JP2009012686A - Supersonic type aircraft configuration for reduction of rear end sonic boom - Google Patents

Supersonic type aircraft configuration for reduction of rear end sonic boom Download PDF

Info

Publication number
JP2009012686A
JP2009012686A JP2007178802A JP2007178802A JP2009012686A JP 2009012686 A JP2009012686 A JP 2009012686A JP 2007178802 A JP2007178802 A JP 2007178802A JP 2007178802 A JP2007178802 A JP 2007178802A JP 2009012686 A JP2009012686 A JP 2009012686A
Authority
JP
Japan
Prior art keywords
cross
expansion
sectional area
distribution
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007178802A
Other languages
Japanese (ja)
Other versions
JP5057374B2 (en
Inventor
Yoshikazu Makino
好和 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2007178802A priority Critical patent/JP5057374B2/en
Publication of JP2009012686A publication Critical patent/JP2009012686A/en
Application granted granted Critical
Publication of JP5057374B2 publication Critical patent/JP5057374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supersonic type aircraft configuration capable of solving a problem of a trim held by a conventional cross section area distribution of George and Seebass and attaining a rear end low sonic boom even if a horizontal stabilizer of usual wing back arrangement is adopted. <P>SOLUTION: In the machine body shape of the supersonic type aircraft, equivalent cross section area distribution, i.e., the sum of machine body axial direction distribution of a cross section obtained by cutting the machine body shape by Mach plane determined by flying Mach number and a cross section area distribution obtained by converting machine axial direction distribution of lift to cross section area distribution equivalent to it has distribution having the maximum value on the midway without monotonously increasing it in the machine axial direction, and is provided with a portion where the equivalent cross section area is increased again without monotonously reducing it in the process that the equivalent cross section area is reduced from a position for taking the maximum value to a rear end of the machine body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超音速航空機の後端ソニックブームを低減する機体形状に関する。   The present invention relates to a fuselage shape that reduces the rear-end sonic boom of a supersonic aircraft.

一般に超音速航空機は環境適合性の要件を満たすために、超音速飛行時に地上の人や動物あるいは建物といった構造物に及ぼす音響現象であるソニックブームを抑制することが求められる。ソニックブームの低減法は長年に亘って研究されており、最も有力な方法は機体形状を工夫することにより衝撃波の発生パターンを変化させ、地上でのソニックブーム強度を低減しようとするものである。通常超音速機の機体各部から発生する衝撃波は、大気中を伝播してゆく過程で圧力変動の大きな波はより速く大気中を伝播するという現象を伴い機首と機尾の2つの強い衝撃波に統合され、地上において2度の大きな圧力上昇を伴うN型の圧力波として観測される。超音速航空機によって発生伝播される衝撃波は図9の左下に示されるように円錐形態で伝播し地上に到達する。その際のN型波形は図9の左上に示すように機首部による大気圧から一気に高圧となる衝撃波と徐々に減圧され機尾部によって低圧から一気に大気圧に戻る衝撃波からなる。因みに超音速旅客機の代表であるコンコルドのソニックブームは2〜3psfの強度で、近くの落雷に相当する程の音であると言われている。   In general, a supersonic aircraft is required to suppress a sonic boom, which is an acoustic phenomenon affecting a structure such as a person, an animal, or a building on the ground at the time of supersonic flight in order to satisfy an environmental compatibility requirement. Sonic boom reduction methods have been studied for many years, and the most promising method is to change the shock wave generation pattern by devising the shape of the fuselage to reduce the sonic boom strength on the ground. The shock waves generated from each part of a normal supersonic aircraft are two strong shock waves, the nose and the tail, accompanied by the phenomenon that waves with large pressure fluctuations propagate faster in the atmosphere as they propagate through the atmosphere. It is integrated and observed as an N-type pressure wave with a large pressure rise of 2 degrees on the ground. The shock wave generated and propagated by the supersonic aircraft propagates in a cone shape and reaches the ground as shown in the lower left of FIG. The N-type waveform at that time is composed of a shock wave that is increased in pressure from the atmospheric pressure by the nose part at once, and a shock wave that is gradually reduced in pressure from the low pressure to return to atmospheric pressure by the tail part as shown in the upper left of FIG. By the way, Concorde's sonic boom, which is representative of supersonic passenger aircraft, is said to have a strength of 2 to 3 psf and a sound equivalent to a nearby lightning strike.

ソニックブームによる騒音問題で陸地上空での超音速飛行は制限されるため超音速旅客機実用化の課題となっている。前記のソニックブーム低減法は機体形状を修正して衝撃波の統合を抑えることにより通常のN型でない低ソニックブーム圧力波形を形成するものである。ジョージとシーバスは近傍場理論に基づき後端波も含めたブーム最小化を提案し、図9の右上に示す「最小過剰圧の波形」と図9の右下に示す「最小衝撃の波形」の2種類の圧力波形について研究し、非特許文献1において、低ソニックブーム圧力波形を形成する航空機の断面積分布と揚力分布から求められる等価断面積分布の和に着目する理論を示した。ここで航空機の断面積分布とは、航空機を飛行マッハ数で決定されるマッハ平面[法線ベクトルを機体軸に対して上向きに角度μ=sin−1 (1/M)傾けた平面]で切断した断面積の機体軸方向への投影面積の分布のことである。ジョージとシーバスの理論は機体が大気に圧力変化をもたらす第1の要因は胴体の形状であり、第2の要因は翼が受ける揚力の反作用であることに着目すると共に、この揚力の反作用は下向きの方向性を有するものであるが、これを胴体と同様に全方位に及ぶものとして等価断面積というものを想定し、この航空機の断面積分布と揚力分布から求められる等価断面積分布の和が所定の分布を示すとき低ソニックブームを実現できるという理論である。しかし、これらの等価断面積分布を有する形状を逆算して求めると、機首形状は機体抗力の大きな鈍頭になってしまう。その後、ダーデンは非特許文献2においてジョージとシーバスの断面積分布を用いてこの機首部に起因する機体抗力を低減させる手法とプログラムを提示した。また、本発明者は特許文献1において非軸対称胴体を用いて低ソニックブーム性と低機体抗力性を両立させる機首形状を提示した。 Since supersonic flight over land and air is restricted due to the noise problem caused by the sonic boom, it has become a subject of practical application of supersonic passenger aircraft. The sonic boom reduction method described above forms a low sonic boom pressure waveform that is not a normal N type by correcting the shape of the airframe to suppress the integration of shock waves. George and Seabass proposed a boom minimization based on the near-field theory, including the rear end wave, and the “minimum overpressure waveform” shown in the upper right of FIG. 9 and the “minimum shock waveform” shown in the lower right of FIG. Two types of pressure waveforms were studied, and Non-Patent Document 1 presented a theory that focused on the sum of the equivalent cross-sectional area distribution obtained from the cross-sectional area distribution and lift distribution of the aircraft forming the low sonic boom pressure waveform. Here, the cross-sectional area distribution of an aircraft means that the aircraft is cut by a Mach plane determined by the flight Mach number [a plane in which a normal vector is inclined upward with respect to the aircraft axis by an angle μ = sin −1 (1 / M)]. This is the distribution of the projected area of the measured cross-sectional area in the machine axis direction. The theory of George and Seabass notes that the first factor that causes the airframe to change pressure to the atmosphere is the shape of the fuselage, and the second factor is the reaction of lift received by the wings. Assuming that this is an equivalent cross-sectional area that covers all directions in the same way as the fuselage, the sum of the equivalent cross-sectional area distribution obtained from the cross-sectional area distribution and lift distribution of this aircraft is It is a theory that a low sonic boom can be realized when a predetermined distribution is shown. However, when the shapes having these equivalent cross-sectional area distributions are calculated by back calculation, the nose shape becomes blunt with a large body drag. After that, Darden presented a technique and a program in Non-Patent Document 2 to reduce the aircraft drag caused by this nose using the cross-sectional distribution of George and Seabass. In addition, in the patent document 1, the present inventor presented a nose shape that uses a non-axisymmetric fuselage to achieve both a low sonic boom and a low fuselage resistance.

