JP2009011072A - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
JP2009011072A
JP2009011072A JP2007169652A JP2007169652A JP2009011072A JP 2009011072 A JP2009011072 A JP 2009011072A JP 2007169652 A JP2007169652 A JP 2007169652A JP 2007169652 A JP2007169652 A JP 2007169652A JP 2009011072 A JP2009011072 A JP 2009011072A
Authority
JP
Japan
Prior art keywords
lens barrel
friction member
driving
radius
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007169652A
Other languages
Japanese (ja)
Inventor
Sumuto Nishioka
澄人 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007169652A priority Critical patent/JP2009011072A/en
Publication of JP2009011072A publication Critical patent/JP2009011072A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a drive device capable of stably driving a lens barrel without adjusting the position of an oscillation body to the lens barrel. <P>SOLUTION: This drive device includes an elastic member 2 which oscillates in an arc form and a drive source which oscillates the elastic member 2. The elastic member 2 has a friction member 3 which can be brought into contact with a driven body, and the friction member 3 moves in an arc form trace to drive the lens barrel 4 in accordance with the arc form oscillation of the elastic member 2. When curvature radius of the arc form friction member 3 is taken as r and radius of the arc form trace of a contact part is taken as driving radius D, the curvature radius r and the driving radius D satisfy the condition of 0.5≤r/D≤1.5, therefore, it is possible to stably drive the lens barrel 4 even when the elastic member 2 is mounted to be slant to the lens barrel 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被駆動体を駆動する駆動機構を備えた駆動装置に関するものである。   The present invention relates to a drive device provided with a drive mechanism for driving a driven body.

従来、電気機械変換素子(圧電素子)を用いて被駆動体を駆動するための駆動装置が提案されている。このような駆動装置は、例えば、カメラの撮影レンズ等、光学装置におけるレンズの駆動に用いられる。   Conventionally, a driving device for driving a driven body using an electromechanical conversion element (piezoelectric element) has been proposed. Such a driving device is used for driving a lens in an optical device such as a photographing lens of a camera.

従来の駆動装置に関して、例えば特許文献1には、一対の励振部(圧電素子)と被駆動体に当接する接触部を有する振動体を備え、振動体が、一対の励振部に交互に繰り返し電圧を印加することにより屈曲変位し、この屈曲変位により接触部を介して被駆動体を駆動する駆動装置が開示されている。引用文献1に開示された駆動装置では、接触部は、被駆動体と安定的に摩擦接触するように、その形状が略半円形状になっている。
特開2005−102368号公報(平成17(2005)年4月14日公開)
Regarding a conventional driving device, for example, Patent Document 1 includes a vibrating body having a pair of excitation parts (piezoelectric elements) and a contact part that comes into contact with a driven body, and the vibrating body alternately and repeatedly applies voltage to the pair of excitation parts. A driving device is disclosed in which a bending displacement is applied by applying and a driven body is driven through a contact portion by the bending displacement. In the drive device disclosed in the cited document 1, the contact portion has a substantially semicircular shape so that the contact portion can stably come into frictional contact with the driven body.
Japanese Patent Laying-Open No. 2005-102368 (published on April 14, 2005)

しかしながら、特許文献1に開示された従来の駆動装置では、振動体が被駆動体に対し傾斜して取り付けられたとき、その傾斜により、振動体の接触部が被駆動体を押す力が変化してしまう。このため、従来の駆動装置では、被駆動体を安定的に駆動することができないという問題が生じる。   However, in the conventional driving device disclosed in Patent Document 1, when the vibrating body is attached to the driven body with an inclination, the force by which the contact portion of the vibrating body pushes the driven body changes due to the inclination. End up. For this reason, in the conventional drive device, the problem that a to-be-driven body cannot be driven stably arises.

従来の駆動装置に関する上記問題を、図15及び図16に基づいて、具体的に説明する。図15は、従来の駆動装置の問題を説明するための説明図であり、振動体が被駆動体に対し理想的に取り付けられた状態を示す。図16は、従来の駆動装置の問題を説明するための説明図であり、振動体が被駆動体に対し傾斜して取り付けられた状態を示す。   The above-described problem relating to the conventional drive device will be specifically described with reference to FIGS. 15 and 16. FIG. 15 is an explanatory diagram for explaining a problem of a conventional driving device, and shows a state in which a vibrating body is ideally attached to a driven body. FIG. 16 is an explanatory diagram for explaining a problem of a conventional drive device, and shows a state in which a vibrating body is attached to be inclined with respect to a driven body.

図15に示されるように、振動体21が鏡筒(被駆動体)4の駆動方向に対し理想的に取り付けられている場合、摩擦部材(接触部)3は、振動体21の屈曲変位により破線で示される軌跡を描いて駆動し、鏡筒4と接触する。つまり、摩擦部材3の駆動軌跡は、鏡筒4における摩擦部材3の接触箇所4aを通過し、摩擦部材3との当接面に対し垂直な垂線L0に対し対称になる。そして、この摩擦部材3の接触により、鏡筒4には、実線で示される摩擦部材3との当接面に沿った方向に同じ力が作用する。これにより、鏡筒4は、図15に示されるA側及びB側との両方向に同じ変位で駆動することになる。   As shown in FIG. 15, when the vibrating body 21 is ideally attached to the driving direction of the lens barrel (driven body) 4, the friction member (contact portion) 3 is caused by the bending displacement of the vibrating body 21. It is driven by drawing a locus indicated by a broken line, and comes into contact with the lens barrel 4. That is, the driving locus of the friction member 3 passes through the contact portion 4a of the friction member 3 in the lens barrel 4 and is symmetric with respect to the perpendicular L0 perpendicular to the contact surface with the friction member 3. The contact of the friction member 3 causes the same force to act on the lens barrel 4 in the direction along the contact surface with the friction member 3 indicated by a solid line. Thereby, the lens barrel 4 is driven with the same displacement in both directions of the A side and the B side shown in FIG.

一方、図16に示されるように、振動体21が鏡筒4の駆動方向に対し傾斜して取り付けられている場合、摩擦部材3は、振動体21の屈曲変位により破線で示される軌跡を描いて駆動し、鏡筒4と接触する。つまり、摩擦部材3の駆動軌跡は、垂線L0に対し非対称になる。そして、摩擦部材3の接触により、鏡筒4には、実線で示される摩擦部材3との当接面と交差する方向に力が作用する。それゆえ、鏡筒4をA側の方向に駆動させる場合、摩擦部材3は、鏡筒4を押付ながら駆動されることになる。一方、鏡筒4をB側の方向に駆動させる場合、摩擦部材3は、鏡筒4から離れるようにして駆動されることになる。このため、図16に示された駆動装置では、鏡筒4をA側の方向に駆動させる場合と鏡筒4をB側の方向に駆動させる場合とで、摩擦部材3と鏡筒4との接触状態が大きく異なってしまう。   On the other hand, as shown in FIG. 16, when the vibrating body 21 is attached to be inclined with respect to the driving direction of the lens barrel 4, the friction member 3 draws a locus indicated by a broken line due to the bending displacement of the vibrating body 21. To contact the lens barrel 4. That is, the driving locus of the friction member 3 is asymmetric with respect to the perpendicular L0. Then, due to the contact of the friction member 3, a force acts on the lens barrel 4 in a direction intersecting the contact surface with the friction member 3 indicated by a solid line. Therefore, when the lens barrel 4 is driven in the A side direction, the friction member 3 is driven while pressing the lens barrel 4. On the other hand, when the lens barrel 4 is driven in the direction of the B side, the friction member 3 is driven away from the lens barrel 4. For this reason, in the drive device shown in FIG. 16, the friction member 3 and the lens barrel 4 are driven in the case where the lens barrel 4 is driven in the A side direction and in the case where the lens barrel 4 is driven in the B side direction. The contact state will vary greatly.

従って、図16に示されるように、振動体21が鏡筒4に対し傾斜して取り付けられていると、摩擦部材3と鏡筒4との接触状態が鏡筒4を駆動させる方向によって変化してしまい、鏡筒4が安定的に駆動しなくなる。   Therefore, as shown in FIG. 16, when the vibrating body 21 is attached to be inclined with respect to the lens barrel 4, the contact state between the friction member 3 and the lens barrel 4 changes depending on the direction in which the lens barrel 4 is driven. As a result, the lens barrel 4 cannot be stably driven.

そこで、鏡筒4を安定的に駆動するためには、駆動装置の組立時に振動体21の位置を鏡筒4の駆動方向に対し略平行になるように調整する必要がある。それゆえ、従来の駆動装置では、この振動体21の位置調整の分だけ駆動装置の組立工数が余分に増加してしまい、駆動装置のコスト増につながる。   Therefore, in order to drive the lens barrel 4 stably, it is necessary to adjust the position of the vibrating body 21 so as to be substantially parallel to the driving direction of the lens barrel 4 when the drive device is assembled. Therefore, in the conventional driving device, the number of assembling steps of the driving device is excessively increased by the position adjustment of the vibrating body 21, leading to an increase in the cost of the driving device.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、鏡筒に対する振動体の位置調整が容易であるとともに、鏡筒に対して振動体が傾いて取り付けられても、鏡筒を安定的に駆動させることが可能な駆動装置を実現することにある。   The present invention has been made in view of the above problems, and its purpose is to easily adjust the position of the vibrating body with respect to the lens barrel, and even if the vibrating body is tilted and attached to the lens barrel, An object of the present invention is to realize a driving apparatus capable of stably driving a lens barrel.

本発明に係る駆動装置は、上記の課題を解決するために、円弧状に振動する振動体と、上記振動体を振動させる駆動源とを備え、上記振動体は、被駆動体と接触可能な接触部を有し、上記接触部が、上記振動体の円弧状の振動に伴い、円弧状軌跡を描いて被駆動体を駆動するようになっている駆動装置であって、
上記接触部は、円形状を有し、該円形状の曲率半径をrとし、接触部の上記円弧状軌跡の半径を駆動半径Dとしたとき、曲率半径rと駆動半径Dとが、下記条件
0.5≦r/D≦1.5
を満たすことを特徴としている。
In order to solve the above-described problem, a drive device according to the present invention includes a vibrating body that vibrates in an arc shape and a drive source that vibrates the vibrating body, and the vibrating body can contact the driven body. A driving device having a contact portion, wherein the contact portion is configured to drive a driven body while drawing an arc-shaped trajectory with the arc-shaped vibration of the vibrating body;
The contact portion has a circular shape, and when the radius of curvature of the circular shape is r and the radius of the arc-shaped locus of the contact portion is a drive radius D, the curvature radius r and the drive radius D satisfy the following conditions: 0.5 ≦ r / D ≦ 1.5
It is characterized by satisfying.

