JP2009011982A - Treatment apparatus and treatment method of low-concentration polychlorinated biphenyl - Google Patents

Treatment apparatus and treatment method of low-concentration polychlorinated biphenyl Download PDF

Info

Publication number
JP2009011982A
JP2009011982A JP2007179245A JP2007179245A JP2009011982A JP 2009011982 A JP2009011982 A JP 2009011982A JP 2007179245 A JP2007179245 A JP 2007179245A JP 2007179245 A JP2007179245 A JP 2007179245A JP 2009011982 A JP2009011982 A JP 2009011982A
Authority
JP
Japan
Prior art keywords
water
hydrogen peroxide
treated
added
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007179245A
Other languages
Japanese (ja)
Inventor
Hiroshi Seno
比呂司 瀬野
Toshiaki Murata
逞詮 村田
Junnosuke Tamagawa
準之介 玉川
Masahiko Watanabe
真彦 渡辺
Hiroaki Hasegawa
裕晃 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
NIX KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
NIX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, NIX KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2007179245A priority Critical patent/JP2009011982A/en
Publication of JP2009011982A publication Critical patent/JP2009011982A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment apparatus and a treatment method of low concentration polychlorinated biphenyl which have advantages such as firstly freedom from wasting of hydrogen peroxide, high efficiency, freedom from uselessness, and excellent running cost, secondly excellent post-treatment cost, thirdly easy control of dose of chemicals, and fourthly excellent treatment stability, initial cost, space and the like. <P>SOLUTION: In this treatment apparatus 2 and treatment method, low-concentration polychlorinated biphenyl 1 contained in an object treatment water 3 is oxidized and decomposed by a Fenton method. The whole amount of an aqueous hydrogen peroxide solution is added by a hydrogen peroxide addition means 6 to the treatment water 3 supplied to a treatment tank 4 in an early stage of the reaction. An iron ion addition means 7 adds a divalent iron ion solution to the object treatment water 3, contained in the treatment tank 4, in divisions. Every time when the iron ion solution is added in divisions to the object treatment water 3 to be supplied and the supplied object treatment water 3, a pH adjustment means 8 adds a pH adjustor to maintain the object treatment water 3 at a pH value of about 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低濃度ポリ塩素化ビフェニルの処理装置および処理方法に関する。すなわち、低濃度のポリ塩素化ビフェニルを、フェントン法に基づき酸化,分解する、処理装置および処理方法に関するものである。   The present invention relates to a processing apparatus and processing method for low-concentration polychlorinated biphenyl. That is, the present invention relates to a processing apparatus and a processing method for oxidizing and decomposing low-concentration polychlorinated biphenyl based on the Fenton method.

《技術的背景》
ポリ塩素化ビフェニル(PCB)は、ビフェニルの芳香環の水素原子を塩素原子で置換した有機化合物の総称であり、置換塩素の原子数や位置により多くの異性体が存在する。
そしてポリ塩素化ビフェニルは、その物理的性質や化学的安定性に鑑み、熱媒体や絶縁油等として1950年頃より広く使用されていたが、1970年代に至り、強い毒性が認識され、製造禁止,輸入禁止,使用中止となっている。
このようにポリ塩素化ビフェニルは、環境ホルモン,有機汚染物質のひとつとなっており、分解されずに残留し易く、大きな社会問題化している。特に、その製造禁止,使用中止等以来、事業者サイドに順次回収,保管されており、環境汚染リスクが懸念され、その確実な処理技術が切望されている。
《Technical background》
Polychlorinated biphenyl (PCB) is a general term for organic compounds in which hydrogen atoms of the aromatic ring of biphenyl are substituted with chlorine atoms, and there are many isomers depending on the number and position of substituted chlorine atoms.
Polychlorinated biphenyl has been widely used as a heat medium, insulating oil, etc. from around 1950 in view of its physical properties and chemical stability. However, since the 1970s, strong toxicity has been recognized, and production is prohibited. Import banned and use suspended.
Thus, polychlorinated biphenyl has become one of the environmental hormones and organic pollutants, and it tends to remain without being decomposed, resulting in a great social problem. In particular, since its manufacture has been banned and discontinued, it has been sequentially collected and stored on the business side, and there is concern about environmental pollution risks, and its reliable processing technology is anxious.

《従来技術》
このようなポリ塩素化ビフェニルの処理技術は、各種検討されつつあるが、例えば次のような技術が開発されていた。
まず、吸着・脱離法が開発されていた。すなわち、ポリ塩素化ビフェニルを、活性炭等の吸着剤に吸着された後、ジクロロメタンやアセトン等の脱離溶媒に脱離させてから、回収タンクに脱離液を回収して、酸化剤,オゾン,紫外線照射等により酸化,分解する処理技術が、開発されていた。
又、オゾン・過酸化水素・紫外線法も開発されていた。すなわち、ポリ塩素化ビフェニルの含有水を、凝集剤やアルカリを添加した後、オゾン・過酸化水素・紫外線照射等にて生成されたOHラジカルにより、酸化,分解する処理技術も開発されていた。
<Conventional technology>
Various treatment techniques for such polychlorinated biphenyls are being studied. For example, the following techniques have been developed.
First, adsorption / desorption methods were developed. That is, after the polychlorinated biphenyl is adsorbed on an adsorbent such as activated carbon and then desorbed in a desorbing solvent such as dichloromethane or acetone, the desorbed liquid is collected in a collection tank, and then the oxidizing agent, ozone, A processing technique for oxidizing and decomposing by ultraviolet irradiation or the like has been developed.
In addition, ozone, hydrogen peroxide, and ultraviolet methods have been developed. That is, a treatment technique has been developed in which polychlorinated biphenyl-containing water is oxidized and decomposed by OH radicals generated by ozone, hydrogen peroxide, ultraviolet irradiation, etc. after adding a flocculant or alkali.

《先行技術文献情報》
吸着・離脱法としては、次の特許文献1に示されたものが挙げられる。又、オゾン・過酸化水素・紫外線法としては、次の特許文献2に示されたものが挙げられる。
特開2003−10842号公報 特開2001−129569号公報
《Information on prior art documents》
Examples of the adsorption / desorption method include those disclosed in Patent Document 1 below. Examples of the ozone / hydrogen peroxide / ultraviolet ray method include those disclosed in the following Patent Document 2.
JP 2003-10842 A Japanese Patent Application Laid-Open No. 2001-129569

《問題点について》
ところで、このような従来のポリ塩素化ビフェニルの処理技術については、次の問題が指摘されていた。
すなわち、処理性能,イニシャルコスト,ランニングコスト,設置スペース等に問題が指摘され、これらの点が、ポリ塩素化ビフェニルの大規模処理,大容量処理へのスケールアップ適用、つまり実用化への大きなネックとなっていた。
例えば、吸着・脱離法に関しては、活性炭等の破過による処理能力ダウン,処理の安定性,活性炭等の交換コスト,タンク等の設備設置スペース等に、問題が指摘されていた。又、オゾン・過酸化水素・紫外線法に関しては、OHラジカル生成効率の悪さ,設備過大化,電力消費コスト,UVランプ劣化等に、問題が指摘されていた。
その他のこの種従来例の処理技術に関しても、これらに準じた問題が指摘されていた。特に、過酸化水素にてOHラジカルを生成して、ポリ塩素化ビフェニルを酸化,分解する技術に関しては、過酸化水素がOHラジカルを生成することなく、水と酸素に分解され浪費されてしまう比率が高かった。
この点をカバーすべく、予め極めて多量の過酸化水素を過剰なまでに添加使用することも行われていたが、その分、効率が悪く,無駄が多く,ランニングコストが嵩む、という難点があった。更に、処理後の廃液中の過酸化水素の残存含有量が多くなり、中和処理のための後処理コストが嵩む、という指摘もあった。
About the problem
By the way, the following problems have been pointed out with regard to such conventional polychlorinated biphenyl processing technology.
In other words, problems have been pointed out in processing performance, initial cost, running cost, installation space, etc., and these points are a major bottleneck in the application of scale-up to large-scale treatment and large-capacity treatment of polychlorinated biphenyl, that is, practical application. It was.
For example, regarding the adsorption / desorption method, problems have been pointed out in terms of reduction in processing capacity due to breakthrough of activated carbon, stability of processing, replacement cost of activated carbon, installation space for tanks, etc. In addition, regarding the ozone / hydrogen peroxide / ultraviolet method, problems have been pointed out due to poor OH radical production efficiency, excessive equipment, power consumption cost, UV lamp degradation, and the like.
Other similar processing techniques of this type have also been pointed out. In particular, with regard to the technology that generates OH radicals with hydrogen peroxide to oxidize and decompose polychlorinated biphenyl, the ratio that hydrogen peroxide is decomposed and wasted into water and oxygen without generating OH radicals. Was expensive.
In order to cover this point, an extremely large amount of hydrogen peroxide was previously added in excess, but there was a problem that the efficiency was poor, the waste was high, and the running cost was increased. It was. Furthermore, it has also been pointed out that the residual content of hydrogen peroxide in the waste liquid after treatment increases, and post-treatment costs for neutralization treatment increase.

《本発明について》
本発明の低濃度ポリ塩素化ビフェニルの処理装置および処理方法は、このような実情に鑑み、上記従来例の課題を解決すべくなされたものである。
そして本発明は、第1に、過酸化水素が浪費されず、効率的で無駄がなくランニングコストに優れると共に、第2に、後処理コストにも優れ、第3に、薬品添加量制御が容易であり、第4に、処理安定性,イニシャルコスト,スペース面等にも優れた、低濃度ポリ塩素化ビフェニルの処理装置および処理方法を提案することを、目的とする。
<< About the present invention >>
The processing apparatus and processing method for low-concentration polychlorinated biphenyls of the present invention have been made in order to solve the above-described problems of the conventional examples in view of such circumstances.
And, according to the present invention, firstly, hydrogen peroxide is not wasted, it is efficient, has no waste, is excellent in running cost, secondly, is excellent in post-processing cost, and thirdly, it is easy to control the amount of chemical addition Fourthly, an object of the present invention is to propose a processing apparatus and a processing method for low-concentration polychlorinated biphenyl, which are excellent in processing stability, initial cost, space and the like.

《請求項について》
このような課題を解決する本発明の技術的手段は、次のとおりである。まず、請求項1については次のとおり。
請求項1の低濃度ポリ塩素化ビフェニルの処理装置は、被処理水に含有された低濃度のポリ塩素化ビフェニルを、フェントン法で酸化,分解する。そして処理槽と、該処理槽に付設された処理水供給手段,過酸化水素添加手段,鉄イオン添加手段,pH調整手段とを、備えている。
該処理水供給手段は、該処理槽に低濃度のポリ塩素化ビフェニルを含有した被処理水を供給する。該過酸化水素添加手段は、該処理槽の被処理水に過酸化水素を添加する。該鉄イオン添加手段は、該処理槽の被処理水に2価の鉄イオンを添加する。
該pH調整手段は、該処理水供給手段から該処理槽に供給される被処理水、および該処理槽の被処理水にpH調整剤を添加して、被処理水を所定弱酸性に維持すること、を特徴とする。
<About Claim>
The technical means of the present invention for solving such a problem is as follows. First, claim 1 is as follows.
The low concentration polychlorinated biphenyl treatment apparatus according to claim 1 oxidizes and decomposes the low concentration polychlorinated biphenyl contained in the water to be treated by the Fenton method. A treatment tank and a treatment water supply means, a hydrogen peroxide addition means, an iron ion addition means, and a pH adjustment means attached to the treatment tank are provided.
The treated water supply means supplies treated water containing low-concentration polychlorinated biphenyl to the treatment tank. The hydrogen peroxide adding means adds hydrogen peroxide to the water to be treated in the treatment tank. The iron ion adding means adds divalent iron ions to the water to be treated in the treatment tank.
The pH adjusting means maintains the water to be treated at a predetermined weak acidity by adding a pH adjuster to the water to be treated supplied from the treated water supply means to the treatment tank and the water to be treated in the treatment tank. It is characterized by this.

