, etc., and super heavy oil, for example, Maya from Mexico, Athabasca oil sand bitumen from Canada, Cold Lake oil sand bitumen, Venezuela It is a kind of oil such as Orinocotar, Celonegro, Zuata, Batchachero, Boscan, and Marim produced in Brazil. The coal-based heavy oil is a heavy fraction that is fractionated by distillation of coal tar generated from a coke oven, such as creosote oil, anthracene oil, and pitch. There is also a heavy fraction of liquefied oil obtained by liquefaction of coal.

そして、本発明では、上記のようにして多孔質炭に分解生成物を付着させた後、通常の濾過、遠心分離、蒸留などの方法を用いて余分の油分を分離することにより、改質炭とする。   And in this invention, after attaching a decomposition product to porous charcoal as mentioned above, extra oil is separated using methods, such as usual filtration, centrifugation, and distillation, and reformed charcoal. And

このようにして得られた改質炭は、配合炭用原料炭としてそのまま使用してもよいが、さらに若干の変性処理や熱処理を施すことにより、改質炭の性状を向上させたものを用いてもよい。とりわけ、多孔質炭に、その5倍を超える分解生成物が付着・吸着している場合、この変性処理や熱処理が有効となる。   The reformed coal obtained in this way may be used as it is as raw coal for blended coal, but it is further improved by modifying the properties of the reformed coal by subjecting it to some modification or heat treatment. May be. In particular, when the decomposition product more than 5 times adheres to and adsorbs to the porous coal, this modification treatment or heat treatment is effective.

前記変性処理は、大気中の場合、150〜300℃程度に加熱する方法であり、不活性雰囲気あるいは還元性雰囲気中の場合、300〜600℃程度の温度に加熱する方法である。また、減圧下で行う場合には、分解生成物の一部が揮散するため、200〜400℃程度で加熱すればよい。   The modification treatment is a method of heating to about 150 to 300 ° C. in the air, and a method of heating to a temperature of about 300 to 600 ° C. in an inert atmosphere or a reducing atmosphere. Moreover, when performing under reduced pressure, since a part of decomposition product volatilizes, what is necessary is just to heat at about 200-400 degreeC.

次に、以上のようにして得られた改質炭を用いてコークスを製造する方法を説明する。上記の処理を経た改質炭は、必要に応じて粉砕や造粒などの粒度調整を行い、他の原料炭と同様にコークス炉の配合槽に投入し、配合炭を調整する。その配合炭を、装炭車によってコークス炉の窯に装入し、自生ガス還元雰囲気のもとで1000〜1200℃で20時間前後乾留する。その後、押出し機によって窯から押出し、CDQ設備で常温まで冷却し、製鉄用コークスとする。   Next, a method for producing coke using the modified coal obtained as described above will be described. The reformed coal that has undergone the above-mentioned treatment is subjected to particle size adjustment such as pulverization and granulation, if necessary, and is introduced into a blending tank of a coke oven in the same manner as other raw coals to adjust the blended coal. The blended charcoal is charged into a coke oven kiln with a charcoal car and dry-distilled at 1000 to 1200 ° C. for about 20 hours under a natural gas reducing atmosphere. Then, it extrudes from a kiln with an extruder, cools to normal temperature with a CDQ equipment, and is set as iron-making coke.