本発明に係る駆動装置は、円弧状に振動する振動体と、上記振動体を振動させる駆動源とを備え、上記振動体は、被駆動体と接触可能な接触部を有し、上記接触部が、上記振動体の円弧状の振動に伴い、円弧状軌跡を描いて被駆動体を駆動するようになっている。   The drive device according to the present invention includes a vibrating body that vibrates in an arc shape and a drive source that vibrates the vibrating body, and the vibrating body includes a contact portion that can contact the driven body, and the contact portion However, along with the arc-shaped vibration of the vibrating body, the driven body is driven by drawing an arc-shaped locus.

このような駆動装置においては、振動体が被駆動体に対し傾斜して取り付けられた場合、接触部と被駆動体との接触状態が被駆動体を駆動させる方向によって変化してしまい、被駆動体が安定的に駆動しなくなるという問題がある。   In such a driving apparatus, when the vibrating body is attached to the driven body at an inclination, the contact state between the contact portion and the driven body changes depending on the direction in which the driven body is driven, and the driven body is driven. There is a problem that the body cannot be driven stably.

そこで、本発明者らは、鋭意研究の結果、接触部の形状を円形状とし、この円形状の曲率半径rと、接触部の円弧状軌跡の半径(駆動半径)Dとの比を0.5≦r/D≦1.5の範囲内に定めることで、被駆動体駆動中の側面の位置変化量を最小限に抑え、被駆動体の安定的駆動を実現できることを見出した。   Therefore, as a result of intensive studies, the present inventors have made the shape of the contact portion circular, and the ratio of the radius of curvature r of this circular shape to the radius (drive radius) D of the arcuate locus of the contact portion is set to 0. It has been found that by setting within the range of 5 ≦ r / D ≦ 1.5, the amount of change in the position of the side surface during driving of the driven body can be minimized and stable driving of the driven body can be realized.

従って、本発明に係る駆動装置によれば、曲率半径rと駆動半径Dとが、下記条件
0.5≦r/D≦1.5
を満たす構成とすることにより、被駆動体に対して振動体が0.4°傾いて取り付けられても、被駆動体駆動中の側面の位置変化量を最小限に抑え、被駆動体を安定的に駆動させることが可能になる。
Therefore, according to the driving device of the present invention, the curvature radius r and the driving radius D satisfy the following condition 0.5 ≦ r / D ≦ 1.5.
By satisfying the configuration, even if the vibrating body is mounted at an angle of 0.4 ° with respect to the driven body, the amount of change in the position of the side surface during driving of the driven body is minimized and the driven body is stabilized. Can be driven automatically.

本発明に係る駆動装置では、上記曲率半径rと上記駆動半径Dとが、下記条件
0.9≦r/D≦1.1
を満たすことが好ましい。
In the driving apparatus according to the present invention, the curvature radius r and the driving radius D satisfy the following condition 0.9 ≦ r / D ≦ 1.1.
It is preferable to satisfy.

上記の構成により、被駆動体に対して振動体が2.5°傾いて取り付けられても、被駆動体駆動中の側面の位置変化量を最小限に抑え、被駆動体を安定的に駆動させることが可能になる。   With the above configuration, even if the vibrating body is mounted at an angle of 2.5 ° with respect to the driven body, the amount of change in the position of the side surface during driving of the driven body is minimized and the driven body is driven stably. It becomes possible to make it.

本発明に係る駆動装置では、上記曲率半径rと上記駆動半径Dとが、下記条件
r=D
を満たすことが好ましい。
In the driving apparatus according to the present invention, the radius of curvature r and the driving radius D satisfy the following condition: r = D
It is preferable to satisfy.

上記の構成により、被駆動体に対して振動体がどのような角度で傾いて取り付けられても、被駆動体駆動中の側面の位置変化量を最小限に抑え、被駆動体を安定的に駆動させることが可能になる。   With the above configuration, no matter what angle the vibrating body is attached to the driven body, the amount of change in the position of the side surface during driving of the driven body is minimized, and the driven body is stably It becomes possible to drive.

本発明に係る駆動装置では、上記接触部は、被駆動体と摩擦係合する摩擦部材で構成されていることが好ましい。   In the drive device according to the present invention, it is preferable that the contact portion is constituted by a friction member that frictionally engages the driven body.

上記の構成によれば、接触部は、被駆動体と摩擦係合する摩擦部材で構成されているので、被駆動体との摩擦係数が被駆動体駆動に最適になるように該摩擦部材の材料を選択することで、被駆動体の駆動を安定的にすることが可能になる。   According to the above configuration, the contact portion is configured by the friction member that frictionally engages with the driven body. Therefore, the friction member has a friction coefficient that is optimal for driving the driven body. By selecting the material, the driven body can be driven stably.

本発明に係る駆動装置では、上記振動体は、上記駆動源により振動する振動基材と、上記摩擦部材とからなり、上記摩擦部材は、球または円柱形状を有し、上記振動基材に接着されていることが好ましい。   In the drive device according to the present invention, the vibrating body includes a vibration base material that vibrates by the drive source and the friction member, and the friction member has a spherical or cylindrical shape and is bonded to the vibration base material. It is preferable that

上記の構成によれば、摩擦部材は、振動基材に接着され、その形状が球または円柱形状になっているので、曲率半径rと駆動半径Dとの比r/D=0.5になる。それゆえ、被駆動体に対して振動体が0.4°傾いて取り付けられても、被駆動体駆動中の側面の位置変化量を最小限に抑え、被駆動体を安定的に駆動させることが可能になる。   According to the above configuration, the friction member is bonded to the vibration base material, and the shape thereof is a sphere or a columnar shape, so the ratio r / D = 0.5 between the curvature radius r and the drive radius D is obtained. . Therefore, even if the vibrating body is mounted with an inclination of 0.4 ° with respect to the driven body, the amount of change in the position of the side surface during driving of the driven body is minimized and the driven body is driven stably. Is possible.

本発明に係る駆動装置では、上記振動基材には、上記摩擦部材を収容可能な窪み部が形成されていることが好ましい。   In the drive device according to the present invention, it is preferable that the vibration base material is formed with a recess capable of accommodating the friction member.

上記の構成によれば、摩擦部材は、振動基材の窪み部に収納・接着され、その形状が球または円柱形状になっているので、曲率半径rと駆動半径Dとの比r/Dを0.5以上設定することができる。それゆえ、被駆動体に対して振動体が0.4°以上傾いて取り付けられても、被駆動体駆動中の側面の位置変化量を最小限に抑え、被駆動体を安定的に駆動させることが可能になる。   According to the above configuration, the friction member is housed and bonded to the hollow portion of the vibration base material, and the shape thereof is a sphere or a columnar shape. Therefore, the ratio r / D between the curvature radius r and the drive radius D is set to It can be set to 0.5 or more. Therefore, even if the vibrating body is attached with an inclination of 0.4 ° or more with respect to the driven body, the positional change amount of the side surface during driving of the driven body is minimized, and the driven body is driven stably. It becomes possible.

本発明に係る駆動装置は、以上のように、上記接触部は、円形状を有し、該円形状の曲率半径をrとし、接触部の上記円弧状軌跡の半径を駆動半径Dとしたとき、曲率半径rと駆動半径Dとが、下記条件
0.5≦r/D≦1.5
を満たす構成である。
In the drive device according to the present invention, as described above, the contact portion has a circular shape, the radius of curvature of the circular shape is r, and the radius of the arc-shaped locus of the contact portion is the drive radius D. The radius of curvature r and the driving radius D satisfy the following conditions: 0.5 ≦ r / D ≦ 1.5
It is the composition which satisfies.

それゆえ、被駆動体に対して振動体が傾いて取り付けられても、被駆動体駆動中の側面の位置変化量を最小限に抑え、被駆動体を安定的に駆動させることが可能になる。   Therefore, even if the vibrating body is inclined with respect to the driven body, the amount of change in the position of the side surface during driving of the driven body can be minimized and the driven body can be driven stably. .

〔第1の実施の形態〕
本発明は、例えば、カメラの撮影レンズ等、光学装置におけるレンズの駆動に用いる駆動装置に関するものである。
[First Embodiment]
The present invention relates to a driving device used for driving a lens in an optical device such as a photographing lens of a camera, for example.

本発明の一実施形態について、図1ないし図3に基づいて説明すると以下の通りである。図1は、本実施形態の駆動装置(以下、本駆動装置と記す)の構成を示す斜視図である。なお、図1に示される駆動装置は、小型カメラモジュールのフォーカス調整機構に適用した最適の実施形態を示す。   An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a perspective view showing a configuration of a driving device (hereinafter referred to as the present driving device) of the present embodiment. The driving device shown in FIG. 1 shows an optimal embodiment applied to a focus adjustment mechanism of a small camera module.

まず、図1に示されているように、本駆動装置は、屈曲変位部材1A・1B、弾性部材(振動基材,振動体)2、摩擦部材(振動体,接触部)3、鏡筒(被駆動体)4、ガイド軸5、カメラモジュール筐体6、及び駆動回路(制御手段)7A・7Bを備えている。   First, as shown in FIG. 1, the driving device includes a bending displacement member 1 </ b> A / 1 </ b> B, an elastic member (vibrating base material, vibrating body) 2, a friction member (vibrating body, contact portion) 3, a lens barrel ( Driven body) 4, guide shaft 5, camera module housing 6, and drive circuits (control means) 7A and 7B.

本駆動装置では、弾性部材2が、屈曲変位部材1Aと屈曲変位部材1Bとの間を連結している。そして、弾性部材2には、鏡筒4と摩擦係合する摩擦部材3が連結されている。   In the present drive device, the elastic member 2 connects the bending displacement member 1A and the bending displacement member 1B. The elastic member 2 is connected to a friction member 3 that frictionally engages the lens barrel 4.

なお、「駆動方向変換部材(振動体)」とは、弾性部材2と摩擦部材3とからなる部材のことをいう。本駆動装置では、弾性部材2と摩擦部材3とが別々の部材として示されている。しかしながら、本発明において、駆動方向変換部材は、弾性部材2と摩擦部材3とが別々の部材となった構成に限定されない。   The “drive direction changing member (vibrating body)” refers to a member composed of the elastic member 2 and the friction member 3. In this drive device, the elastic member 2 and the friction member 3 are shown as separate members. However, in the present invention, the drive direction changing member is not limited to the configuration in which the elastic member 2 and the friction member 3 are separate members.