請求項2については、次のとおり。請求項2の低濃度ポリ塩素化ビフェニルの処理装置では、請求項1において、該過酸化水素添加手段は、反応当初に過酸化水素の水溶液を全量添加する。該鉄イオン添加手段は、過酸化水素の添加後に間欠的に複数サイクル繰り返して、2価の鉄イオン溶液を分割添加する。
該pH調整手段は、過酸化水素の添加前には酸pH調整剤を添加し、過酸化水素の添加後においては鉄イオン溶液の添加毎に、アルカリpH調整剤を添加すること、を特徴とする。
請求項3については、次のとおり。請求項3の低濃度ポリ塩素化ビフェニルの処理装置では、請求項2において、該鉄イオン添加手段は、硫酸第一鉄の水溶液を添加する。該pH調整手段は、例えば硫酸又はカセイソーダを添加し、もって該処理槽内の被処理水をpH4程度に維持して、添加される過酸化水素の水と酸素への分解反応を抑制すること、を特徴とする。
請求項4については、次のとおり。請求項4の低濃度ポリ塩素化ビフェニルの処理装置では、請求項2において、該処理槽内では、全量添加された過酸化水素が、触媒として分割添加される2価の鉄イオンにて、分割添加の都度還元されてOHラジカルを生成する。
これと共に、被処理水に含有されたポリ塩素化ビフェニルが、このOHラジカルにて酸化,分解され、もって水や炭酸ガス等の低分子化合物に無機化されること、を特徴とする。
About Claim 2, it is as follows. According to a second aspect of the present invention, there is provided a processing apparatus for low-concentration polychlorinated biphenyl. In the first aspect, the hydrogen peroxide adding means adds a total amount of an aqueous solution of hydrogen peroxide at the beginning of the reaction. The iron ion addition means repeats a plurality of cycles intermittently after the addition of hydrogen peroxide, and adds the divalent iron ion solution in portions.
The pH adjusting means is characterized in that an acid pH adjuster is added before the addition of hydrogen peroxide, and an alkaline pH adjuster is added every time an iron ion solution is added after the addition of hydrogen peroxide. To do.
About Claim 3, it is as follows. According to a third aspect of the present invention, the iron ion adding means adds an aqueous solution of ferrous sulfate. The pH adjusting means is, for example, adding sulfuric acid or caustic soda to maintain the water to be treated in the treatment tank at about pH 4 to suppress the decomposition reaction of the added hydrogen peroxide into water and oxygen, It is characterized by.
About Claim 4, it is as follows. The low-concentration polychlorinated biphenyl processing apparatus according to claim 4 is the processing apparatus according to claim 2, wherein the hydrogen peroxide added in the whole amount is divided into divalent iron ions dividedly added as a catalyst. It is reduced with each addition to generate OH radicals.
At the same time, the polychlorinated biphenyl contained in the water to be treated is oxidized and decomposed by the OH radicals, and thus is mineralized into a low molecular compound such as water or carbon dioxide gas.

請求項5については、次のとおり。請求項5の低濃度ポリ塩素化ビフェニルの処理方法では、被処理水に含有された低濃度のポリ塩素化ビフェニルを、フェントン法の処理プロセスに基づき酸化,分解する。
そして、低濃度のポリ塩素化ビフェニルを含有した被処理水に対し、過酸化水素と2価の鉄イオンとpH調整剤とが、添加される。過酸化水素は、反応当初に全量添加される。2価の鉄イオンは、過酸化水素の添加後に間欠的に複数サイクル繰り返して、分割添加される。
pH調整剤は、過酸化水素の添加前は酸pH調整剤が添加され、過酸化水素の添加後は鉄イオン溶液の添加毎にアルカリpH調整剤が添加され、もって被処理水を所定弱酸性に維持すること、を特徴とする。
About Claim 5, it is as follows. In the method for treating low-concentration polychlorinated biphenyl according to claim 5, low-concentration polychlorinated biphenyl contained in the water to be treated is oxidized and decomposed based on the treatment process of the Fenton method.
And hydrogen peroxide, a bivalent iron ion, and a pH adjuster are added with respect to the to-be-processed water containing low concentration polychlorinated biphenyl. The total amount of hydrogen peroxide is added at the beginning of the reaction. Divalent iron ions are added in portions by repeating a plurality of cycles intermittently after the addition of hydrogen peroxide.
As for the pH adjuster, an acid pH adjuster is added before the addition of hydrogen peroxide, and after the addition of hydrogen peroxide, an alkaline pH adjuster is added every time an iron ion solution is added. It is characterized by maintaining.

請求項6については、次のとおり。請求項6の低濃度ポリ塩素化ビフェニルの処理方法では、請求項5において、2価の鉄イオンとしては、硫酸第一鉄の水溶液が添加される。
これと共に、pH調整剤としては、例えば硫酸又はカセイソーダが添加され、もって被処理水をpH4程度に維持して、添加される過酸化水素の水と酸素への分解反応を抑制すること、を特徴とする。
請求項7については、次のとおり。請求項7の低濃度ポリ塩素化ビフェニルの処理方法では、請求項5において、水溶液として全量添加された過酸化水素が、触媒として分割添加される2価の鉄イオンにて、分割添加の都度還元されてOHラジカルが生成される。そこで、被処理水に含有されたポリ塩素化ビフェニルが、このOHラジカルにて酸化,分解されて、水や炭酸ガス等の低分子化合物に無機化されること、を特徴とする。
請求項8については、次のとおり。請求項8の低濃度ポリ塩素化ビフェニルの処理方法では、請求項7において、更に、過酸化水素の還元反応にて生成された水酸化イオンが、2価の鉄イオンの酸化反応にて生成された3価の鉄イオンにて酸化されて、OHラジカルが生成される。そこで、被処理水に含有されたポリ塩素化ビフェニルが、このOHラジカルにて酸化,分解されて、水や炭酸ガス等の低分子化合物に無機化されること、を特徴とする。
About Claim 6, it is as follows. In the method for treating low-concentration polychlorinated biphenyl according to claim 6, in claim 5, an aqueous solution of ferrous sulfate is added as the divalent iron ion.
At the same time, as the pH adjuster, for example, sulfuric acid or caustic soda is added, so that the water to be treated is maintained at about pH 4 and the decomposition reaction of the added hydrogen peroxide into water and oxygen is suppressed. And
About Claim 7, it is as follows. The method for treating low-concentration polychlorinated biphenyls according to claim 7 is characterized in that the hydrogen peroxide added as a total amount as an aqueous solution is reduced with divalent iron ions added in portions as a catalyst. As a result, OH radicals are generated. Therefore, the polychlorinated biphenyl contained in the water to be treated is characterized by being oxidized and decomposed by the OH radical and mineralized into a low molecular compound such as water or carbon dioxide.
About Claim 8, it is as follows. The method for treating low-concentration polychlorinated biphenyl according to claim 8 is the method according to claim 7, wherein the hydroxide ions produced by the reduction reaction of hydrogen peroxide are further produced by the oxidation reaction of divalent iron ions. It is oxidized by trivalent iron ions to generate OH radicals. Therefore, the polychlorinated biphenyl contained in the water to be treated is characterized by being oxidized and decomposed by the OH radical and mineralized into a low molecular compound such as water or carbon dioxide.

《作用等について》
本発明は、このような手段よりなるので、次のようになる。
(1)低濃度のポリ塩素化ビフェニルを含有した被処理水は、処理装置に供給され、もってフェントン法の処理プロセスに基づく処理方法により、ポリ塩素化ビフェニルが酸化,分解される。
(2)まず、この処理装置は、処理水供給手段,処理槽,後処理槽を備えている。処理槽には、過酸化水素添加手段,鉄イオン添加手段,pH調整手段等が、付設されている。
(3)そこで、被処理水は処理槽に供給されるが、その前に、pH調整手段から硫酸等が添加されて、pH4程度の弱酸性とされる。
(4)処理槽では被処理水に対して、まず、過酸化水素添加手段から過酸化水素が、全量添加される。
(5)それから、鉄イオン添加手段から2価の鉄イオン溶液が、分割添加されるが、その分割添加毎に、pH調整手段からカセイソーダ等が添加され、被処理水の弱酸性が維持される。
(6)さてそこで、鉄イオンを触媒として、過酸化水素がOHラジカルを生成する。そして、このOHラジカルの生成反応は、まず、鉄イオンが分割添加されるのでOHラジカルを消費する反応が起こる虞もなく、更に、弱酸性雰囲気なので鉄イオンの触媒機能が促進されると共に、過酸化水素が水と酸素に分解,浪費されることも回避され、もって効率良く実施される。
(7)OHラジカルは、前記反応にて生成された3価の鉄イオンと水酸化イオンとの反応によっても、生成される。
(8)そして処理槽では、OHラジカルの強力な酸化力により、被処理水中のポリ塩素化ビフェニルは酸化,分解されて、水や炭酸ガス等の低分子化合物に無機化される。
(9)しかる後、なお被処理水は、後処理槽において所定の後処理が行われて、外部排水される。
(10)ところで、この処理装置および処理方法では、その薬品添加量が反応理論値から容易に算出されると共に、その構成も比較的簡単であり、安定的な処理が可能である。
(11)さてそこで、本発明のポリ塩素化ビフェニルの処理装置および処理方法は、次の効果を発揮する。
<About the action>
Since the present invention comprises such means, the following is achieved.
(1) The water to be treated containing low-concentration polychlorinated biphenyl is supplied to a treatment apparatus, so that the polychlorinated biphenyl is oxidized and decomposed by a treatment method based on the treatment process of the Fenton method.
(2) First, this processing apparatus includes a processing water supply means, a processing tank, and a post-processing tank. The treatment tank is provided with hydrogen peroxide addition means, iron ion addition means, pH adjustment means, and the like.
(3) Therefore, the water to be treated is supplied to the treatment tank, but before that, sulfuric acid or the like is added from the pH adjusting means to make it weakly acidic at about pH 4.
(4) In the treatment tank, first, all the hydrogen peroxide is added from the hydrogen peroxide addition means to the water to be treated.
(5) Then, a divalent iron ion solution is dividedly added from the iron ion addition means, and caustic soda or the like is added from the pH adjustment means for each divided addition, and the weak acidity of the water to be treated is maintained. .
(6) Now, hydrogen peroxide generates OH radicals using iron ions as a catalyst. In this OH radical generation reaction, first, iron ions are divided and added, so there is no risk of OH radical consumption reaction. Furthermore, since the atmosphere is weakly acidic, the iron ion catalytic function is promoted and excessively charged. It is avoided that hydrogen oxide is decomposed and wasted into water and oxygen, and is thus carried out efficiently.
(7) OH radicals are also generated by the reaction of trivalent iron ions and hydroxide ions generated by the above reaction.
(8) And in the treatment tank, polychlorinated biphenyl in the water to be treated is oxidized and decomposed by the strong oxidizing power of OH radicals, and mineralized into low molecular compounds such as water and carbon dioxide.
(9) After that, the water to be treated is subjected to predetermined post-treatment in the post-treatment tank and drained to the outside.
(10) By the way, in this processing apparatus and processing method, the chemical addition amount is easily calculated from the reaction theoretical value, and the configuration is relatively simple, and stable processing is possible.
(11) The polychlorinated biphenyl treatment apparatus and treatment method of the present invention exhibit the following effects.

《第1の効果》
第1に、過酸化水素が浪費されず、OHラジカルが効率的に無駄なく生成される等、ランニングコストに優れている。
本発明の処理装置および処理方法に係るフェントン法では、被処理水が、例えばpH4程度の弱酸性に維持されている。そして、全量添加される過酸化水素と分割添加される2価の鉄イオンにより、OHラジカルの生成が、所期のとおり効率良く,浪費等されることもなく促進され、もって、有毒なポリ塩素化ビフェニルが確実に酸化,分解,除去される。更にOHラジカルは、3価の鉄イオンと水酸化イオンとが反応することによっても、生成される。
従って、前述したこの種従来例のポリ塩素化ビフェニルの処理技術のように、過剰に多量の過酸化水素を添加する必要もなく、薬品使用コストが低減される。
これらにより、本発明によるフェントン法は、低濃度ポリ塩素化ビフェニルの大規模処理,大容量処理へのスケールアップ適用、つまり実用化が容易である。
<< First effect >>
First, hydrogen peroxide is not wasted, and OH radicals are efficiently generated without waste.
In the Fenton method according to the treatment apparatus and treatment method of the present invention, the water to be treated is maintained at a weak acidity of about pH 4, for example. The total amount of hydrogen peroxide and divalent iron ions added in portions promotes the production of OH radicals as expected without being wasted, and is therefore toxic polychlorine. Biphenyl chloride is reliably oxidized, decomposed and removed. Furthermore, OH radicals are also generated by the reaction of trivalent iron ions and hydroxide ions.
Accordingly, it is not necessary to add an excessive amount of hydrogen peroxide as in the above-described conventional polychlorinated biphenyl processing technique, and the cost of using chemicals is reduced.
As a result, the Fenton method according to the present invention is easy to apply to scale-up, ie, practical use, for large-scale treatment and large-volume treatment of low-concentration polychlorinated biphenyl.