(実施例1)
a.触媒担持工程
揮発分:40〜50質量%、灰分:0.5質量%を有する褐炭(成分組成:炭素67.1質量%、水素4.3質量%、窒素0.9質量%、硫黄0.2質量%、酸素27.0質量%)を、水分が付着したまま(約60質量%、乾燥炭に対して)、硝酸鉄水溶液に3時間浸漬し、Feを5質量%担持した後、凍結乾燥した。
b.多孔質化工程
続いて、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で600℃まで昇温し、600℃で60分保持して多孔質炭を得た。得られた多孔質炭の性状を表2に示した。
c.改質工程
ついで、多孔質炭5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(圧力:0.98MPa(10Kg/cmG)に380℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で、430℃、30分間熱処理して軽油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。なお、配合炭の充填密度は、0.76kg/リットルとした。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
Example 1
a. Catalyst loading step: Brown coal having volatile content: 40-50% by mass, ash content: 0.5% by mass (component composition: carbon 67.1% by mass, hydrogen 4.3% by mass, nitrogen 0.9% by mass, sulfur 0. 2% by mass, 27.0% by mass oxygen) with water adhering (about 60% by mass to dry charcoal), immersed in an aqueous iron nitrate solution for 3 hours to carry 5% by mass of Fe, and then frozen. Dried.
b. Porous Step Next, it was placed in a SUS rotary kiln furnace having an inner diameter of 600 mm, heated from room temperature to 600 ° C. at a rate of 5 ° C./min under nitrogen gas flow, and maintained at 600 ° C. for 60 minutes to obtain porous coal Got. The properties of the obtained porous coal are shown in Table 2.
c. Next, 5 kg of porous charcoal and 20 kg of pitch are put into an induction-stirring autoclave with an internal volume of 50 liters and kept at 380 ° C. for 60 minutes in a nitrogen atmosphere (pressure: 0.98 MPa (10 Kg / cm 2 G)). Thereafter, the reaction product was taken out from the autoclave, and heat treatment was performed at 430 ° C. for 30 minutes under a nitrogen gas flow to remove the light oil, thereby obtaining modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The filling density of the blended coal was 0.76 kg / liter. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

(実施例2)
a.触媒担持工程
実施例1と同じ褐炭を、水分が付着したまま(約60質量%、乾燥炭に対して)、硝酸鉄水溶液に3時間浸漬し、Feを5質量%担持した後、凍結乾燥した。
b.多孔質化工程
これを、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で400℃まで昇温し、その温度で60分加熱し、さらに水素雰囲気下で450℃、60分還元した後、水素と硫化水素の混合ガス(1:0.25)中で450℃、30分加熱して、硫化処理を行い、多孔質炭を得た。得られた多孔質炭の性状を表2に示した。
c.改質工程
ついで、この多孔質炭0.05kgと減圧残油0.95kgとを、小型の連続式高圧反応装置に投入し、水素ガス雰囲気下(圧力:9.8MPa(100Kg/cmG))で、380℃、45分間反応させた。反応生成物を、常圧蒸留および減圧蒸留し、沸点が538℃未満の油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製し、実施例1と同様にしてコークスのドラム強度(DI30 15)を測定した。その結果を表2に示す。
(Example 2)
a. Catalyst loading step The same lignite as in Example 1 was immersed in an aqueous iron nitrate solution for 3 hours with moisture adhering (about 60% by mass to dry coal), and 5% by mass of Fe was supported and then freeze-dried. .
b. Porous process This was placed in a SUS rotary kiln furnace having an inner diameter of 600 mm, heated to 400 ° C. under nitrogen gas flow, heated at that temperature for 60 minutes, and further heated at 450 ° C. for 60 minutes in a hydrogen atmosphere. After the reduction, the mixture was heated in a mixed gas of hydrogen and hydrogen sulfide (1: 0.25) at 450 ° C. for 30 minutes to perform a sulfiding treatment to obtain porous charcoal. The properties of the obtained porous coal are shown in Table 2.
c. Next, 0.05 kg of this porous charcoal and 0.95 kg of vacuum residual oil were put into a small continuous high-pressure reactor, under a hydrogen gas atmosphere (pressure: 9.8 MPa (100 Kg / cm 2 G) ) At 380 ° C. for 45 minutes. The reaction product was subjected to atmospheric distillation and vacuum distillation to remove oil having a boiling point of less than 538 ° C. to obtain modified coal.
The blended coal is prepared by adding the base blended coal of caking coal prepared by mixing the four coals (A to D coal) shown in Table 1 (coking coal for coke) to 10% by mass of this modified coal. It was measured coke drum strength (DI 30 15) in the same manner as in example 1. The results are shown in Table 2.