屈曲変位部材1A・1Bは、2つの圧電材料層22X・22Yがシム材を挟んで圧着された3層構造になった、バイモルフ構造の圧電素子である。そして、図1に示されるように、屈曲変位部材1A・1Bの一方の端部(本実施形態ではシム材の延長)が、カメラモジュール筐体6に接着やはめ込み等により固定されている。そして、他方の端部が、弾性部材2に連結されている。   The bending displacement members 1A and 1B are bimorph piezoelectric elements having a three-layer structure in which two piezoelectric material layers 22X and 22Y are pressure-bonded with a shim interposed therebetween. As shown in FIG. 1, one end of the bending displacement members 1 </ b> A and 1 </ b> B (extension of shim material in the present embodiment) is fixed to the camera module housing 6 by adhesion or fitting. The other end is connected to the elastic member 2.

弾性部材2は、金属または樹脂といった、比較的弾性率が低い材料で構成されている。また、本駆動装置では、摩擦部材3が鏡筒4と接触(摩擦係合)することで、鏡筒4が光軸方向に移動するようになっている。それゆえ、摩擦部材3の材料としては、金属、樹脂、カーボン等が挙げられ、鏡筒4との所望の摩擦係数により選択される。   The elastic member 2 is made of a material having a relatively low elastic modulus such as metal or resin. In the present drive device, the lens barrel 4 is moved in the optical axis direction when the friction member 3 comes into contact (friction engagement) with the lens barrel 4. Therefore, the material of the friction member 3 includes metal, resin, carbon and the like, and is selected according to a desired coefficient of friction with the lens barrel 4.

また、本駆動装置には、鏡筒4の光軸方向移動をガイドするガイド軸5が設けられている。そして、鏡筒4には、ガイド軸5が挿通する穴部が設けられている。ガイド軸5は、光軸方向に延びた棒状体であり、カメラモジュール筐体6の底部(あるいは天井部)に固定されている。また、ガイド軸5は、摩擦部材3と鏡筒4とが接触(摩擦係合)する位置に鏡筒4が位置するように支持する役割がある。本駆動装置では、摩擦部材3と鏡筒4との摩擦係合により、鏡筒4がガイド軸5に沿って、光軸方向に移動するようになっている。なお、本駆動装置において、鏡筒4は、ガイド軸5を挿通する穴部と一体的に形成されるものに限定されない。穴部を含む穴部材が別途鏡筒に接着された構成であってもよい。また、鏡筒4は、摩擦部材3との摩擦係合部分に、所望の摩擦係数を得るための摩擦調節部材が連結された(あるいは貼り付けられた)構成であってもよい。すなわち、ここでは、上記の穴部材、または摩擦調節部材を備えた構成も含めて、鏡筒と称する。   Further, the drive device is provided with a guide shaft 5 for guiding the movement of the lens barrel 4 in the optical axis direction. The lens barrel 4 is provided with a hole through which the guide shaft 5 is inserted. The guide shaft 5 is a rod-like body extending in the optical axis direction, and is fixed to the bottom (or ceiling) of the camera module housing 6. Further, the guide shaft 5 has a role of supporting the lens barrel 4 so that the lens barrel 4 is positioned at a position where the friction member 3 and the lens barrel 4 are in contact (friction engagement). In the present drive device, the lens barrel 4 is moved along the guide shaft 5 in the optical axis direction by frictional engagement between the friction member 3 and the lens barrel 4. In the present driving device, the lens barrel 4 is not limited to one that is formed integrally with the hole through which the guide shaft 5 is inserted. The hole member including the hole portion may be separately bonded to the lens barrel. Further, the lens barrel 4 may have a configuration in which a friction adjustment member for obtaining a desired friction coefficient is connected (or attached) to a friction engagement portion with the friction member 3. That is, here, the lens barrel including the configuration including the hole member or the friction adjusting member is referred to as a lens barrel.

屈曲変位部材1A・1Bはそれぞれ、駆動回路7A・7Bに接続されている。駆動回路7Aは、屈曲変位部材1Aに対し電圧等を印加することにより、屈曲変位部材1Aの屈曲変位を励起する。駆動回路7Bは、屈曲変位部材1Bに対し電圧等を印加することにより、屈曲変位部材1Bの屈曲変位を励起する。駆動回路7A・7Bは、上位の制御回路(図示せず)により制御されており、後述する駆動波形に応じた電圧を屈曲変位部材1A・1Bへ出力する。なお、「制御手段」とは、駆動回路7A・7Bとその上位の制御回路とを備えたもののことをいう。   The bending displacement members 1A and 1B are connected to the drive circuits 7A and 7B, respectively. The drive circuit 7A excites the bending displacement of the bending displacement member 1A by applying a voltage or the like to the bending displacement member 1A. The drive circuit 7B excites the bending displacement of the bending displacement member 1B by applying a voltage or the like to the bending displacement member 1B. The drive circuits 7A and 7B are controlled by an upper control circuit (not shown), and output a voltage corresponding to a drive waveform described later to the bending displacement members 1A and 1B. The “control means” refers to a device provided with the drive circuits 7A and 7B and a higher-level control circuit.

なお、制御手段による屈曲変位部材1A・1Bの屈曲変位の電気的制御は、電圧による制御に限定されない。例えば、屈曲変位部材1A・1Bとして、バイメタルや形状記憶合金を使用し、熱により屈曲変位を励起する場合、屈曲変位部材1A・1Bの屈曲変位の電気的制御は、電流の増減による制御になる。この場合、屈曲変位部材1A・1Bに流す電流の増減により屈曲変位部材1A・1Bの一部が発生する熱を制御して屈曲変位部材1A・1Bの温度を制御することになる。あるいは、ニクロム線やカンタル線等の発熱線等で構成された電流を流すことで熱を発生する熱発生手段を屈曲変位部材1A・1Bに近接して設け、熱発生手段に流す電流の増減により熱発生手段が発生する熱を制御して屈曲変位部材1A・1Bの温度を制御することになる。また、例えば、屈曲変位部材1A・1Bとして磁歪素子を使用し、磁界により屈曲変位を励起する場合、電磁石など電流を流すことで磁界を発生する磁界発生手段を設けて、その電流の増減を制御して屈曲変位部材1A・1Bに加える磁界を制御することになる。   Note that the electrical control of the bending displacement of the bending displacement members 1A and 1B by the control means is not limited to the voltage control. For example, when a bimetal or a shape memory alloy is used as the bending displacement members 1A and 1B and the bending displacement is excited by heat, the electrical control of the bending displacement of the bending displacement members 1A and 1B is control by increasing or decreasing the current. . In this case, the temperature of the bending displacement members 1A and 1B is controlled by controlling the heat generated by a part of the bending displacement members 1A and 1B by increasing and decreasing the current flowing through the bending displacement members 1A and 1B. Alternatively, a heat generating means for generating heat by supplying a current composed of a heating wire such as a nichrome wire or a Kanthal wire is provided close to the bending displacement members 1A and 1B, and by increasing or decreasing the current flowing to the heat generating means The temperature of the bending displacement members 1A and 1B is controlled by controlling the heat generated by the heat generating means. In addition, for example, when a magnetostrictive element is used as the bending displacement member 1A or 1B and the bending displacement is excited by a magnetic field, a magnetic field generating means for generating a magnetic field by passing an electric current such as an electromagnet is provided to control increase / decrease of the current. Thus, the magnetic field applied to the bending displacement members 1A and 1B is controlled.

また、図1には示されていないが、鏡筒4にはレンズ等の光学部品がはめ込まれており、鏡筒4の底部には、CCD等の撮像素子が配置されている。   Although not shown in FIG. 1, an optical component such as a lens is fitted in the lens barrel 4, and an imaging element such as a CCD is disposed at the bottom of the lens barrel 4.

本駆動装置では、屈曲変位部材1A・1B、弾性部材2、及び摩擦部材3から構成された駆動機構により、鏡筒4がガイド軸5に沿って駆動されるようになっている。これにより、鏡筒4にはめ込まれた光学部品が光軸方向に駆動され、焦点調整が行われる。なお、本実施形態では、鏡筒4が移動する被駆動体移動方向は、光軸方向と同義語として扱う。また、本明細書では、鏡筒4にはめ込まれた光学部品が物体を結像する方向(鏡筒4と物体とを結ぶ直線の方向)を「光軸方向」とする。   In the present driving device, the lens barrel 4 is driven along the guide shaft 5 by a driving mechanism including the bending displacement members 1 </ b> A and 1 </ b> B, the elastic member 2, and the friction member 3. As a result, the optical component fitted in the lens barrel 4 is driven in the optical axis direction, and focus adjustment is performed. In the present embodiment, the driven body moving direction in which the lens barrel 4 moves is treated as a synonym for the optical axis direction. In this specification, the direction in which the optical component fitted in the lens barrel 4 forms an object (the direction of a straight line connecting the lens barrel 4 and the object) is referred to as an “optical axis direction”.

次に、電気的制御により屈曲変位が励起される屈曲変位部材1A・1Bについて、説明する。屈曲変位部材1A・1Bの一例としては、例えば図2(a)・(b)に示されるバイモルフ構造の圧電素子が挙げられる。図2は、バイモルフ構造の圧電素子の構成を示し、図2(a)は側面図であり、図2(b)は、圧電素子の屈曲変位の様子を示す図である。   Next, the bending displacement members 1A and 1B in which the bending displacement is excited by electrical control will be described. As an example of the bending displacement members 1A and 1B, for example, a piezoelectric element having a bimorph structure shown in FIGS. FIG. 2 shows a configuration of a piezoelectric element having a bimorph structure, FIG. 2 (a) is a side view, and FIG. 2 (b) is a diagram showing a bending displacement of the piezoelectric element.

図2(a)・(b)に示される圧電素子は、一般的にセラミックス等からなる2つの圧電材料層22X・22Yと、金属からなるシム材(振動板)21とを備え、2つの圧電材料層22X・22Yがシム材21を挟んで圧着された3層構造になっている。そして、2つの電極20X・20Yが、この3層構造を挟んでいる。この2つの電極20X・20Yは、図示しない制御手段に接続されている。そして、シム材21の一端が固定支持されている(図2(a)・(b)において黒三角印で示された「固定点」)。なお、図2(a)・(b)では、圧電材料層22X・22Yと、及びシム材21からなる3層構造の積層方向を厚み方向としている。さらに、厚み方向において、圧電材料層22X側をX側とし、圧電材料層22Y側をY側としている。   The piezoelectric element shown in FIGS. 2A and 2B includes two piezoelectric material layers 22X and 22Y generally made of ceramics and the like, and a shim material (vibrating plate) 21 made of metal, and two piezoelectric elements. The material layers 22X and 22Y have a three-layer structure in which the shim material 21 is sandwiched between them. The two electrodes 20X and 20Y sandwich the three-layer structure. The two electrodes 20X and 20Y are connected to a control means (not shown). Then, one end of the shim material 21 is fixedly supported (“fixed point” indicated by a black triangle mark in FIGS. 2A and 2B). 2A and 2B, the stacking direction of the three-layer structure including the piezoelectric material layers 22X and 22Y and the shim material 21 is the thickness direction. Further, in the thickness direction, the piezoelectric material layer 22X side is the X side, and the piezoelectric material layer 22Y side is the Y side.