ジョージとシーバスの提案した断面積分布は図10の上から2段目に示す様に機首から機体後端まで単調増加する断面積分布となっている。一方、航空機の断面積分布は機体後端付近において機体とマッハ平面との交わりが無くなればゼロとなるため、その位置における断面積分布は全て揚力の等価断面積でなくてはならない。ある機体軸位置における揚力の等価断面積は、機首からその位置までの揚力の総和に相当する。もし、主翼のみが揚力を負担していると仮定すると、揚力の等価断面積分布は主翼の後端で最大値をとりその後方では一定値となる。従って、前述の単調増加断面積を実現するためには、図10の上段に示す機体例の様に、主翼を機体後端まで分布させる必要がある。
しかしながら、機体後方で大きな揚力を発生させると機体重心周りに機首下げのモーメントを発生させることになり、機体のトリム(縦方向のバランス)が取れなくなる。この様な低ソニックブーム機体のトリムを取るためには、通常主翼の後方に位置している水平尾翼(安定板)を主翼の前方に配置する前尾翼(カナード)形態を採用するか、あるいは、無尾翼機形態として主翼を機軸方向に長く分布させることにより揚力分布のバランスを取る必要がある。カナード形態を採用した低ソニックブーム機体の一例として、特許文献2では主翼を機体後端まで持って行きカナードと逆V尾翼を採用している。一般的にカナード形態の超音速航空機では、低速離着陸時のピッチアップ(非線形的頭上げ)不安定の問題がある。揚力を前後に長く分布させる主翼の平面形は、構造強度も考えると翼面積が大きく、アスペクト比の小さい翼にせざるを得ず、航空機の摩擦抗力と誘導抗力を増加させてしまう。
特開2005−178491号公報(特許第3855064号)「超音速航空機の胴体形状の決定方法および胴体前胴部形状」 平成17年7月7日公開 米国特許第6,824,092号明細書 Frankhn,W.M, "Aircraft Tail Configuration for Sonic Boom Reduction." 2004年11月30日発行 米国特許第3,647,160号明細書 Alperin,M. "Method and Apparatus for Reducing Sonic Booms." 1972年3月7日発行 Seebass,A.R. and George,A.R.,"Designand Operation of Aircraft to Minimize Their Sonic Boom," Journal of Aircraft,Vol.11, No.9,pp.509-517,1974. Darden,C.M.,"Sonic-Boom Minimization With Nose-Bluntness Relaxation." NASATP-1348, 1979.
The cross-sectional area distribution proposed by George and Seabass is a cross-sectional area distribution that monotonously increases from the nose to the rear end of the fuselage as shown in the second row from the top of FIG. On the other hand, since the cross-sectional area distribution of the aircraft becomes zero when there is no intersection between the airframe and the Mach plane in the vicinity of the rear end of the airframe, the cross-sectional area distribution at that position must be the equivalent cross-sectional area of lift. The equivalent cross-sectional area of lift at a certain aircraft axis position corresponds to the total lift from the nose to that position. If it is assumed that only the main wing bears the lift, the equivalent cross-sectional area distribution of the lift has a maximum value at the rear end of the main wing and a constant value behind it. Therefore, in order to realize the above-described monotonically increasing cross-sectional area, it is necessary to distribute the main wings to the rear end of the airframe as in the airframe example shown in the upper part of FIG.
However, if a large lift is generated at the rear of the aircraft, a nose-down moment is generated around the center of gravity of the aircraft, making it impossible to trim the aircraft (vertical balance). In order to trim such a low sonic boom fuselage, a horizontal tail (stabilizing plate) that is usually located behind the main wing is used in front of the main wing (canard), or As a tailless aircraft configuration, it is necessary to balance the lift distribution by distributing the main wing long in the axis direction. As an example of a low sonic boom aircraft adopting a canard configuration, Patent Document 2 adopts a canard and a reverse V-tail with the main wing taken to the rear end of the aircraft. Generally, a canard-type supersonic aircraft has a problem of unstable pitch-up (non-linear head-up) during low-speed take-off and landing. The plane shape of the main wing, which distributes the lift in the longitudinal direction, has a large wing area in view of structural strength, and must be a wing with a small aspect ratio, increasing the frictional drag and induced drag of the aircraft.
Japanese Patent Laying-Open No. 2005-178491 (Patent No. 3855064) “Method for Determining Body Shape of Supersonic Aircraft and Body Shape of Front Body” Published July 7, 2005 US Patent No. 6,824,092 Frankhn, WM, "Aircraft Tail Configuration for Sonic Boom Reduction." Published November 30, 2004 US Patent 3,647,160 Alperin, M. "Method and Apparatus for Reducing Sonic Booms." Issued March 7, 1972 Seebass, AR and George, AR, "Designand Operation of Aircraft to Minimize Their Sonic Boom," Journal of Aircraft, Vol. 11, No. 9, pp.509-517, 1974. Darden, CM, "Sonic-Boom Minimization With Nose-Bluntness Relaxation." NASATP-1348, 1979.