(実施例3)
a.触媒担持工程
実施例1と同じ褐炭を、真空乾燥した後、硝酸鉄水溶液に3時間浸漬し、Feを5質量%担持させた。
b.多孔質化工程
続いて、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で600℃まで昇温し、600℃で60分保持した。その後、二酸化炭素30vol%と窒素70vol%の微酸化性雰囲気に切り換えて、5℃/分で1000℃まで昇温し、1000℃で5時間保持して多孔質炭を得た。得られた多孔質炭の性状を表2に示した。
c.改質工程
ついで、多孔質炭5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(圧力:0.98MPa(10Kg/cmG)に380℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で、430℃、30分間熱処理して軽油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。なお、配合炭の充填密度は、0.76kg/リットルとした。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Example 3)
a. Catalyst supporting step After the lignite as in Example 1 was vacuum dried, it was immersed in an aqueous iron nitrate solution for 3 hours to support 5% by mass of Fe.
b. Next, it was placed in a SUS rotary kiln furnace having an inner diameter of 600 mm, heated from room temperature to 600 ° C. at 5 ° C./min under a nitrogen gas flow, and held at 600 ° C. for 60 minutes. Then, it switched to the slightly oxidizing atmosphere of carbon dioxide 30 vol% and nitrogen 70 vol%, heated up to 1000 degreeC at 5 degree-C / min, and hold | maintained at 1000 degreeC for 5 hours, and obtained porous charcoal. Properties of the obtained porous coal are shown in Table 2.
c. Next, 5 kg of porous charcoal and 20 kg of pitch are put into an induction-stirring autoclave with an internal volume of 50 liters and kept at 380 ° C. for 60 minutes in a nitrogen atmosphere (pressure: 0.98 MPa (10 Kg / cm 2 G)). Thereafter, the reaction product was taken out from the autoclave, and heat treatment was performed at 430 ° C. for 30 minutes under a nitrogen gas flow to remove the light oil, thereby obtaining modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The filling density of the blended coal was 0.76 kg / liter. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

(比較例1)
褐炭(乾燥品)を、表1に示す配合からなるベース配合炭と混合し、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。得られたコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定し、その結果を表2に示す。
(Comparative Example 1)
Brown coal (dried product) was mixed with base blended coal having the composition shown in Table 1, and carbonized in a coke oven at 1100 ° C. for 18 to 20 hours to obtain coke. The drum strength (DI 30 15 ) of the obtained coke was measured according to JIS K2151, and the results are shown in Table 2.

(比較例2)
表1に示す配合からなるベース配合炭を、充填密度が0.76kg/リットルとなるように充填し、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。得られたコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定し、その結果を表2に示す。
(Comparative Example 2)
The base blended charcoal composed of the blend shown in Table 1 was filled so that the packing density was 0.76 kg / liter, and was subjected to dry distillation in a coke oven at 1100 ° C. for 18 to 20 hours to obtain coke. The drum strength (DI 30 15 ) of the obtained coke was measured according to JIS K2151, and the results are shown in Table 2.

(比較例3)
実施例1と同じ褐炭を真空乾燥した後、この褐炭5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(圧力:0.98MPa(10Kg/cmG)に380℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で、430℃、30分間熱処理して軽油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。なお、配合炭の充填密度は、0.76kg/リットルとした。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Comparative Example 3)
After vacuum drying the same lignite as in Example 1, 5 kg of this lignite and 20 kg of pitch were put into an induction stirring autoclave having an internal volume of 50 liters, and under a nitrogen atmosphere (pressure: 0.98 MPa (10 Kg / cm 2 G). It was kept at 380 ° C. for 60 minutes, after which the reaction product was taken out from the autoclave and heat treated at 430 ° C. for 30 minutes under a nitrogen gas flow to remove light oil and obtain modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The filling density of the blended coal was 0.76 kg / liter. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