《第2の効果》
第2に、過酸化水素の残存含有量が極めて少なく、もって中和剤による後処理コストも、低減される。
本発明の処理装置および処理方法に係るフェントン法では、上述したように、過酸化水素にて所期の通り効率良くOHラジカルが生成されて、低濃度ポリ塩素化ビフェニルが酸化,分解,除去される。従って、この種従来例の処理技術のように、過酸化水素が過剰添加されることもなく、もって被処理水は、処理後の過酸化水素の残存含有量が極めて少なく、中和剤による後処理コストが大きく低減される。
そこで、本発明によるフェントン法では、この面からも、薬品使用コストが低減され、低濃度ポリ塩素化ビフェニルの大規模処理,大容量処理へのスケールアップ適用、つまり実用化への道が開かれる。
<< Second effect >>
Secondly, the residual content of hydrogen peroxide is very low, and the post-treatment cost with the neutralizing agent is also reduced.
In the Fenton method according to the treatment apparatus and treatment method of the present invention, as described above, OH radicals are efficiently generated as expected with hydrogen peroxide, and low-concentration polychlorinated biphenyl is oxidized, decomposed, and removed. The Accordingly, hydrogen peroxide is not added excessively as in the conventional treatment technique of this type, so that the water to be treated has a very small residual amount of hydrogen peroxide after the treatment, and the post-treatment with the neutralizing agent. Processing costs are greatly reduced.
In view of this, the Fenton method according to the present invention also reduces the cost of using chemicals from this aspect, and opens up the path to large-scale treatment and low-volume treatment of low-concentration polychlorinated biphenyl, that is, practical application. .

《第3の効果》
第3に、薬品添加制御も容易である。本発明の処理装置および処理方法に係るフェントン法は、薬品の添加量制御が容易かつ確実である。
すなわち、被処理水中のポリ塩素化ビフェニルの含有量に対応した過酸化水素の添加量や、過酸化水素の添加量に見合った2価の鉄イオンの添加量や、見合ったpH調整剤の添加量等は、反応理論値から容易に算出され必要モル数が得られる。もって、過不足のない適量の薬品を添加可能となり、これらの自動制御も容易である。
2価の鉄イオンについて、定量性が確保できずに余剰に残存したり不足したりする事態は発生せず、処理性能の不安定化も回避される。
そこで、本発明によるフェントン法は、この面からも、低濃度ポリ塩素化ビフェニルの大規模処理,大容量処理へのスケールアップ適用、つまり実用化が容易である。
《Third effect》
Third, chemical addition control is easy. In the Fenton method according to the treatment apparatus and treatment method of the present invention, the addition amount of chemicals can be controlled easily and reliably.
That is, the addition amount of hydrogen peroxide corresponding to the content of polychlorinated biphenyl in the water to be treated, the addition amount of divalent iron ions corresponding to the addition amount of hydrogen peroxide, and the addition of a suitable pH adjuster The amount and the like are easily calculated from the theoretical reaction value to obtain the required number of moles. Therefore, it is possible to add an appropriate amount of chemicals without excess or deficiency, and these automatic controls are easy.
With respect to the divalent iron ion, there is no situation where the quantitative property cannot be ensured and the residue remains or is insufficient, and the instability of the processing performance is avoided.
In view of this, the Fenton method according to the present invention can be easily applied to scale-up, ie, practical application of low-concentration polychlorinated biphenyl to large-scale treatment and large-capacity treatment.

《第4の効果》
第4に、処理安定性,イニシャルコスト,ランニングコスト,スペース面等にも、優れている。
本発明の処理装置および処理方法に係るフェントン法は、前述したこの種従来例のポリ塩素化ビフェニルの処理技術、例えば吸着・脱離法や、オゾン・過酸化水素・紫外線法等等に比し、処理安定性,イニシャルコスト,ランニングコスト,設置スペース等に、優れている。
すなわち、経時使用による処理能力ダウン,活性炭等の交換コスト,設備設置スペース,OHラジカル生成効率,設備過大化,電力浪費コスト,UVランプ劣化等々、この種従来例の処理技術で指摘されていた問題は、解消される。
そこで、本発明によるフェントン法は、これらの面からも、低濃度ポリ塩素化ビフェニルの大規模処理,大容量処理へのスケールアップ適用、つまり実用化が裏付けられる。
このように、この種従来例に存した課題がすべて解決される等、本発明の発揮する効果は、顕著にして大なるものがある。
<< 4th effect >>
Fourth, it is excellent in processing stability, initial cost, running cost, space, and the like.
The Fenton method according to the treatment apparatus and treatment method of the present invention is compared with the above-described conventional polychlorinated biphenyl treatment techniques, such as adsorption / desorption method, ozone / hydrogen peroxide / ultraviolet method, etc. Excellent processing stability, initial cost, running cost, installation space, etc.
That is, the problems pointed out in this type of conventional processing technology such as reduction of processing capacity due to use over time, replacement cost of activated carbon, equipment installation space, OH radical generation efficiency, equipment overload, power waste cost, UV lamp deterioration, etc. Is resolved.
Therefore, the Fenton method according to the present invention also supports the application of scale-up to large-scale treatment and large-capacity treatment of low-concentration polychlorinated biphenyl, that is, practical use from these aspects.
As described above, the effects exerted by the present invention are remarkably large, such as all the problems existing in this type of conventional example are solved.

《図面について》
以下、本発明の低濃度ポリ塩素化ビフェニルの処理装置および処理方法を、図面に示した発明を実施するための最良の形態に基づいて、詳細に説明する。
図1は、本発明を実施するための最良の形態の説明に供し、構成フロー図である。
《About drawing》
Hereinafter, the processing apparatus and processing method of the low concentration polychlorinated biphenyl of this invention are demonstrated in detail based on the best form for implementing invention shown in drawing.
FIG. 1 is a configuration flowchart for explaining the best mode for carrying out the present invention.

《ポリ塩素化ビフェニル1について》
まず、本発明の処理装置や処理方法の処理対象である、ポリ塩素化ビフェニル1について、説明する。
ポリ塩素化ビフェニル(PCB)1は、ビフェニル(分子式C1210,構造式C−C)の2つの芳香環について、10個ある水素原子(H)の任意の1個〜10個を、塩素原子(Cl)で置換した、有機化合物の総称である。置換塩素の原子数や置換位置により、100種類以上の異性体があり、2,6−ジクロロビフェニル、2,2’ジクロロビフェニル、2,3,5−トリクロロビフェニル等が、代表的である。
そして、耐熱安定性や電気絶縁性に優れており、熱媒体,絶縁油,トランス油,コンデンサー等に用いられていた。しかし、人体や環境に対する毒性が強いと共に、焼却するとダイオキシン発生の虞もあることに鑑み、製造が禁止され使用が中止された。現在は、その難分解性,残留性が問題となっており、環境ホルモン,有機汚染物質として知られ、環境汚染リスクが懸念される状況にある。
ビフェニルは、水に対し不溶であることが知られているが、ポリ塩素化ビフェニル1は、塩素原子による置換量に応じ水に対し微溶であり、低濃度・水分散のポリ塩素化ビフェニル1の存在が可能となる。
本発明は、このような低濃度のポリ塩素化ビフェニル1を、処理対象とする。つまり、微量のポリ塩素化ビフェニル1を薄く含有した水を、処理対象とする。具体的には、数100ppm程度までのポリ塩素化ビフェニル1を含有した水、特に、約100ppm程度までのポリ塩素化ビフェニル1を含有した水を処理対象とし、例えば、数10ppmのポリ塩素化ビフェニル1を含有した水を、処理対象とする。
本発明は、このような低濃度のポリ塩素化ビフェニル1を、処理対象とする。
<About polychlorinated biphenyl 1>
First, the polychlorinated biphenyl 1, which is a treatment target of the treatment apparatus and treatment method of the present invention, will be described.
Polychlorinated biphenyl (PCB) 1 is any one of 10 hydrogen atoms (H) for two aromatic rings of biphenyl (molecular formula C 12 H 10 , structural formula C 6 H 5 -C 6 H 5 ). It is a general term for organic compounds in which 10 to 10 are substituted with chlorine atoms (Cl). Depending on the number of substituted chlorine atoms and the substitution position, there are over 100 isomers, with 2,6-dichlorobiphenyl, 2,2′dichlorobiphenyl, 2,3,5-trichlorobiphenyl being typical.
And it was excellent in heat-resistant stability and electrical insulation, and was used for a heat medium, insulating oil, transformer oil, a capacitor, etc. However, in view of the strong toxicity to the human body and the environment and the risk of dioxin generation when incinerated, production was prohibited and use was discontinued. At present, its indegradability and persistence are problems, and it is known as environmental hormones and organic pollutants, and there is a concern about the risk of environmental pollution.
Biphenyl is known to be insoluble in water, but polychlorinated biphenyl 1 is slightly soluble in water depending on the amount of substitution with chlorine atoms, and low-concentration, water-dispersed polychlorinated biphenyl 1 The existence of
The present invention treats such a low concentration polychlorinated biphenyl 1 as a treatment target. That is, water that contains a small amount of polychlorinated biphenyl 1 is used as a treatment target. Specifically, water containing polychlorinated biphenyl 1 up to about several hundred ppm, particularly water containing polychlorinated biphenyl 1 up to about 100 ppm, for example, polychlorinated biphenyl of several tens of ppm is treated. Water containing 1 is treated.
The present invention treats such a low concentration polychlorinated biphenyl 1 as a treatment target.

《処理装置2および処理方法の概要》
本発明の処理装置2および処理方法は、被処理水3に含有された低濃度のポリ塩素化ビフェニル1を、改良したフェントン法の処理プロセスに基づいて、酸化,分解する。
すなわち、本発明の処理装置2および処理方法は、低濃度のポリ塩素化ビフェニル1の含有水を、被処理水3とする。そして、含有されたポリ塩素化ビフェニル1を、フェントン試薬の過酸化水素(H)と2価の鉄イオン(Fe2+)を用いて生成されたOHラジカルにて酸化し、もって無機の水(HO)や炭酸ガス(CO)に、分解する。本発明は、このようなフェントン法の処理プロセスを、改良したものである。
そして、本発明の処理装置2および処理方法は、処理槽4と、処理槽4に付設された処理水供給手段5,過酸化水素添加手段6,鉄イオン添加手段7,pH調整手段8とを、備えている。
以下、これらについて詳細に説明する。
<< Outline of Processing Apparatus 2 and Processing Method >>
The treatment apparatus 2 and the treatment method of the present invention oxidize and decompose the low-concentration polychlorinated biphenyl 1 contained in the water to be treated 3 based on the treatment process of the improved Fenton method.
That is, in the treatment apparatus 2 and the treatment method of the present invention, the water to be treated 3 is water containing low-concentration polychlorinated biphenyl 1. Then, the contained polychlorinated biphenyl 1 is oxidized with OH radicals generated using hydrogen peroxide (H 2 O 2 ) and divalent iron ions (Fe 2+ ), which are Fenton's reagent. Decomposes into water (H 2 O) and carbon dioxide (CO 2 ). The present invention is an improvement of such a Fenton process.
And the processing apparatus 2 and the processing method of this invention are the processing tank 4, the treated water supply means 5, the hydrogen peroxide addition means 6, the iron ion addition means 7, and the pH adjustment means 8 which were attached to the processing tank 4. Have.
Hereinafter, these will be described in detail.