本発明の課題は、従来のジョージとシーバスの断面積分布が抱えるトリムの問題を解決し、通常の主翼後方配置の水平尾翼を採用しても後端低ソニックブームを実現できる超音速航空機形状を提示することにある。   The object of the present invention is to solve the problem of trim that the cross-sectional area distribution of George and Seabass has in the past, and to realize a supersonic aircraft shape that can realize a low sonic boom at the rear end even if a horizontal tail wing arranged at the rear of the main wing is adopted. It is to present.

本発明の超音速航空機の機体形状は、飛行マッハ数で決定されるマッハ平面で機体形状を切断した断面積の機体軸方向分布と、揚力の機軸方向分布をそれと等価な断面積分布に変換した断面積分布との和である等価断面積分布が、機軸方向に単調増加することなく、途中で最大値を有する分布を持つと共に、最大値を取る位置から機体後端まで等価断面積が減少する過程で、単調減少することなく再び等価断面積が増加する部分を備えるものとした。
具体的には、胴体後部下面に凸凹を持たせること、或いは翼型に逆キャンバ(下向きの凸の断面形状)を持たせるなどした水平尾翼によって、或いは機体後部にエンジンナセルを配置することによって波形後部に膨張−圧縮−膨張の組み合せを1回若しくは複数回有する近傍場圧力波形を形成するものとし、地上ソニックブーム圧力波形の後部を通常のN型ではなく多段の圧力上昇とすることでソニックブーム強度を低減させるようにした。
また、胴体後部下面に凸凹を持たせること、或いは翼型に逆キャンバ(下向きの凸の断面形状)を持たせるなどした水平尾翼によって、或いは機体後部にエンジンナセルを配置する形状を複数組み合わせによって近傍場圧力波形後部に、膨張−圧縮−膨張の組み合わせによる波形の打ち消し合い部を形成するようにした。
The aircraft shape of the supersonic aircraft of the present invention was converted into a cross-sectional area distribution obtained by cutting the fuselage shape on the Mach plane determined by the flight Mach number, and a lift-axis distribution in the axial direction was converted to an equivalent cross-sectional area distribution. The equivalent cross-sectional area distribution, which is the sum of the cross-sectional area distributions, has a distribution that has a maximum value in the middle without monotonically increasing in the direction of the axis, and the equivalent cross-sectional area decreases from the position where the maximum value is reached to the rear end of the aircraft. In the process, a portion where the equivalent cross-sectional area increases again without monotonously decreasing is provided.
Specifically, it is corrugated by giving the back of the fuselage lower surface unevenness, by using a horizontal tail that gives the airfoil a reverse camber (downward convex cross-sectional shape), or by placing an engine nacelle at the rear of the fuselage. A near-field pressure waveform having one or more combinations of expansion-compression-expansion is formed at the rear, and the sonic boom is formed by setting the rear of the ground sonic boom pressure waveform as a multi-stage pressure rise instead of the normal N-type. The strength was reduced.
In addition, the rear surface of the fuselage has an uneven surface, or a horizontal tail that has a reverse camber (downward convex cross-sectional shape) on the airfoil, or a combination of multiple shapes that arrange the engine nacelle at the rear of the fuselage. In the rear part of the field pressure waveform, a waveform canceling part by a combination of expansion-compression-expansion is formed.

本発明の超音速航空機の機体形状は、波形後部に膨張−圧縮−膨張の組み合せを1回若しくは複数回有する近傍場圧力波形を形成することにより、地上ソニックブーム圧力波形の後部を通常のN型ではなく多段の圧力上昇とすることで、従来のジョージとシーバスの断面積分布が抱えるトリムの問題を解決し、通常の主翼後方配置の水平尾翼を採用しても後端低ソニックブームを実現することができる。
本発明により、低ソニックブーム設計された航空機であっても従来の低ソニックブーム機の様に揚力を機体後端まで分布させる必要がなくなるため、従来の水平尾翼を機体後方に配置することが可能となり、機体のトリムを取ることが楽になる効果がある。(飛行特性の改善効果)
また、従来の低ソニックブーム設計においては機体後端まで揚力を維持するために主翼の平面形を揚抗比最適とすることができずに抗力が増加する、あるいはトリム特性の悪い主翼平面形及び主翼配置によりトリム抗力が増加することが避けられなかったが、本発明を用いることで揚抗比最適の主翼平面形やトリム特性最適の主翼配置を採用することが可能となる。(空力特性の改善効果)
本発明により、機体後部が発生する圧力波の制御が容易になり、従来の低ソニックブーム設計よりも後端ソニックブーム特性の飛行条件や大気条件の変動に対するロバスト性を向上できる効果がある。(後端ソニックブーム特性のロバスト性向上効果)
The supersonic aircraft fuselage of the present invention forms a near-field pressure waveform having a combination of expansion-compression-expansion one or more times at the rear of the waveform, thereby making the rear portion of the ground sonic boom pressure waveform a normal N-type. Instead of the multi-stage pressure rise, it solves the trim problem of the cross-sectional area distribution of George and Seabass, and realizes a low sonic boom at the rear end even if a horizontal tail is used behind the main wing. be able to.
The present invention eliminates the need for distributing lift to the rear end of the aircraft, unlike conventional low sonic boom aircraft, even with low sonic boom designed aircraft, so the conventional horizontal tail can be placed behind the aircraft Therefore, trimming the aircraft is easy. (Effects of improving flight characteristics)
Also, in the conventional low sonic boom design, the wing plane shape cannot be optimized to maintain the lift to the rear end of the fuselage and the drag increases, or the wing plane shape with poor trim characteristics and Although it has been unavoidable that the trim drag increases due to the main wing arrangement, it is possible to adopt the main wing plane shape with the optimum lift-drag ratio and the main wing arrangement with the optimum trim characteristics by using the present invention. (Aerodynamic characteristics improvement effect)
According to the present invention, control of the pressure wave generated at the rear of the fuselage is facilitated, and there is an effect that the robustness with respect to fluctuations in flight conditions and atmospheric conditions of the rear-end sonic boom characteristics can be improved as compared with the conventional low sonic boom design. (Robustness improvement effect of rear end sonic boom characteristics)