(比較例4)
実施例1と同じ褐炭を真空乾燥した後、これを、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で400℃まで昇温し、その温度で60分加熱し、さらに水素雰囲気下で450℃、60分還元した後、水素と硫化水素の混合ガス(1:0.25)中で450℃、30分加熱して、硫化処理を行った。続いて、硫化処理後の褐炭を、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で600℃まで昇温し、600℃で60分保持して多孔質炭を得た。
ついで、多孔質炭5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(圧力:0.98MPa(10Kg/cmG)に380℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で、430℃、30分間熱処理して軽油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。なお、配合炭の充填密度は、0.76kg/リットルとした。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Comparative Example 4)
After vacuum drying the same lignite as in Example 1, this was placed in a SUS rotary kiln furnace with an inner diameter of 600 mm, heated to 400 ° C. under nitrogen gas flow, heated at that temperature for 60 minutes, and further hydrogenated After reducing at 450 ° C. for 60 minutes in an atmosphere, the sulfurating treatment was performed by heating at 450 ° C. for 30 minutes in a mixed gas of hydrogen and hydrogen sulfide (1: 0.25). Subsequently, the sulfurized lignite is placed in a SUS rotary kiln furnace having an inner diameter of 600 mm, heated from room temperature to 600 ° C. at a rate of 5 ° C./min under a nitrogen gas flow, and held at 600 ° C. for 60 minutes. Porous charcoal was obtained.
Next, 5 kg of porous charcoal and 20 kg of pitch were put into an induction stirring autoclave having an internal volume of 50 liters, and maintained at 380 ° C. for 60 minutes under a nitrogen atmosphere (pressure: 0.98 MPa (10 Kg / cm 2 G). Then, the reaction product was taken out from the autoclave, and heat treatment was performed at 430 ° C. for 30 minutes under a nitrogen gas flow to remove light oil, thereby obtaining modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The filling density of the blended coal was 0.76 kg / liter. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

(比較例5)
実施例1と同じ褐炭を、水分が付着したまま(約60質量%、乾燥炭に対して)、硝酸鉄水溶液に3時間浸漬し、Feを5質量%担持した後、真空乾燥した。
ついで、この褐炭5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(圧力:0.98MPa(10Kg/cmG)に380℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で、430℃、30分間熱処理して軽油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。なお、配合炭の充填密度は、0.76kg/リットルとした。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠してを測定した。その結果を表2に示す。
(Comparative Example 5)
The same lignite as in Example 1 was immersed in an iron nitrate aqueous solution for 3 hours while adhering moisture (about 60% by mass to dry coal), and 5% by mass of Fe was supported, followed by vacuum drying.
Subsequently, 5 kg of this lignite and 20 kg of pitch were put into an induction-stirring autoclave having an internal volume of 50 liters, and maintained at 380 ° C. for 60 minutes in a nitrogen atmosphere (pressure: 0.98 MPa (10 Kg / cm 2 G). The reaction product was taken out from the autoclave and heat-treated at 430 ° C. for 30 minutes under a nitrogen gas flow to remove light oil to obtain modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The filling density of the blended coal was 0.76 kg / liter. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

(比較例6)
実施例1と同じ褐炭を、水分が付着したまま(約60質量%、乾燥炭に対して)、硝酸鉄水溶液に3時間浸漬し、Feを5質量%担持した後、凍結乾燥した。
続いて、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で250℃まで昇温し、250℃で60分保持して焼成した。得られた焼成物の性状を表2に示した。
ついで、焼成物5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(圧力:0.98MPa(10Kg/cmG)に380℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で、430℃、30分間熱処理して軽油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。なお、配合炭の充填密度は、0.76kg/リットルとした。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Comparative Example 6)
The same lignite as in Example 1 was immersed in an iron nitrate aqueous solution for 3 hours with moisture attached (about 60% by mass to dry coal), and 5% by mass of Fe was supported, followed by freeze-drying.
Subsequently, it was placed in a SUS rotary kiln furnace having an inner diameter of 600 mm, heated from room temperature to 250 ° C. at a rate of 5 ° C./min under a nitrogen gas flow, and held at 250 ° C. for 60 minutes for firing. The properties of the obtained fired product are shown in Table 2.
Next, 5 kg of the fired product and 20 kg of pitch were put into an induction stirring autoclave having an internal volume of 50 liters, and kept at 380 ° C. for 60 minutes under a nitrogen atmosphere (pressure: 0.98 MPa (10 Kg / cm 2 G). The reaction product was taken out from the autoclave and heat-treated at 430 ° C. for 30 minutes under a nitrogen gas flow to remove light oil to obtain modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The filling density of the blended coal was 0.76 kg / liter. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

