JP2009011921A - Diesel exhaust gas purifying filter - Google Patents

Diesel exhaust gas purifying filter Download PDF

Info

Publication number
JP2009011921A
JP2009011921A JP2007175847A JP2007175847A JP2009011921A JP 2009011921 A JP2009011921 A JP 2009011921A JP 2007175847 A JP2007175847 A JP 2007175847A JP 2007175847 A JP2007175847 A JP 2007175847A JP 2009011921 A JP2009011921 A JP 2009011921A
Authority
JP
Japan
Prior art keywords
filter
exhaust gas
nonwoven fabric
metal
diesel exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007175847A
Other languages
Japanese (ja)
Inventor
Shunji Kikuhara
俊司 菊原
Ataru Omichi
中 大道
Yukio Ito
幸夫 伊東
Hitoshi Kubo
仁志 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2007175847A priority Critical patent/JP2009011921A/en
Publication of JP2009011921A publication Critical patent/JP2009011921A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diesel exhaust gas purifying filter which reduces the pressure drop and is excellent in durability in a filter to remove a particulate suspended matter in a diesel exhaust gas. <P>SOLUTION: In the diesel exhaust gas purifying filter which has a cross-sectional honeycomb structure formed by laminating a nonwoven fabric made of metal molded into a cross-section corrugated form and a plate-like nonwoven fabric made of metal fiber or piling up both to wind and of which the end portion of one of the passages is encapsulated and the other end portion of the passage neighboring one of the passage is encapsulated, it is characterized in that the cell density is 80-150 CPSI and further characterized by using the nonwoven fabric constituting the filter with the thickness of 0.3-0.9 mm, the average fiber diameter of 10-50 μm and the porosity of 60-75%. Thus, the particle collection efficiency of the filter falls within the proper range of 50-80%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ディーゼルエンジンから排出される排ガスに含まれる粒子状浮遊物を除去するためのフィルターに関する。   The present invention relates to a filter for removing particulate suspended matter contained in exhaust gas discharged from a diesel engine.

ディーゼルエンジンからの排ガス処理においては、NOx等のガス状物質の分解処理に加えて、固体又は液体の粒子状浮遊物の除去が必要となる。粒子状浮遊物とは、主に固体の炭素粒子と、固体又は液体の不燃炭化水素系燃料粒子と、燃料中の硫黄由来の硫化物とにより構成されている。この粒子状浮遊物は、粒径が極めて細かいため大気中に浮遊しやすく、人体へ取り込まれやすいという問題があり、最近の環境問題への高い関心から効果的な除去が求められている。   In exhaust gas treatment from a diesel engine, in addition to decomposition treatment of gaseous substances such as NOx, it is necessary to remove solid or liquid particulate suspended matters. The particulate suspended matter is mainly composed of solid carbon particles, solid or liquid incombustible hydrocarbon fuel particles, and sulfide derived from sulfur in the fuel. This particulate suspended matter has a problem that it is easy to float in the atmosphere because it has a very small particle size and is easily taken into the human body, and effective removal is required from recent interest in environmental problems.

ディーゼル排ガスからの粒子状浮遊物の除去については、フィルターによる捕集が一般的となっており、従来から多くのフィルターが報告されている。従来のディーゼル排ガス処理用のフィルターとしては、例えば、特許文献1では、コージェライト等のセラミックからなるハニカム構造を有する筒状のフィルターが記載されている。このフィルターは、一部の流路の端部を目封止材で封止する一方、残った流路の反対側の端部を目封止しており、流路間の壁面に排ガスを通過させ、セラミックの微細な孔で粒子を捕集するようにしている。
特開平9−29022号公報
For removal of particulate suspended matter from diesel exhaust gas, collection by a filter is common, and many filters have been reported conventionally. As a conventional diesel exhaust gas treatment filter, for example, Patent Document 1 describes a tubular filter having a honeycomb structure made of ceramic such as cordierite. This filter seals the end of some channels with plugging material, while plugging the end on the opposite side of the remaining channels and allows exhaust gas to pass through the walls between the channels. The particles are collected by the fine pores of the ceramic.
JP-A-9-29022

しかし、上記従来のフィルターは、粒子の捕集率が95%以上と極めて高いものの、その分、圧力損失が大きくなる傾向がある。特に、使用に伴い壁面に目詰りが生じた場合の圧力損失が極めて大きくなり、フィルターの破壊やエンジンへの悪影響が懸念される。   However, although the conventional filter has a very high particle collection rate of 95% or more, the pressure loss tends to increase accordingly. In particular, when the wall surface becomes clogged with use, the pressure loss becomes extremely large, and there is a concern about the destruction of the filter and the adverse effect on the engine.