従来の低ソニックブーム設計法では、機体の等価断面積分布は飛行マッハ数、飛行高度、機体重量、機体長と目標とするソニックブーム圧力波形を指定すると一意に決まってしまい、決められた断面積分布を満たすように揚力分布(主翼形状・配置)と断面積分布を決めなくてはならない。必然的に指定された断面積分布は、キャビンやコックピット、燃料タンク等の機体容積に対して強い拘束を与えることになり、設計の自由度が奪われていた。逆に、必要容積が確保可能となるように低ソニックブーム等価断面積分布を決めるためには、飛行マッハ数、飛行高度、機体重量等のミッション要求(航空機設計の上流側)に拘束を与えることになり、効率的な航空機を設計することが困難である。具体的にはミッション要求から決められた低ソニックブーム等価断面積分布を必要容積が超えてしまった場合には、飛行高度の増加、機体重量の増加等により等価断面積分布を増やしてやる必要があるが、本発明によれば、飛行マッハ数、飛行高度、機体重量等のミッション要求と必要機体容積とを独立に決めることが可能となるため、設計の自由度が増すという効果がある。(超音速航空機の低ソニックブーム設計自由度拡張効果)   In the conventional low sonic boom design method, the equivalent cross-sectional area distribution of the fuselage is uniquely determined by specifying the flight Mach number, flight altitude, fuselage weight, fuselage length and the target sonic boom pressure waveform. Lift distribution (main wing shape / arrangement) and cross-sectional area distribution must be determined to satisfy the distribution. Inevitably, the specified cross-sectional area distribution imposes strong constraints on the body volume of cabins, cockpits, fuel tanks, etc., and deprives design freedom. Conversely, to determine the low sonic boom equivalent cross-sectional area distribution so that the required volume can be secured, it is necessary to constrain mission requirements (upstream side of aircraft design) such as flight Mach number, flight altitude, and aircraft weight. It is difficult to design an efficient aircraft. Specifically, if the required volume exceeds the low sonic boom equivalent cross-sectional area distribution determined from the mission requirements, it is necessary to increase the equivalent cross-sectional area distribution by increasing the flight altitude, increasing the aircraft weight, etc. However, according to the present invention, it is possible to independently determine the mission requirements such as the flight Mach number, the flight altitude, the aircraft weight, and the required aircraft volume, which has the effect of increasing the degree of freedom in design. (Supersonic aircraft low sonic boom design freedom expansion effect)

本発明では、ジョージとシーバスの断面積分布が抱えるトリムの問題を解決するため、ジョージとシーバスが提案した断面積分布とは異なる単調増加でない低ソニックブーム断面積分布を提示する。本発明の断面積分布を採用することにより、主翼を機体後端まで分布することなく機体の中央付近に配置し、通常の主翼後方配置の水平尾翼を採用しても後端低ソニックブーム性を保持することが可能となる。
本発明が根拠とする原理を図1に示す。圧力波にはそれによる圧力上昇の大きな波ほど速く空気中を伝播する非線形的な性質があり、圧縮波と膨張波の組み合わせによる正の圧力波は前方に、膨張波と再圧縮波の組み合わせによる負の圧力波は後方にシフトしてゆく。従って図1上段に示される様な圧縮波+彫張波+再圧縮波の組み合わせによる圧力波は空気中を伝播するに従って波形の長さが増し、衝撃波を形成しながらN型波へと成長してゆく。逆に、図1下段に示される様な膨張波+圧縮波+膨張波の組み合わせによる圧力波は、前方にシフトする波形の正の部分と後方にシフトする波形の負の部分とが打消し合って1つの衝撃波を形成してその場に留まる性質がある。
In the present invention, in order to solve the problem of trim that the cross-sectional area distribution of George and Seabass has, a low sonic boom cross-sectional area distribution that is different from the cross-sectional area distribution proposed by George and Seabass is presented. By adopting the cross-sectional area distribution of the present invention, the main wing is arranged near the center of the airframe without being distributed to the rear end of the airframe, and the rear end low sonic boom property is achieved even if the horizontal tail wing arranged at the rear of the main wing is adopted. It becomes possible to hold.
The principle on which the present invention is based is shown in FIG. The pressure wave has a non-linear property that propagates faster in the air as the pressure rise is larger, and the positive pressure wave due to the combination of compression wave and expansion wave is forward, due to the combination of expansion wave and recompression wave Negative pressure waves shift backwards. Therefore, the pressure wave by the combination of compression wave + carving wave + recompression wave as shown in the upper part of FIG. 1 increases in length as it propagates through the air, and grows into an N-type wave while forming a shock wave. Go. Conversely, the pressure wave generated by the combination of expansion wave + compression wave + expansion wave as shown in the lower part of FIG. 1 cancels out the positive part of the waveform shifted forward and the negative part of the waveform shifted backward. One shock wave is formed and stays in place.