(比較例7)
実施例1と同じ褐炭を、水分が付着したまま(約60質量%、乾燥炭に対して)、硝酸鉄水溶液に3時間浸漬し、Feを5質量%担持した後、凍結乾燥した。
続いて、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で1250℃まで昇温し、1250℃で60分保持して焼成した。得られた焼成物の性状を表2に示した。
ついで、焼成物5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(圧力:0.98MPa(10Kg/cmG)に380℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で、430℃、30分間熱処理して軽油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。なお、配合炭の充填密度は、0.76kg/リットルとした。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Comparative Example 7)
The same lignite as in Example 1 was immersed in an iron nitrate aqueous solution for 3 hours with moisture attached (about 60% by mass to dry coal), and 5% by mass of Fe was supported, followed by lyophilization.
Subsequently, it was placed in a SUS rotary kiln furnace having an inner diameter of 600 mm, heated from room temperature to 1250 ° C. at 5 ° C./min under nitrogen gas flow, and held at 1250 ° C. for 60 minutes for firing. The properties of the fired product obtained are shown in Table 2.
Next, 5 kg of the fired product and 20 kg of pitch were put into an induction stirring autoclave having an internal volume of 50 liters, and maintained at 380 ° C. for 60 minutes in a nitrogen atmosphere (pressure: 0.98 MPa (10 Kg / cm 2 G). The reaction product was taken out from the autoclave and heat-treated at 430 ° C. for 30 minutes under a nitrogen gas flow to remove light oil to obtain modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The filling density of the blended coal was 0.76 kg / liter. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

(比較例8)
実施例1と同じ褐炭を、水分が付着したまま(約60質量%、乾燥炭に対して)、硝酸鉄水溶液に3時間浸漬し、Feを5質量%担持した後、凍結乾燥した。
続いて、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で600℃まで昇温し、600℃で60分保持して焼成した。得られた焼成物の性状を表2に示した。
ついで、焼成物5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(圧力:0.98MPa(10Kg/cmG)に280℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で、430℃、30分間熱処理して軽油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。なお、配合炭の充填密度は、0.76kg/リットルとした。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Comparative Example 8)
The same lignite as in Example 1 was immersed in an iron nitrate aqueous solution for 3 hours with moisture attached (about 60% by mass to dry coal), and 5% by mass of Fe was supported, followed by freeze-drying.
Subsequently, it was placed in a SUS rotary kiln furnace having an inner diameter of 600 mm, heated from room temperature to 600 ° C. at 5 ° C./min under a nitrogen gas flow, and held at 600 ° C. for 60 minutes for firing. The properties of the fired product obtained are shown in Table 2.
Next, 5 kg of the fired product and 20 kg of pitch were put into an induction stirring autoclave having an internal volume of 50 liters, and kept at 280 ° C. for 60 minutes in a nitrogen atmosphere (pressure: 0.98 MPa (10 Kg / cm 2 G). The reaction product was taken out from the autoclave and heat-treated at 430 ° C. for 30 minutes under a nitrogen gas flow to remove light oil to obtain modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The filling density of the blended coal was 0.76 kg / liter. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

(比較例9)
実施例1と同じ褐炭を、水分が付着したまま(約60質量%、乾燥炭に対して)、硝酸鉄水溶液に3時間浸漬し、Feを5質量%担持した後、凍結乾燥した。
続いて、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で600℃まで昇温し、600℃で60分保持して焼成した。得られた焼成物の性状を表2に示した。
ついで、焼成物5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(圧力:0.98MPa(10Kg/cmG)に550℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で、430℃、30分間熱処理して軽油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。なお、配合炭の充填密度は、0.76kg/リットルとした。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Comparative Example 9)
The same lignite as in Example 1 was immersed in an iron nitrate aqueous solution for 3 hours with moisture attached (about 60% by mass to dry coal), and 5% by mass of Fe was supported, followed by freeze-drying.
Subsequently, it was placed in a SUS rotary kiln furnace having an inner diameter of 600 mm, heated from room temperature to 600 ° C. at 5 ° C./min under a nitrogen gas flow, and held at 600 ° C. for 60 minutes for firing. The properties of the fired product obtained are shown in Table 2.
Next, 5 kg of the fired product and 20 kg of pitch were put into an induction stirring autoclave having an internal volume of 50 liters, and kept at 550 ° C. for 60 minutes in a nitrogen atmosphere (pressure: 0.98 MPa (10 Kg / cm 2 G). The reaction product was taken out from the autoclave and heat-treated at 430 ° C. for 30 minutes under a nitrogen gas flow to remove light oil to obtain modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The filling density of the blended coal was 0.76 kg / liter. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

