JP2009013221A - Method of manufacturing modified coal and manufacturing method of coke - Google Patents

Method of manufacturing modified coal and manufacturing method of coke Download PDF

Info

Publication number
JP2009013221A
JP2009013221A JP2007173965A JP2007173965A JP2009013221A JP 2009013221 A JP2009013221 A JP 2009013221A JP 2007173965 A JP2007173965 A JP 2007173965A JP 2007173965 A JP2007173965 A JP 2007173965A JP 2009013221 A JP2009013221 A JP 2009013221A
Authority
JP
Japan
Prior art keywords
coal
low
coke
grade
grade coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007173965A
Other languages
Japanese (ja)
Inventor
Kunio Miyazawa
邦夫 宮澤
Hidetoshi Morotomi
秀俊 諸富
Shozo Itagaki
省三 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Techno Research Corp
Original Assignee
JFE Techno Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Techno Research Corp filed Critical JFE Techno Research Corp
Priority to JP2007173965A priority Critical patent/JP2009013221A/en
Publication of JP2009013221A publication Critical patent/JP2009013221A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of reforming low-grade coal containing a large amount of oxygen atoms without generating a large amount of water, and to provide a method of manufacturing coke for iron-making by using the same. <P>SOLUTION: A method of manufacturing modified coal by treating low-grade coal with heavy oils comprises: a deoxidization step of subjecting low-grade coal containing a large amount of oxygen atoms to a heating treatment, thereby decreasing the oxygen content down to ≤15 mass%; and a modifying step of heating the low-grade coal after deoxidization together with heavy oils at a temperature of 300-500°C, thereby causing the decomposition product of heavy oils to adhere to the surface of the low-grade coal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、酸素原子を多量に含む低品位炭を改質し、製鉄用コークスの製造に好適な改質炭、即ち、人造粘結炭を製造する方法および、その改質炭を配合炭の原料として用いてコークスを製造する方法に関する。   The present invention modifies low-grade coal containing a large amount of oxygen atoms and is suitable for the production of coke for iron making, that is, a method for producing artificial caking coal, and the reformed coal of the blended coal. The present invention relates to a method for producing coke using as a raw material.

製鉄所の高炉において使用される製鉄用コークスは、瀝青炭に属する粘結炭を含む十数銘柄を混合(配合)して配合炭とし、その配合炭をコークス炉内で1000〜1400℃の温度に20時間前後加熱し、高温乾留を行うことによって製造される。近年、製鉄用コークスを製造するのに必要な前記粘結炭は、不足しているのが実情であり、このことから、低品位炭の利用が検討されている。低品位炭とは、全炭素に対する芳香族炭素の比率が50〜60%の石炭であり、埋蔵量が多く、灰分、硫黄分の含有量が少ない炭種も多いが、水分が多く発熱量が低いことや、酸素含有量が多く、組織が緻密でないため、粉化しやすく、自然発火し易いという問題点がある。   Iron coke used in steelworks blast furnaces is a blended coal by mixing (compounding) dozens of brands including caking coal belonging to bituminous coal, and the blended coal is heated to 1000-1400 ° C in the coke oven. It is manufactured by heating around 20 hours and performing high temperature carbonization. In recent years, the caking coal necessary for producing iron-making coke is actually lacking, and from this, the use of low-grade coal has been studied. Low-grade coal is a coal with a ratio of aromatic carbon to total carbon of 50-60%, and there are many reserves and many coal types with low ash and sulfur content, but there is a lot of moisture and a calorific value. There is a problem that it is low, has a high oxygen content, and is not dense, so that it is easily pulverized and easily ignites.

そのため、亜瀝青炭、褐炭、亜炭、泥炭のような低品位炭は、特許文献1や特許文献2に示すように、水素雰囲気下で、溶剤を使用して400〜450℃で改質して品位を向上させ、これをコークス製造に利用する技術が開示されている。また、特許文献3では、低品位炭と重質炭化水素との混合物を、300〜500℃で加熱処理し、それを塔底温度250〜320℃、圧力40mmHg以下の条件で蒸留し、改質炭およびタール油を得る技術が開示されている。さらに、特許文献4には、低品位炭を400〜450℃で液相分解させることにより、改質炭と軽質油状留分を得る技術が開示されている。
特開昭53−104603号公報 特開昭55−69691号公報 特開昭58−217593号公報 特許3198306号公報
Therefore, low-grade coals such as subbituminous coal, lignite, lignite, and peat are reformed at 400 to 450 ° C. using a solvent in a hydrogen atmosphere as shown in Patent Document 1 and Patent Document 2, and are graded. And a technique for utilizing this for coke production is disclosed. In Patent Document 3, a mixture of low-grade coal and heavy hydrocarbon is heat-treated at 300 to 500 ° C., and distilled under conditions of a tower bottom temperature of 250 to 320 ° C. and a pressure of 40 mmHg or less. Techniques for obtaining charcoal and tar oil are disclosed. Furthermore, Patent Document 4 discloses a technique for obtaining a reformed coal and a light oil fraction by liquid phase decomposition of low-grade coal at 400 to 450 ° C.
JP 53-104603 A Japanese Patent Laid-Open No. 55-69691 JP 58-217593 A Japanese Patent No. 3198306

しかしながら、特許文献1および特許文献2は、低品位炭を、水素雰囲気下で、加熱処理して改質する方法が用いられているため、水素と低品位炭に多量に含有される酸素原子(約27質量%)とが反応し、大量の水が生成する。このため、これらの技術は、改質炭の取得量が少なく、効率が悪いと共に、生成した多量の水を除去するための油水分離器等や、水分中に混入する油分を除去するための高度な廃水処理設備を設けなければならないことに加えて、多量の水素ガスを必要とするため、ガス圧縮・循環設備を大型化する必要があり、経済的な面でも問題点があった。   However, since Patent Document 1 and Patent Document 2 use a method of reforming low-grade coal by heat treatment in a hydrogen atmosphere, oxygen atoms contained in a large amount in hydrogen and low-grade coal ( About 27% by mass) to form a large amount of water. For this reason, these technologies are low in the amount of reformed coal acquired and inefficient, and are equipped with an oil / water separator for removing a large amount of generated water, and an advanced level for removing oil mixed in moisture. In addition to having to install a large wastewater treatment facility, a large amount of hydrogen gas is required, so it is necessary to increase the size of the gas compression / circulation facility.

さらに、特許文献3および特許文献4では、低品位炭の酸素原子と溶剤(重質油)中の水素原子とが反応したり、あるいは低品位炭に含有される酸素原子と水素原子とが反応して多量の水が生成するため、生成物が改質炭、溶剤(重質油)および水の混合状態で得られることになり、生成物の分離操作・処理が煩雑になるほか、設備が大きくなるという問題点があった。   Further, in Patent Document 3 and Patent Document 4, oxygen atoms of low-grade coal react with hydrogen atoms in the solvent (heavy oil), or oxygen atoms and hydrogen atoms contained in the low-grade coal react. Since a large amount of water is generated, the product can be obtained in a mixed state of reformed coal, solvent (heavy oil) and water. There was a problem of becoming larger.