本発明では、上記の原理を応用し、機体中央付近に配置した主翼後端付近で最大値をとる断面積分布が、機体後端まで断面積を減少させてゆく際に図2左図実線で示す様に、一旦減少した断面積をもう一度増加させて機体後端付近に膨らみを持たせる(手法1)。この断面積分布では、断面積最大の位置から断面積が減少する際に膨張波が発生し、機体後端付近の膨らみ部で圧縮波が、その後再び膨張波が発生し、機体後端で再圧縮されることとなり、機体近傍場において図2中央図中実線で示す様な圧力波形が得られる。図中斜線で示される部分が上記原理における打消し合いの部分であり、この位置に衝撃波が留まることによって、後端ソニックブームはN型波に統合することなく2段の圧力上昇として地上に到達する。(図2右図中実線)この様な等価断面積分布を実現するための航空機形状の例を図3(1)、(2)、(3)に示す。図3(1)では後部胴体形状の下面に凹凸をつけることによって、膨張波−衝撃波−膨張波−衝撃波の組み合せを実現している。
図3(2)では後部胴体下面の膨らみの代わりに水平尾翼によって衝撃波−膨張波−衝撃波の組み合せを実現している。この際水平尾翼の翼断面形状の翼厚を厚くするか逆キャンバを付けることによって衝撃波や膨張波の強弱を調整することで、効率的に好ましいソニックブーム圧力波形を実現する航空機形状を設計することが可能である。図3(3)では水平尾翼の代わりにエンジンナセルを配置することによって、衝撃波−膨張波−衝撃波の組み合せを実現する例を示している。
In the present invention, the above principle is applied, and the cross-sectional area distribution that takes the maximum value near the rear end of the main wing arranged near the center of the fuselage is shown by the solid line in the left diagram of FIG. As shown, the once reduced cross-sectional area is increased once again to give a bulge near the rear end of the aircraft (Method 1). In this cross-sectional area distribution, an expansion wave is generated when the cross-sectional area decreases from the position where the cross-sectional area is maximum, a compression wave is generated at the bulge near the rear end of the aircraft, and then an expansion wave is generated again. As a result, the pressure waveform as shown by the solid line in the center of FIG. The hatched portion in the figure is the canceling portion in the above principle. When the shock wave stays at this position, the rear-end sonic boom reaches the ground as a two-stage pressure rise without being integrated into the N-type wave. To do. (A solid line in the right diagram in FIG. 2) Examples of aircraft shapes for realizing such an equivalent cross-sectional area distribution are shown in FIGS. 3 (1), (2), and (3). In FIG. 3 (1), the combination of expansion wave-shock wave-expansion wave-shock wave is realized by providing irregularities on the lower surface of the rear body shape.
In FIG. 3 (2), a combination of shock wave-expansion wave-shock wave is realized by a horizontal tail instead of a bulge on the lower surface of the rear fuselage. At this time, by designing the shape of the aircraft to efficiently achieve a favorable sonic boom pressure waveform by adjusting the strength of the shock wave and expansion wave by increasing the blade thickness of the cross section of the horizontal tail or by attaching a reverse camber Is possible. FIG. 3 (3) shows an example of realizing a combination of shock wave-expansion wave-shock wave by arranging an engine nacelle instead of the horizontal tail.

本発明では、さらに機体後部の断面積分布を多段の凸凹(手法2)とすることで、後部ソニックブーム圧力波形を複数の小さな圧力上昇に分割することが可能である。図4左図中実線には機体後部の断面積分布を3段の凸凹(断面積最大位置から減少する際に2度の断面積増加部を持つ航空機形状)とした例を示しているが、この様な等価断面積を有する航空機からは、図4中央図中実線で示す様に、膨張波−衝撃波−膨張波−衝撃波−膨張波−衝撃波で構成される近傍場圧力波形が形成され、図中斜線で示す部分は打消し合いによってその場に留まるため、図4右図中実線で示される様な、波形後部に3段の圧力上昇を有するソニックブーム波形を形成する。この様な等価断面積分布を実現するための航空機形状の例を図5(1)、(2)、(3)に示す。図5(1)では後部胴体形状の下面に複数の凹凸をつけることによって、膨張波−衝撃波−膨張波−衝撃波−膨張波−衝撃波の組み合せを実現している。図5(2)では後部胴体下面の2段目の膨らみの代わりに水平尾翼によって衝撃波−膨張波−衝撃波の組み合せを実現している。この際水平尾翼の翼断面形状の翼厚を厚くするか逆キャンバを付けることによって衝撃波や膨張波の強弱を調整することで、効率的に好ましいソニックブーム圧力波形を実現する航空機形状を設計することが可能である。図5(3)では、さらに1段目の膨らみの代わりにエンジンナセルを配置することによって、衝撃波−膨張波−衝撃波の組み合せを実現する例を示している。   In the present invention, it is possible to divide the rear sonic boom pressure waveform into a plurality of small pressure increases by making the cross-sectional area distribution at the rear of the fuselage multi-stage unevenness (method 2). The solid line in the left figure of Fig. 4 shows an example in which the cross-sectional area distribution at the rear of the fuselage has three steps of unevenness (the shape of the aircraft that has a cross-sectional area increased twice when it decreases from the maximum cross-sectional area position). From an aircraft having such an equivalent cross-sectional area, as shown by the solid line in the central diagram of FIG. 4, a near-field pressure waveform composed of expansion wave-shock wave-expansion wave-shock wave-expansion wave-shock wave is formed. Since the portion indicated by the oblique line remains in place by cancellation, a sonic boom waveform having a three-stage pressure rise is formed at the rear of the waveform, as indicated by the solid line in the right figure of FIG. Examples of aircraft shapes for realizing such an equivalent cross-sectional area distribution are shown in FIGS. 5 (1), (2), and (3). In FIG. 5A, a combination of expansion wave-shock wave-expansion wave-shock wave-expansion wave-shock wave is realized by providing a plurality of irregularities on the lower surface of the rear body shape. In FIG. 5 (2), a combination of shock wave-expansion wave-shock wave is realized by a horizontal tail instead of the second bulge on the lower surface of the rear fuselage. At this time, by designing the shape of the aircraft to efficiently achieve a favorable sonic boom pressure waveform by adjusting the strength of the shock wave and expansion wave by increasing the blade thickness of the cross section of the horizontal tail or by attaching a reverse camber Is possible. FIG. 5 (3) shows an example in which a combination of shock wave-expansion wave-shock wave is realized by disposing an engine nacelle instead of the first-stage bulge.