また、排ガス浄化用フィルターは、所定期間使用した後に捕集した煤を燃焼するための加熱処理を施して再生・使用されている。しかし、セラミックは熱伝導率が低いため、再生時にヒートスポットが生じ易く、溶損・クラック発生等により破損することがあり、耐久性の観点からも問題があった。   Further, the exhaust gas purification filter is regenerated and used by performing a heat treatment for burning the soot collected after being used for a predetermined period. However, since ceramic has a low thermal conductivity, heat spots are likely to occur during reproduction, and may be damaged due to melting, cracking, etc., and there is a problem from the viewpoint of durability.

そこで、本発明は、ディーゼルエンジン排気ガス中の粒子状浮遊物を除去するフィルターにおいて、圧力損失が低減されるとともに、耐久性に優れたものを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a filter that removes particulate suspended matter in diesel engine exhaust gas with reduced pressure loss and excellent durability.

本発明者等は、上記したフィルターを改良すべく鋭意検討を行い、まず、粒子捕集率の適正範囲について検討を行った。従来のフィルターにおいては、粒子の捕集率は高い程好ましいとされていた。しかし、最近のディーゼルエンジン自体の改良により、粒子の発生量は低下しており、捕集率のみを単純に上昇させることが最適であるとはいえない状況となっている。また、完全に粒子を捕集しなくとも(捕集率が100%でなくとも)、フィルターの後段に触媒を置くことで通過した粒子を燃焼させ、最終的には大気への粒子の放出は抑制できる。むしろ、排気系全体への負担、浄化効率を考慮すれば、このような構成の方が好ましいといえる。本発明者等は、かかる背景を考慮し、最適な粒子捕集率として、50〜80%を想定した。50%未満ではフィルター本来の機能を発揮することができない一方、80%を超える程の捕集率は不要とするものである。   The inventors of the present invention have intensively studied to improve the above-described filter, and firstly examined an appropriate range of the particle collection rate. In conventional filters, the higher the particle collection rate, the better. However, due to recent improvements in the diesel engine itself, the amount of particles generated has decreased, and it is not optimal to simply increase the collection rate alone. Moreover, even if the particles are not completely collected (even if the collection rate is not 100%), the particles passed through the filter are burned by placing the catalyst behind the filter. Can be suppressed. Rather, it can be said that such a configuration is preferable in consideration of the burden on the entire exhaust system and the purification efficiency. In consideration of such a background, the present inventors assumed 50 to 80% as an optimum particle collection rate. If it is less than 50%, the original function of the filter cannot be exhibited, while a collection rate exceeding 80% is unnecessary.

そして、本発明者等は更なる検討を行い、粒子捕集率を上記適正範囲内にすることのできるフィルターとして、その構成材料として金属不織布を使用するものを見出し、本発明に想到した。   Then, the present inventors have further studied and found out that a filter using a metal non-woven fabric as a constituent material can be used as a filter capable of bringing the particle collection rate within the above appropriate range, and has arrived at the present invention.