そこで、本発明は、上記問題点に鑑みて開発されたものであり、多量の酸素原子を含む低品位炭を、水を多量に発生させることなく改質する方法、およびこれを用いた製鉄用コークスの製造方法を提供することを目的とする。   Therefore, the present invention was developed in view of the above problems, a method for reforming low-grade coal containing a large amount of oxygen atoms without generating a large amount of water, and for iron making using the same It aims at providing the manufacturing method of coke.

本発明の上記目的を実現するため鋭意検討を重ねた結果、本発明は、低品位炭を重質油類で処理して改質炭を製造する方法において、多量の酸素原子を含む低品位炭を加熱処理し、酸素含有量を15質量%以下に低減する脱酸工程と、脱酸後の低品位炭を、重質油類と共に300〜500℃の温度で加熱し、該低品位炭表面に、重質油類の分解生成物を付着させる改質工程と、を経ることを特徴とする改質炭の製造方法を提案する。   As a result of intensive studies to achieve the above object of the present invention, the present invention provides a method for producing modified coal by treating low-grade coal with heavy oils. The deoxidation step of reducing the oxygen content to 15% by mass or less, and heating the low-grade coal after deoxidation together with heavy oils at a temperature of 300 to 500 ° C. And a reforming step of attaching a decomposition product of heavy oils to a modified coal production method.

なお、本発明においては、前記脱酸工程は、低品位炭を乾燥した後、不活性ガス雰囲気または還元性ガス雰囲気下で400℃超、800℃以下の温度範囲で加熱し、さらに酸化性ガス雰囲気下で800〜1200℃の温度範囲で加熱する工程を経ること、前記脱酸工程は、低品位炭を、凍結乾燥または超臨界乾燥した後、不活性雰囲気または還元性雰囲気下で、300〜1200℃の温度範囲で加熱する工程を経ること、脱酸後の前記低品位炭は、多孔質体であること、前記改質工程は、水素含有雰囲気下で行われること、および脱酸後の前記低品位炭に、金属および/または金属化合物を担持させることが、より好ましい解決手段を提供できる。   In the present invention, the deoxidation step comprises drying the low-grade coal, then heating it in an inert gas atmosphere or a reducing gas atmosphere at a temperature range of more than 400 ° C. and 800 ° C. or less, and further oxidizing gas. The step of heating in a temperature range of 800 to 1200 ° C. under an atmosphere, the deoxidation step is performed by lyophilizing or supercritically drying low-grade coal, and then in an inert atmosphere or a reducing atmosphere, The process of heating in a temperature range of 1200 ° C., the low-grade coal after deoxidation is a porous body, the reforming step is performed in a hydrogen-containing atmosphere, and after deoxidation Supporting a metal and / or a metal compound on the low-grade coal can provide a more preferable solution.

また、本発明は、上記の製造方法で得られた改質炭含む配合炭をコークス炉に装入し、1000〜1200℃の温度で加熱乾留することを特徴とするコークスの製造方法を提案する。   In addition, the present invention proposes a method for producing coke, characterized in that the blended coal containing the modified coal obtained by the above production method is charged into a coke oven and heated and distilled at a temperature of 1000 to 1200 ° C. .

上記のような構成を有する本発明では、原料炭である低品位炭を、改質に先立ち、その酸素含有量が15質量%以下になるように脱酸処理することにより、低品位炭の改質処理過程で水を多量に発生させることがない。そのため、低品位炭を効率よく改質することができると共に、油水分離器や廃水処理設備などの機器を省くことができるため、高品位炭並みあるいはそれ以上の燃料特性と経済性を有する改質炭および製鉄用コークスを得ることができる。
また、脱酸後の低品位炭は、多孔質であるため、その孔中に重質分を多量に付着、保持させることができ、また、その付着力も大きいことから、コークス強度を向上させることができる。
In the present invention having the above-described configuration, the low-grade coal as the raw coal is deoxidized before the reforming so that the oxygen content is 15% by mass or less. Does not generate a large amount of water during the quality treatment process. As a result, low-grade coal can be reformed efficiently, and equipment such as oil-water separators and wastewater treatment facilities can be omitted. Charcoal and steelmaking coke can be obtained.
In addition, since the low-grade coal after deoxidation is porous, it can adhere and retain a large amount of heavy components in the pores, and also has high adhesion, thus improving the coke strength. be able to.

本発明において、改質すべき原料炭としては、亜瀝青炭、褐炭、亜炭、泥炭のような酸素原子含有量の多い低品位炭が対象となる。褐炭としては、豪州産のヤルーン炭、モーエル炭およびロイヤン炭などが好適である。なお、本発明においては、上記の原料炭に加えて、またはこれに代えて、木材やヤシガラなどのバイオマス原料も用いることができる。   In the present invention, the raw coal to be reformed is a low-grade coal having a high oxygen atom content such as subbituminous coal, lignite, lignite, and peat. As the brown coal, Australian-made Yarune coal, Moel coal, Royan coal and the like are suitable. In the present invention, biomass raw materials such as wood and coconut shells can be used in addition to or in place of the raw coal.

本発明の改質炭の製造方法は、前記低品位炭原料を加熱し、酸素含有量を15質量%以下にする脱酸工程と、脱酸工程後の低品位炭を重質油類中で加熱して、重質油類の分解生成物、即ち重質分を付着させる改質工程を経ることが特徴である。   In the method for producing modified coal of the present invention, the low-grade coal raw material is heated to reduce the oxygen content to 15% by mass or less, and the low-grade coal after the deoxidation step is used in heavy oils. It is characterized by being subjected to a reforming step of heating and attaching the decomposition products of heavy oils, that is, heavy components.

まず、前記脱酸工程について説明する。脱酸工程としては、2つの方法がある。その1つは、低品位炭原料を、通常の熱風(100〜200℃程度)乾燥等によって乾燥した後、窒素ガスなどの不活性ガスまたは加熱した際、低品位炭自身が発生する自生ガスなどの還元性ガス雰囲気下で400℃超800℃以下、好ましくは500〜700℃程度の温度に加熱し、その後、酸化性ガス雰囲気下で800〜1200℃の温度で加熱して、該酸化性ガスと反応させることによる。この方法では、低品位炭中の酸素原子が、加熱によって一酸化炭素や二酸化炭素となって放出されることにより、低品位炭中の酸素含有量を15質量%以下にすることができる。   First, the deoxidation step will be described. There are two methods for the deoxidation step. One of them is a low-grade coal raw material that is dried by ordinary hot air (about 100 to 200 ° C.), etc., and then inert gas such as nitrogen gas, or the self-generated gas generated by the low-grade coal itself when heated. In a reducing gas atmosphere, heated to a temperature of more than 400 ° C. and not more than 800 ° C., preferably about 500 to 700 ° C., and then heated to a temperature of 800 to 1200 ° C. in an oxidizing gas atmosphere. By reacting with. In this method, oxygen atoms in the low-grade coal are released as carbon monoxide and carbon dioxide by heating, so that the oxygen content in the low-grade coal can be reduced to 15% by mass or less.