《処理水供給手段5等について》
まず、この処理装置2や処理方法で用いられる処理水供給手段5等について、説明する。処理水供給手段5は、処理槽4に対し、低濃度のポリ塩素化ビフェニル1を含有した被処理水3を、処理対象として供給する。
すなわち、処理水供給手段5の処理水槽9には、被処理水3が導入されており、この処理水槽9を経由して、処理槽4に被処理水3が供給される。処理水槽9に導入される被処理水3は、必要に応じ予め、粉塵汚泥除去,生物処理等の前処理が施される。
図示例では、被処理水3がpH調整槽10を経由して、処理槽4に供給される。pH調整槽10では、付設されたpH調整手段8から、pH調整剤が添加される。すなわちpH調整手段8は、処理水供給手段5の処理水槽9から処理槽4に供給される途中の被処理水3に対し、pH調整剤を添加して、被処理水3を所定弱酸性に調整してから、処理槽4に供給する。
処理水槽9からの被処理水3は、例えばpH6以上であることが多いので、これをpH5〜pH3程度、例えばpH4程度に調整すべく、pH調整剤として硫酸等の酸pH調整剤が用いられる。このように事前にpH調整しておく理由は、後述するように、過酸化水素と2価の鉄イオンによるOHラジカルの生成反応が、所期の通り効率良く行われるようにする為である。
なお、このようなpH調整槽10は、例えば、被処理水3の大規模な大容量処理や、連続処理や、低濃度ではあるものの比較的濃度が高目のポリ塩素化ビフェニル1の処理、等の場合に使用される。これに対し、pH調整槽10を使用せず、処理水槽9において代用的,兼用的に、上述したpH調整を実施することも可能である。
処理水供給手段5等は、このようなっている。
<< About treated water supply means 5 etc. >>
First, the treated water supply means 5 and the like used in the treatment apparatus 2 and the treatment method will be described. The treated water supply means 5 supplies the treated water 3 containing the low-concentration polychlorinated biphenyl 1 to the treatment tank 4 as a treatment target.
That is, the treated water 3 is introduced into the treated water tank 9 of the treated water supply means 5, and the treated water 3 is supplied to the treated tank 4 via the treated water tank 9. The treated water 3 introduced into the treated water tank 9 is subjected to pretreatment such as dust sludge removal and biological treatment in advance as necessary.
In the illustrated example, the water to be treated 3 is supplied to the treatment tank 4 via the pH adjustment tank 10. In the pH adjusting tank 10, a pH adjusting agent is added from the attached pH adjusting means 8. That is, the pH adjusting means 8 adds a pH adjusting agent to the treated water 3 being supplied from the treated water tank 9 of the treated water supply means 5 to the treated tank 4 to make the treated water 3 a predetermined weak acidity. After adjusting, it is supplied to the treatment tank 4.
The treated water 3 from the treated water tank 9 is often pH 6 or higher, for example, so that an acid pH adjuster such as sulfuric acid is used as a pH adjuster to adjust the pH to about pH 5 to about 3, for example about pH 4. . The reason for adjusting the pH in advance in this way is to make the OH radical production reaction with hydrogen peroxide and divalent iron ions efficiently as expected, as will be described later.
In addition, such pH adjustment tank 10 is, for example, a large-scale large-capacity treatment of water 3 to be treated, a continuous treatment, a treatment of polychlorinated biphenyl 1 having a relatively high concentration although it is a low concentration, Used in the case of etc. On the other hand, it is also possible to carry out the above-described pH adjustment in the treated water tank 9 instead of using the pH adjustment tank 10 in a substitute or combined manner.
The treated water supply means 5 and the like are as described above.

《過酸化水素添加手段6について》
次に、この処理装置2や処理方法で用いられる、処理槽4に付設された過酸化水素添加手段6について、説明する。
過酸化水素添加手段6は、処理槽4の被処理水3に対し、その反応当初において、過酸化水素(H)の水溶液を全量添加する。過酸化水素はOHラジカルの発生源となり、このOHラジカルが、ポリ塩素化ビフェニル1を酸化,分解することになる。
過酸化水素の一回の反応当たりの添加量は、その被処理水3中に含有された低濃度のポリ塩素化ビフェニル1の具体的含有量,具体的濃度次第であるが、その反応理論値を基準として算出されたより多い実際必要量(必要モル数)が、反応当初に一度に全量添加される。次回の添加は、処理槽4の被処理水3中から過酸化水素がなくなった時、つまり次の反応時であり、同様にその全量が添加される。このように、この明細書において全量添加とは、反応に必要な薬剤量を1回に全量一括添加すること、を意味する。
このように過酸化水素添加手段6から、過酸化水素が全量添加される。
<About hydrogen peroxide addition means 6>
Next, the hydrogen peroxide adding means 6 attached to the processing tank 4 used in the processing apparatus 2 and the processing method will be described.
The hydrogen peroxide addition means 6 adds a total amount of an aqueous solution of hydrogen peroxide (H 2 O 2 ) to the treated water 3 in the treatment tank 4 at the beginning of the reaction. Hydrogen peroxide becomes a source of OH radicals, which oxidize and decompose polychlorinated biphenyl 1.
The amount of hydrogen peroxide added per reaction depends on the specific content and specific concentration of the low-concentration polychlorinated biphenyl 1 contained in the water 3 to be treated. The actual required amount (necessary number of moles) calculated based on the above is added all at once at the beginning of the reaction. The next addition is when hydrogen peroxide is exhausted from the water 3 to be treated in the treatment tank 4, that is, at the next reaction, and the whole amount is added in the same manner. Thus, in this specification, the addition of the whole amount means that the amount of the drug necessary for the reaction is added all at once.
In this way, the entire amount of hydrogen peroxide is added from the hydrogen peroxide addition means 6.

《鉄イオン添加手段7について》
次に、この処理装置や処理方法で用いられる、処理槽4に付設された鉄イオン添加手段7について、説明する。
鉄イオン添加手段7は、上述により過酸化水素が添加された後の処理槽4の被処理水3に対し、間欠的に複数サイクル繰り返して、2価の鉄イオン(Fe2+)溶液を分割添加する。
すなわち、液中で2価の鉄イオンを生じる物質、例えば硫酸第一鉄7水和物(FeSO・7HO)が、このような鉄塩として代表的に使用されるが、その他の無水塩や含水塩、例えば塩化鉄(FeCl)やその水和物も使用可能である。2価の鉄イオンは、過酸化水素のOHラジカル生成反応の触媒として機能する。
この鉄イオンの1回の反応当たりの添加量は、反応理論値を基準として、より多い実際必要量が算出されるが、例えば、過酸化水素の1モルに対し0.5モル程度とされる。
又、この鉄イオンは、複数回に分けて分割添加される。すなわち、1回の反応についての必要量が、全量添加されずに3〜7回程度に分けて、例えば5回に分けて順次添加される。各回毎の添加タイミングは、前回添加したものがなくなった段階で、次回分が添加される。このように、この明細書において分割添加とは、反応に必要な薬剤量を複数回に分けて添加すること、を意味する。
分割添加の理由は、次のa,b,cのとおり。まずa.もしも全量添加すると、後述する化学反応において、過酸化水素を反応物質とする原系から、OHラジカルを生成物質とする生成系へと向かう所期の正反応と同時に、OHラジカルを消費する無駄な反応、つまり余ったOHラジカルが水に戻る反応が起こり易くなり、ロスが生じる。もってOHラジカル生成のために使用した鉄イオンが、無駄に消費されることになる。これに対し分割添加すると、このような反応が抑制され、鉄イオンの無駄も解消される。
又b.OHラジカルは、反応が激しいだけに存在時間が瞬間的であり、全量添加より分割添加した方が、その都度OHラジカルが生成されると共に隅々まで行き渡るようになり、ポリ塩素化ビフェニル1の酸化,分解が、より確実化,効率化,迅速化される。
更にc.分割添加すると、全量添加に比し残存する過酸化水素が少なくなるので、その分、中和剤による後処理コストも低減される。
このように鉄イオン添加手段7から、2価の鉄イオン(Fe2+)等が、分割添加される。
<< About iron ion addition means 7 >>
Next, the iron ion addition means 7 attached to the processing tank 4 used in this processing apparatus and processing method will be described.
Iron ion adding means 7, relative to the water to be treated 3 of the processing tank 4 after the hydrogen peroxide has been added by the above intermittently repeated multiple cycles, divalent iron ions (Fe 2+) solution added portionwise To do.
That is, substances that generate divalent iron ions in the liquid, such as ferrous sulfate heptahydrate (FeSO 4 · 7H 2 O), are typically used as such iron salts, but other anhydrous Salts and hydrated salts such as iron chloride (FeCl 2 ) and hydrates thereof can also be used. The divalent iron ion functions as a catalyst for the OH radical generation reaction of hydrogen peroxide.
The amount of iron ion added per reaction is calculated based on the theoretical reaction value, but the actual required amount is larger, for example, about 0.5 mole per mole of hydrogen peroxide. .
Moreover, this iron ion is divided and added in multiple times. That is, the necessary amount for one reaction is not added in the whole amount, but is divided into about 3 to 7 times, for example, 5 times, and is added sequentially. As for the addition timing for each time, the next time is added at the stage where the previous addition is gone. Thus, in this specification, divided addition means that the amount of drug necessary for the reaction is added in multiple portions.
The reason for the divided addition is as follows: a, b, c. First a. If the total amount is added, in the chemical reaction to be described later, the OH radical is wasted at the same time as the intended positive reaction from the original system using hydrogen peroxide as a reactant to the production system using OH radical as a product. A reaction, that is, a reaction in which surplus OH radicals are returned to water easily occurs, resulting in loss. Therefore, the iron ions used for generating OH radicals are wasted. On the other hand, when the addition is divided, such a reaction is suppressed and the waste of iron ions is eliminated.
B. OH radicals are present only momentarily due to the vigorous reaction, and when they are added in a divided amount rather than in the total amount, OH radicals are generated and spread everywhere, and oxidation of polychlorinated biphenyl 1 occurs. , Decomposition is more reliable, efficient and faster.
C. When the addition is divided, the remaining hydrogen peroxide is smaller than the total addition, and accordingly, the post-treatment cost by the neutralizing agent is reduced accordingly.
Thus, divalent iron ions (Fe 2+ ) and the like are dividedly added from the iron ion adding means 7.

《pH調整手段8について》
次に、この処理装置2や処理方法で用いられる、処理槽4に付設されたpH調整手段8について、説明する。
pH調整手段8は、前述したように処理水供給手段5から処理槽4に供給される前の被処理水3、および処理槽3に供給された後の被処理水3に対し、pH調整剤を添加して、被処理水3を例えばpH4程度の所定弱酸性に維持する。
すなわちpH調整手段8は、過酸化水素の添加前には、硫酸等の酸pH調整剤を添加し、過酸化水素の添加後は、上述した鉄イオンの添加毎に事後、カセイソーダ等のアルカリpH調整剤を添加する。
被処理水3を、pH3〜pH5程度代表的にはpH4程度に維持することは、まずa.後述するように、所期の反応を阻害する過酸化水素の水と酸素への無駄な分解反応を、抑制すべく機能する。これと共にb.鉄イオンの過酸化水素への電子供与を、促進すべく機能する。このa,bに基づき、OHラジカルの生成が、所期のとおり効率良く進行するようになる。
これに対し、処理水供給手段5の処理水槽9からの被処理水3は、例えばpH6以上であることが多いので、前述したように、予めpH調整手段8から例えば硫酸が添加されて、例えば4程度にpH調整される。そして事後、鉄イオンが添加されると、そのままでは被処理水3のpHが低下するので、鉄イオンの分割添加毎にその都度、例えばカセイソーダが添加されて、例えばpH4程度に被処理水3がpH調整される。
pH調整手段8は、このようになっている。
<About pH adjusting means 8>
Next, the pH adjusting means 8 attached to the processing tank 4 used in the processing apparatus 2 and the processing method will be described.
As described above, the pH adjusting means 8 is a pH adjusting agent for the water to be treated 3 before being supplied from the treated water supply means 5 to the treatment tank 4 and the water to be treated 3 after being supplied to the treatment tank 3. Is added to maintain the water to be treated 3 at a predetermined weak acidity of about pH 4, for example.
That is, the pH adjusting means 8 adds an acid pH adjusting agent such as sulfuric acid before the addition of hydrogen peroxide, and after the addition of hydrogen peroxide, after each addition of the above iron ions, an alkaline pH such as caustic soda. Add modifier.
Maintaining the water to be treated 3 at about pH 3 to about pH 5, typically about pH 4, first comprises a. As will be described later, it functions to suppress a wasteful decomposition reaction of hydrogen peroxide into water and oxygen that inhibits the intended reaction. With this, b. It functions to promote electron donation of iron ions to hydrogen peroxide. Based on these a and b, the generation of OH radicals proceeds efficiently as expected.
On the other hand, the treated water 3 from the treated water tank 9 of the treated water supply means 5 often has a pH of 6 or more, for example, and as described above, for example, sulfuric acid is added in advance from the pH adjusting means 8, for example, The pH is adjusted to about 4. After the fact, when iron ions are added, the pH of the water to be treated 3 is lowered as it is, so that, for example, caustic soda is added each time the iron ions are dividedly added, and the water to be treated 3 is reduced to about pH 4, for example. The pH is adjusted.
The pH adjusting means 8 is as described above.