Figure 2009013222
Figure 2009013222

Figure 2009013222
Figure 2009013222

表2の結果より、実施例1〜3はいずれも、多孔質炭中の酸素含有量が5質量%であり、改質工程時の水の発生量はわずかであった。また、加熱処理後の褐炭の比表面積は、300〜520m2/gの範囲にあり、十分な比表面積によって重質油類の分解生成物を付着し、いずれも93.6以上の強度の高いコークスを製造することができた。
一方、比較例1および2では、金属類の担持および多孔質化工程を行わないため、褐炭中に多量の酸素が含有されたままであるため、コークスと共に多量に発生してしまった。また、比較例3、5および6では、多孔質炭中の酸素含有量が高い(27質量%)ため、改質工程時に水が発生し、さらに比表面積も小さいため、重質油類の分解生成物を十分に付着することができず、コークスの強度が低くなってしまった。比較例4、7では、比表面積が小さいため、改質工程において、重質油類の分解生成物(重質分)を十分に付着させることができず、コークスの強度が低くなってしまった。比較例8および9では、高いドラム強度を得ることができなかった。
From the results of Table 2, in all of Examples 1 to 3, the oxygen content in the porous coal was 5% by mass, and the amount of water generated during the reforming process was slight. Moreover, the specific surface area of the brown coal after the heat treatment is in the range of 300 to 520 m 2 / g, and the decomposition products of heavy oils adhere to it with a sufficient specific surface area. Could be manufactured.
On the other hand, in Comparative Examples 1 and 2, since the metal loading and porosification steps were not performed, a large amount of oxygen remained in the lignite, and thus a large amount of coke was generated. In Comparative Examples 3, 5 and 6, since the oxygen content in the porous coal is high (27% by mass), water is generated during the reforming process, and the specific surface area is also small, so that heavy oils are decomposed. The product could not be deposited sufficiently and the strength of the coke was lowered. In Comparative Examples 4 and 7, since the specific surface area is small, the decomposition product (heavy content) of heavy oils could not be sufficiently adhered in the reforming process, and the strength of coke was lowered. . In Comparative Examples 8 and 9, high drum strength could not be obtained.

本発明は、鉄鋼用原料炭としての利用の他、火力発電や石油精製、化学工業などの分野で利用することができる。   The present invention can be used in fields such as thermal power generation, petroleum refining, and chemical industry in addition to use as raw material coal for steel.

Claims (7)

低品位炭を重質油類で処理して改質炭を製造する方法において、多量の酸素原子を含む低品位炭に、金属および/または金属化合物を担持する触媒担持工程と、
触媒担持後の前記低品位炭を乾燥した後、不活性雰囲気または微酸化性雰囲気下で300〜1200℃の温度に加熱することにより多孔質化する多孔質化工程と、
多孔質化工程後の前記多孔質低品位炭を、重質油類と共に不活性雰囲気または還元性雰囲気下で300〜500℃の温度に加熱し、該多孔質低品位炭表面に重質油類の分解生成物を付着させる改質工程と、
を経ることを特徴とする改質炭の製造方法。
In a method for producing modified coal by treating low-grade coal with heavy oils, a catalyst loading step for loading a metal and / or a metal compound on low-grade coal containing a large amount of oxygen atoms,
After the catalyst-supported low-grade coal is dried, it is made porous by heating to a temperature of 300 to 1200 ° C. in an inert atmosphere or a slightly oxidizing atmosphere, and
The porous low-grade coal after the porosification step is heated together with heavy oils to a temperature of 300 to 500 ° C. in an inert atmosphere or a reducing atmosphere, and heavy oils are applied to the surface of the porous low-grade coal. A reforming step for attaching a decomposition product of
A method for producing modified coal, characterized in that
前記改質工程は、水素含有雰囲気下で行われることを特徴とする請求項1に記載の改質炭の製造方法。   The method for producing reformed coal according to claim 1, wherein the reforming step is performed in a hydrogen-containing atmosphere. 前記低品位炭が褐炭であることを特徴とする請求項1または2に記載の改質炭の製造方法。   The method for producing reformed coal according to claim 1 or 2, wherein the low-grade coal is lignite. 前記金属が、鉄であることを特徴とする請求項1〜3のいずれか1項に記載の改質炭の製造方法。   The said metal is iron, The manufacturing method of the modified coal of any one of Claims 1-3 characterized by the above-mentioned. 多孔質化工程後の前記多孔質低品位炭の比表面積が300〜1500m/gであることを特徴とする請求項1〜4のいずれか1項に記載の改質炭の製造方法。 Method for producing a modified coal according to any one of claims 1 to 4, specific surface area of the porous low-grade coal after porous step is characterized by a 300~1500m 2 / g. 前記分解生成物の前記多孔質低品位炭表面への付着量が、質量比で、該低品位炭の3〜5倍であることを特徴とする請求項1〜5のいずれか1項に記載の改質炭の製造方法。   The adhesion amount of the decomposition product to the surface of the porous low-grade coal is 3 to 5 times that of the low-grade coal in terms of mass ratio. Method for producing modified coal. 請求項1〜6のいずれか1項に記載の製造方法によって得られた改質炭を含む配合炭を、コークス炉に装入し、1000〜1200℃で加熱乾留することを特徴とするコークスの製造方法。   A coke containing modified coal obtained by the production method according to any one of claims 1 to 6 is charged into a coke oven, and heated and dry distilled at 1000 to 1200 ° C. Production method.
JP2007173968A 2007-07-02 2007-07-02 Method of manufacturing modified coal and manufacturing method of coke Pending JP2009013222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007173968A JP2009013222A (en) 2007-07-02 2007-07-02 Method of manufacturing modified coal and manufacturing method of coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173968A JP2009013222A (en) 2007-07-02 2007-07-02 Method of manufacturing modified coal and manufacturing method of coke