ここで、低品位炭中の酸素含有量を15質量%以下にまで低減させる理由は、低品位炭の反応性の低下、とりわけ酸素原子を起点とする熱反応性の低下のためであり、これによって脱酸工程後の改質工程において、水の発生を減少させることができる。   Here, the reason why the oxygen content in the low-grade coal is reduced to 15% by mass or less is due to a decrease in the reactivity of the low-grade coal, particularly a decrease in the thermal reactivity starting from oxygen atoms. Thus, the generation of water can be reduced in the reforming step after the deoxidation step.

また、前記酸化性ガスとしては、水蒸気、二酸化炭素、酸素およびこれらの混合ガスを使用し、これを、低品位炭原料と、固定床炉やトンネル炉、回転炉、流動床炉などの反応炉内で反応させる。本発明において、酸化性ガスによる処理を行う理由は、低品位炭原料を構成する炭素原子と、酸化性ガスに含まれる酸素原子とを反応させ、主として一酸化炭素の形で放出させることにより、反応した炭素原子の部分を孔隙とする、即ち、多孔質化させるためである。   Further, as the oxidizing gas, steam, carbon dioxide, oxygen and a mixed gas thereof are used, and these are used as a low-grade coal raw material and a reaction furnace such as a fixed bed furnace, a tunnel furnace, a rotary furnace, and a fluidized bed furnace. React in. In the present invention, the reason for performing the treatment with the oxidizing gas is to react the carbon atoms constituting the low-grade coal raw material with the oxygen atoms contained in the oxidizing gas, and release them mainly in the form of carbon monoxide. This is because the part of the reacted carbon atom is used as a pore, that is, it is made porous.

さらに、低品位炭を、窒素ガスなどの不活性ガスまたは還元性ガス雰囲気下で400℃超800℃以下の温度で加熱するのは、400℃以下では、脱酸が不充分で、酸素含有量を15質量%以下にするのが難しいためであり、一方、800℃超では、低品位炭の収縮が始まり、即ち、低品位炭の配向・結晶化が始まり、後段の反応における反応性が低下するのためである。また、酸化性ガス雰囲気下で800〜1200℃で加熱するのは、多孔質化を促進させるためである。   Further, low-grade coal is heated at a temperature of more than 400 ° C. and not more than 800 ° C. in an inert gas or reducing gas atmosphere such as nitrogen gas. On the other hand, if it exceeds 800 ° C., the shrinkage of the low-grade coal starts, that is, the orientation and crystallization of the low-grade coal begins, and the reactivity in the subsequent reaction decreases. It is for doing. Moreover, heating at 800-1200 degreeC in oxidizing gas atmosphere is for accelerating | stimulating porosity.

また、低品位炭として亜瀝青炭を用いる場合、その一部は、加熱の際に軟化溶融するので、加熱前に変性(酸化)しておくことが好ましい。この変性(酸化)は、通常、空気中で100〜300℃に昇温することによって生じるが、酸素、二酸化窒素などの酸化力を有するガスを作用させることによっても行うことができる。   Further, when sub-bituminous coal is used as the low-grade coal, a part thereof softens and melts during heating, and thus it is preferable to modify (oxidize) before heating. This modification (oxidation) is usually caused by raising the temperature to 100 to 300 ° C. in the air, but can also be performed by applying a gas having an oxidizing power such as oxygen or nitrogen dioxide.

次に、本発明の前記脱酸工程は、上述した方法の他、低品位炭を凍結乾燥または超臨界乾燥した後、不活性雰囲気または還元性雰囲気下で300〜1200℃に加熱する方法であってもよい。
ここで、凍結乾燥とは、例えば、水分の乾燥の場合、−20℃〜−50℃に冷却して水分を固体(氷)としてから気体(水蒸気)に変える、即ち、昇華させる乾燥方法であり、真空にして水の沸点を低下させて行う方法であることから、真空凍結乾燥とも呼ばれる。また、超臨界乾燥とは、乾燥しようとする湿潤状態の物質を、圧力容器中で昇温・昇圧し、内部に含まれる液体(水、アルコールなど)を超臨界状態とした後、乾燥を行う方法である。
Next, the deoxidation step of the present invention is a method in which low-grade coal is freeze-dried or supercritically dried and then heated to 300 to 1200 ° C. in an inert atmosphere or a reducing atmosphere, in addition to the above-described method. May be.
Here, freeze-drying is a drying method in which, for example, in the case of moisture drying, the moisture is changed to gas (water vapor) after being cooled to −20 ° C. to −50 ° C. and then converted to gas (water vapor). This method is also called vacuum lyophilization because it is a method of reducing the boiling point of water by reducing the boiling point of water. In supercritical drying, a wet substance to be dried is heated and pressurized in a pressure vessel to bring the liquid (water, alcohol, etc.) contained therein into a supercritical state and then dried. Is the method.

これらの乾燥方法を用いる理由は、通常の熱風乾燥では、褐炭、亜炭、泥炭などの原料中に細孔を有する褐炭類を乾燥すると、細孔中に埋蔵する水の毛管力によって褐炭が収縮し、細孔構造が破壊されてしまうおそれがある。この点、超臨界乾燥は、乾燥時に気−液界面が出現しない乾燥方法であるため、細孔構造を残したまま水分が取り除かれることになり、さらに炭素化、すなわち焼成によって多孔質の炭素材料を得ることができるから有利である。   The reason for using these drying methods is that in normal hot-air drying, when lignite with pores in the raw materials such as lignite, lignite, and peat is dried, the lignite contracts due to the capillary force of the water embedded in the pores. The pore structure may be destroyed. In this respect, since supercritical drying is a drying method in which a gas-liquid interface does not appear at the time of drying, moisture is removed while leaving a pore structure, and further, carbonization, that is, porous carbon material by firing Is advantageous.

凍結乾燥または超臨界乾燥後の低品位炭は、固定床炉やトンネル炉、回転炉、流動床炉などの焼成炉に装入され、窒素、アルゴン、ヘリウムなどの不活性雰囲気あるいは水素、自生ガスなどの還元性雰囲気のもとで300〜1200℃、好ましくは400〜800℃程度の温度に加熱する。   Low-grade coal after freeze-drying or supercritical drying is charged into firing furnaces such as fixed-bed furnaces, tunnel furnaces, rotary furnaces, fluidized bed furnaces, etc. It heats to the temperature of about 300-1200 degreeC under a reducing atmosphere, such as 400-800 degreeC preferably.