図2(a)・(b)に示す圧電素子では、制御手段から電極20X・20Yへ電圧が印加されると、圧電素子が厚み方向に屈曲変位するようになっている。   In the piezoelectric elements shown in FIGS. 2A and 2B, when a voltage is applied from the control means to the electrodes 20X and 20Y, the piezoelectric elements are bent and displaced in the thickness direction.

例えば、圧電材料層22Xは、電極20Xとシム材21との間の電圧が正になった場合に縮小し、電極20Xとシム材21との間の電圧が負になった場合に伸長するように分極されている。また、圧電材料層22Yは、電極20Yとシム材21との間の電圧が正になった場合に伸長し、電極20Yとシム材21との間に電圧が負になった場合に縮小するように分極されている。   For example, the piezoelectric material layer 22X shrinks when the voltage between the electrode 20X and the shim material 21 becomes positive, and expands when the voltage between the electrode 20X and the shim material 21 becomes negative. Is polarized. Further, the piezoelectric material layer 22Y expands when the voltage between the electrode 20Y and the shim material 21 becomes positive, and contracts when the voltage between the electrode 20Y and the shim material 21 becomes negative. Is polarized.

上記のように分極された圧電材料層22X・22Yに対し、制御手段が電圧を印加した場合について説明する。図2(c)に示すように、制御手段は、電極20X・20Yとシム材21との間(図2(c)中のア−イ間)に、正の電圧を印加するようになっている。そして、シム材21における黒三角印で示した部分が固定されている。この場合、同図に示すように、圧電素子は、厚み方向X側に屈曲変位する。一方、図示していないが、制御手段がア−イ間に負の電圧を印加すると、圧電素子は、厚み方向Y側に屈曲変位する。   A case where the control means applies a voltage to the piezoelectric material layers 22X and 22Y polarized as described above will be described. As shown in FIG. 2 (c), the control means applies a positive voltage between the electrodes 20X and 20Y and the shim material 21 (between the arrows in FIG. 2 (c)). Yes. And the part shown by the black triangle mark in the shim material 21 is being fixed. In this case, as shown in the figure, the piezoelectric element is bent and displaced in the thickness direction X side. On the other hand, although not shown, when the control means applies a negative voltage between the arrows, the piezoelectric element is bent and displaced in the thickness direction Y side.

このように、図2(a)・(b)に示された圧電素子は、制御手段による電圧印加により屈曲変位するようになっている。なお、本発明の駆動装置における屈曲変位部材は、図2(a)・(b)に示された圧電素子に限定されず、電気的制御により屈曲変位を制御することが可能な構造を有する部材であればよい。例えば、屈曲変位部材としては、1つの圧電材料層とシム材とで構成されたモノモルフ構造の圧電素子が挙げられる。モノモルフ構造の圧電素子は、バイモルフ構造の圧電素子と同様の動作概念で、電気的制御による屈曲変位が可能である。   As described above, the piezoelectric element shown in FIGS. 2A and 2B is bent and displaced by voltage application by the control means. The bending displacement member in the driving device of the present invention is not limited to the piezoelectric element shown in FIGS. 2A and 2B, and has a structure capable of controlling the bending displacement by electrical control. If it is. For example, as the bending displacement member, a monomorph structure piezoelectric element composed of one piezoelectric material layer and a shim material can be cited. The monomorph structure piezoelectric element can be flexibly displaced by electrical control with the same operation concept as the bimorph structure piezoelectric element.

本発明の駆動装置における屈曲変位部材は、以上のように、電圧の印加等の電気的制御により屈曲変位する部材を指しており、その構造はもちろん、厚み、長さ、幅などの寸法や形状に限定をうけるものではない。   As described above, the bending displacement member in the drive device of the present invention refers to a member that is bent and displaced by electrical control such as application of voltage, and of course, its structure and dimensions and shape such as thickness, length, and width. Is not limited to.

以下、説明を簡単にするために、電気的制御により屈曲変位が励起される屈曲変位部材を単に「屈曲変位部材」と称することにする。   Hereinafter, in order to simplify the description, a bending displacement member whose bending displacement is excited by electrical control is simply referred to as a “bending displacement member”.

また、本明細書では、屈曲変位部材が駆動装置内に配置されているとき、被駆動体の移動方向を被駆動体移動方向あるいは(屈曲変位部材の)幅方向と呼び、屈曲変位部材が屈曲する方向を屈曲方向あるいは(屈曲変位部材の)厚み方向とよび、被駆動体移動方向(幅方向)に直交しかつ屈曲方向(厚み方向)に直交する方向を(屈曲変位部材の)長さ方向と呼ぶ。これは、屈曲変位部材の寸法や屈曲変位部材の固定部の位置に影響されるものではない。   Further, in this specification, when the bending displacement member is disposed in the driving device, the moving direction of the driven body is referred to as the driven body moving direction or the width direction (of the bending displacement member), and the bending displacement member is bent. Direction to be bent is referred to as a bending direction or a thickness direction (of the bending displacement member), and a direction perpendicular to the driven body movement direction (the width direction) and orthogonal to the bending direction (thickness direction) is the length direction (of the bending displacement member) Call it. This is not affected by the size of the bending displacement member or the position of the fixing portion of the bending displacement member.

また、図1に示されるカメラモジュール筐体6は、屈曲変位部材1A・1B、弾性部材2、摩擦部材3、鏡筒4、及びガイド軸5を収容する部材である。本駆動装置では、カメラモジュール筐体6は、直方体形状になっており、側壁6a〜6dを有している。図3に示されるように、屈曲変位部材1A・1Bは、カメラモジュール筐体6の側壁6c・6dに沿って配置されている。また、屈曲変位部材1A・1Bは、屈曲変位部材1A上の任意の1点(例えば図3に示されたS点)と、屈曲変位部材1B上の任意の1点(例えば図3に示されたT点)とを結ぶ直線のうち、鏡筒4を通過する直線(例えばS点とT点とを結ぶ直線)が少なくとも1つ存在するように配置されている。また、弾性部材2及び摩擦部材3は、屈曲変位部材1A・1Bにより形成されたコーナー部に配されている。   A camera module housing 6 shown in FIG. 1 is a member that accommodates the bending displacement members 1A and 1B, the elastic member 2, the friction member 3, the lens barrel 4, and the guide shaft 5. In the present drive device, the camera module housing 6 has a rectangular parallelepiped shape and includes side walls 6a to 6d. As shown in FIG. 3, the bending displacement members 1 </ b> A and 1 </ b> B are disposed along the side walls 6 c and 6 d of the camera module housing 6. In addition, the bending displacement members 1A and 1B include any one point on the bending displacement member 1A (for example, point S shown in FIG. 3) and any one point on the bending displacement member 1B (for example, shown in FIG. 3). Are arranged so that there is at least one straight line passing through the lens barrel 4 (for example, a straight line connecting the S point and the T point). Further, the elastic member 2 and the friction member 3 are arranged at a corner portion formed by the bending displacement members 1A and 1B.

このように本駆動装置では、屈曲変位部材1A・1Bがカメラモジュール筐体6の側壁に沿って配置され、空間的余裕があるコーナー部に弾性部材2及び摩擦部材3が配されているので、駆動機構の配置にカメラモジュール筐体6内の空間を有効利用することができ、駆動装置の小型化が可能になる。   As described above, in the present driving device, the bending displacement members 1A and 1B are arranged along the side wall of the camera module housing 6, and the elastic member 2 and the friction member 3 are arranged at the corner portion having a spatial margin. The space in the camera module housing 6 can be effectively used for the arrangement of the drive mechanism, and the drive device can be downsized.

本駆動装置では、屈曲変位部材1A・1Bの屈曲変位方向と垂直な方向に鏡筒4が駆動するように、屈曲変位部材1A・1B、弾性部材2、及び摩擦部材3が配置されている。以下、本駆動装置における、屈曲変位部材1A・1B、弾性部材2、及び摩擦部材3の位置関係、及び鏡筒4の駆動動作原理について説明する。   In this drive device, the bending displacement members 1A and 1B, the elastic member 2, and the friction member 3 are arranged so that the lens barrel 4 is driven in a direction perpendicular to the bending displacement direction of the bending displacement members 1A and 1B. Hereinafter, the positional relationship between the bending displacement members 1A and 1B, the elastic member 2, and the friction member 3 and the principle of driving operation of the lens barrel 4 in the present driving device will be described.

(位置関係)
図3(a)は、本駆動装置における、屈曲変位部材1A・1B、弾性部材2、及び摩擦部材3の位置関係を示した側面図である。また、図3(b)は、本駆動装置の構成を示した平面図である。図3(a)では、屈曲変位部材1Aと弾性部材2とが連結する点を連結点A(図中X印で示している)とし、屈曲変位部材1Bと弾性部材2とが連結する点を連結点B(図中X印で示している)としている。また、屈曲変位部材1A及び1Bの中心を通過し、かつ長さ方向に平行な線を仮想線(第1の直線)L1としている。また、この仮想線L1は、摩擦部材3を通過している。また、この仮想線L1は、連結点A及び連結点Bを含む面内にあり、かつ被駆動体の駆動方向と垂直な方向に延びた直線であるともいえる。
(Position relationship)
FIG. 3A is a side view showing the positional relationship among the bending displacement members 1A and 1B, the elastic member 2, and the friction member 3 in the present driving device. FIG. 3B is a plan view showing the configuration of the present driving device. In FIG. 3A, a point where the bending displacement member 1A and the elastic member 2 are connected is a connection point A (indicated by X in the drawing), and a point where the bending displacement member 1B and the elastic member 2 are connected is shown. The connecting point B (shown by X in the figure) is shown. A line passing through the centers of the bending displacement members 1A and 1B and parallel to the length direction is defined as a virtual line (first straight line) L1. The imaginary line L1 passes through the friction member 3. Further, it can be said that the imaginary line L1 is a straight line that is in a plane including the connection point A and the connection point B and extends in a direction perpendicular to the drive direction of the driven body.

図3(a)に示されるように、屈曲変位部材1A・1Bはともに、仮想線L1上に並んで配されている。言い換えれば、屈曲変位部材1Aの中心を通過し長さ方向に平行な線と、屈曲変位部材1Bの中心を通過し長さ方向に平行な線とが、同一の仮想線L1で重複しているような配置である。   As shown in FIG. 3A, both the bending displacement members 1A and 1B are arranged side by side on the virtual line L1. In other words, a line passing through the center of the bending displacement member 1A and parallel to the length direction overlaps with a line passing through the center of the bending displacement member 1B and parallel to the length direction by the same virtual line L1. It is such an arrangement.