即ち、本発明は、断面波形に成形された金属繊維製不織布と平板状の金属繊維製不織布とを積層、又は、両者を重ね合わせて巻回することで断面ハニカム構造を有し、一の流路の端部が封止され、前記一の流路に隣接する流路の他方の端部が封止されたディーゼル排ガス浄化用フィルターであって、セル密度が80〜150CPSIであり、前記金属繊維製不織布は、厚さ0.3〜0.9mm、平均繊維径10〜50μm、気孔率60〜75%とすることで粒子捕集率が50〜80%であるディーゼル排ガス浄化用フィルターである。本発明に係るフィルターは、その構造として流路(セル)間の壁面に排ガスを通過させるものとしつつ、構成材料として所定の物性の金属不織布を適用する。この構造と構成材料との組み合わせにより、好適範囲の煤捕集率を実現している。   That is, the present invention has a cross-sectional honeycomb structure by laminating a metal fiber non-woven fabric and a flat metal fiber non-woven fabric formed into a corrugated cross section, or by superimposing and winding both, A diesel exhaust gas purification filter in which an end of a road is sealed and the other end of a flow path adjacent to the one flow path is sealed, and has a cell density of 80 to 150 CPSI, and the metal fiber The non-woven fabric is a diesel exhaust gas purification filter having a particle collection rate of 50 to 80% by setting a thickness of 0.3 to 0.9 mm, an average fiber diameter of 10 to 50 μm, and a porosity of 60 to 75%. The filter according to the present invention applies a metal nonwoven fabric having predetermined physical properties as a constituent material while allowing the exhaust gas to pass through the wall surfaces between the flow paths (cells) as the structure. The combination of this structure and the constituent material realizes a soot collection rate in a suitable range.

金属不織布は、金属繊維を積層し、焼結させて製造されるものである。金属不織布の物性は、構成する金属繊維の繊維径、及び、金属繊維使用量と焼結条件との相関により、その厚さ、気孔率が調整される。本発明においては、平均繊維径10〜50μmの金属繊維を使用した厚さ0.3〜0.9mm、気孔率60〜75%の金属不織布を適用することで捕集率を適正範囲とすることができる。そして、これらの物性において、より好ましい範囲は、平均繊維径20〜40μmの金属繊維を使用した厚さ0.4〜0.6mm、気孔率65〜75%の不織布であり、これにより運転条件を問わず捕集率を50〜80%とすることができる。   A metal nonwoven fabric is manufactured by laminating and sintering metal fibers. As for the physical properties of the metal nonwoven fabric, the thickness and the porosity are adjusted by the fiber diameter of the metal fibers to be formed and the correlation between the amount of metal fibers used and the sintering conditions. In the present invention, the collection rate is set to an appropriate range by applying a metal nonwoven fabric having a thickness of 0.3 to 0.9 mm and a porosity of 60 to 75% using metal fibers having an average fiber diameter of 10 to 50 μm. Can do. In these physical properties, a more preferable range is a non-woven fabric having a thickness of 0.4 to 0.6 mm and a porosity of 65 to 75% using metal fibers having an average fiber diameter of 20 to 40 μm. Regardless, the collection rate can be 50 to 80%.

また、金属不織布は熱伝導性が良好であることから、煤捕集後の再生処理(熱処理)においても、ヒートスポットを生じさせることがない。また、金属故に耐熱性も良好であるから耐久性にも優れ、使用と再生とのサイクルを繰返し受けても長期使用可能である。この金属不織布を構成する金属としては、ステンレス、ニッケル基合金等が好ましい。   Moreover, since a metal nonwoven fabric has favorable heat conductivity, a heat spot is not produced also in the regeneration process (heat treatment) after collection of soot. In addition, since it has good heat resistance because it is a metal, it is excellent in durability and can be used for a long time even if it is subjected to repeated cycles of use and regeneration. As the metal constituting the metal nonwoven fabric, stainless steel, nickel-base alloy and the like are preferable.

一方、本発明のフィルターの構造面については、その両端面で部分的に流路を封止し、流路壁面に排ガスを通過させる形式(ウォールフロー)のものであり、基本的には、上記した従来のフィルターと同様のものである。但し、本発明では、捕集率を適正範囲内とするために、流路の密度であるセル密度を80〜150CPSIとする。セル密度については、これを増大させると捕集率が上昇する傾向がある。本発明においては、過度に高い捕集率を回避する必要があることから、その上限値を150CPSIとする。尚、80CPSI未満とすると、金属不織布の物性を調製しても捕集率が低くなることから、80CPSIを下限とする。   On the other hand, the structural surface of the filter of the present invention is of a type (wall flow) in which the flow path is partially sealed at both end faces and exhaust gas is allowed to pass through the flow path wall surface. This is the same as the conventional filter. However, in the present invention, in order to set the collection rate within an appropriate range, the cell density, which is the density of the flow path, is set to 80 to 150 CPSI. As for the cell density, increasing this tends to increase the collection rate. In this invention, since it is necessary to avoid an excessively high collection rate, the upper limit is set to 150 CPSI. In addition, since it will become low even if the physical property of a metal nonwoven fabric is prepared if it is less than 80 CPSI, 80 CPSI is made into a minimum.