脱酸工程後の低品位炭は、酸素原子が放出した部分などが空孔となるため多孔質となる。このようにして得られた脱酸済みの低品位炭は、窒素ガスを用いるBET法によって測定される比表面積が300〜1500m/g程度、好ましくは600〜1200m/g程度の多孔質炭であることが好ましい。これは、この比表面積が小さすぎると、低品位炭と重質油類の分解生成物との付着力が弱くなり、これを用いてコークスを製造したときの強度が不足ようになるためである。一方、低品位炭の比表面積が大きすぎると、分解生成物が入らないような細孔径の小さい細孔が多くなるため、コークス強度が低下するためである。 The low-grade coal after the deoxidation step becomes porous because the portion from which oxygen atoms are released becomes pores. Low grade coal already de-acid obtained in this way, the specific surface area measured by the BET method using nitrogen gas 300~1500m 2 / g, preferably about about 600~1200m 2 / g porous coal It is preferable that This is because if the specific surface area is too small, the adhesion between the low-grade coal and the decomposition products of heavy oils will be weak, and the strength when coke is produced using this will become insufficient. . On the other hand, when the specific surface area of the low-grade coal is too large, pores having small pore diameters that do not contain decomposition products increase, and the coke strength decreases.

次に、改質工程について説明する。
改質工程では、脱酸後の低品位炭(以下、「多孔質炭素材料」と言う)を、重質油類(石油系重質油あるいは石炭系重質油)中で加熱することにより、重質油類の熱分解によって生成するコーク、カーボンまたはそれらの前駆体など非常に重質な成分を、該多孔質炭素材料の細孔内に侵入、吸着させる。
Next, the reforming process will be described.
In the reforming process, the low-grade coal after deoxidation (hereinafter referred to as “porous carbon material”) is heated in heavy oil (petroleum heavy oil or coal heavy oil), A very heavy component such as coke, carbon, or a precursor thereof generated by thermal decomposition of heavy oil enters and is absorbed in the pores of the porous carbon material.

なお、この改質工程は、不活性雰囲気または還元性雰囲気で多孔質炭素材料と重質油類とを300〜500℃程度の温度に加熱し、とくに、水素ガスを主体とする還元性雰囲気のもとで380〜460℃の温度に加熱することが好ましい。これは、重質油の熱分解は、一種の不均化反応であるので、重質成分であるコークあるいはカーボンなどが生成する一方、軽質成分も生成するが、水素ガスが存在すると、この軽質成分の粘度が低くなってコーク、カーボンあるいはそれらの前駆体などの非常に重質な成分の移動が容易になり、細孔内への侵入、吸着が進みやすいためと想像される。   In this reforming step, the porous carbon material and the heavy oil are heated to a temperature of about 300 to 500 ° C. in an inert atmosphere or a reducing atmosphere, and particularly in a reducing atmosphere mainly composed of hydrogen gas. It is preferable to heat to a temperature of 380 to 460 ° C. This is because the pyrolysis of heavy oil is a kind of disproportionation reaction, so that coke or carbon, which is a heavy component, is produced, while light components are also produced. It is presumed that the viscosity of the component is lowered and the movement of a very heavy component such as coke, carbon or a precursor thereof is facilitated, and the penetration and the adsorption are easily promoted into the pores.

この改質工程は、たとえば固定床、移動床、懸濁液(スラリー床)、沸騰床などの他、懸濁床や沸騰床のような完全混合槽タイプによって好適に行うことができる。   This reforming step can be suitably performed by a complete mixing tank type such as a fixed bed, a moving bed, a suspension (slurry bed), a boiling bed, and the like, as well as a suspension bed and a boiling bed.

分解生成物(重質分)の多孔質炭素材料への付着量は、多孔質炭素材料の5倍(質量比)以下とすることが好ましい。これは、分解生成物の付着量が多くなりすぎると、オイルコークスの物性と変わらなくなってしまい、原料炭として用いることができなくなるためである。   The amount of the decomposition product (heavy content) attached to the porous carbon material is preferably 5 times (mass ratio) or less of the porous carbon material. This is because if the amount of decomposition products deposited becomes too large, the physical properties of oil coke will not change, and it will not be possible to use as raw coal.

ここで、石油系重質油とは、石油精製に関連する重質油および超重質油であり、重質油は、たとえば、原油、石油系の常圧蒸留残油、減圧蒸留残油、接触分解残油等の残油等あるいはオイルサンド油、オイルシェール油等であり、超重質油は、たとえば、メキシコに産するマヤ、カナダに産するアサバスカオイルサンドビチューメン、コールドレイクオイルサンドビチューメン、ベネゼエラに産するオリノコタール、セロネグロ、ズアタ、バッチャケロ、ボスカン、ブラジルに産するマリム等の油種である。また、石炭系重質油とは、コークス炉から発生するコールタールの蒸留で分留される重質留分のことであり、たとえばクレオソート油、アントラセン油、ピッチなどである。さらに、石炭の液化で得られる液化油の重質留分もある。   Here, petroleum heavy oil is heavy oil and super heavy oil related to petroleum refining, and heavy oil is, for example, crude oil, petroleum-based atmospheric distillation residue, vacuum distillation residue, contact Residual oil such as cracked residual oil or oil sand oil, oil shale oil, etc., and super heavy oil, for example, Maya from Mexico, Athabasca oil sand bitumen from Canada, Cold Lake oil sand bitumen, Venezuela It is a kind of oil such as Orinocotar, Celonegro, Zuata, Batchachero, Boscan, and Marim produced in Brazil. The coal-based heavy oil is a heavy fraction that is fractionated by distillation of coal tar generated from a coke oven, such as creosote oil, anthracene oil, and pitch. There is also a heavy fraction of liquefied oil obtained by liquefaction of coal.

そして、本発明では、上記のようにして多孔質炭素材料に分解生成物を付着させた後、通常の濾過、遠心分離、蒸留などの方法を用いて余分の油分を分離することにより、改質炭とする。   In the present invention, after attaching the decomposition product to the porous carbon material as described above, the excess oil is separated by using a method such as normal filtration, centrifugation, distillation, etc. Charcoal.

このようにして得られた改質炭は、配合炭用原料炭として使用してもよいが、さらに若干の変性処理や熱処理を施すことにより、改質炭の性状を向上させたものを用いてもよい。とりわけ、多孔質炭素材料に、その5倍を超える分解生成物が付着・吸着している場合、この変性処理や熱処理が有効である。   The reformed coal obtained in this way may be used as raw coal for blended coal, but by using a modified coal with improved properties by further modification and heat treatment. Also good. In particular, when the decomposition product more than 5 times adheres and adsorbs to the porous carbon material, this modification treatment or heat treatment is effective.

前記変性処理は、大気中で150〜300℃程度の温度に加熱する方法であり、熱処理は、不活性雰囲気あるいは還元性雰囲気中で300〜600℃程度に加熱する方法である。また、減圧の状態では、分解生成物の一部が揮散するため、200〜400℃程度で加熱すればよい。   The modification treatment is a method of heating to about 150 to 300 ° C. in the air, and the heat treatment is a method of heating to about 300 to 600 ° C. in an inert atmosphere or a reducing atmosphere. Moreover, in the state of pressure reduction, since a part of decomposition product volatilizes, what is necessary is just to heat at about 200-400 degreeC.