また、連結点A及び連結点Bは、これら2点を結ぶ仮想線ABが、仮想線L1と交差するように配置されている。また、同図に示すように、連結点Aは、仮想線L1に対し、上側に配置されている。一方、連結点Bは、仮想線L1に対し、下側に配置されている。   Further, the connection point A and the connection point B are arranged such that a virtual line AB connecting these two points intersects the virtual line L1. Further, as shown in the figure, the connection point A is arranged on the upper side with respect to the virtual line L1. On the other hand, the connection point B is arranged below the virtual line L1.

また、摩擦部材3は、連結点Aと連結点Bとを結ぶ仮想線AB上に配されている。すなわち、摩擦部材3における鏡筒4との接触部は、仮想線ABの任意の点を通過し、かつ連結点A及びBを含む面に対し垂直な直線を第2の直線L1’としたとき、この第2の直線L1’を通過するように配されている。   Further, the friction member 3 is arranged on an imaginary line AB connecting the connection point A and the connection point B. That is, when the contact portion of the friction member 3 with the lens barrel 4 passes through an arbitrary point of the virtual line AB and a straight line perpendicular to the plane including the connection points A and B is defined as the second straight line L1 ′. The second straight line L1 ′ is arranged so as to pass through.

また、図3(b)に示したように、屈曲変位部材1Aは、屈曲変位方向Aと称した矢印の方向に変位するので、弾性部材2の連結点Aには弾性部材変位方向Aと称した矢印の方向に変位ベクトルが励起される。また、屈曲変位部材1Bは、屈曲変位方向Bと称した矢印の方向に変位するので、弾性部材2の連結点Bには弾性部材変位方向B称した矢印の方向に変位ベクトルが励起される(つまり図3(a)の連結点A・Bには紙面と垂直な方向に変位ベクトルが励起される)。なお、連結点A・Bには上記以外の方向にも変位ベクトルが励起されるが、駆動との関係は小さいため説明を省略する。   Further, as shown in FIG. 3B, the bending displacement member 1A is displaced in the direction of the arrow referred to as the bending displacement direction A, so that the connecting point A of the elastic member 2 is referred to as the elastic member displacement direction A. A displacement vector is excited in the direction of the arrow indicated. Further, since the bending displacement member 1B is displaced in the direction of the arrow referred to as the bending displacement direction B, a displacement vector is excited at the connection point B of the elastic member 2 in the direction of the arrow referred to as the elastic member displacement direction B ( That is, a displacement vector is excited in the direction perpendicular to the paper surface at the connection points A and B in FIG. In addition, although the displacement vector is excited in directions other than the above at the connection points A and B, since the relationship with the drive is small, the description is omitted.

以下、本駆動装置における、駆動回路7A・7Bを備えた制御手段による駆動電圧波形と、この駆動電圧波形に基づく鏡筒4の光軸方向駆動動作原理について説明する。   Hereinafter, the driving voltage waveform by the control means including the driving circuits 7A and 7B and the principle of the optical axis direction driving operation of the lens barrel 4 based on the driving voltage waveform in this driving device will be described.

(動作原理)
摩擦部材3の先端(鏡筒4に摩擦係合する部分)を円弧駆動させて鏡筒4を光軸方向に駆動させる動作例について説明する。図4は、2枚の屈曲変位部材1A・1Bに印加される駆動電圧波形を示すグラフである。図5(a)・(b)は、図4に示された駆動電圧波形に基づく摩擦部材3の先端部の円弧駆動を説明するための説明図である。図5は、図2(b)の矢印Vの方向からみた図である。
(Operating principle)
An operation example in which the tip of the friction member 3 (the portion that frictionally engages the lens barrel 4) is driven in an arc and the lens barrel 4 is driven in the optical axis direction will be described. FIG. 4 is a graph showing drive voltage waveforms applied to the two bending displacement members 1A and 1B. FIGS. 5A and 5B are explanatory diagrams for explaining the arc driving of the tip of the friction member 3 based on the driving voltage waveform shown in FIG. FIG. 5 is a diagram seen from the direction of the arrow V in FIG.

図4においては、屈曲変位部材1Aに印加される駆動電圧波形を波形Aとし、屈曲変位部材1Bに印加される駆動電圧波形を波形Bとしている。なお、波形A及びBの駆動電圧波形はそれぞれ、駆動回路7A及び7Bから出力される。同図に示されるように、波形Aと波形Bとは、のこぎり状の駆動電圧波形になっており、相対的に位相が180度ずれた信号波形になっている。ここで、図4に示された波形A・Bの(i)〜(v)の時点に対応する連結点A及びBの状態を図5(a)・(b)に示す。   In FIG. 4, the drive voltage waveform applied to the bending displacement member 1A is waveform A, and the driving voltage waveform applied to the bending displacement member 1B is waveform B. The drive voltage waveforms of waveforms A and B are output from drive circuits 7A and 7B, respectively. As shown in the figure, the waveform A and the waveform B are sawtooth drive voltage waveforms, and are signal waveforms that are relatively 180 degrees out of phase. Here, the states of the connection points A and B corresponding to the time points (i) to (v) of the waveforms A and B shown in FIG. 4 are shown in FIGS.

図5(a)・(b)に示されるように、波形A・Bを駆動すると、連結点A及びBの位置は、(i)〜(v)に推移する。つまり、連結点A及びBは、図4の(i)の時点では図5(a)の(i)の状態になり、図4の(ii)の時点では図5(a)の(ii)の状態になり、図4の(iii)の時点では図5(a)・(b)の(iii)の状態になり、図4の(iv)の時点では図5(b)の(iv)の状態になり、図4の(v)の時点では図5(b)の(v)の状態になっている。連結点A及びBが、図5(a)・(b)に示された(i)〜(v)の状態に推移し変位することで、摩擦部材3の先端部は、図示したように円弧駆動されることになる。   As shown in FIGS. 5A and 5B, when the waveforms A and B are driven, the positions of the connection points A and B change from (i) to (v). That is, the connection points A and B are in the state (i) of FIG. 5 (a) at the time (i) in FIG. 4, and (ii) in FIG. 5 (a) at the time (ii) in FIG. 4 (iii) at the time of FIG. 4 (iii) in the state of (iii) of FIG. 5 (a), (b), and (iv) of FIG. 5 (b) at the time of (iv) of FIG. In this state, the state of (v) in FIG. 5 (b) is reached at the time of (v) in FIG. As the connecting points A and B shift to the states (i) to (v) shown in FIGS. 5 (a) and 5 (b) and are displaced, the tip of the friction member 3 becomes a circular arc as shown in the figure. Will be driven.

このとき、摩擦部材3の先端は、図4に示されるのこぎり状の駆動電圧波形により円弧駆動されるため、駆動方向の角速度と逆駆動方向の角速度とに差が生じる(すなわち、(i)〜(iii)の状態へ推移する角速度は相対的に遅くなる一方、(iii)〜(v)の状態へ推移する角速度は相対的に速くなる)。   At this time, the tip of the friction member 3 is circularly driven by the sawtooth drive voltage waveform shown in FIG. 4, so that a difference occurs between the angular velocity in the driving direction and the angular velocity in the reverse driving direction (that is, (i) to While the angular velocity transitioning to the state (iii) is relatively slow, the angular velocity transitioning to the states (iii) to (v) is relatively high.

また、駆動電圧波形を適宜設定することで、摩擦部材3の先端が駆動方向の角加速度と逆駆動方向の角加速度とに差が生じるようにすることもできる。すなわち、(i)〜(iii)の状態へ推移する(駆動方向)角加速度が相対的に遅くなる一方、(iii)〜(v)の状態へ推移する(逆駆動方向)角加速度が相対的に速くなるように、駆動電圧波形を設定することが可能である。それゆえ、摩擦部材3の摩擦係数などを調整することにより、駆動方向において、摩擦部材3と鏡筒4の接点とに加わる力が摩擦部材3と鏡筒4との間の静摩擦力を超えることができず、摩擦部材3の先端が鏡筒4を滑らなくなるようにすることができる。一方、逆駆動方向において、摩擦部材3と鏡筒4の接点とに加わる力が摩擦部材3と鏡筒4との間の静摩擦力を上回るため、摩擦部材3の先端が鏡筒4を滑るようにすることができる。そして、結果として、駆動方向の駆動力と逆駆動方向の駆動力とに差が生じ、鏡筒4が駆動方向に駆動されることになる。   In addition, by appropriately setting the driving voltage waveform, the tip of the friction member 3 can be made to have a difference between the angular acceleration in the driving direction and the angular acceleration in the reverse driving direction. That is, the angular acceleration that transitions to the states (i) to (iii) (driving direction) is relatively slow, while the angular acceleration that transitions to the states (iii) to (v) (reverse driving direction) is relatively The drive voltage waveform can be set so as to be faster. Therefore, by adjusting the friction coefficient of the friction member 3 and the like, the force applied to the contact between the friction member 3 and the lens barrel 4 exceeds the static friction force between the friction member 3 and the lens barrel 4 in the driving direction. It is possible to prevent the tip of the friction member 3 from sliding on the lens barrel 4. On the other hand, in the reverse drive direction, the force applied to the contact between the friction member 3 and the lens barrel 4 exceeds the static friction force between the friction member 3 and the lens barrel 4, so that the tip of the friction member 3 slides on the lens barrel 4. Can be. As a result, a difference occurs between the driving force in the driving direction and the driving force in the reverse driving direction, and the lens barrel 4 is driven in the driving direction.

また、駆動方向及び逆駆動方向の両方において、摩擦部材3の先端が鏡筒4を滑るように摩擦係数などを調整することが可能である。この場合、駆動方向の駆動力、及び逆駆動方向の駆動力は、動摩擦力で決定され同じ力となる。しかしながら、図14に示された駆動電圧波形により駆動方向の変位時間が長く、逆駆動方向の変位時間が短く設定されているため、駆動方向の動摩擦力が作用している時間の方が逆駆動方向の動摩擦力が作用している時間よりも長くなる。それゆえ、結果として、鏡筒4は、駆動方向に駆動される。   Further, it is possible to adjust the friction coefficient and the like so that the tip of the friction member 3 slides on the lens barrel 4 in both the driving direction and the reverse driving direction. In this case, the driving force in the driving direction and the driving force in the reverse driving direction are determined by the dynamic friction force and become the same force. However, the drive voltage waveform shown in FIG. 14 sets the displacement time in the drive direction to be long and the displacement time in the reverse drive direction to be short. Therefore, the time during which the dynamic frictional force in the drive direction is applied is reverse driven. It becomes longer than the time when the dynamic frictional force of the direction is acting. Therefore, as a result, the lens barrel 4 is driven in the driving direction.