本発明を実施するための最良の形態として、図6に従来のジョージとシーバスの等価断面積分布(図6左図中破線)の後部に図2に示された本発明を適用した例を示す。図6左図中実線で示された等価断面積分布は、ソニックブーム圧力波形後部の負の圧力ピークを最小化する様に最適化設計ツールによって決定された等価断面積分布であり、本発明が特定する分布である。この等価断面積分布を持つ軸対称物体に対して線形パネル法を適用して推算した近傍場圧力波形を図6中央図中実線で示す。図2中央図実線で示された近傍場圧力波形と同様、物体後部の凸部からの衝撃波によって波形後部に正の圧力ピークができている。図6中央図中実線の近傍場圧力波形から、修正線形理論によって推算した地上ソニックブーム圧力波形を図6右図実線で示すが、近傍場圧力波形に見られる膨張−圧縮−膨張の組み合わせによる打ち消し合いによって、ソニックブーム波形後部は2段の圧力上昇で形成されていることが分かる。   As the best mode for carrying out the present invention, FIG. 6 shows an example in which the present invention shown in FIG. 2 is applied to the rear of the equivalent cross-sectional area distribution of George and Seabass (the broken line in the left figure of FIG. 6). . The equivalent cross-sectional area distribution indicated by the solid line in the left diagram of FIG. 6 is an equivalent cross-sectional area distribution determined by the optimization design tool so as to minimize the negative pressure peak at the rear of the sonic boom pressure waveform. The distribution to be identified. The near-field pressure waveform estimated by applying the linear panel method to the axisymmetric object having the equivalent cross-sectional area distribution is shown by a solid line in the center diagram of FIG. Similar to the near-field pressure waveform shown by the solid line in the center of FIG. 2, a positive pressure peak is formed at the rear of the waveform due to the shock wave from the convex portion at the rear of the object. The ground sonic boom pressure waveform estimated by the modified linear theory from the near-field pressure waveform of the solid line in the center of FIG. 6 is shown by the solid line of the right-hand side of FIG. It can be seen that the rear portion of the sonic boom waveform is formed by a two-stage pressure increase.

図7には、図4に示された本発明に対する最良の実施形態例を示す。図7左図中実線で示された等価断面積分布は、ソニックブーム圧力波形後部の負の圧力ピークを最小化する様に最適化設計ツールによって決定された等価断面積分布であり、本発明の特許請求の範囲に入っている分布である。この等価断面積分布を持つ軸対称物体に対して線形パネル法を適用して推算した近傍場圧力波形を図7中央図中実線で示す。図4中央図実線で示された近傍場圧力波形と同様、物体後部の凸部からの衝撃波によって波形後部に複数の正の圧力ピークができている。図7中央図中実線の近傍場圧力波形から、修正線形理論によって推算した地上ソニックブーム圧力波形を図7右図実線で示すが、近傍場圧力波形に見られる複数の膨張−圧縮−膨張の組み合わせによる打ち消し合いによって、ソニックブーム波形後部は多段の圧力上昇で形成されていることが分かる。   FIG. 7 shows a preferred embodiment of the present invention shown in FIG. The equivalent cross-sectional area distribution indicated by the solid line in the left diagram of FIG. 7 is the equivalent cross-sectional area distribution determined by the optimization design tool so as to minimize the negative pressure peak at the rear of the sonic boom pressure waveform. The distribution is within the scope of the claims. The near-field pressure waveform estimated by applying the linear panel method to the axisymmetric object having the equivalent cross-sectional area distribution is shown by a solid line in the center diagram of FIG. Similar to the near-field pressure waveform shown by the solid line in the center of FIG. 4, a plurality of positive pressure peaks are formed at the rear of the waveform due to the shock wave from the convex portion at the rear of the object. The ground sonic boom pressure waveform estimated by the modified linear theory from the solid line near-field pressure waveform in the center of FIG. 7 is shown by the solid line on the right side of FIG. It can be seen that the sonic boom waveform rear part is formed by multi-stage pressure rises by canceling each other.

図8には、三次元機体形状の設計において本発明を実施した例を示す。図8(a)に示す様な、主翼が胴体中央部に位置しており機体後端まで揚力分布を維持できない機体形状において、胴体後部下面形状に凸凹を設け、さらに水平尾翼を配置することによって、図8(b)左図中実線で示す様な、機体後部において等価断面積が減少する場所で等価断面積分布の再増加部(凸部)を形成することが可能である。この三次元機体形状に対して線形パネル法を適用して推算した近傍場圧力波形を図8(b)中央図中実線で示す。物体後部の凸部からの衝撃波によって波形後部に正の圧力ピークができているのが分かる。同図中破線は、比較のため図8(b)左図中の破線で示されたジョージとシーバスの等価断面積分布を有する軸対称物体に対して線形パネル法を適用して推算した近傍場圧力波形である。これら近傍場圧力波形から、修正線形理論によって推算した地上ソニックブーム圧力波形を図8(b)右図に示すが、図8(b)中央図中斜線で示された部分が打ち消しあうことによって、実線で示されたソニックブーム圧力波形後部は2段の圧力上昇で形成されていることが分かる。   In FIG. 8, the example which implemented this invention in the design of a three-dimensional airframe shape is shown. As shown in Fig. 8 (a), the main wing is located at the fuselage center and the lift distribution cannot be maintained up to the rear end of the fuselage. As shown by the solid line in the left figure of FIG. 8 (b), it is possible to form a re-increasing part (convex part) of the equivalent cross-sectional area distribution at a place where the equivalent cross-sectional area decreases at the rear part of the airframe. The near-field pressure waveform estimated by applying the linear panel method to the three-dimensional airframe shape is shown by a solid line in the center diagram of FIG. It can be seen that a positive pressure peak is formed at the rear of the waveform due to the shock wave from the convex portion at the rear of the object. The broken line in the figure shows the near field calculated by applying the linear panel method to the axisymmetric object having the equivalent cross-sectional distribution of George and Seabass shown by the broken line in the left figure of FIG. 8 (b) for comparison. It is a pressure waveform. The ground sonic boom pressure waveform estimated by the modified linear theory from these near-field pressure waveforms is shown in the right figure of FIG. 8 (b). When the portions shown by the oblique lines in the center figure of FIG. 8 (b) cancel each other, It can be seen that the rear portion of the sonic boom pressure waveform indicated by the solid line is formed by a two-stage pressure increase.

本発明は、超音速航空機の設計において、主翼を胴体中央に配置して揚力分布を機体後端まで維持できない(あるいはしたくない)ケースにおいて、後端ソニックブームを低減する必要がある場合に利用できる。   The present invention is used in the design of a supersonic aircraft, when the main wing is placed in the center of the fuselage and the lift distribution cannot be maintained (or not desired) up to the rear end of the fuselage, and the rear sonic boom needs to be reduced. it can.