なお、改質工程に先立ち、前記多孔質炭素材料には、鉄や鉄化合物などの金属および/または金属化合物(以下、「金属類」と言う)を担持させることが好ましい。これは、担持された金属類の作用により、重質油類の分解が促進され、軽質留分に効率よく転換されていくことになり、重質類の一方の分解生成物であるコーク、カーボンまたはそれらの前駆体などの重質分が、多孔質炭素材料中の細孔に十分に付着・保持されることになり、品質の高い改質炭を得ることができるためである。   Prior to the reforming step, the porous carbon material is preferably loaded with a metal such as iron or an iron compound and / or a metal compound (hereinafter referred to as “metals”). This is because the decomposition of heavy oils is promoted by the action of the supported metals, and it is efficiently converted into a light fraction, and one of the decomposition products of heavy substances, coke and carbon. Alternatively, the heavy components such as their precursors are sufficiently adhered and held in the pores in the porous carbon material, and high quality modified coal can be obtained.

なお、金属としては、鉄、コバルト、ニッケル等を用いることができ、とくに費用、取り扱いのし易さから鉄を用いることが好ましい。また、金属化合物としては、鉄、コバルト、ニッケル等の硝酸塩、塩酸塩、硫酸塩、酢酸塩等を用いることができる。   In addition, iron, cobalt, nickel, etc. can be used as a metal, and it is preferable to use iron especially from cost and the ease of handling. Further, as the metal compound, nitrates such as iron, cobalt, nickel, hydrochlorides, sulfates, acetates, and the like can be used.

また、多孔質炭素材料への金属類の担持は、多孔質炭素材料を未乾燥の状態で行っても、一旦乾燥させた後に行ってもよく、省エネルギーの点から、未乾燥の状態で行うことが好ましい。   In addition, the loading of metals on the porous carbon material may be performed in an undried state or after the porous carbon material is once dried, and in an undried state from the viewpoint of energy saving. Is preferred.

次に、以上のようにして得られた改質炭を用いてコークスを製造する方法を説明する。上記の処理を経た改質炭は、必要に応じて粉砕や造粒などの粒度調整を行い、他の原料炭と同様にコークス炉の配合槽に投入し、配合炭を調整する。その配合炭を、装炭車によってコークス炉の窯に装入し、自生ガス還元雰囲気のもとで1000〜1200℃で20時間前後乾留する。その後、押出し機によって窯から押出し、CDQ設備で常温まで冷却し、製鉄用コークスとする。   Next, a method for producing coke using the modified coal obtained as described above will be described. The reformed coal that has undergone the above-mentioned treatment is subjected to particle size adjustment such as pulverization and granulation, if necessary, and is introduced into a blending tank of a coke oven in the same manner as other raw coals to adjust the blended coal. The blended charcoal is charged into a coke oven kiln with a charcoal car and dry-distilled at 1000 to 1200 ° C. for about 20 hours under a natural gas reducing atmosphere. Then, it extrudes from a kiln with an extruder, cools to normal temperature with a CDQ equipment, and is set as iron-making coke.

(実施例1)
a.脱酸処理工程
揮発分:40〜50質量%、灰分:0.5質量%を有する褐炭(成分組成:炭素67.1質量%、水素4.3質量%、窒素0.9質量%、硫黄0.2質量%、酸素27.0質量%)を105℃の窒素ガス雰囲気中で1時間乾燥した後、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で600℃まで昇温し、650℃で30分保持して炭素化させた後、流通ガスを水蒸気に切り替えて3℃/分で900℃まで昇温した。900℃において10時間保持した後、室温まで冷却して焼成物(多孔質炭素材料)を得た。
得られた焼成物(多孔質炭素材料)の性状を、表2に示した。その後、1規定の硝酸鉄水溶液に3時間浸漬し、Feを5質量%担持して乾燥させた。
b.改質処理工程
ついで、焼成物(多孔質炭素材料)10kgと減圧残油15kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、水素雰囲気下(圧力:11.8MPa(120Kg/cmG)に430℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、減圧蒸留によって沸点が538℃未満の油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。なお、配合炭の充填密度は、0.76kg/リットルとした。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
Example 1
a. Deoxidation treatment step: Lignite with volatile content: 40 to 50 mass%, ash content: 0.5 mass% (component composition: carbon 67.1 mass%, hydrogen 4.3 mass%, nitrogen 0.9 mass%, sulfur 0 .2 mass%, oxygen 27.0 mass%) in a nitrogen gas atmosphere at 105 ° C. for 1 hour, and then placed in a SUS rotary kiln furnace with an inner diameter of 600 mm, under a nitrogen gas flow from room temperature to 5 ° C. / The temperature was raised to 600 ° C. in minutes and kept at 650 ° C. for 30 minutes for carbonization, then the flow gas was switched to water vapor and the temperature was raised to 900 ° C. at 3 ° C./min. After maintaining at 900 ° C. for 10 hours, the mixture was cooled to room temperature to obtain a fired product (porous carbon material).
The properties of the fired product (porous carbon material) obtained are shown in Table 2. Then, it was immersed in a 1N aqueous iron nitrate solution for 3 hours, and 5 mass% Fe was supported and dried.
b. Next, 10 kg of the fired product (porous carbon material) and 15 kg of vacuum residual oil were put into an induction stirring autoclave having an internal volume of 50 liters, and in a hydrogen atmosphere (pressure: 11.8 MPa (120 Kg / cm 2 G) ) At 430 ° C. for 60 minutes, and then the reaction product was taken out from the autoclave, and oil having a boiling point of less than 538 ° C. was removed by distillation under reduced pressure to obtain modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The filling density of the blended coal was 0.76 kg / liter. The drum strength (DI 30 15 ) of the produced coke was measured according to JIS K2151. The results are shown in Table 2.

(実施例2)
a.脱酸処理工程
実施例1と同じ褐炭を、凍結乾燥した後、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で600℃まで昇温し、600℃で60分保持して焼成し、多孔質化した。得られた焼成物(多孔質炭素材料)の性状を、表2に示した。
b.改質処理工程
ついで、焼成物(多孔質炭素材料)5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(初期圧力:0.98MPa(10Kg/cmG))に380℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で430℃、30分間熱処理し、軽質分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製し、実施例1と同様にしてコークスのドラム強度(DI30 15)を測定した。その結果を表2に示す。
(Example 2)
a. Deoxidation treatment step After lyophilizing the same lignite as in Example 1, it was placed in a SUS rotary kiln furnace with an inner diameter of 600 mm and heated from room temperature to 600 ° C. at a rate of 5 ° C./min under a nitrogen gas flow. It was kept at 60 ° C. for 60 minutes and fired to make it porous. The properties of the fired product (porous carbon material) obtained are shown in Table 2.
b. Next, 5 kg of the fired product (porous carbon material) and 20 kg of pitch are put into an induction-stirring autoclave having an internal volume of 50 liters, and under a nitrogen atmosphere (initial pressure: 0.98 MPa (10 Kg / cm 2 G) ) At 380 ° C. for 60 minutes. Thereafter, the reaction product was taken out from the autoclave and heat-treated at 430 ° C. for 30 minutes under a nitrogen gas flow to remove light components to obtain modified coal.
The blended coal is prepared by adding the base blended coal of caking coal prepared by mixing the four coals (A to D coal) shown in Table 1 (coking coal for coke) to 10% by mass of this modified coal. The drum strength (DI 30 15 ) of coke was measured in the same manner as in Example 1. The results are shown in Table 2.