《処理槽4における反応(その1)について》
次に、処理槽4内における化学反応(その1)について、説明する。この処理装置2や処理方法の処理槽4内では、まず第1に、被処理水3が攪拌,流下されると共に、添加された過酸化水素(H)が、触媒として添加された2価の鉄イオン(Fe2+)にて還元されて、OHラジカル(・OH)を生成する。
更に第2に、処理槽4内では、上記第1のようにOHラジカルが生成されると共に、過酸化水素の還元反応にて生成された水酸化イオン(OH)が、2価の鉄イオン(Fe2+)の酸化反応にて生成された3価の鉄イオン(Fe3+)にて酸化されて、OHラジカルを生成することになる。
このようなフェントン法の処理プロセスに基づく、OHラジカルの生成について、更に詳述する。
第1に、処理槽4内では、次の化1,化2の化学反応式により、OHラジカルが生成される。

Figure 2009011982
Figure 2009011982
<< About the reaction (the 1) in the processing tank 4 >>
Next, a chemical reaction (part 1) in the treatment tank 4 will be described. In the treatment apparatus 2 and the treatment tank 4 of the treatment method, firstly, the water to be treated 3 was stirred and flowed down, and the added hydrogen peroxide (H 2 O 2 ) was added as a catalyst. Reduction with divalent iron ions (Fe 2+ ) generates OH radicals (.OH).
Secondly, in the treatment tank 4, OH radicals are generated as described above, and hydroxide ions (OH ) generated by the reduction reaction of hydrogen peroxide are divalent iron ions. It is oxidized by trivalent iron ions (Fe 3+ ) generated by the oxidation reaction of (Fe 2+ ) to generate OH radicals.
The generation of OH radicals based on such a Fenton process will be described in further detail.
First, in the treatment tank 4, OH radicals are generated by the chemical reaction formulas of the following chemical formulas 1 and 2.
Figure 2009011982
Figure 2009011982

すなわち、化1の反応式において、鉄イオン添加手段7から順次分割添加される2価の鉄イオン(Fe2+)は、被処理水3が例えばpH4程度の弱酸性雰囲気に維持されているので容易に、触媒として化2の反応式の過酸化水素に順次電子(e)を供与すると共に、自己は酸化して3価の鉄イオン(Fe3+)となる。
そこで、化2の反応式において、過酸化水素添加手段6から最初に全量添加された過酸化水素(H)は、化1の反応式に基づき電子(e)が順次供与され、もってその都度、OHラジカル(・OH)と水酸化イオン(OH)が生成される。
ところで、このような反応に際し、前述したように被処理水3が弱酸性雰囲気に維持されているので、過酸化水素が水と酸素に分解され、浪費されてしまうことは抑制される。これに対し、もしも弱酸性雰囲気に維持されないとすると、次の化3の反応式により、過酸化水素が、発生期の酸素(O)を発生しつつ水分子(HO)になり、所期の化2の反応式によりOHラジカルを生成することなく浪費されてしまうことになる。なお、このような発生期の酸素(O)は、その酸化対象がない場合、酸素分子(O)となって系外にでることになる。

Figure 2009011982
That is, in the reaction formula of Chemical Formula 1, the divalent iron ions (Fe 2+ ) added sequentially and sequentially from the iron ion addition means 7 are easy because the water 3 to be treated is maintained in a weakly acidic atmosphere having a pH of about 4, for example. In addition, as a catalyst, electrons (e ) are sequentially donated to the hydrogen peroxide of the chemical formula 2 and self is oxidized to trivalent iron ions (Fe 3+ ).
Therefore, reduction in the second reaction formula, initially the total amount added hydrogen peroxide from the hydrogen peroxide addition means 6 (H 2 O 2), the electronic based on 1 reaction formula of (e -) are sequentially donor, Accordingly, OH radicals (.OH) and hydroxide ions (OH ) are generated each time.
By the way, in such a reaction, since the to-be-processed water 3 is maintained in the weakly acidic atmosphere as mentioned above, it is suppressed that hydrogen peroxide is decomposed | disassembled into water and oxygen, and wasted. On the other hand, if the atmosphere is not maintained in a weakly acidic atmosphere, hydrogen peroxide becomes water molecules (H 2 O) while generating oxygen (O) in the nascent stage, according to the following reaction formula 3. According to the reaction formula of the chemical formula 2, it will be wasted without generating OH radicals. It should be noted that oxygen (O) in such a nascent stage is out of the system as oxygen molecules (O 2 ) when there is no oxidation target.
Figure 2009011982

第2に、次の化4,化5の反応式によっても、OHラジカル(・OH)の生成が可能である。すなわち、処理槽4内では、まず第1に、上述した化1,化2の反応式によりOHラジカルが生成されるが、これと共に更に第2に、次の反応式によってもOHラジカルを生成可能である。

Figure 2009011982
Figure 2009011982
Second, OH radicals (.OH) can also be generated by the following reaction formulas of Chemical Formula 4 and Chemical Formula 5. That is, in the treatment tank 4, first, OH radicals are generated according to the above-described reaction formulas of Chemical Formula 1 and Chemical Formula 2, but secondly, OH radicals can also be generated according to the following reaction formula. It is.
Figure 2009011982
Figure 2009011982

すなわち、化1の反応式で生成された3価の鉄イオン(Fe3+)は、化2の反応式で生成された水酸化イオン(OH)から、化4,化5の反応式により、電子(e)を奪ってOHラジカル(・OH)を生成させ、自らは2価の鉄イオン(Fe2+)に戻る。
このように、化1,化2の反応式のみならず化4,化5の反応式が、連鎖的にバランス良く起こるようにすると、OHラジカルが極めて効率的に生成される。
処理槽4内では、このようにOHラジカルが生成される。
That is, the trivalent iron ion (Fe 3+ ) generated in the chemical formula 1 is converted from the hydroxide ion (OH ) generated in the chemical formula 2 according to the chemical formula 4 and chemical formula 5 Takes electrons (e ) to generate OH radicals ( .OH ), and returns itself to divalent iron ions (Fe 2+ ).
Thus, if not only the reaction formulas of Chemical Formula 1 and Chemical Formula 2 but also the chemical formulas of Chemical Formula 4 and Chemical Formula 5 occur in a chain-balanced manner, OH radicals are generated very efficiently.
In the treatment tank 4, OH radicals are generated in this way.

《処理槽4における反応(その2)について》
次に、処理槽4内における化学反応(その2)について、説明する。処理槽4内では、被処理水3に含有された低濃度のポリ塩素化ビフェニル1が、このように生成されたOHラジカルにて酸化,分解されて、無機化される。
これらについて、更に詳細に説明する。まず、OHラジカルつまりヒドロキシラジカル(・OH)は、周知のごとく強力な酸化力を備えている。つまり、活性酸素種として他に類を見ない極めて強力な電子(e)の奪取力,酸化力,つまり活性力,分解力を有しており、ラジカルで反応性に富んでいる。
そしてOHラジカルは、過酸化水素への鉄イオンの添加毎に生成されるが、反応が激しいだけに存在時間が瞬間的であり、寿命の短い化学種である。
さてそこで、水相分散したOHラジカルは、被処理水3中に含有された低濃度のポリ塩素化ビフェニル1を酸化し、遂には分解してしまう。すなわちOHラジカルは、ポリ塩素化ビフェニル1の有機構造について、例えばその芳香環の二重結合のπ電子,塩素原子Clの隣の水素原子Hのπ電子,炭素原子C,その他を対象とし、これをOH基で付加や置換する。そして、これらに基づき、ポリ塩素化ビフェニル1の炭素連鎖,有機結合,分子結合を、順次切断,分解,分断する連鎖プロセスを辿り、もってポリ塩素化ビフェニル1を、最終的には無機の水(HO)や炭酸ガス(CO)へと、酸化,分解,無機化する。
なお、塩素ガス(Cl)は、極めて微量,低濃度で分解,生成されるので(例えば、後述する例では水32モル,炭酸ガス12モルに対し、1モルに過ぎない)、特に後処理等は不要である。そして処理槽4内では、酸性のため塩酸(HCl)として存在し、pH調整手段8からカセイソーダが添加されると塩化ナトリウム(NaCl)を生成するが、次に述べる後処理槽11においても特に固液分離されることなく、そのまま外部放流される。
処理槽4内では、このように低濃度のポリ塩素化ビフェニル1が酸化,分解,無機化される。
<< About the reaction (2) in the processing tank 4 >>
Next, the chemical reaction (part 2) in the treatment tank 4 will be described. In the treatment tank 4, the low-concentration polychlorinated biphenyl 1 contained in the water to be treated 3 is oxidized and decomposed by the OH radicals generated in this way to be mineralized.
These will be described in more detail. First, OH radical, that is, hydroxy radical (.OH) has a strong oxidizing power as is well known. That is, it has an extremely strong electron (e ) deprivation ability, oxidation ability, that is, activation ability and decomposition ability, which is unparalleled as an active oxygen species, and is highly reactive with radicals.
OH radicals are generated every time iron ions are added to hydrogen peroxide, but the presence of the OH radicals is instantaneous due to the intense reaction, and the lifetime is short.
Now, the OH radical dispersed in the aqueous phase oxidizes the low-concentration polychlorinated biphenyl 1 contained in the water to be treated 3 and eventually decomposes. In other words, the OH radical covers the organic structure of polychlorinated biphenyl 1, for example, the π electron of the double bond of the aromatic ring, the π electron of the hydrogen atom H next to the chlorine atom Cl, the carbon atom C, etc. Are added or substituted with an OH group. Based on these, a chain process in which the carbon chain, organic bond, and molecular bond of polychlorinated biphenyl 1 are sequentially cut, decomposed, and broken is followed, so that polychlorinated biphenyl 1 is finally converted into inorganic water ( Oxidized, decomposed and mineralized into H 2 O) and carbon dioxide (CO 2 ).
In addition, since chlorine gas (Cl 2 ) is decomposed and generated in a very small amount and a low concentration (for example, in the example described later, it is only 1 mol with respect to 32 mol of water and 12 mol of carbon dioxide gas), particularly post-treatment. Etc. are not required. In the treatment tank 4, it exists as hydrochloric acid (HCl) because of acidity, and when sodium hydroxide is added from the pH adjusting means 8, sodium chloride (NaCl) is generated. Without being separated, it is discharged to the outside as it is.
In the treatment tank 4, the low concentration polychlorinated biphenyl 1 is thus oxidized, decomposed and mineralized.