流路の封止は、所定の流路端部に封止材を充填しても良い。好ましくは、フィルターを構成する断面波形の金属繊維製不織布の両端付近の山部及び谷部を両面から押潰すものである。このようにすることで容易に封止部分を形成することができる。   For sealing the flow path, a predetermined flow path end may be filled with a sealing material. Preferably, crests and troughs near both ends of the metal fiber nonwoven fabric having a corrugated cross section constituting the filter are crushed from both sides. By doing in this way, a sealing part can be formed easily.

本発明に係るフィルターは、金属不織布に触媒が担持されているものが好ましい。触媒を備えることで、フィルターの再生時に捕集された粒子状浮遊物を効率的に燃焼させることができる。触媒としては、粒子状浮遊物を燃焼させることができるものであれば、特に限定されるものではないが、例えば、銀、金、白金、パラジウム、イリジウム、ルテニウム、ロジウムといった貴金属を含む貴金属触媒又は貴金属合金触媒が知られており、特に白金及びイリジウムを主成分とするものが好ましい。   The filter according to the present invention is preferably one in which a catalyst is supported on a metal nonwoven fabric. By providing the catalyst, the particulate suspended matter collected during the regeneration of the filter can be burned efficiently. The catalyst is not particularly limited as long as the particulate suspended matter can be combusted. For example, a noble metal catalyst containing a noble metal such as silver, gold, platinum, palladium, iridium, ruthenium, and rhodium, or Noble metal alloy catalysts are known, and those having platinum and iridium as main components are particularly preferred.

尚、触媒の担持の際には、触媒となる貴金属粒子を分散させるため、貴金属をアルミナ、シリカ、セリア、ジルコニア等の酸化物を少なくとも1つ含む多孔質酸化物に担持させた触媒粉末をフィルターに担持させることが好ましい。また、予めフィルターにこれら多孔質酸化物を下地層(ウォッシュコートと称されることが多い)として塗布し、その後貴金属を担持しても良い。   When the catalyst is supported, in order to disperse the noble metal particles as the catalyst, the catalyst powder in which the noble metal is supported on a porous oxide containing at least one oxide such as alumina, silica, ceria, zirconia, etc. is filtered. It is preferable to carry it. In addition, these porous oxides may be preliminarily applied to the filter as a base layer (often referred to as a wash coat), and then a noble metal may be supported.

触媒を担持させる場合の、触媒担持量は、貴金属換算でフィルターの容量を基準として触媒全体の重量(異なる触媒を使用する場合にはその合計重量)が、0.1〜6g/Lとするのが好ましく、1〜3g/Lとするのがより好ましい。また、多孔質酸化物を使用する場合、多孔質酸化物の使用量は、5〜150g/Lとするのが好ましい。そして、このときの触媒担持量は、多孔質酸化物の重量に対して0.1〜60%とするのが好ましく、1〜40%とするのがより好ましい。   When the catalyst is loaded, the amount of the catalyst loaded is 0.1 to 6 g / L of the total weight of the catalyst (total weight when different catalysts are used) based on the filter capacity in terms of noble metal. Is preferable, and it is more preferable to set it as 1-3 g / L. Moreover, when using a porous oxide, it is preferable that the usage-amount of a porous oxide shall be 5-150 g / L. The catalyst loading at this time is preferably 0.1 to 60%, more preferably 1 to 40%, based on the weight of the porous oxide.

本発明に係る排ガス浄化用フィルターの製造は、まず、金属不織布を断面波形となるように加工し、これと平板上の金属不織布とを順次積層することで製造できる。金属不織布の成型加工は、ギア付きのロールで圧延することで容易に可能である。   The exhaust gas purifying filter according to the present invention can be manufactured by first processing a metal nonwoven fabric so as to have a cross-sectional waveform, and sequentially laminating the metal nonwoven fabric on a flat plate. The metal nonwoven fabric can be molded easily by rolling with a roll with gears.