(実施例3)
a.脱酸処理工程
実施例1と同じ褐炭を、圧搾して脱水した後、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で450℃まで昇温し、450℃で30分保持して焼成した。得られた焼成物(多孔質炭素材料)の性状を、表1に示した。
b.改質処理工程
ついで、焼成物(多孔質炭素材料)10kgとピッチ15kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(初期圧力:0.98MPa(10Kg/cmG))に400℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、減圧蒸留によって沸点が538℃未満の油分を除去し、改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製し、実施例1と同様にしてコークスのドラム強度(DI30 15)を測定した。その結果を表2に示す。
(Example 3)
a. Deoxidation treatment step After squeezing the same lignite as in Example 1 and dehydrating it, placing it in a SUS rotary kiln furnace with an inner diameter of 600 mm, raising the temperature from room temperature to 450 ° C. at a rate of 5 ° C./min. And baked by holding at 450 ° C. for 30 minutes. The properties of the fired product (porous carbon material) obtained are shown in Table 1.
b. Next, 10 kg of the fired product (porous carbon material) and 15 kg of pitch are put into an induction-stirring autoclave having an internal volume of 50 liters, and in a nitrogen atmosphere (initial pressure: 0.98 MPa (10 Kg / cm 2 G) ) Was held at 400 ° C. for 60 minutes. Thereafter, the reaction product was taken out from the autoclave, and oil having a boiling point of less than 538 ° C. was removed by distillation under reduced pressure to obtain modified coal.
The blended coal is prepared by adding the base blended coal of caking coal prepared by mixing the four coals (A to D coal) shown in Table 1 (coking coal for coke) to 10% by mass of this modified coal. The drum strength (DI 30 15 ) of coke was measured in the same manner as in Example 1. The results are shown in Table 2.

(実施例4)
a.脱酸処理工程
実施例1と同じ褐炭を、圧搾して脱水した後、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で350℃まで昇温し、350℃で30分保持して焼成した。その後、1規定の硝酸鉄水溶液に3時間浸漬し、Feを5重量%担持させた後、乾燥した。得られた焼成物(多孔質炭素材料)の性状を、表1に示した。
b.改質処理工程
ついで、焼成物(多孔質炭素材料)10kgとピッチ15kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(初期圧力:0.98MPa(10Kg/cmG))に400℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、減圧蒸留によって沸点が538℃未満の油分を除去し、改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製し、実施例1と同様にしてコークスのドラム強度(DI30 15)を測定した。その結果を表2に示す。
Example 4
a. Deoxidation treatment step After squeezing and dehydrating the same lignite as in Example 1, it is placed in a SUS rotary kiln furnace with an inner diameter of 600 mm and heated from room temperature to 350 ° C. at a rate of 5 ° C./min under a nitrogen gas flow. And baked at 350 ° C. for 30 minutes. Thereafter, it was immersed in a 1N aqueous iron nitrate solution for 3 hours to support 5% by weight of Fe and then dried. The properties of the fired product (porous carbon material) obtained are shown in Table 1.
b. Next, 10 kg of the fired product (porous carbon material) and 15 kg of pitch are put into an induction-stirring autoclave having an internal volume of 50 liters, and in a nitrogen atmosphere (initial pressure: 0.98 MPa (10 Kg / cm 2 G) ) Was held at 400 ° C. for 60 minutes. Thereafter, the reaction product was taken out from the autoclave, and oil having a boiling point of less than 538 ° C. was removed by distillation under reduced pressure to obtain modified coal.
The blended coal is prepared by adding the base blended coal of caking coal prepared by mixing the four coals (A to D coal) shown in Table 1 (coking coal for coke) to 10% by mass of this modified coal. It was measured coke drum strength (DI 30 15) in the same manner as in example 1. The results are shown in Table 2.

(比較例1)
実施例1と同じ褐炭(乾燥品)を、表1に示す配合からなるベース配合炭と混合し、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。得られたコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定し、その結果を表2に示す。
(Comparative Example 1)
The same lignite (dried product) as in Example 1 was mixed with a base coal blend consisting of the formulations shown in Table 1, and subjected to dry distillation in a coke oven at 1100 ° C. for 18 to 20 hours to obtain coke. The drum strength (DI 30 15 ) of the obtained coke was measured according to JIS K2151, and the results are shown in Table 2.

(比較例2)
表1に示す配合からなるベース配合炭を、充填密度が0.76kg/リットルとなるように充填し、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。得られたコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定し、その結果を表2に示す。
(Comparative Example 2)
The base blended charcoal composed of the blend shown in Table 1 was filled so that the packing density was 0.76 kg / liter, and was subjected to dry distillation in a coke oven at 1100 ° C. for 18 to 20 hours to obtain coke. The drum strength (DI 30 15 ) of the obtained coke was measured according to JIS K2151, and the results are shown in Table 2.

(比較例3)
実施例1と同じ褐炭を真空乾燥した後、褐炭10kgと減圧残油15kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、水素雰囲気下(圧力:11.8MPa(120Kg/cmG)に430℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、減圧蒸留によって沸点が538℃未満の油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す配合からなる粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Comparative Example 3)
After vacuum drying the same lignite as in Example 1, 10 kg of lignite and 15 kg of vacuum residual oil were put into an induction stirring autoclave having an internal volume of 50 liters, and in a hydrogen atmosphere (pressure: 11.8 MPa (120 Kg / cm 2 G) Was kept at 430 ° C. for 60 minutes, and then the reaction product was taken out from the autoclave, and oil having a boiling point of less than 538 ° C. was removed by distillation under reduced pressure to obtain modified coal.
A base coal blend of caking coal composed of the blend shown in Table 1 was added to 10% by mass of the modified coal to prepare a blend coal. And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

(比較例4)
実施例1と同じ褐炭を真空乾燥した後、280℃で加熱処理した。次に、加熱処理した褐炭10kgと減圧残油15kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、水素雰囲気下(圧力:11.8MPa(120Kg/cmG)に430℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、減圧蒸留によって沸点が538℃未満の油分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す配合からなる粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Comparative Example 4)
The same lignite as in Example 1 was vacuum-dried and then heat-treated at 280 ° C. Next, 10 kg of heat-treated lignite and 15 kg of vacuum residual oil were put into an induction stirring autoclave having an internal volume of 50 liters, and 430 ° C. for 60 minutes in a hydrogen atmosphere (pressure: 11.8 MPa (120 Kg / cm 2 G)). Thereafter, the reaction product was taken out from the autoclave, and oil having a boiling point of less than 538 ° C. was removed by distillation under reduced pressure to obtain modified coal.
A base coal blend of caking coal composed of the blend shown in Table 1 was added to 10% by mass of the modified coal to prepare a blend coal. And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