また、上記のように連結点Aの中心と連結点Bの中心を結んだ仮想線が、長さ方向と平行な仮想線と交わるように(理想的には直交するように)弾性部材が連結されているので、屈曲変位部材1A・1Bの変位により摩擦部材の先端を光軸方向に回転駆動あるいは円弧(直線)駆動させることができる。そして、2枚の屈曲変位部材1A・1Bの連結部をコーナーにして(理想的には90度に)折り曲げ配置し、2枚の屈曲変位部材によって作られる仮想的な扇形空間領域内に鏡筒4の一部を配置し、筐体6の壁面に屈曲変位部材1A・1Bを配置することで駆動装置の小型化、低背化が可能となる。このとき、完全に筐体6の壁面に沿う必要はなく、モジュール筐体6内の空き空間に応じて適宜配置すればよいことは言うまでもない。   In addition, the elastic member is connected so that the virtual line connecting the center of the connection point A and the center of the connection point B intersects the virtual line parallel to the length direction as described above (ideally orthogonally). Therefore, the tip of the friction member can be rotationally driven or driven in a circular arc (straight line) in the optical axis direction by the displacement of the bending displacement members 1A and 1B. Then, the connecting portion of the two bending displacement members 1A and 1B is bent at a corner (ideally 90 degrees), and the lens barrel is placed in a virtual sector space region formed by the two bending displacement members. 4 is disposed, and the bending displacement members 1A and 1B are disposed on the wall surface of the housing 6, whereby the drive device can be reduced in size and height. At this time, it is not necessary to completely follow the wall surface of the housing 6, and it goes without saying that it may be appropriately arranged according to the empty space in the module housing 6.

本駆動装置では、摩擦部材3における鏡筒4との接触部(摩擦係合部分)が円形状になっており、この円形状の曲率半径rと摩擦部材3の駆動半径Dとが、下記条件
0.5≦r/D≦1.5
を満たすことを特徴としている。
In the present drive device, the contact portion (friction engagement portion) of the friction member 3 with the lens barrel 4 is circular, and the circular curvature radius r and the drive radius D of the friction member 3 satisfy the following conditions. 0.5 ≦ r / D ≦ 1.5
It is characterized by satisfying.

上記条件のように、曲率半径rと駆動半径Dとが設定されていることにより、振動体としての弾性部材2が鏡筒4に対し傾斜して取り付けられた場合であっても、鏡筒4を安定的に駆動させることが可能になる。以下、鏡筒4の安定的駆動のための上記条件について、さらに詳述する。   Since the curvature radius r and the drive radius D are set as in the above condition, the lens barrel 4 can be used even when the elastic member 2 as a vibrating body is attached to the lens barrel 4 at an inclination. Can be driven stably. Hereinafter, the above conditions for stable driving of the lens barrel 4 will be described in more detail.

(鏡筒4の安定化駆動のための条件)
図6は、弾性部材2の振動、及びそれに伴い振動する摩擦部材3の接触部3aの軌跡を模式的に示した模式図である。なお、図6では、摩擦部材3の接触部3aの軌跡を2L(破線)として示している。そして、位置4b(実線)は、弾性部材2が理想的に取り付けられているときの鏡筒4側面の位置を示している。また、位置4bにある鏡筒4側面と円弧軌跡2Lの中心Oとの距離をDとしている。このDは、図6に示されるように、円弧軌跡2Lの半径であり、以下駆動半径とする。
(Conditions for stabilizing driving of the lens barrel 4)
FIG. 6 is a schematic diagram schematically showing the vibration of the elastic member 2 and the locus of the contact portion 3a of the friction member 3 that vibrates with the elastic member 2. As shown in FIG. In addition, in FIG. 6, the locus | trajectory of the contact part 3a of the friction member 3 is shown as 2L (broken line). A position 4b (solid line) indicates the position of the side surface of the lens barrel 4 when the elastic member 2 is ideally attached. Further, D is a distance between the side surface of the lens barrel 4 at the position 4b and the center O of the arc locus 2L. As shown in FIG. 6, D is the radius of the arc locus 2L, and is hereinafter referred to as a drive radius.

また、図6における位置4b’(細線)は、弾性部材2が鏡筒4に対し角度θ傾けて取り付けられた場合の鏡筒4側面の位置を示している。また、角度θ’は、弾性部材2が取り付け角度θで取り付けられた場合における、摩擦部材3が弾性部材2の振動により円弧駆動する角度を示す。そして、位置4b’’(細線)は、摩擦部材3が角度θ’で円弧駆動している場合における鏡筒4側面の位置を示している。なお、接触箇所4a,4a’,及び4a’’はそれぞれ、鏡筒4側面が位置4b、4b’、及び4b’’にあるときの接触部3aとの接触箇所を示している。rは、摩擦部材3の接触部3aの曲率半径を示している。   A position 4 b ′ (thin line) in FIG. 6 indicates the position of the side surface of the lens barrel 4 when the elastic member 2 is attached to the lens barrel 4 at an angle θ. Further, the angle θ ′ indicates an angle at which the friction member 3 is driven in a circular arc by vibration of the elastic member 2 when the elastic member 2 is attached at the attachment angle θ. A position 4 b ″ (thin line) indicates the position of the side surface of the lens barrel 4 when the friction member 3 is arc-driven at an angle θ ′. Note that the contact locations 4a, 4a ', and 4a "indicate contact locations with the contact portion 3a when the side surface of the lens barrel 4 is at the positions 4b, 4b', and 4b", respectively. r indicates the radius of curvature of the contact portion 3 a of the friction member 3.

図6に示されるように、弾性部材2の振動により摩擦部材3が円弧駆動することで、鏡筒4側面は、位置変化する。例えば、取り付け角度θで弾性部材2が取り付けられた構成で、弾性部材2の振動により摩擦部材3が角度θ’だけ円弧駆動した場合について考える。この場合、鏡筒4側面は、位置4b’から位置4b’’へ変化する。   As shown in FIG. 6, the side surface of the lens barrel 4 is changed by the circular movement of the friction member 3 by the vibration of the elastic member 2. For example, consider a case where the elastic member 2 is attached at the attachment angle θ, and the friction member 3 is driven in an arc by an angle θ ′ due to vibration of the elastic member 2. In this case, the side surface of the lens barrel 4 changes from the position 4 b ′ to the position 4 b ″.

ここで、円弧軌跡2Lの中心Oを通過し鏡筒4側面に平行な線を基準線Tとした場合、上記位置4b’は、該基準線Tからの位置として、下記式(1)のように表わすことができる。
(D−r)×cosθ+r (1)
同様に、上記位置4b’’は、下記式(2)のように表わすことができる。
(D−r)×cos(θ+θ’)+r (2)
従って、取り付け角度θで弾性部材2が取り付けられた構成で、弾性部材2の振動により摩擦部材3が角度θ’だけ円弧駆動したとき、鏡筒4側面の位置変化量は、下記式(3)のように表わすことができる。
{(D−r)×cosθ+r}−{(D−r)×cos(θ+θ’)+r} (3)
上記位置変化量は、摩擦部材3の接触部3aと鏡筒4側面との接触状態を示す指標とすることができる。すなわち、上記位置変化量が小さければ小さいほど、摩擦部材3の接触部3aと鏡筒4側面との接触状態変化が少なくし、安定的に鏡筒4を駆動することができる。
Here, when the reference line T is a line that passes through the center O of the arc locus 2L and is parallel to the side surface of the lens barrel 4, the position 4b ′ is expressed by the following equation (1) as a position from the reference line T. Can be expressed as
(D−r) × cos θ + r (1)
Similarly, the position 4b ″ can be expressed as the following formula (2).
(D−r) × cos (θ + θ ′) + r (2)
Therefore, when the elastic member 2 is attached at the attachment angle θ, and the friction member 3 is driven by an arc θ ′ by the vibration of the elastic member 2, the position change amount on the side surface of the lens barrel 4 is expressed by the following equation (3). It can be expressed as
{(D−r) × cos θ + r} − {(D−r) × cos (θ + θ ′) + r} (3)
The position change amount can be used as an index indicating a contact state between the contact portion 3a of the friction member 3 and the side surface of the lens barrel 4. That is, the smaller the position change amount, the smaller the change in the contact state between the contact portion 3a of the friction member 3 and the side surface of the lens barrel 4, and the lens barrel 4 can be driven stably.

図7は、摩擦部材3の駆動半径Dと接触部3aの曲率半径rとの比r/D、及び上記位置変化量の関係を示すグラフである。図7では、鏡筒4側面に対する弾性部材2の取り付け角度θを0°,0.4°,1°,1.5°,2°,及び2.5°に変化させたときの、比r/Dと上記位置変化量の関係を示している。なお、図7のグラフは、弾性部材2の振動により摩擦部材3が円弧駆動する角度θ’を±1°としている。   FIG. 7 is a graph showing the relationship between the ratio r / D between the driving radius D of the friction member 3 and the curvature radius r of the contact portion 3a and the position change amount. In FIG. 7, the ratio r when the attachment angle θ of the elastic member 2 with respect to the side surface of the lens barrel 4 is changed to 0 °, 0.4 °, 1 °, 1.5 °, 2 °, and 2.5 °. The relationship between / D and the position change amount is shown. In the graph of FIG. 7, the angle θ ′ at which the friction member 3 is driven in a circular arc by the vibration of the elastic member 2 is ± 1 °.

図7に示されるように、比r/D=1のとき、取り付け角度θをどの角度に変化させても、位置変化量は0になっている。そして、比r/Dが1から離れた値になればなるほど、位置変化量が大きくなっている。さらに、取り付け角度θを大きくするに従い、位置変化量が大きくなっている。   As shown in FIG. 7, when the ratio r / D = 1, the amount of change in position is 0 regardless of the angle at which the attachment angle θ is changed. The position change amount increases as the ratio r / D becomes a value farther from 1. Further, as the attachment angle θ is increased, the position change amount is increased.

図7に示された比r/Dと位置変化量との関係から、位置変化量は、取り付け角度θ、及び比r/Dが設定されれば、一意的に求まるようになっている。それゆえ、鏡筒4を安定的に駆動可能な鏡筒4側面の位置変化量の範囲を求めれば、この範囲に基づいて、取り付け角度θに見合った比r/Dを適宜設定することが可能になる。   From the relationship between the ratio r / D and the position change amount shown in FIG. 7, the position change amount can be obtained uniquely when the mounting angle θ and the ratio r / D are set. Therefore, if the range of the position change amount of the side surface of the lens barrel 4 capable of stably driving the lens barrel 4 is obtained, the ratio r / D corresponding to the mounting angle θ can be appropriately set based on this range. become.