《後処理槽11について》
次に、後処理槽11について説明する。処理槽4には、後処理槽11が付設されており、前述によりポリ塩素化ビフェニル1が酸化,分解された後の被処理水3が排出され、必要な後処理が施された後、外部排水される。
このような後処理槽11について、更に詳述する。図示例の後処理槽11は、中和槽12,沈殿槽13,凝集沈殿槽14,濾過槽15,pH調整槽16,処理水槽17等を、下流に向け順に備えている。
まず、処理槽4からは、ポリ塩素化ビフェニル1の酸化,分解処理が済んだ被処理水3が、後処理槽11の中和槽12に排出される。中和槽12では、このような被処理水3に対し、カセイソーダ等のpH調整剤が添加され、もって無機凝集剤への最適pHへと調整される。被処理水3中に僅かでも過酸化水素が残留している場合は、水質汚濁を回避すべく、カタラーゼ等の中和剤が添加される。
次に沈殿槽13では、中和槽12から流入した被処理水3中に残留物として含有されている鉄分とのコロイド状錯体が固液分離されて、下部に沈殿,除去される。
凝集沈殿槽14では、沈殿槽13上部から流入した被処理水3に対し、無機凝集剤として、例えばポリ塩化アルミニウム(PAC,Al(OH)Cl6−n)が、添加されて攪拌される。もって、沈殿槽13で沈殿されることなく被処理水3中に残存していた上記コロイド状錯体が、凝集化され固液分離されて、沈殿,除去される。
なお必要に応じ、この凝集沈殿槽14の次に貯留沈殿槽を設けて、高分子凝集剤として例えばアニオンを添加し、もって上記コロイド状錯体の一層の凝集化,ブロック化,固液分離化、そして沈殿,除去を図るようにしてもよい。
それから被処理水3は、後処理槽11の濾過槽15,pH調整槽16,処理水槽17を順次経由し、もって更に浄化されると共に、外部排水に適したpHに調整された後、処理水槽17から外部排水され、放流される。
後処理槽11は、このようになっている。
<< About the post-treatment tank 11 >>
Next, the post-treatment tank 11 will be described. A post-treatment tank 11 is attached to the treatment tank 4, and after the polychlorinated biphenyl 1 is oxidized and decomposed as described above, the treated water 3 is discharged, and after the necessary post-treatment, Drained.
Such a post-treatment tank 11 will be further described in detail. The illustrated post-treatment tank 11 includes a neutralization tank 12, a precipitation tank 13, a coagulation sedimentation tank 14, a filtration tank 15, a pH adjustment tank 16, a treatment water tank 17, and the like in order toward the downstream.
First, from the treatment tank 4, the water to be treated 3 after the oxidation and decomposition treatment of the polychlorinated biphenyl 1 is discharged to the neutralization tank 12 of the post-treatment tank 11. In the neutralization tank 12, a pH adjuster such as caustic soda is added to the water 3 to be treated, and the pH is adjusted to the optimum value for the inorganic flocculant. If even a small amount of hydrogen peroxide remains in the water 3 to be treated, a neutralizing agent such as catalase is added to avoid water pollution.
Next, in the precipitation tank 13, the colloidal complex with the iron content contained as a residue in the water to be treated 3 flowing from the neutralization tank 12 is solid-liquid separated and precipitated and removed at the bottom.
In the coagulation sedimentation tank 14, for example, polyaluminum chloride (PAC, Al 2 (OH) n Cl 6-n ) is added as an inorganic coagulant to the water to be treated 3 flowing from the upper part of the sedimentation tank 13 and stirred. The Thus, the colloidal complex remaining in the water to be treated 3 without being precipitated in the settling tank 13 is agglomerated and solid-liquid separated to be precipitated and removed.
If necessary, a storage sedimentation tank is provided next to the aggregation sedimentation tank 14 and, for example, an anion is added as a polymer flocculant, thereby further aggregating, blocking, solid-liquid separating the colloidal complex, Then, precipitation and removal may be attempted.
Then, the water 3 to be treated passes through the filtration tank 15, the pH adjustment tank 16, and the treatment water tank 17 of the post-treatment tank 11, and is further purified and adjusted to a pH suitable for external drainage. 17 is drained externally and discharged.
The post-treatment tank 11 is as described above.

《作用等》
本発明の低濃度ポリ塩素化ビフェニル1の処理装置2および処理方法は、以上説明したように構成されている。そこで、以下のようになる。
(1)低濃度のポリ塩素化ビフェニル1を含有した被処理水3は、処理装置2へと供給される。処理装置2は、フェントン法の処理プロセスに基づく処理方法により、ポリ塩素化ビフェニル1を酸化,分解し、被処理水3を浄化する。
《Action etc.》
The processing apparatus 2 and processing method of the low concentration polychlorinated biphenyl 1 of the present invention are configured as described above. Therefore, it becomes as follows.
(1) The treated water 3 containing the low concentration polychlorinated biphenyl 1 is supplied to the treatment apparatus 2. The treatment device 2 purifies the water 3 to be treated by oxidizing and decomposing the polychlorinated biphenyl 1 by a treatment method based on the treatment process of the Fenton method.

(2)この処理装置2は、処理水供給手段5の処理水槽9,pH調整槽10,処理槽4,後処理槽11等を、順に備えている。
pH調整槽10には、pH調整手段8が付設されており、処理槽4には、過酸化水素添加手段6,鉄イオン添加手段7,pH調整手段8等が、付設されており、過酸化水素,2価の鉄イオン,pH調整剤等を添加可能となっている。
(2) The treatment apparatus 2 includes a treatment water tank 9, a pH adjustment tank 10, a treatment tank 4, a post-treatment tank 11 and the like of the treated water supply means 5 in order.
The pH adjusting tank 10 is provided with pH adjusting means 8, and the treatment tank 4 is provided with hydrogen peroxide adding means 6, iron ion adding means 7, pH adjusting means 8, etc. Hydrogen, divalent iron ions, pH adjusters, etc. can be added.

(3)さてそこで、被処理水3は、処理水供給手段5の処理水槽9から、処理槽4に供給される。
なお被処理水3は、処理槽4に供給される前に、図示例ではpH調整槽10において、pH調整手段8から例えば硫酸等の酸pH調整剤が添加され、もって例えばpH4程度の所定弱酸性とされる。
(3) The treated water 3 is then supplied from the treated water tank 9 of the treated water supply means 5 to the treated tank 4.
In addition, before the water 3 to be treated is supplied to the treatment tank 4, in the illustrated example, an acid pH adjuster such as sulfuric acid is added from the pH adjustment means 8 in the pH adjustment tank 10, so that, for example, a predetermined weak value of about pH 4 is obtained. It is considered acidic.

(4)処理槽4に供給された被処理水3は、まず、過酸化水素添加手段6から過酸化水素の水溶液が、添加される。過酸化水素は、反応当初に全量添加される。   (4) The treated water 3 supplied to the treatment tank 4 is firstly added with an aqueous solution of hydrogen peroxide from the hydrogen peroxide addition means 6. The total amount of hydrogen peroxide is added at the beginning of the reaction.

(5)処理槽4では、このように過酸化水素が添加された後、被処理水3に対して、鉄イオン添加手段7から2価の鉄イオン溶液が、添加される。2価の鉄イオンは、過酸化水素添加後の反応中において、分割添加により、複数回に分けて間欠的に、複数サイクル繰り返して添加される。
そして、このような鉄イオンの分割添加毎に、pH調整手段8から例えばカセイソーダ等のアルカリpH調整剤が添加され、もって被処理水3は常時、pH4程度の所定弱酸性を維持する。2価の鉄イオンとしては、例えば硫酸第一鉄の水溶液が添加される。
(5) In the treatment tank 4, after the hydrogen peroxide is added in this way, a divalent iron ion solution is added from the iron ion addition means 7 to the water to be treated 3. The divalent iron ion is added repeatedly in a plurality of cycles intermittently in a plurality of times by divided addition during the reaction after the addition of hydrogen peroxide.
For each divided addition of iron ions, an alkaline pH adjuster such as caustic soda is added from the pH adjusting means 8, so that the treated water 3 always maintains a predetermined weak acidity of about pH 4. As divalent iron ions, for example, an aqueous solution of ferrous sulfate is added.

(6)さてそこで、処理槽4内では、上述により全量添加されていた過酸化水素が、触媒として分割添加される2価の鉄イオンにて、分割添加の都度還元されて、OHラジカルを生成する。すなわち、前記化1,化2の反応式により、2価の鉄イオンが、過酸化水素に電子を供与して3価の鉄イオンになると共に、電子を供与された過酸化水素が、OHラジカルを生成する。
OHラジカルは、鉄イオンが分割添加されるので、OHラジカルを消費する反応が起こる虞もなく、分割添加の都度、無駄なく効率良く生成される。
しかも、このOHラジカルの生成反応は、例えばpH4程度の弱酸性雰囲気下に維持されていることによっても、所期の通り効率良く確実に実施される。すなわち、所定弱酸雰囲気下であることにより、まず、2価の鉄イオンの電子供与が促進されると共に、更に過酸化水素が、前記化3の化学式により水と酸素に分解,浪費される反応が抑制,回避され、能力いっぱいのOHラジカルを生成するようになる。
(6) Then, in the treatment tank 4, the hydrogen peroxide that has been added in the total amount as described above is reduced by divalent iron ions that are added in a divided manner as a catalyst, and OH radicals are generated at each divided addition. To do. That is, according to the reaction formulas of Chemical Formula 1 and Chemical Formula 2, the divalent iron ion donates an electron to hydrogen peroxide to become a trivalent iron ion. Is generated.
Since OH radicals are dividedly added with iron ions, there is no risk of a reaction that consumes OH radicals, and each OH radical is efficiently generated without waste each time divided addition is performed.
Moreover, this OH radical production reaction is efficiently and reliably carried out as expected even when maintained in a weakly acidic atmosphere having a pH of about 4, for example. That is, under a predetermined weak acid atmosphere, first, electron donation of divalent iron ions is promoted, and further, a reaction in which hydrogen peroxide is decomposed and wasted into water and oxygen according to the chemical formula of Chemical Formula 3 above. Suppressed and avoided, generating full-capacity OH radicals.

(7)OHラジカルは、これに加え更に処理槽4内で、2価の鉄イオンの酸化反応にて生成された3価の鉄イオンにて、過酸化水素の還元反応にて生成された水酸化イオンが、酸化されることによっても、生成される。すなわち、前記化1,化2の反応式で生成された3価の鉄イオンと水酸化イオンとによって、前記化4,化5の反応式によっても生成される。
そこでこの面からも、OHラジカルが効率的に生成される。そして、このOHラジカルの生成も、鉄イオンの分割添加の都度、連鎖的にそれぞれ生成される。
(7) In addition to this, OH radicals are water generated by reduction reaction of hydrogen peroxide with trivalent iron ions generated by oxidation reaction of divalent iron ions in the treatment tank 4. Oxide ions are also generated by oxidation. That is, the trivalent iron ions and hydroxide ions generated by the chemical formulas 1 and 2 are also generated by the chemical formulas 4 and 5.
Therefore, also from this aspect, OH radicals are efficiently generated. And the production | generation of this OH radical is each produced | generated in a chain | strand every time the addition addition of an iron ion is divided.

(8)さて、このように生成されたOHラジカルは、極めて強力な酸化力を備えている。そこで処理槽4では、被処理水3中に低濃度で含有されたポリ塩素化ビフェニル1は、このOHラジカルにて酸化され、もって水や炭酸ガス等の低分子化合物へと、無機化されてしまう。   (8) Now, the OH radicals thus generated have a very strong oxidizing power. Therefore, in the treatment tank 4, the polychlorinated biphenyl 1 contained at a low concentration in the water to be treated 3 is oxidized by the OH radicals and thus mineralized into low molecular compounds such as water and carbon dioxide. End up.

(9)被処理水3は、含有されていたポリ塩素化ビフェニル1が、このようにして水,塩素ガス,炭酸ガスへと無機化され、もって処理槽4から後処理槽11へと排出される。図示の後処理槽11は、中和槽12,沈殿槽13,凝集沈殿槽14,濾過槽15,pH調整槽16,処理水槽17等を備えている。
なお過酸化水素は、前述によりOHラジカル生成に無駄なく有効使用されるので、処理後の残存量は僅かであり、中和槽12における中和剤の使用も、極く僅か又は皆無となる(例えば、残存過酸化物イオン濃度は、使用過酸化水素の0〜3%以下程度となる)。
そして被処理水3は、後処理槽11を経由することにより、排水可能な状態に調整されて、外部排水される。
(9) In the water 3 to be treated, the polychlorinated biphenyl 1 contained therein is mineralized into water, chlorine gas, and carbon dioxide gas in this way, and is discharged from the treatment tank 4 to the post-treatment tank 11. The The illustrated post-treatment tank 11 includes a neutralization tank 12, a sedimentation tank 13, a coagulation sedimentation tank 14, a filtration tank 15, a pH adjustment tank 16, a treated water tank 17, and the like.
Since hydrogen peroxide is effectively used for generating OH radicals as described above, the residual amount after the treatment is very small, and the use of the neutralizing agent in the neutralization tank 12 is negligible or absent ( For example, the residual peroxide ion concentration is about 0 to 3% or less of the hydrogen peroxide used).
And the to-be-processed water 3 is adjusted to the state which can be drained by passing through the post-treatment tank 11, and is drained outside.

(10)この処理装置2および処理方法では、上述したように、フェントン法の処理プロセスに基づき、被処理水3に含有された有毒な有機化合物であるポリ塩素化ビフェニル1を、低分子化合物へと無機化するが、これは簡単容易に実現される。
すなわち、過酸化水素,2価の鉄イオン,pH調整剤等の薬品添加量は、反応理論値から実際必要量が容易に算出される。反応理論値より多目の例えば数倍程度が、実際必要量として添加され、もって添加量の最適化が実現される。
又、この処理装置2は、処理槽4を中心に、処理水槽9や後処理槽11が配設されると共に、過酸化水素添加手段6,鉄イオン添加手段7,pH調整手段8等が付設された構成よりなる。つまり、この処理方法は、比較的簡単な構成の処理装置2を用いることにより、安定処理が可能である。
本発明の作用等は、このようになっている。
(10) In this treatment apparatus 2 and treatment method, as described above, based on the treatment process of the Fenton method, the polychlorinated biphenyl 1 that is a toxic organic compound contained in the water to be treated 3 is converted into a low molecular weight compound. This is easily and easily realized.
That is, the required amount of chemicals such as hydrogen peroxide, divalent iron ions, and pH adjusters can be easily calculated from the theoretical reaction values. For example, about several times larger than the theoretical reaction value is added as an actual required amount, so that the addition amount is optimized.
The treatment apparatus 2 is provided with a treatment water tank 9 and a post-treatment tank 11 with a treatment tank 4 as a center, and a hydrogen peroxide addition means 6, an iron ion addition means 7, a pH adjustment means 8 and the like. It consists of the structure which was made. That is, this processing method can perform stable processing by using the processing device 2 having a relatively simple configuration.
The operation of the present invention is as described above.