本発明の原理を説明する図である。It is a figure explaining the principle of this invention. 本発明の手法1を説明する図である。It is a figure explaining the technique 1 of this invention. 本発明の手法1を実現する形態を説明する図である。It is a figure explaining the form which implement | achieves the method 1 of this invention. 本発明の手法2を説明する図である。It is a figure explaining the method 2 of this invention. 本発明の手法2を実現する形態を説明する図である。It is a figure explaining the form which implement | achieves the method 2 of this invention. 本発明の第1実施例を説明する図である。It is a figure explaining 1st Example of this invention. 本発明の第2実施例を説明する図である。It is a figure explaining 2nd Example of this invention. 本発明の第3実施例を説明する図である。It is a figure explaining 3rd Example of this invention. N型波形の発生原理と従来の低ソニックブームを説明する図である。It is a figure explaining the generation | occurrence | production principle of a N-type waveform, and the conventional low sonic boom. ダーデンの低ブーム設計法を説明する図である。It is a figure explaining the low boom design method of Darden.

Claims (7)

機体形状を飛行マッハ数で決定されるマッハ平面で切断した断面積の機体軸方向分布と、揚力の機軸方向分布をそれと等価な断面積分布に変換した断面積分布との和である等価断面積分布が、機軸方向に単調増加することなく、途中で最大値を有する分布を持つと共に、最大値を取る位置から機体後端まで等価断面積が減少する過程で、単調減少することなく再び等価断面積が増加する部分を備えたものとしたことを特徴とする超音速航空機の機体形状。   Equivalent cross-sectional area, which is the sum of the cross-sectional area distribution of the cross-sectional area cut by the Mach plane determined by the flight Mach number and the cross-sectional area distribution obtained by converting the axial distribution of lift to the equivalent cross-sectional area distribution In the process where the distribution has a maximum value in the middle without monotonically increasing in the direction of the axis and the equivalent cross-sectional area decreases from the position where the maximum value is reached to the rear end of the aircraft, Aircraft shape of supersonic aircraft, characterized in that it has an area that increases in area. 波形後部に膨張−圧縮−膨張の組み合せを1回若しくは複数回有する近傍場圧力波形を形成するものとし、地上ソニックブーム圧力波形の後部を通常のN型ではなく多段の圧力上昇とすることでソニックブーム強度を低減させたものである請求項1に記載の超音速航空機の機体形状。   Sonic is formed by forming a near-field pressure waveform having a combination of expansion-compression-expansion one or more times at the rear of the waveform, and by setting the rear of the ground sonic boom pressure waveform as a multi-stage pressure increase instead of the normal N type The body shape of the supersonic aircraft according to claim 1, wherein the boom strength is reduced. 胴体後部下面に凸凹を持たせることによって近傍場圧力波形後部に膨張−圧縮−膨張の組み合わせによる波形の打ち消し合い部を形成するものである請求項2に記載の超音速航空機の機体形状。   The body shape of a supersonic aircraft according to claim 2, wherein a corrugation canceling portion by a combination of expansion-compression-expansion is formed at the rear portion of the near-field pressure waveform by providing irregularities on the lower surface of the rear portion of the fuselage. 水平尾翼によって近傍場圧力波形後部に膨張−圧縮−膨張の組み合わせによる波形の打ち消し合い部を形成するものである請求項2に記載の超音速航空機の機体形状。   The airframe shape of a supersonic aircraft according to claim 2, wherein a wave canceling portion by a combination of expansion-compression-expansion is formed at the rear of the near-field pressure waveform by the horizontal tail. 水平尾翼の翼型に逆キャンバ(下向きの凸の断面形状)を持たせて機体下方に強い衝撃波−膨張波−衝撃波を発生させて、近傍場圧力波形後部に膨張−圧縮−膨張の組み合わせによる波形の打ち消し合い部を形成するものとした請求項4に記載の超音速航空機の機体形状。   The horizontal tail wing shape has a reverse camber (downward convex cross-sectional shape) to generate a strong shock wave-expansion wave-shock wave below the fuselage, and a waveform by a combination of expansion-compression-expansion at the rear of the near-field pressure waveform The body shape of the supersonic aircraft according to claim 4, wherein a canceling portion is formed. 機体後部にエンジンナセルを配置することによって近傍場圧力波形後部に膨張−圧縮−膨張の組み合わせによる波形の打ち消し合い部を形成する請求項2に記載の超音速航空機の機体形状。   The aircraft shape of a supersonic aircraft according to claim 2, wherein an engine nacelle is disposed at the rear of the fuselage to form a waveform canceling portion by a combination of expansion-compression-expansion at the rear of the near-field pressure waveform. 請求項3乃至6に記載された形状を複数組み合わせによって近傍場圧力波形後部に、膨張−圧縮−膨張の組み合わせによる波形の打ち消し合い部を形成する超音速航空機の機体形状。   A body shape of a supersonic aircraft that forms a waveform canceling portion by a combination of expansion-compression-expansion at a rear portion of a near-field pressure waveform by combining a plurality of shapes described in claims 3 to 6.
JP2007178802A 2007-07-06 2007-07-06 Supersonic aircraft shape for reducing rear-end sonic boom Active JP5057374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007178802A JP5057374B2 (en) 2007-07-06 2007-07-06 Supersonic aircraft shape for reducing rear-end sonic boom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007178802A JP5057374B2 (en) 2007-07-06 2007-07-06 Supersonic aircraft shape for reducing rear-end sonic boom

Publications (2)

Publication Number Publication Date
JP2009012686A true JP2009012686A (en) 2009-01-22
JP5057374B2 JP5057374B2 (en) 2012-10-24

Family

ID=40354106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007178802A Active JP5057374B2 (en) 2007-07-06 2007-07-06 Supersonic aircraft shape for reducing rear-end sonic boom

Country Status (1)

Country Link
JP (1) JP5057374B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778389A4 (en) * 2018-03-29 2021-05-19 Japan Aerospace Exploration Agency Method for designing shape of fuselage of supersonic aircraft, supersonic aircraft production method, and supersonic aircraft
CN114450224A (en) * 2019-07-01 2022-05-06 张传瑞 Aerodynamic techniques and methods for performing quieter supersonic flight

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103631B2 (en) 2018-04-06 2022-07-20 国立研究開発法人宇宙航空研究開発機構 How to reduce supersonic aircraft and sonic booms
US20230130658A1 (en) 2020-03-16 2023-04-27 Japan Aerospace Exploration Agency Method of designing an aircraft shape of a supersonic aircraft, method of producing a supersonic aircraft, and supersonic aircraft