また、流路の封止は、金属不織布の両端の山部及び谷部を押潰すものが好ましいが、この加工は加工部位について型プレス、ローラー加圧等を行うのが好ましい。   In addition, the channel is preferably sealed by crushing the crests and troughs at both ends of the metal nonwoven fabric, but this processing is preferably performed by mold pressing, roller pressurization, or the like on the processing site.

金属不織布を積層する際には、各層を固定するため、所定の型を用意しこれに波形金属不織布、平板金属不織布を順次はめ込みつつ積層する、積層させた金属不織布の接触部分を溶接して固定しても良い。また、波形金属不織布と平板金属不織布とを重ねたものを巻回し、その終端部を接合しても良い。   When laminating a metal nonwoven fabric, a predetermined mold is prepared to fix each layer, and a corrugated metal nonwoven fabric and a flat metal nonwoven fabric are laminated in order, and the contact portions of the laminated metal nonwoven fabric are welded and secured. You may do it. Moreover, what laminated | stacked the corrugated metal nonwoven fabric and the flat metal nonwoven fabric may be wound, and the terminal part may be joined.

フィルターに触媒を担持させる場合、多孔質酸化物を貴金属の金属塩溶液に浸漬し、乾燥、焼成することで触媒粉末を予め製造し、これをスラリー化したものにフィルターを浸漬させることで触媒が担持される。また、成形したフィルターを、多孔質酸化物のゾルに浸漬又は塗布し、更に、触媒金属を含む金属塩溶液に浸漬後、乾燥、焼成することでも触媒を担持させることができる。   When the catalyst is supported on the filter, the catalyst is prepared by immersing the porous oxide in a precious metal salt solution, drying and firing the catalyst powder in advance, and immersing the filter in a slurry. Supported. Alternatively, the catalyst can be supported by immersing or coating the formed filter in a sol of a porous oxide, further immersing in a metal salt solution containing a catalyst metal, and drying and firing.

以上のように形成されたフィルターは、筒状のケースにフィルターを挿入し、通電加熱・温度管理のための電極・センサー等を必要に応じて装着することで排ガス浄化に供することができる。   The filter formed as described above can be used for exhaust gas purification by inserting the filter into a cylindrical case and attaching electrodes, sensors, and the like for energization heating and temperature management as necessary.

以上説明したように本発明によれば、ディーゼルエンジン排ガス中の粒子状浮遊物を効率的に除去することができる。本発明に係るフィルターは、排ガスの圧力損失を増大させることなく浄化が可能であり、エンジンへのダメージを防止することができ、更に再生時の破損のおそれもなく耐久性に優れる。   As described above, according to the present invention, particulate suspended matters in diesel engine exhaust gas can be efficiently removed. The filter according to the present invention can be purified without increasing the pressure loss of the exhaust gas, can prevent damage to the engine, and has excellent durability without fear of damage during regeneration.

以下、本発明の好適な実施形態を比較例と共に説明する。   Hereinafter, preferred embodiments of the present invention will be described together with comparative examples.

図1は、本実施形態におけるフィルターの製造工程を説明するものである。金属不織布をギア付ロールにより断面波形に成形した。次に、成形し金属繊維製不織布の一方の端部の山部を押潰し、他方の端部の谷部を裏面から押潰して流路の封止部を形成した。   FIG. 1 illustrates a manufacturing process of a filter in the present embodiment. A metal nonwoven fabric was formed into a corrugated cross section by a geared roll. Next, it shape | molds and crushes the peak part of one edge part of a metal fiber nonwoven fabric, and crushes the trough part of the other edge part from the back surface, and formed the sealing part of the flow path.

そして、上記加工を行った金属不織布と、平板状の金属不織布を円筒状のケースに挿入し、順次積層してハニカム構造を有する円柱状の排ガス浄化用フィルターとした(寸法φ144mm×150mm)。   Then, the processed metal nonwoven fabric and the flat metal nonwoven fabric were inserted into a cylindrical case and sequentially laminated to obtain a columnar exhaust gas purification filter having a honeycomb structure (dimension φ 144 mm × 150 mm).