《酸化,分解反応の1例について》
以下、本発明の処理装置2および処理方法に関し、その1例を説明する。すなわち、処理槽4内におけるポリ塩素化ビフェニル1の酸化,分解反応の1例(つまり、処理槽4における反応その2と題して前述した所の1例)について、その理論的裏付を説明しておく。
この例は、ポリ塩素化ビフェニル1として、対称体であるビフェニル(C−C)について、2個の水素原子(H)を、2個の塩素原子(Cl)で置換したC(Cl)−C(Cl)を、対象とする。なお、塩素原子の置換位置は、共に対称で内側とする。
さてそこで、この例のポリ塩素化ビフェニル1は、芳香環として2モルの塩化フェニル基(C(Cl)−)を、有する。そこでまず、そのいずれか片側の塩化フェニル基(C(Cl)−)について、OHラジカルによる酸化,分解反応を、検証する。
まず、酸化,分解反応が、次の化6の各反応式に示した連鎖プロセス(1),(2),(3),(4),(5)を辿って、順次進行する。

Figure 2009011982
<< Examples of oxidation and decomposition reactions >>
Hereinafter, an example of the processing apparatus 2 and the processing method of the present invention will be described. That is, the theoretical support for an example of the oxidation and decomposition reaction of polychlorinated biphenyl 1 in the treatment tank 4 (that is, the example described above as reaction 2 in the treatment tank 4) will be explained. Keep it.
In this example, as polychlorinated biphenyl 1, two hydrogen atoms (H) were substituted with two chlorine atoms (Cl) for biphenyl (C 6 H 5 -C 6 H 5 ) which is a symmetric body. C 6 H 4 (Cl) -C 6 H 4 (Cl) is the target. The chlorine atom substitution positions are both symmetrical and inside.
Now, the polychlorinated biphenyl 1 of this example has 2 mol of a chlorinated phenyl group (C 6 H 4 (Cl) —) as an aromatic ring. Therefore, first, the oxidation / decomposition reaction by OH radical is verified for either one of the phenyl chloride groups (C 6 H 4 (Cl) —).
First, the oxidation and decomposition reactions proceed sequentially by following the chain processes (1), (2), (3), (4), and (5) shown in the following reaction formulas.
Figure 2009011982

上記化6の反応式については、次のとおり。化6の各反応式の連鎖プロセス(1)〜(5)を順次辿ることにより、それぞれ、所定のOHラジカルによる酸化,分解が進行する。
すなわち、塩化フェニル基(C(Cl)−)よりなる出発物質は、(1)C(Cl)(OH)-、→(2)2価の環状ケトンC(Cl)(O)-、→(3)2価のカルボン酸HOOC−C(Cl)=C※−CH=CH−COOH、→(4)活性炭素原子団−C(Cl)=C※−CH=CH−、→(5)OH-C(Cl)(OH)-C※(OH)-CH(OH)-CH(OH)-OH、→そして、C(Cl)(OH)-C※(OH)-CH(OH)-CH(OH)となって、アルコール化される。
そして、このような連鎖プロセス中において、水(HO)や炭酸ガス(CO)が、随伴的に分解,生成される。OHラジカルは、多くの場合は反応により水に帰す。
なお、プロセス(3),(4),(5)中、C※は、この例のポリ塩素化ビフェニル1の対称体であるC(Cl)−C(Cl)において、他方の塩化フェニル基(C(Cl))と結合している炭素原子である(なお、後述する化7の各反応式中においても同様)。
The reaction formula of the above chemical formula 6 is as follows. By sequentially following the chain processes (1) to (5) in each reaction formula of Chemical Formula 6, oxidation and decomposition by a predetermined OH radical proceed respectively.
That is, the starting material consisting of a phenyl chloride group (C 6 H 4 (Cl) —) is (1) C 6 H 2 (Cl) (OH) 2 −, → (2) a divalent cyclic ketone C 6 H 2. (Cl) (O) 2- , → (3) Divalent carboxylic acid HOOC-C (Cl) = C * —CH═CH—COOH, → (4) Activated carbon group —C (Cl) = C * -CH = CH-, (5) OH-C (Cl) (OH) -C * (OH) -CH (OH) -CH (OH) -OH, and then C (Cl) (OH) 2- C ※ (OH) -CH (OH ) become a -CH (OH) 2, is alcohol reduction.
In such a chain process, water (H 2 O) and carbon dioxide (CO 2 ) are decomposed and generated as needed. OH radicals are often attributed to water by reaction.
In the processes (3), (4) and (5), C * is C 6 H 4 (Cl) -C 6 H 4 (Cl) which is a symmetric body of polychlorinated biphenyl 1 in this example. This is a carbon atom bonded to the other phenyl chloride group (C 6 H 4 (Cl)) (the same applies to each reaction formula of Chemical Formula 7 described later).

さて、この例では、このような化6の各反応式の連鎖プロセス(1)〜(5)の次に、次の化7の各反応式の連鎖プロセス(6)〜(11)を辿る。

Figure 2009011982
In this example, following the chain processes (1) to (5) of each reaction formula of Chemical Formula 6, the chain processes (6) to (11) of the following chemical formulas of Chemical Formula 7 are followed.
Figure 2009011982

上記化7の反応式については、次のとおり。前述した連鎖プロセス(5)のアルコールから、上述した化7の各反応式の連鎖プロセス(6)又は(7)〜(11)を順次辿ることにより、それぞれ、所定のOHラジカルによる酸化,分解が進行する。
まず、(5)のアルコールは(6)で分断され、活性水素HがOHラジカルにより水に帰すので、プロセス(6)の反応式はプロセス(7)の反応式としても、書き直して表わされる。それから、→(7)OC-CHO、→(8)2価のアルデヒドOCH-OC-CO-CHO、→(9)2価のカルボン酸HOOC-OC-CO-COOH、→(10)しゅう酸HOOC-COOHとなって、→(11)最終的に、炭酸ガスと水に帰すことになる。
そして、このような連鎖プロセス中においても、水や炭酸ガスが、随伴的に分解,生成される。
The reaction formula of the above chemical formula 7 is as follows. By sequentially following the chain process (6) or (7) to (11) of each reaction formula of Chemical Formula 7 from the alcohol of the chain process (5) described above, oxidation and decomposition by a predetermined OH radical can be performed, respectively. proceed.
First, since the alcohol of (5) is divided at (6) and the active hydrogen H is returned to water by OH radicals, the reaction formula of process (6) is rewritten as the reaction formula of process (7). Then (7) OC-CHO, (8) divalent aldehyde OCH-OC-CO-CHO, (9) divalent carboxylic acid HOOC-OC-CO-COOH, (10) oxalic acid HOOC -COOH → (11) Eventually returned to carbon dioxide and water.
Even in such a chain process, water and carbon dioxide gas are decomposed and generated as needed.

結論として、ポリ塩素化ビフェニル1の1例について、その対称体である片側の塩化フェニル基(C(Cl)−)は、このような化6,化7の反応式に示した連鎖プロセス(1)〜(11)を辿ることにより、理論上すべて、水や炭酸ガスに酸化,分解されてしまう。その対称体である残りの塩化フェニル基(−C(Cl))も、全く同様に酸化,分解される。
そこで、以上説明した所を総括すると、次の化8の総括反応式が得られる。すなわち、連鎖プロセス(1)〜(5)の各反応式と、連鎖プロセス(7)〜(11)の各反応式とを、合算して2倍すると(片側分に残りの片側分を合算すると)、次のようになる。

Figure 2009011982
In conclusion, in one example of polychlorinated biphenyl 1, the symmetric chlorophenyl group (C 6 H 4 (Cl)-) on one side is linked to the chain shown in the reaction formula of Chemical Formula 6 and Chemical Formula 7. By following the processes (1) to (11), all of them are theoretically oxidized and decomposed into water and carbon dioxide gas. As a symmetrical body remaining chloride phenyl group (-C 6 H 4 (Cl) ) is also exactly the same oxidized and degraded.
Thus, when the places described above are summarized, the following general reaction formula of Chemical Formula 8 is obtained. That is, when the reaction formulas of the chain processes (1) to (5) and the reaction formulas of the chain processes (7) to (11) are added together and doubled (the remaining one side is added to the one side) )
Figure 2009011982

この化8の総括反応式については、次のとおり。化8の反応式のように、1モルのポリ塩素化ビフェニル1の1例であるC(Cl)-C(Cl)は、理論上は、56モルのOHラジカルにより、1モルの塩素ガスと、12モルの炭酸ガスと、32モルの水とに、酸化,分解される。但し、塩素ガスは殆んど発生しない。
OHラジカルは、この例では、反応理論値として56モルを予め準備すれば良いが、実際必要量は大目に準備される。勿論、OHラジカルの生成物質である過酸化水素や2価の鉄イオン等についても、同様である。
酸化,分解反応の1例は、このようになっている。
The general reaction formula of this chemical formula 8 is as follows. As reaction formula of 8, 1 is the mole of an example of polychlorinated biphenyls 1 C 6 H 4 (Cl) -C 6 H 4 (Cl) is the theory, 56 moles of OH radicals, It is oxidized and decomposed into 1 mol of chlorine gas, 12 mol of carbon dioxide gas and 32 mol of water. However, little chlorine gas is generated.
In this example, 56 mol of OH radicals may be prepared in advance as a theoretical reaction value, but the actual required amount is prepared roughly. Of course, the same applies to hydrogen peroxide, divalent iron ions, and the like, which are OH radical products.
One example of the oxidation and decomposition reaction is as follows.

本発明に係る低濃度ポリ塩素化ビフェニルの処理装置および処理方法について、発明を実施するための最良の形態の説明に供し、構成フロー図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration flow diagram for explaining the best mode for carrying out the invention of a low concentration polychlorinated biphenyl processing apparatus and processing method according to the present invention.

符号の説明Explanation of symbols

1 ポリ塩素化ビフェニル
2 処理装置
3 被処理水
4 処理槽
5 処理水供給手段
6 過酸化水素添加手段
7 鉄イオン添加手段
8 pH調整手段
9 処理水槽
10 pH調整槽
11 後処理槽
12 中和槽
13 沈殿槽
14 凝集沈殿槽
15 濾過槽
16 pH調整槽
17 処理水槽
DESCRIPTION OF SYMBOLS 1 Polychlorinated biphenyl 2 Treatment apparatus 3 Water to be treated 4 Treatment tank 5 Treatment water supply means 6 Hydrogen peroxide addition means 7 Iron ion addition means 8 pH adjustment means 9 Treatment water tank 10 pH adjustment tank 11 Post-treatment tank 12 Neutralization tank 13 Precipitation tank 14 Coagulation sedimentation tank 15 Filtration tank 16 pH adjustment tank 17 Treated water tank

Claims (8)