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647160A (en) * 1968-09-23 1972-03-07 Morton Alperin Method and apparatus for reducing sonic booms
JPH0811794A (en) * 1994-06-30 1996-01-16 Mitsubishi Heavy Ind Ltd Aircraft with exterior equipment on board
US5897076A (en) * 1991-07-08 1999-04-27 Tracy; Richard R. High-efficiency, supersonic aircraft
US20040065774A1 (en) * 2000-02-08 2004-04-08 Lockheed Martin Corporation Passive aerodynamic sonic boom suppression for supersonic aircraft
JP2004276900A (en) * 2002-10-10 2004-10-07 Boeing Co:The Aircraft, transport aircraft, and manufacturing method for aircraft
US6824092B1 (en) * 2003-10-30 2004-11-30 Supersonic Aerospace International, Llc Aircraft tail configuration for sonic boom reduction
US20050067525A1 (en) * 2003-08-29 2005-03-31 Supersonic Aerospace International, Llc Aircraft thickness/camber control device for low sonic boom
US20050116108A1 (en) * 2003-11-14 2005-06-02 Supersonic Aerospace International, Llc System, apparatus, and method for redistributing forces to meet performance goals and shock wave disturbance constraints
JP2005178491A (en) * 2003-12-18 2005-07-07 Japan Aerospace Exploration Agency Method for determining fuselage shape of supersonic type aircraft, and forward fuselage shape
JP2005297825A (en) * 2004-04-13 2005-10-27 Japan Aerospace Exploration Agency Variable forward swept wing supersonic aircraft making low boom characteristic and low resistance characteristic compatible
US20060038063A1 (en) * 2004-08-18 2006-02-23 Northrop Grumman Corporation Shaped sonic boom aircraft

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647160A (en) * 1968-09-23 1972-03-07 Morton Alperin Method and apparatus for reducing sonic booms
US5897076A (en) * 1991-07-08 1999-04-27 Tracy; Richard R. High-efficiency, supersonic aircraft
JPH0811794A (en) * 1994-06-30 1996-01-16 Mitsubishi Heavy Ind Ltd Aircraft with exterior equipment on board
US20040065774A1 (en) * 2000-02-08 2004-04-08 Lockheed Martin Corporation Passive aerodynamic sonic boom suppression for supersonic aircraft
JP2004276900A (en) * 2002-10-10 2004-10-07 Boeing Co:The Aircraft, transport aircraft, and manufacturing method for aircraft
US20050067525A1 (en) * 2003-08-29 2005-03-31 Supersonic Aerospace International, Llc Aircraft thickness/camber control device for low sonic boom
US6824092B1 (en) * 2003-10-30 2004-11-30 Supersonic Aerospace International, Llc Aircraft tail configuration for sonic boom reduction
US20050116108A1 (en) * 2003-11-14 2005-06-02 Supersonic Aerospace International, Llc System, apparatus, and method for redistributing forces to meet performance goals and shock wave disturbance constraints
JP2005178491A (en) * 2003-12-18 2005-07-07 Japan Aerospace Exploration Agency Method for determining fuselage shape of supersonic type aircraft, and forward fuselage shape
JP2005297825A (en) * 2004-04-13 2005-10-27 Japan Aerospace Exploration Agency Variable forward swept wing supersonic aircraft making low boom characteristic and low resistance characteristic compatible
US20060038063A1 (en) * 2004-08-18 2006-02-23 Northrop Grumman Corporation Shaped sonic boom aircraft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778389A4 (en) * 2018-03-29 2021-05-19 Japan Aerospace Exploration Agency Method for designing shape of fuselage of supersonic aircraft, supersonic aircraft production method, and supersonic aircraft
US12017800B2 (en) 2018-03-29 2024-06-25 Japan Aerospace Exploration Agency Method of designing a shape of an airframe of a supersonic aircraft, production method of a supersonic aircraft, and supersonic aircraft
CN114450224A (en) * 2019-07-01 2022-05-06 张传瑞 Aerodynamic techniques and methods for performing quieter supersonic flight

Also Published As

Publication number Publication date
JP5057374B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
US9227719B2 (en) Reactive orthotropic lattice diffuser for noise reduction
JP3855064B2 (en) Determination method of fuselage shape of supersonic aircraft and fuselage front fuselage shape
US6729577B2 (en) Tail-braced wing aircraft and configurations for achieving long supersonic range and low sonic boom
US7819358B2 (en) Aircraft with reduced environmental impact
US7854409B2 (en) Canarded deltoid main wing aircraft
JP4171913B2 (en) Variable forward wing supersonic aircraft with both low boom characteristics and low resistance characteristics
JP6383534B2 (en) System and method for minimizing wave resistance by asymmetric design
US6698684B1 (en) Supersonic aircraft with spike for controlling and reducing sonic boom
EP2230175B1 (en) Microvanes for aircraft aft body drag reduction
JP6254437B2 (en) Variable width aerodynamic device
JP2009514725A (en) Aircraft with central fairing that regulates pressure on wing structure by local geometric deformation
WO2011087475A4 (en) Laminar flow wing optimized for supersonic and high subsonic cruise aircraft
WO2019187828A1 (en) Method for designing shape of fuselage of supersonic aircraft, supersonic aircraft production method, and supersonic aircraft
JP5057374B2 (en) Supersonic aircraft shape for reducing rear-end sonic boom
US6959896B2 (en) Passive aerodynamic sonic boom suppression for supersonic aircraft
CN112960101A (en) Extremely simple supersonic flying wing layout aircraft
US20050067525A1 (en) Aircraft thickness/camber control device for low sonic boom
US9694899B2 (en) Rotorcraft top fairing having a profile in the shape of a truncated drop of water that is provided with a hump of uneven surface
US8473254B2 (en) Methods for configuring aircraft to meet performance goals and shock wave disturbance constraints
US11420759B2 (en) Supersonic aircraft and method of reducing sonic booms
JP2000128088A (en) Method to reduce wave resistance of an airplane
WO2006023392A2 (en) Shaped sonic boom aircraft
CN103064997B (en) Hyperbolic windscreen head integrated design method
CN109677630B (en) Design method of waverider under strong geometric constraint with controllable reference flow field shock wave shape
RU2212360C1 (en) Flying vehicle (variants)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250