(比較例5)
実施例1と同じ褐炭を、真空乾燥した後、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で1250℃まで昇温し、1250℃で60分保持して焼成した。得られた焼成物の性状を、表2に示した。
ついで、焼成物5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(初期圧力:0.98MPa(10Kg/cmG))に380℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で430℃、30分間熱処理し、軽質分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Comparative Example 5)
The same lignite as in Example 1 was vacuum-dried, then placed in a SUS rotary kiln furnace with an inner diameter of 600 mm, heated from room temperature to 1250 ° C. at a rate of 5 ° C./min under a nitrogen gas flow, and heated at 1250 ° C. for 60 minutes. Hold and fired. Table 2 shows the properties of the obtained fired product.
Then, the fired product 5kg and pitch 20 kg, was added to induce stirring type autoclave having an internal volume of 50 liters in a nitrogen atmosphere (initial pressure: 0.98MPa (10Kg / cm 2 G )) to 380 ° C., and held 60 min. Thereafter, the reaction product was taken out from the autoclave and heat-treated at 430 ° C. for 30 minutes under a nitrogen gas flow to remove light components to obtain modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The drum strength (DI 30 15 ) of the prepared coke was measured according to JIS K2151. The results are shown in Table 2.

(比較例6)
実施例1と同じ褐炭を、凍結乾燥した後、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で600℃まで昇温し、600℃で60分保持して焼成した。得られた焼成物の性状を、表2に示した。
ついで、焼成物5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(初期圧力:0.98MPa(10Kg/cmG))に280℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で430℃、30分間熱処理し、軽質分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Comparative Example 6)
The same lignite as in Example 1 was freeze-dried, placed in a SUS rotary kiln furnace with an inner diameter of 600 mm, heated from room temperature to 600 ° C. at a rate of 5 ° C./min under nitrogen gas flow, and then at 600 ° C. for 60 minutes. Hold and fired. Table 2 shows the properties of the obtained fired product.
Next, 5 kg of the fired product and 20 kg of pitch were put into an induction-stirring autoclave having an internal volume of 50 liters, and maintained at 280 ° C. for 60 minutes in a nitrogen atmosphere (initial pressure: 0.98 MPa (10 Kg / cm 2 G)). Thereafter, the reaction product was taken out from the autoclave and heat-treated at 430 ° C. for 30 minutes under a nitrogen gas flow to remove light components to obtain modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The drum strength (DI 30 15 ) of the produced coke was measured according to JIS K2151. The results are shown in Table 2.

(比較例7)
実施例1と同じ褐炭を、凍結乾燥した後、内径600mmのSUS製ロータリーキルン炉内に配置して、窒素ガス流通下で室温から5℃/分で600℃まで昇温し、600℃で60分保持して焼成した。得られた焼成物の性状を、表2に示した。
ついで、焼成物5kgとピッチ20kgを、内容積50リットルの誘導攪拌式オートクレーブに投入し、窒素雰囲気下(初期圧力:0.98MPa(10Kg/cmG))に600℃、60分保持した。その後、オートクレーブから反応生成物を取り出し、窒素ガス流通下で430℃、30分間熱処理し、軽質分を除去して改質炭を得た。
この改質炭10質量%に、表1に示す4銘柄(A〜D炭)の石炭(コークス用原料炭)を混合して調整した粘結炭のベース配合炭を加えて配合炭を作製した。そして、この配合炭を、1100℃のコークス炉内で18〜20時間、乾留してコークスを得た。作製したコークスのドラム強度(DI30 15)を、JIS K2151に準拠して測定した。その結果を表2に示す。
(Comparative Example 7)
The same lignite as in Example 1 was freeze-dried, placed in a SUS rotary kiln furnace with an inner diameter of 600 mm, heated from room temperature to 600 ° C. at a rate of 5 ° C./min under nitrogen gas flow, and then at 600 ° C. for 60 minutes. Hold and fired. Table 2 shows the properties of the obtained fired product.
Next, 5 kg of the fired product and 20 kg of pitch were put into an induction stirring autoclave having an internal volume of 50 liters, and kept at 600 ° C. for 60 minutes in a nitrogen atmosphere (initial pressure: 0.98 MPa (10 Kg / cm 2 G)). Thereafter, the reaction product was taken out from the autoclave and heat-treated at 430 ° C. for 30 minutes under a nitrogen gas flow to remove light components to obtain modified coal.
A blended coal was prepared by adding a base blended coal of caking coal prepared by mixing four modified (A to D coal) coals (coking coal for coke) shown in Table 1 to 10% by mass of this modified coal. . And this coal mix was dry-distilled in a 1100 degreeC coke oven for 18 to 20 hours, and coke was obtained. The drum strength (DI 30 15 ) of the produced coke was measured according to JIS K2151. The results are shown in Table 2.

Figure 2009013221
Figure 2009013221

Figure 2009013221
Figure 2009013221

表2の結果より、実施例1〜4はいずれも、加熱処理後の褐炭の酸素含有量が15質量%以下となり、改質処理時の水の発生を抑制することができた。また、加熱処理後の褐炭の比表面積は、310〜1020m2/gの範囲にあり、その大きな比表面積によって重質油類の分解生成物を付着し、強度の高いコークスを製造することができた。とくに、実施例1および4では、褐炭へのFeの担持によって、分解生成物の付着が促進され、高いコークス強度を得ることができた。
一方、比較例1および2では、加熱処理および改質処理を行わないため、褐炭中に多量の水分を保持したままであり、コークスと共に水が多量に発生してしまった。また、比較例3および4では、加熱処理後の褐炭の酸素含有量が高く(>15質量%、)、また比表面積が小さいため、重質油類の分解生成物を十分に付着することができず、コークスの強度が低くなってしまった。比較例5〜7では、高いコークス強度を得ることができなかった。
From the results of Table 2, in all of Examples 1 to 4, the oxygen content of the brown coal after the heat treatment was 15% by mass or less, and the generation of water during the reforming treatment could be suppressed. Moreover, the specific surface area of the lignite after the heat treatment is in the range of 310 to 1020 m 2 / g, and the large specific surface area allows the decomposition products of heavy oils to adhere to produce high strength coke. It was. In particular, in Examples 1 and 4, adhesion of decomposition products was promoted by supporting Fe on lignite, and high coke strength could be obtained.
On the other hand, in Comparative Examples 1 and 2, since heat treatment and reforming treatment were not performed, a large amount of water remained in the lignite, and a large amount of water was generated together with coke. Moreover, in Comparative Examples 3 and 4, since the oxygen content of the brown coal after the heat treatment is high (> 15% by mass) and the specific surface area is small, the decomposition products of heavy oils can be sufficiently attached. It was not possible, and the strength of the coke was lowered. In Comparative Examples 5 to 7, high coke strength could not be obtained.