被処理水に含有された低濃度のポリ塩素化ビフェニルを、フェントン法で酸化,分解する処理装置であって、処理槽と、該処理槽に付設された処理水供給手段,過酸化水素添加手段,鉄イオン添加手段,pH調整手段とを、備えており、
該処理水供給手段は、該処理槽に低濃度のポリ塩素化ビフェニルを含有した被処理水を供給し、該過酸化水素添加手段は、該処理槽の被処理水に過酸化水素を添加し、該鉄イオン添加手段は、該処理槽の被処理水に2価の鉄イオンを添加し、
該pH調整手段は、該処理水供給手段から該処理槽に供給される被処理水、および該処理槽の被処理水にpH調整剤を添加して、被処理水を所定弱酸性に維持すること、を特徴とする、低濃度ポリ塩素化ビフェニルの処理装置。
A treatment apparatus for oxidizing and decomposing low-concentration polychlorinated biphenyl contained in water to be treated by the Fenton method, a treatment tank, treated water supply means attached to the treatment tank, and hydrogen peroxide addition means , Iron ion addition means, pH adjustment means,
The treated water supply means supplies treated water containing low-concentration polychlorinated biphenyl to the treatment tank, and the hydrogen peroxide adding means adds hydrogen peroxide to treated water in the treated tank. The iron ion addition means adds divalent iron ions to the water to be treated in the treatment tank,
The pH adjusting means maintains the water to be treated at a predetermined weak acidity by adding a pH adjuster to the water to be treated supplied from the treated water supply means to the treatment tank and the water to be treated in the treatment tank. An apparatus for processing low-concentration polychlorinated biphenyl.
請求項1に記載した低濃度ポリ塩素化ビフェニルの処理装置において、該過酸化水素添加手段は、反応当初に過酸化水素の水溶液を全量添加し、該鉄イオン添加手段は、過酸化水素の添加後に間欠的に複数サイクル繰り返して、2価の鉄イオン溶液を分割添加し、
該pH調整手段は、過酸化水素の添加前には酸pH調整剤を添加し、過酸化水素の添加後においては鉄イオン溶液の添加毎に、アルカリpH調整剤を添加すること、を特徴とする、低濃度ポリ塩素化ビフェニルの処理装置。
2. The processing apparatus for low-concentration polychlorinated biphenyl according to claim 1, wherein the hydrogen peroxide adding means adds the whole amount of an aqueous solution of hydrogen peroxide at the beginning of the reaction, and the iron ion adding means adds hydrogen peroxide. Later, repeated multiple cycles intermittently, divalent iron ion solution was added in portions,
The pH adjusting means is characterized in that an acid pH adjuster is added before the addition of hydrogen peroxide, and an alkaline pH adjuster is added every time an iron ion solution is added after the addition of hydrogen peroxide. A processing device for low-concentration polychlorinated biphenyl.
請求項2に記載した低濃度ポリ塩素化ビフェニルの処理装置において、該鉄イオン添加手段は、硫酸第一鉄の水溶液を添加し、
該pH調整手段は、例えば硫酸又はカセイソーダを添加し、もって該処理槽内の被処理水をpH4程度に維持して、添加される過酸化水素の水と酸素への分解反応を抑制すること、を特徴とする、低濃度ポリ塩素化ビフェニルの処理装置。
The processing apparatus for low-concentration polychlorinated biphenyl according to claim 2, wherein the iron ion addition means adds an aqueous solution of ferrous sulfate,
The pH adjusting means is, for example, adding sulfuric acid or caustic soda to maintain the water to be treated in the treatment tank at about pH 4 to suppress the decomposition reaction of the added hydrogen peroxide into water and oxygen, An apparatus for processing low-concentration polychlorinated biphenyl, characterized by:
請求項2に記載した低濃度ポリ塩素化ビフェニルの処理装置において、該処理槽内では、全量添加された過酸化水素が、触媒として分割添加される2価の鉄イオンにて、分割添加の都度還元されてOHラジカルを生成すると共に、
被処理水に含有されたポリ塩素化ビフェニルが、このOHラジカルにて酸化,分解され、もって水や炭酸ガス等の低分子化合物に無機化されること、を特徴とする、低濃度ポリ塩素化ビフェニルの処理装置。
3. The processing apparatus for low-concentration polychlorinated biphenyl according to claim 2, wherein the hydrogen peroxide added in the whole amount is divalent iron ions dividedly added as a catalyst in the treatment tank. Reduced to produce OH radicals,
Polychlorinated biphenyl contained in water to be treated is oxidized and decomposed by this OH radical, and is mineralized into low-molecular compounds such as water and carbon dioxide gas. Biphenyl processing equipment.
被処理水に含有された低濃度のポリ塩素化ビフェニルを、フェントン法の処理プロセスに基づき酸化,分解する処理方法であって、
低濃度のポリ塩素化ビフェニルを含有した被処理水に対し、過酸化水素と2価の鉄イオンとpH調整剤とが添加され、過酸化水素は、反応当初に全量添加され、2価の鉄イオンは、過酸化水素の添加後に間欠的に複数サイクル繰り返して分割添加され、
pH調整剤は、過酸化水素の添加前は酸pH調整剤が添加され、過酸化水素の添加後は鉄イオン溶液の添加毎にアルカリpH調整剤が添加され、もって被処理水を所定弱酸性に維持すること、を特徴とする、低濃度ポリ塩素化ビフェニルの処理方法。
A treatment method for oxidizing and decomposing low-concentration polychlorinated biphenyl contained in water to be treated based on the Fenton process.
Hydrogen peroxide, divalent iron ions, and a pH adjuster are added to the water to be treated containing low-concentration polychlorinated biphenyl, and hydrogen peroxide is added in its entirety at the beginning of the reaction. Ions are added in portions by repeating multiple cycles intermittently after the addition of hydrogen peroxide,
As for the pH adjuster, an acid pH adjuster is added before the addition of hydrogen peroxide, and after the addition of hydrogen peroxide, an alkaline pH adjuster is added every time an iron ion solution is added. A method for treating low-concentration polychlorinated biphenyl, characterized in that:
請求項5に記載した低濃度ポリ塩素化ビフェニルの処理方法において、2価の鉄イオンとしては、硫酸第一鉄の水溶液が添加されると共に、
pH調整剤としては、例えば硫酸又はカセイソーダが添加され、もって被処理水をpH4程度に維持して、添加される過酸化水素の水と酸素への分解反応を抑制すること、を特徴とする、低濃度ポリ塩素化ビフェニルの処理方法。
In the processing method of the low concentration polychlorinated biphenyl according to claim 5, an aqueous solution of ferrous sulfate is added as a divalent iron ion,
As the pH adjuster, for example, sulfuric acid or caustic soda is added, so that the water to be treated is maintained at about pH 4, and the decomposition reaction of the added hydrogen peroxide into water and oxygen is suppressed, Treatment method for low-concentration polychlorinated biphenyl.
請求項5に記載した低濃度ポリ塩素化ビフェニルの処理方法において、水溶液として全量添加された過酸化水素が、触媒として分割添加される2価の鉄イオンにて、分割添加の都度還元されてOHラジカルが生成され、
もって、被処理水に含有されたポリ塩素化ビフェニルが、このOHラジカルにて酸化,分解されて、水や炭酸ガス等の低分子化合物に無機化されること、を特徴とする、低濃度ポリ塩素化ビフェニルの処理方法。
6. The method for treating low-concentration polychlorinated biphenyl according to claim 5, wherein hydrogen peroxide added as a total amount as an aqueous solution is reduced by divalent iron ions dividedly added as a catalyst at each divided addition and OH. Radicals are generated,
Therefore, the polychlorinated biphenyl contained in the water to be treated is oxidized and decomposed by this OH radical, and is mineralized into a low molecular compound such as water or carbon dioxide gas. Treatment method of chlorinated biphenyl.
請求項7に記載した低濃度ポリ塩素化ビフェニルの処理方法において、更に、過酸化水素の還元反応にて生成された水酸化イオンが、2価の鉄イオンの酸化反応にて生成された3価の鉄イオンにて酸化されて、OHラジカルが生成され、
もって、被処理水に含有されたポリ塩素化ビフェニルが、このOHラジカルにて酸化,分解されて、水や炭酸ガス等の低分子化合物に無機化されること、を特徴とする、低濃度ポリ塩素化ビフェニルの処理方法。
8. The method for treating low-concentration polychlorinated biphenyl according to claim 7, wherein the hydroxide ions produced by the reduction reaction of hydrogen peroxide are further trivalent produced by the oxidation reaction of divalent iron ions. Oxidized with iron ions to generate OH radicals,
Therefore, the polychlorinated biphenyl contained in the water to be treated is oxidized and decomposed by this OH radical, and is mineralized into a low molecular compound such as water or carbon dioxide gas. Treatment method of chlorinated biphenyl.
JP2007179245A 2007-07-09 2007-07-09 Treatment apparatus and treatment method of low-concentration polychlorinated biphenyl Pending JP2009011982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007179245A JP2009011982A (en) 2007-07-09 2007-07-09 Treatment apparatus and treatment method of low-concentration polychlorinated biphenyl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007179245A JP2009011982A (en) 2007-07-09 2007-07-09 Treatment apparatus and treatment method of low-concentration polychlorinated biphenyl

Publications (1)

Publication Number Publication Date
JP2009011982A true JP2009011982A (en) 2009-01-22

Family

ID=40353545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007179245A Pending JP2009011982A (en) 2007-07-09 2007-07-09 Treatment apparatus and treatment method of low-concentration polychlorinated biphenyl

Country Status (1)

Country Link
JP (1) JP2009011982A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210580A (en) * 2011-03-31 2012-11-01 Mitsui Eng & Shipbuild Co Ltd Treatment method of chlorine based organic compound
CN105461127A (en) * 2015-12-17 2016-04-06 陕西科技大学 Method for treating glyphosate waste water
CN110066048A (en) * 2019-05-07 2019-07-30 中冶华天工程技术有限公司 Fenton reaction control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243162A (en) * 2003-02-12 2004-09-02 Toray Ind Inc Method and apparatus for treating hardly decomposable organic matter-containing liquid
JP2005000801A (en) * 2003-06-11 2005-01-06 Hiroaki Hasegawa Waste water treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243162A (en) * 2003-02-12 2004-09-02 Toray Ind Inc Method and apparatus for treating hardly decomposable organic matter-containing liquid
JP2005000801A (en) * 2003-06-11 2005-01-06 Hiroaki Hasegawa Waste water treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210580A (en) * 2011-03-31 2012-11-01 Mitsui Eng & Shipbuild Co Ltd Treatment method of chlorine based organic compound
CN105461127A (en) * 2015-12-17 2016-04-06 陕西科技大学 Method for treating glyphosate waste water
CN105461127B (en) * 2015-12-17 2018-04-06 陕西科技大学 A kind of method for handling glyphosate waste water
CN110066048A (en) * 2019-05-07 2019-07-30 中冶华天工程技术有限公司 Fenton reaction control system
CN110066048B (en) * 2019-05-07 2021-09-24 中冶华天工程技术有限公司 Fenton reaction control system

Similar Documents

Publication Publication Date Title
Trojanowicz et al. Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)–a review of recent advances
Hassani et al. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: a review on relevant activation mechanisms, performance, and perspectives
Sheng et al. Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe (II)/PMS
Ike et al. Critical review of the science and sustainability of persulphate advanced oxidation processes
Guan et al. The synergism between electro-Fenton and electrocoagulation process to remove Cu-EDTA
Suzuki et al. Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water
Zhang et al. Synchronously degradation benzotriazole and elimination bromate by perovskite oxides catalytic ozonation: Performance and reaction mechanism
Nawaz et al. Removal efficiency and economic cost comparison of hydrated electron-mediated reductive pathways for treatment of bromate
Porcar-Santos et al. Photocatalytic degradation of sulfamethoxazole using TiO2 in simulated seawater: Evidence for direct formation of reactive halogen species and halogenated by-products
Li et al. Activation of peroxymonosulfate by WTRs-based iron-carbon composites for atrazine removal: Performance evaluation, mechanism insight and byproduct analysis
Zhao et al. Advanced oxidation removal of hypophosphite by O3/H2O2 combined with sequential Fe (II) catalytic process
CN103787448A (en) Denitrification method combining denitrification agent and ultraviolet light
JP2009255078A (en) Treatment device and treatment method for organic phosphorous based pesticide-containing water
Khabbaz et al. Degradation of Diclofenac by sonosynthesis of pyrite nanoparticles
JP2009255077A (en) TREATMENT DEVICE AND TREATMENT METHOD FOR beta LACTAM BASED ANTIBIOTICS-CONTAINING WATER
JP5058871B2 (en) Method for treating water containing volatile organic compounds
JP5058922B2 (en) Nonylphenol treatment method
Zhao et al. Fabrication of AQ2S/GR composite photosensitizer for the simulated solar light-driven degradation of sulfapyridine
JP2009011982A (en) Treatment apparatus and treatment method of low-concentration polychlorinated biphenyl
Wu et al. Efficient degradation and detoxification of antibiotic Fosfomycin by UV irradiation in the presence of persulfate
Litter Introduction to oxidative technologies for water treatment
JP2004243162A (en) Method and apparatus for treating hardly decomposable organic matter-containing liquid
Garcia-Costa et al. Effective degradation of cyclohexanecarboxylic acid by visible LED driven photo-Fenton
CN112520834B (en) Method for degrading iodo-drug by using activated sulfite system
CN106830272A (en) A kind of utilization wall erosion thing catalysis persulfate controls the method for treating water of halogenated disinfection by-products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220