Publications (1)

Publication Number Publication Date
JP2009013222A true JP2009013222A (en) 2009-01-22

Family

ID=40354534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173968A Pending JP2009013222A (en) 2007-07-02 2007-07-02 Method of manufacturing modified coal and manufacturing method of coke

Country Status (1)

Country Link
JP (1) JP2009013222A (en)

Similar Documents

Publication Publication Date Title
JP4576463B2 (en) Method for producing caking material for coke production and method for producing coke
Yi et al. Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure
Fen-Rong et al. XPS study on the change of carbon-containing groups and sulfur transformation on coal surface
Yan et al. The behavior of catalysts in hydrogasification of sub-bituminous coal in pressured fluidized bed
Mollah et al. An attempt to produce blast furnace coke from Victorian brown coal
AU2016247571B2 (en) Method of and system for producing solid carbon materials
CA2766032C (en) Method for producing carbon materials
Ganan et al. Preparation of activated carbons from bituminous coal pitches
CN107083251B (en) Reduced puffing needle coke from coal tar distillate
JP2001009282A (en) Heavy oil hydrocracking catalyst and hydrocracking method
JP2005154664A (en) Hydrocracking catalyst and process of hydrocracking heavy oil
MX2010006032A (en) Additive for hydroconversion process and method for making and using same.
Martinez-Escandell et al. KOH activation of carbon materials obtained from the pyrolysis of ethylene tar at different temperatures
Qu et al. Role of cobalt and calcium on coal catalytic hydrogasification in a pressurized fluidized bed
Guy et al. Victorian brown coal as a source of industrial carbons: a review
CA2948164A1 (en) Method for producing carbon material, and carbon material
JP5128351B2 (en) Carbon material manufacturing method
WO2013118821A1 (en) Process for producing coal briquette for coke production, and process for producing coke
JP5487790B2 (en) Ferro-coke manufacturing method
Poggi et al. Thermal degradation capabilities of modified bio-chars and fluid cracking catalyst (FCC) for acetic acid
JP2009013222A (en) Method of manufacturing modified coal and manufacturing method of coke
Li et al. Effects of Additives on Coke Reactivity and Sulfur Transformation during Co-pyrolysis of Long Flame Coal and High-Sulfur Coking Coal
JP2009013221A (en) Method of manufacturing modified coal and manufacturing method of coke
KR0178327B1 (en) Production of blast furnace coke
IT201800011015A1 (en) PROCESS FOR THE PREPARATION OF ACTIVATED CARBON FROM PETROLEUM RESIDUES