本発明は、鉄鋼用原料炭としての利用の他、火力発電や石油精製、化学工業などの分野で利用することができる。   The present invention can be used in fields such as thermal power generation, petroleum refining, and chemical industry in addition to use as raw material coal for steel.

Claims (7)

低品位炭を重質油類で処理して改質炭を製造する方法において、多量の酸素原子を含む低品位炭を加熱処理し、酸素含有量を15質量%以下に低減する脱酸工程と、
脱酸後の低品位炭を、重質油類と共に300〜500℃の温度で加熱し、該低品位炭表面に、重質油類の分解生成物を付着させる改質工程と、
を経ることを特徴とする改質炭の製造方法。
In a method for producing modified coal by treating low-grade coal with heavy oils, a deoxidation step of heat-treating low-grade coal containing a large amount of oxygen atoms to reduce the oxygen content to 15% by mass or less; ,
The low-grade coal after deoxidation is heated at a temperature of 300 to 500 ° C. together with heavy oils, and a reforming step for attaching the decomposition products of heavy oils to the surface of the low-grade coals;
A method for producing modified coal, characterized in that
前記脱酸工程は、低品位炭を乾燥した後、不活性ガス雰囲気または還元性ガス雰囲気下で400℃超、800℃以下の温度範囲で加熱し、さらに酸化性ガス雰囲気下で800〜1200℃の温度範囲で加熱する工程を経ることを特徴とする請求項1に記載の改質炭の製造方法。   In the deoxidation step, the low-grade coal is dried, then heated in an inert gas atmosphere or a reducing gas atmosphere in a temperature range of more than 400 ° C. and 800 ° C. or less, and further in an oxidizing gas atmosphere, 800 to 1200 ° C. The method for producing reformed coal according to claim 1, wherein the method undergoes a step of heating in the temperature range. 前記脱酸工程は、低品位炭を、凍結乾燥または超臨界乾燥した後、不活性雰囲気または還元性雰囲気下で、300〜1200℃の温度範囲で加熱する工程を経ることを特徴とする請求項1に記載の改質炭の製造方法。   The deoxidation step is a step of heating a low-grade coal in a temperature range of 300 to 1200 ° C in an inert atmosphere or a reducing atmosphere after freeze-drying or supercritical drying. 2. A method for producing reformed coal according to 1. 脱酸後の前記低品位炭は、多孔質体であることを特徴とする請求項1〜3のいずれか1項に記載の改質炭の製造方法。   The method for producing modified coal according to any one of claims 1 to 3, wherein the low-grade coal after deoxidation is a porous body. 前記改質工程は、水素含有雰囲気下で行われることを特徴とする請求項1〜4のいずれか1項に記載の改質炭の製造方法。   The method for producing reformed coal according to any one of claims 1 to 4, wherein the reforming step is performed in a hydrogen-containing atmosphere. 脱酸後の前記低品位炭に、金属および/または金属化合物を担持させることを特徴とする請求項1〜5のいずれか1項に記載の改質炭の製造方法。   The method for producing modified coal according to any one of claims 1 to 5, wherein a metal and / or a metal compound is supported on the low-grade coal after deoxidation. 請求項1〜6のいずれか1項に記載の方法によってで得られた改質炭を含む配合炭をコークス炉に装入し、1000〜1200℃の温度で加熱乾留することを特徴とするコークスの製造方法。   Coke characterized by being charged into a coke oven with the blended coal containing the modified coal obtained by the method according to any one of claims 1 to 6 and heating and dry distillation at a temperature of 1000 to 1200 ° C. Manufacturing method.
JP2007173965A 2007-07-02 2007-07-02 Method of manufacturing modified coal and manufacturing method of coke Pending JP2009013221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007173965A JP2009013221A (en) 2007-07-02 2007-07-02 Method of manufacturing modified coal and manufacturing method of coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173965A JP2009013221A (en) 2007-07-02 2007-07-02 Method of manufacturing modified coal and manufacturing method of coke

Publications (1)

Publication Number Publication Date
JP2009013221A true JP2009013221A (en) 2009-01-22

Family

ID=40354533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173965A Pending JP2009013221A (en) 2007-07-02 2007-07-02 Method of manufacturing modified coal and manufacturing method of coke

Country Status (1)

Country Link
JP (1) JP2009013221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180094971A (en) * 2015-12-15 2018-08-24 사우디 아라비안 오일 컴퍼니 Supercritical water hardening process for high quality coke production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180094971A (en) * 2015-12-15 2018-08-24 사우디 아라비안 오일 컴퍼니 Supercritical water hardening process for high quality coke production
KR102616992B1 (en) 2015-12-15 2023-12-26 사우디 아라비안 오일 컴퍼니 Supercritical water hardening process for high-quality coke production

Similar Documents

Publication Publication Date Title
CA2766032C (en) Method for producing carbon materials
JP4576463B2 (en) Method for producing caking material for coke production and method for producing coke
Mollah et al. An attempt to produce blast furnace coke from Victorian brown coal
Ganan et al. Preparation of activated carbons from bituminous coal pitches
Rubio et al. Effect of binder addition on the mechanical and physicochemical properties of low rank coal char briquettes
Zhang et al. Structure characterization and metallurgical properties of the chars formed by devolatilization of lump coals
US20170096340A1 (en) Method for producing carbon material, and carbon material
JP6041694B2 (en) Method for producing coking coal for coke production and method for producing coke
JP5128351B2 (en) Carbon material manufacturing method
JP5487790B2 (en) Ferro-coke manufacturing method
JP2009013221A (en) Method of manufacturing modified coal and manufacturing method of coke
WO2014175121A1 (en) Method for manufacturing ashless coal, and method for manufacturing carbon material
JPH01164717A (en) Method and apparatus for manufacturing non-sintered briquette for manufacture of silicon, silicon carbide or ferro silicon
JP2009013222A (en) Method of manufacturing modified coal and manufacturing method of coke
JP5803860B2 (en) Biomass reforming method, biomass and lignite reforming method, coke and sintered ore manufacturing method, and blast furnace operating method
JP6644651B2 (en) Method for reforming inferior coal, method for producing coke, and method for producing pig iron
US20180320083A1 (en) Method for producing coke, and coke
JP2009011893A (en) Method for manufacturing catalyst for hydrocracking heavy hydrocarbons and method for hydrocracking heavy hydrocarbons
CZ2008728A3 (en) Process for producing carbonized lignite by single-stage thermal reprocessing
Mochizuki et al. Strength and Gasification Reactivity of Coke Prepared by Blending a Ca/C Composite and Coal
JP2003055667A (en) Production method for blast furnace coke
KR101503443B1 (en) Composition for cokes and method of manufacturing the cokes
WO2006093236A1 (en) Process for producing binder for coke
Ashida et al. Co-Processing of Resid and Low-Grade Iron Ore to Produce Light Oil and an Iron Ore/Carbon Composite for Iron Making
JP2003055668A (en) Production method for blast furnace coke