(鏡筒4を安定的に駆動することが可能な位置変化量の範囲)
本願発明者は、上記の点に着目し、位置変化量がどの程度の範囲であれば、鏡筒4を安定的に駆動可能であるのかを実験した。この実験で用いた鏡筒4の駆動機構を図8(a)及び図8(b)に示す。
(Range of position change amount capable of stably driving the lens barrel 4)
The inventor of the present application pays attention to the above points and experimented to what extent the amount of change in position can stably drive the lens barrel 4. The driving mechanism of the lens barrel 4 used in this experiment is shown in FIGS. 8 (a) and 8 (b).

実験に用いた鏡筒4の駆動機構は、図3(a)及び図3(b)に示された屈曲変位部材1A・1B、弾性部材2、及び摩擦部材3による駆動機構と類似している。しかしながら、図8(b)に示されるように、実験に用いた駆動機構では、屈曲変位部材21A・21B、及び弾性部材2が同一平面上に配された構成になっている。そして、弾性部材2に、摩擦部材3が鏡筒4と接触可能に設けられている。図8(a)及び図8(b)に示された駆動機構であっても、鏡筒4を駆動方向(図8紙面に対し垂直方向)に駆動させることが可能である。   The driving mechanism of the lens barrel 4 used in the experiment is similar to the driving mechanism using the bending displacement members 1A and 1B, the elastic member 2, and the friction member 3 shown in FIGS. 3 (a) and 3 (b). . However, as shown in FIG. 8B, the drive mechanism used in the experiment has a configuration in which the bending displacement members 21A and 21B and the elastic member 2 are arranged on the same plane. A friction member 3 is provided on the elastic member 2 so as to be in contact with the lens barrel 4. Even with the drive mechanism shown in FIGS. 8A and 8B, the lens barrel 4 can be driven in the drive direction (perpendicular to the paper surface of FIG. 8).

実験では、図8に示された屈曲変位部材21A・21Bの端部を位置31で固定し、上述した駆動原理に従って鏡筒4を駆動させた。そして、駆動時の鏡筒4の速度を測定し、その変化をみることで鏡筒4の駆動安定性を調べた。なお、実験条件は、摩擦部材3の接触部3aの曲率半径r=0.3mm,摩擦部材3の駆動半径D=5.6mm(比r/D=0.05),取り付け角度θ=0°である。   In the experiment, the ends of the bending displacement members 21A and 21B shown in FIG. 8 were fixed at the position 31, and the lens barrel 4 was driven according to the driving principle described above. Then, the driving stability of the lens barrel 4 was examined by measuring the speed of the lens barrel 4 during driving and observing the change. The experimental conditions were as follows: the radius of curvature r of the contact portion 3a of the friction member 3 is 0.3 mm, the drive radius D of the friction member 3 is 5.6 mm (ratio r / D = 0.05), and the mounting angle θ = 0 °. It is.

図8に示された駆動機構により駆動される鏡筒4の速度を測定した結果を図9に示す。図9は、鏡筒4の速度(speed(mm/s))を縦軸とし、駆動電圧波形の周波数(Frequency(kHz))を横軸としている。そして、実験では、駆動方向前方へ駆動させたときの鏡筒4の速度(Speed(Fwd))と駆動方向後方へ駆動させたときの鏡筒4の速度(Speed(Rev))とを測定した。   FIG. 9 shows the result of measuring the speed of the lens barrel 4 driven by the drive mechanism shown in FIG. In FIG. 9, the vertical axis represents the speed (speed (mm / s)) of the lens barrel 4, and the horizontal axis represents the frequency (Frequency (kHz)) of the drive voltage waveform. In the experiment, the speed (Speed (Fwd)) of the lens barrel 4 when driven forward in the driving direction and the speed (Speed (Rev)) of the lens barrel 4 when driven backward in the driving direction were measured. .

図9に示されるように、比r/D=0.05,取り付け角度θ=0°の実験条件下で、鏡筒4は、その駆動方向で速度変化が少なく、安定的に駆動していることがわかる。また、図7のグラフを参照すると、比r/D=0.05,取り付け角度θ=0°のとき、位置変化量は0.72μmであることがわかる。つまり、本駆動装置においては、鏡筒4側面の位置変化量を0.72μmに抑えておけば、鏡筒4の駆動の安定性を損なわないことがわかる。さらに言い換えると、鏡筒4を安定的に駆動することが可能な位置変化量の範囲の上限は、0.72μmである。   As shown in FIG. 9, under the experimental conditions of the ratio r / D = 0.05 and the mounting angle θ = 0 °, the lens barrel 4 is driven stably with little speed change in its driving direction. I understand that. Further, referring to the graph of FIG. 7, it can be seen that when the ratio r / D = 0.05 and the mounting angle θ = 0 °, the positional change amount is 0.72 μm. That is, in this drive device, it can be seen that if the amount of change in the position of the side surface of the lens barrel 4 is suppressed to 0.72 μm, the driving stability of the lens barrel 4 is not impaired. Furthermore, in other words, the upper limit of the range of the position change amount that can stably drive the lens barrel 4 is 0.72 μm.

図7のグラフを参照して、位置変化量≦0.72μmを満たす比r/Dについて、説明する。   The ratio r / D that satisfies the positional change amount ≦ 0.72 μm will be described with reference to the graph of FIG.

図7のグラフによれば、取り付け角度θ=0.4°、比r/D=0.5のとき位置変化量が0.69μmになり、0.72μmよりも小さい値になる。同様に、取り付け角度θ=0.4°、比r/D=1.5のとき位置変化量が0.69μmになり、0.72μmよりも小さい値になる。従って、本駆動装置では、曲率半径rと駆動半径Dとが、下記条件
0.5≦r/D≦1.5
を満たしていれば、取り付け角度θが0.4°になった場合でも鏡筒4側面の位置変化量を0.72μmよりも小さい値に抑えることができる。これにより、鏡筒4の安定的な駆動を実現することができる。すなわち、0.5≦r/D≦1.5の条件を満たしていれば、鏡筒4の安定的な駆動のため、取り付け角度θ=0.4°まで許容される。それゆえ、本駆動装置では、弾性部材及び摩擦部材からなる振動体が鏡筒に対し0.4°傾いて取り付けられていても、鏡筒を安定的に駆動させることが可能になる。
According to the graph of FIG. 7, when the mounting angle θ = 0.4 ° and the ratio r / D = 0.5, the position change amount is 0.69 μm, which is smaller than 0.72 μm. Similarly, when the mounting angle θ = 0.4 ° and the ratio r / D = 1.5, the position change amount is 0.69 μm, which is smaller than 0.72 μm. Therefore, in this drive device, the radius of curvature r and the drive radius D satisfy the following condition 0.5 ≦ r / D ≦ 1.5.
If the above condition is satisfied, the amount of change in the position of the side surface of the lens barrel 4 can be suppressed to a value smaller than 0.72 μm even when the mounting angle θ is 0.4 °. Thereby, stable driving of the lens barrel 4 can be realized. That is, if the condition of 0.5 ≦ r / D ≦ 1.5 is satisfied, the mounting angle θ = 0.4 ° is allowed for stable driving of the lens barrel 4. Therefore, in the present driving device, it is possible to stably drive the lens barrel even when the vibrating body including the elastic member and the friction member is attached with an inclination of 0.4 ° with respect to the lens barrel.

さらに、図7のグラフによれば、取り付け角度θ=2.5°、比r/D=0.9のとき位置変化量が0.46μmになり、0.72μmよりも小さい値になる。同様に、取り付け角度θ=2.5°、比r/D=1.1のとき位置変化量が0.46μmになり、0.72μmよりも小さい値になる。従って、本駆動装置では、曲率半径rと駆動半径Dとが、下記条件
0.9≦r/D≦1.1
を満たしていれば、取り付け角度θが2.5°になった場合でも鏡筒4側面の位置変化量を0.72μmよりも小さい値に抑えることができるので、尚好ましい。すなわち、0.9≦r/D≦1.1の条件を満たしていれば、鏡筒4の安定的な駆動のため、取り付け角度θ=2.5°まで許容される。
Furthermore, according to the graph of FIG. 7, when the mounting angle θ = 2.5 ° and the ratio r / D = 0.9, the position change amount is 0.46 μm, which is smaller than 0.72 μm. Similarly, when the mounting angle θ = 2.5 ° and the ratio r / D = 1.1, the position change amount is 0.46 μm, which is smaller than 0.72 μm. Therefore, in the present driving device, the curvature radius r and the driving radius D satisfy the following condition 0.9 ≦ r / D ≦ 1.1.
If the angle is satisfied, even if the attachment angle θ is 2.5 °, the amount of change in the position of the side surface of the lens barrel 4 can be suppressed to a value smaller than 0.72 μm. That is, if the condition of 0.9 ≦ r / D ≦ 1.1 is satisfied, the mounting angle θ is allowed to be 2.5 ° for the stable driving of the lens barrel 4.

さらに、摩擦部材3の曲率半径rを摩擦部材3の駆動半径Dと等しくすれば(比r/D=1)、取り付け角度θが大きくなっても、位置変化量は常に0である。それゆえ、鏡筒に対する弾性部材及び摩擦部材からなる振動体の取り付け調整が不要となり、駆動装置の組立効率が向上する。   Further, if the radius of curvature r of the friction member 3 is made equal to the drive radius D of the friction member 3 (ratio D / D = 1), the amount of change in position is always zero even when the mounting angle θ is increased. Therefore, it is not necessary to adjust the attachment of the vibrating body composed of the elastic member and the friction member to the lens barrel, and the assembly efficiency of the drive device is improved.

(安定化駆動のための摩擦部材の形状)
本駆動装置における摩擦部材3の形状は、鏡筒4との接触部(摩擦係合部分)が円形状になっており、この円形状の曲率半径rと摩擦部材3の駆動半径Dとが、下記条件
0.5≦r/D≦1.5
を満たす形状であれば、特に限定されるものではない。以下、鏡筒4の安定化駆動のための摩擦部材3の形状の一例について、説明する。図10〜図14はそれぞれ、本駆動装置における摩擦部材3の形状の一例を示した図である。なお、図10〜図14では、弾性部材2が振動する箇所を○印で示している。そして、弾性部材2の○印の部分の振動により生じる、摩擦部材3の円弧駆動軌跡の中心を●印で示している。また、図10〜図14では、説明を簡単にするため、弾性部材2、鏡筒4の一部、及び摩擦部材3のみを示している。
(Friction member shape for stabilizing drive)
As for the shape of the friction member 3 in this drive device, the contact portion (friction engagement portion) with the lens barrel 4 is circular, and the circular curvature radius r and the drive radius D of the friction member 3 are: The following conditions 0.5 ≦ r / D ≦ 1.5
If it is the shape which satisfy | fills, it will not specifically limit. Hereinafter, an example of the shape of the friction member 3 for stabilizing and driving the lens barrel 4 will be described. 10 to 14 are diagrams showing an example of the shape of the friction member 3 in the present driving device. 10 to 14, the portions where the elastic member 2 vibrates are indicated by ◯ marks. The center of the arc driving locus of the friction member 3 caused by the vibration of the circled portion of the elastic member 2 is indicated by ●. 10 to 14 show only the elastic member 2, a part of the lens barrel 4, and the friction member 3 in order to simplify the description.