次に、アルミナ粉末をジニトロジアミン白金溶液に浸漬し、乾燥、焼成して5%白金触媒を調整し、これをスラリー化した後、上記で製造したフィルターを浸漬して触媒を担持させ、触媒付きのフィルターを製造した(触媒担持量2g/L)。図2は、フィルターの外観を示す。   Next, the alumina powder is immersed in a dinitrodiamine platinum solution, dried and calcined to prepare a 5% platinum catalyst, and this is slurried. Then, the filter produced above is immersed to support the catalyst, and the catalyst is attached. Filter was produced (catalyst loading 2 g / L). FIG. 2 shows the appearance of the filter.

比較例:市販のコージェライト製のハニカム構造体(寸法:直径144×150mm、セル密度200cpsi)に、一方の端部について半分の流路を封止し、他方の端部の流路を封止したフィルターを用意し、これを本実施形態と同じ触媒スラリーに浸漬し排ガス浄化用フィルターを製造した(触媒担持量2g/L)。 Comparative example : A commercially available honeycomb structure made of cordierite (dimensions: diameter 144 × 150 mm, cell density 200 cpsi), half of the flow paths are sealed at one end, and the flow path at the other end is sealed The prepared filter was prepared and immersed in the same catalyst slurry as in the present embodiment to produce an exhaust gas purifying filter (catalyst loading 2 g / L).

以上の製造方法に基づき、繊維径・厚さの異なる金属不織布を用いて複数の排ガス浄化用フィルターを製造した。そして、それらについて、ディーゼルエンジンを用いた評価試験を行い、粒子状物質の浄化性能及を比較検討した。この評価試験では、製造した浄化用フィルターを排気量2771ccのディーゼルエンジンに取り付け、D13モードの状態で連続運転を行い、粒子状浮遊物の捕集率をマイクロトンネルで測定した。その結果を表1に示す。
Based on the above manufacturing method, a plurality of exhaust gas purification filters were manufactured using metal nonwoven fabrics having different fiber diameters and thicknesses. And about those, the evaluation test using a diesel engine was done, and the purification performance of particulate matter was compared and examined. In this evaluation test, the produced purification filter was attached to a diesel engine with a displacement of 2771 cc, and continuously operated in the D13 mode, and the collection rate of particulate suspended matters was measured with a microtunnel. The results are shown in Table 1.

Figure 2009011921
Figure 2009011921

また、上記評価試験では、圧力損失の経時変化についても評価を行っている。この圧力損失は、フィルター前後に取り付けた差圧計により測定した。図3は、その結果を示す。   Further, in the above evaluation test, the change with time in pressure loss is also evaluated. This pressure loss was measured by a differential pressure gauge attached before and after the filter. FIG. 3 shows the result.

以上の評価試験において、比較例のセラミック製フィルターは、粒子状浮遊物の捕集率は95%と高いものの(表1)、圧力損失は高い傾向にありその上昇率も高い(図3)。これに対し、実施例、参考例金属不織布からなるフィルターは、圧力損失が低減されている(図3)。但し、セル密度や金属不織布の構成(繊維径等)を適正なものとしないと、捕集率が低く過ぎ十分な効果が期待できないことがわかる(表1)。   In the above evaluation test, the ceramic filter of the comparative example has a high trapping rate of particulate suspended matter of 95% (Table 1), but the pressure loss tends to be high and the rate of increase is also high (FIG. 3). On the other hand, the pressure loss is reduced in the filter which consists of an Example and a reference example metal nonwoven fabric (FIG. 3). However, it can be seen that unless the cell density and the configuration of the metal nonwoven fabric (fiber diameter, etc.) are appropriate, the collection rate is too low to achieve a sufficient effect (Table 1).

捕集率の好適範囲について考察すると、比較例のような捕集率が90%を超えるようなフィルターを使用すると、長期使用により粒子状浮遊物、及び、エンジン潤滑油等に含まれるカルシウム等からなるアッシュの蓄積によりフィルターの閉塞が生じると考えられる。また、本実施形態で行った評価試験は、エンジンの運転モードD13モードとしたが、より高負荷の運転では短時間で圧力損失が限界となりエンジンストップの可能性が有る。   Considering the suitable range of the collection rate, when using a filter with a collection rate exceeding 90% as in the comparative example, it will be from long-term use such as particulate suspended matter and calcium contained in engine lubricating oil, etc. It is thought that filter clogging occurs due to accumulation of ash. Moreover, although the evaluation test performed in the present embodiment is the engine operation mode D13 mode, in a higher load operation, the pressure loss becomes a limit in a short time and there is a possibility of engine stop.

本実施形態に係るフィルターの製造工程を説明する図。The figure explaining the manufacturing process of the filter concerning this embodiment. 本実施形態に係るフィルターの外観。Appearance of the filter according to this embodiment. 各実施例の圧力損失の時間変化を示す図。The figure which shows the time change of the pressure loss of each Example.

Claims (3)

断面波形に成形された金属繊維製不織布と平板状の金属繊維製不織布とを積層、又は、両者を重ね合わせて巻回することで断面ハニカム構造を有し、
一の流路の端部が封止され、前記一の流路に隣接する流路の他方の端部が封止されたディーゼル排ガス浄化用フィルターであって、
セル密度が80〜150CPSIであり、
前記金属繊維製不織布は、厚さ0.3〜0.9mm、平均繊維径10〜50μm、気孔率60〜75%とすることで粒子捕集率が50〜80%であるディーゼル排ガス浄化用フィルター。
Laminated metal fiber non-woven fabric and flat metal fiber non-woven fabric formed into a corrugated cross-section, or have a cross-sectional honeycomb structure by wrapping and winding both together,
A diesel exhaust gas purification filter in which an end of one flow path is sealed and the other end of the flow path adjacent to the one flow path is sealed,
The cell density is 80-150 CPSI;
The metal fiber nonwoven fabric has a thickness of 0.3 to 0.9 mm, an average fiber diameter of 10 to 50 μm, and a porosity of 60 to 75%, so that the particle collection rate is 50 to 80%. .
断面波形に成形された金属繊維製不織布の一方の端部の山部を押潰すと共に、他方の端部の谷部を裏面から押潰すことにより、閉塞された流路が形成される請求項1記載のディーゼル排ガス浄化用フィルター。 2. A clogged flow path is formed by crushing a crest at one end of a nonwoven fabric made of metal fibers formed into a corrugated cross section and crushing a trough at the other end from the back surface. The diesel exhaust gas purification filter as described. 金属繊維製不織布には触媒が担持され、前記触媒は、銀、金、白金、パラジウム、イリジウム、ルテニウム、ロジウムを含む貴金属触媒又は貴金属合金触媒である請求項1又は請求項2記載のディーゼル排ガス浄化用フィルター。
The diesel exhaust gas purification according to claim 1 or 2, wherein a catalyst is supported on the metal fiber non-woven fabric, and the catalyst is a noble metal catalyst or a noble metal alloy catalyst containing silver, gold, platinum, palladium, iridium, ruthenium, and rhodium. Filter.
JP2007175847A 2007-07-04 2007-07-04 Diesel exhaust gas purifying filter Pending JP2009011921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175847A JP2009011921A (en) 2007-07-04 2007-07-04 Diesel exhaust gas purifying filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175847A JP2009011921A (en) 2007-07-04 2007-07-04 Diesel exhaust gas purifying filter

Publications (1)

Publication Number Publication Date
JP2009011921A true JP2009011921A (en) 2009-01-22

Family

ID=40353490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175847A Pending JP2009011921A (en) 2007-07-04 2007-07-04 Diesel exhaust gas purifying filter

Country Status (1)

Country Link
JP (1) JP2009011921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704548B1 (en) * 2014-04-24 2015-04-22 株式会社深井製作所 Catalyzer element and catalyzer
KR20190139906A (en) * 2017-03-29 2019-12-18 비토 엔브이 Fluid Perfusion Device Including Classified Porous Structure
JPWO2020044490A1 (en) * 2018-08-30 2021-08-26 佐伯 午郎 Intake filter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129212U (en) * 1989-03-31 1990-10-24
JPH06257422A (en) * 1993-01-06 1994-09-13 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JPH08243333A (en) * 1994-10-13 1996-09-24 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JPH0949420A (en) * 1995-05-30 1997-02-18 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JPH09262414A (en) * 1996-03-29 1997-10-07 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JP2000509324A (en) * 1996-04-26 2000-07-25 ドナルドソン カンパニー,インコーポレイティド Fluted filter media
JP2002113798A (en) * 2000-10-10 2002-04-16 Nippon Steel Corp Honeycomb form using nonwoven fabric of metal fiber
JP2004296819A (en) * 2003-03-27 2004-10-21 Shindengen Electric Mfg Co Ltd Semiconductor device
JP2004346800A (en) * 2003-05-21 2004-12-09 Nippon Steel Corp Particulate trap for diesel engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129212U (en) * 1989-03-31 1990-10-24
JPH06257422A (en) * 1993-01-06 1994-09-13 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JPH08243333A (en) * 1994-10-13 1996-09-24 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JPH0949420A (en) * 1995-05-30 1997-02-18 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JPH09262414A (en) * 1996-03-29 1997-10-07 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JP2000509324A (en) * 1996-04-26 2000-07-25 ドナルドソン カンパニー,インコーポレイティド Fluted filter media
JP2002113798A (en) * 2000-10-10 2002-04-16 Nippon Steel Corp Honeycomb form using nonwoven fabric of metal fiber
JP2004296819A (en) * 2003-03-27 2004-10-21 Shindengen Electric Mfg Co Ltd Semiconductor device
JP2004346800A (en) * 2003-05-21 2004-12-09 Nippon Steel Corp Particulate trap for diesel engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704548B1 (en) * 2014-04-24 2015-04-22 株式会社深井製作所 Catalyzer element and catalyzer
KR20190139906A (en) * 2017-03-29 2019-12-18 비토 엔브이 Fluid Perfusion Device Including Classified Porous Structure
KR102525748B1 (en) 2017-03-29 2023-04-27 비토 엔브이 Fluid Perfusion Device Including Classified Porous Structures
JPWO2020044490A1 (en) * 2018-08-30 2021-08-26 佐伯 午郎 Intake filter
JP7391024B2 (en) 2018-08-30 2023-12-04 午郎 佐伯 Air intake filter

Similar Documents

Publication Publication Date Title
JP3889194B2 (en) Honeycomb structure
JP4971166B2 (en) Honeycomb catalyst body, precoat carrier for manufacturing honeycomb catalyst body, and method for manufacturing honeycomb catalyst body
JP3862458B2 (en) Honeycomb structure
JP5747952B2 (en) Method for manufacturing catalytic converter
JP4949696B2 (en) Diesel exhaust gas purification filter
EP1785603A1 (en) Exhaust gas purification system
KR100747088B1 (en) Dpf with improving heat durability
JP2007098274A (en) Porous honeycomb structure and apparatus for purifying exhaust gas using the same
JPWO2006004175A1 (en) Exhaust purification device
JP4200430B2 (en) Method for determining pass / fail of base material for exhaust gas purification filter catalyst
JP7023770B2 (en) Exhaust gas purification catalyst
JPH06257422A (en) Particulate trap for diesel engine
JP4715032B2 (en) Diesel exhaust gas purification filter
JP2009011921A (en) Diesel exhaust gas purifying filter
JP2009228618A (en) Exhaust emission control device
JP2006002713A (en) Diesel exhaust gas-cleaning filter
JP5070173B2 (en) Exhaust gas purification filter and manufacturing method thereof
EP1693099B1 (en) Filter for exhaust gas from diesel engine
JP4285342B2 (en) Manufacturing method of exhaust gas purification filter
JP2002159859A (en) Catalyst for cleaning exhaust gas
JP2007244950A (en) Particulate filter type exhaust gas cleaning catalyst and particulate filter
WO2009110505A1 (en) Fibrous mass bearing catalyst, process for producing the same, and purifier for discharge gas
JP2011206636A (en) Honeycomb structure, and exhaust gas treatment device using the same
JP5526388B2 (en) Exhaust gas purification filter and exhaust gas purification device
JP2005296820A (en) Filter catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121108