まず、図10に示された摩擦部材3の形状は、鏡筒4との対向部全体で接触する構成になっている。そして、摩擦部材3の曲率半径rと摩擦部材3の駆動半径Dとが同じになるように設計されている。すなわち、曲率半径rと駆動半径Dとの比r/D=1になっている。これにより、駆動装置を組立てるに際し、弾性部材2と鏡筒4とが傾いて取り付けられたとしても、摩擦部材3は、常に鏡筒4と同じ状態で接触する。それゆえ、弾性部材2と鏡筒4とが傾いて取り付けられた構成でも、鏡筒4を安定的に駆動させることが可能になる。すなわち、図10に示された構成によれば、弾性部材2と鏡筒4との位置調整が不要になり、駆動装置の組み立てが容易になる。   First, the shape of the friction member 3 shown in FIG. 10 is configured to come into contact with the entire portion facing the lens barrel 4. The radius of curvature r of the friction member 3 and the drive radius D of the friction member 3 are designed to be the same. That is, the ratio r / D = 1 of the curvature radius r and the drive radius D is obtained. Thereby, when assembling the driving device, even if the elastic member 2 and the lens barrel 4 are attached to be inclined, the friction member 3 always contacts with the lens barrel 4 in the same state. Therefore, even when the elastic member 2 and the lens barrel 4 are attached to be inclined, the lens barrel 4 can be stably driven. That is, according to the configuration shown in FIG. 10, it is not necessary to adjust the positions of the elastic member 2 and the lens barrel 4, and the assembly of the drive device is facilitated.

ここで、摩擦部材3の接触部(あるいは摩擦部材3の鏡筒4との対向部)の形状は、円形状である。「円形状」とは、摩擦部材3を鏡筒4側面に対し垂直でかつ駆動方向に平行な面(例えば図10紙面に平行な面)で切断したときに形成される任意の断面形状のうち、少なくとも1つの断面形状が、円であるまたは円を含む形状のことをいう。   Here, the shape of the contact portion of the friction member 3 (or the portion of the friction member 3 facing the lens barrel 4) is circular. The “circular shape” is an arbitrary cross-sectional shape formed when the friction member 3 is cut along a plane perpendicular to the side surface of the lens barrel 4 and parallel to the driving direction (for example, a plane parallel to the paper surface of FIG. 10). The at least one cross-sectional shape is a circle or a shape including a circle.

例えば図10に示された構成では、摩擦部材3の形状が半円形状になっている。この摩擦部材3の形状は、半球形状になっていてもよい。これにより、例えば、弾性部材2が鏡筒4に対し図10紙面垂直方向(駆動方向に対し垂直な方向)に傾いて取り付けられたとしても、摩擦部材3は、常に鏡筒4と同じ状態で接触する。それゆえ、鏡筒4をより安定的に駆動させることが可能になる。   For example, in the configuration shown in FIG. 10, the shape of the friction member 3 is a semicircular shape. The shape of the friction member 3 may be a hemispherical shape. Thereby, for example, even when the elastic member 2 is attached to the lens barrel 4 in a direction perpendicular to the plane of FIG. 10 (direction perpendicular to the driving direction), the friction member 3 is always in the same state as the lens barrel 4. Contact. Therefore, the lens barrel 4 can be driven more stably.

本駆動装置における摩擦部材3の形状は、鏡筒4との接触部が上記条件0.5≦r/D≦1.5を満たす円形状であれば、特に限定されるものではない。つまり、摩擦部材3における鏡筒4との接触部以外の部分の形状は、特に限定されない。   The shape of the friction member 3 in the present driving device is not particularly limited as long as the contact portion with the lens barrel 4 has a circular shape satisfying the above condition 0.5 ≦ r / D ≦ 1.5. That is, the shape of the portion other than the contact portion with the lens barrel 4 in the friction member 3 is not particularly limited.

図11は、本駆動装置における摩擦部材3の形状の他の一例を示した図である。図11に示された摩擦部材3の形状は、曲率半径rと駆動半径Dとが同じになるように設計されており、鏡筒4との接触部3aのみが円形状になっている。そして、摩擦部材3全体の形状は、砲弾型の形状になっている。   FIG. 11 is a diagram showing another example of the shape of the friction member 3 in the present driving device. The shape of the friction member 3 shown in FIG. 11 is designed so that the radius of curvature r and the driving radius D are the same, and only the contact portion 3a with the lens barrel 4 is circular. The shape of the entire friction member 3 is a shell-shaped shape.

また、図12は、本駆動装置における摩擦部材3の形状のさらに他の一例を示した図である。図12に示された摩擦部材3の形状は、図11の構成と同様に、曲率半径rと駆動半径Dとが同じになるように設計されている。ただし、図12に示された摩擦部材3の形状は、鏡筒4との接触部以外の部分の形状が図11の構成と異なっている。   FIG. 12 is a view showing still another example of the shape of the friction member 3 in the present driving device. The shape of the friction member 3 shown in FIG. 12 is designed so that the radius of curvature r and the drive radius D are the same as in the configuration of FIG. However, the shape of the friction member 3 shown in FIG. 12 is different from the configuration of FIG. 11 in the shape of the portion other than the contact portion with the lens barrel 4.

図12に示されるように、摩擦部材3は、鏡筒4の駆動方向における幅Hが円弧駆動軌跡の中心(●印)から接触部3aへ向かって次第に小さくなるように、傾斜面3bが形成されている。このように傾斜面3bが形成されることにより、摩擦部材3の弾性部材2との接触部を広く確保することができる。このため、摩擦部材3と弾性部材2との接着面積が増し、より強固に摩擦部材3を弾性部材2に固定することが可能になる。   As shown in FIG. 12, the friction member 3 is formed with the inclined surface 3b so that the width H in the driving direction of the lens barrel 4 gradually decreases from the center of the arc driving locus (marked with ●) toward the contact portion 3a. Has been. By forming the inclined surface 3b in this way, a wide contact portion between the friction member 3 and the elastic member 2 can be secured. For this reason, the adhesion area of the friction member 3 and the elastic member 2 increases, and it becomes possible to fix the friction member 3 to the elastic member 2 more firmly.

また、図13は、本駆動装置における摩擦部材3の形状のさらに他の一例を示した図である。図13に示されるように、摩擦部材3の形状は、球状体または円柱体であってもよい。この場合、球状体または円柱体(摩擦部材3)は、接着剤3により弾性部材2に接着さている。そして、この球状体または円柱体は、直径が駆動半径Dに等しくなっている。こうすることで、球状体または円柱体の半径が、鏡筒4との接触部3aの曲率半径rと等しくなり、比r/D=0.5になる。それゆえ、図13に示された摩擦部材3の形状では、取り付け角度θが0.4°になった場合でも、鏡筒4の安定的な駆動を実現することができる。つまり、鏡筒4の安定的駆動のため、取り付け角度θ=0.4°まで許容できる。さらに、接着剤30の量を適宜設定することにより、強固に摩擦部材3を弾性部材2に固定することが可能になる。   FIG. 13 is a diagram showing still another example of the shape of the friction member 3 in the present driving device. As shown in FIG. 13, the shape of the friction member 3 may be a spherical body or a cylindrical body. In this case, the spherical body or the cylindrical body (friction member 3) is bonded to the elastic member 2 with the adhesive 3. The spherical or cylindrical body has a diameter equal to the driving radius D. By doing so, the radius of the spherical or cylindrical body becomes equal to the radius of curvature r of the contact portion 3a with the lens barrel 4, and the ratio r / D = 0.5. Therefore, the shape of the friction member 3 shown in FIG. 13 can realize stable driving of the lens barrel 4 even when the attachment angle θ is 0.4 °. That is, the mounting angle θ = 0.4 ° can be allowed for stable driving of the lens barrel 4. Furthermore, the friction member 3 can be firmly fixed to the elastic member 2 by appropriately setting the amount of the adhesive 30.

また、図14は、本駆動装置における摩擦部材3の形状のさらに他の一例を示した図である。図14に示された摩擦部材3の形状は、図13の構成と同様に、球状体または円柱体になっている。ただし、図12に示された構成は、弾性部材2に球状体または円柱体(摩擦部材3)を収容可能な窪み部2aが形成されている点で、図13の構成と異なる。   FIG. 14 is a view showing still another example of the shape of the friction member 3 in the present driving device. The shape of the friction member 3 shown in FIG. 14 is a spherical body or a cylindrical body as in the configuration of FIG. However, the configuration shown in FIG. 12 is different from the configuration shown in FIG. 13 in that the elastic member 2 is formed with a recess 2a capable of accommodating a spherical body or a cylindrical body (friction member 3).

図14に示されるように、球状体または円柱体(摩擦部材3)は、その駆動半径D及び曲率半径rが等しくなるように、窪み部2aに収容されている。これにより、弾性部材2と摩擦部材3との接触面積を、図13の構成よりも増やすことができる。それゆえ、より強固に摩擦部材3を弾性部材2に固定することが可能になる。さらに、図14に示された構成では、比r/D=1になっているので、弾性部材2に対する摩擦部材3の位置合わせが容易になる。   As shown in FIG. 14, the spherical body or cylindrical body (friction member 3) is accommodated in the recess 2a so that the driving radius D and the curvature radius r are equal. Thereby, the contact area of the elastic member 2 and the friction member 3 can be increased rather than the structure of FIG. Therefore, the friction member 3 can be fixed to the elastic member 2 more firmly. Further, in the configuration shown in FIG. 14, since the ratio r / D = 1, the alignment of the friction member 3 with respect to the elastic member 2 is facilitated.

なお、窪み部2aの寸法は、駆動半径D及び曲率半径rが等しくなるように球状体または円柱体を収容可能な寸法であればよく、球状体または円柱体(摩擦部材3)と弾性部材2との固定に使用される接着剤の量に応じて適宜設定することができる。   The dimension of the recess 2a may be any dimension that can accommodate a spherical body or a cylindrical body so that the driving radius D and the radius of curvature r are equal. The spherical body or the cylindrical body (friction member 3) and the elastic member 2 may be used. It can set suitably according to the quantity of the adhesive agent used for fixation.

なお、上述の実施形態では、摩擦部材3と弾性部材2とが別々の材料で構成された例を説明したが、摩擦部材3と弾性部材2とが一体化した構成であってもよい。つまり、弾性部材2に一体加工で摩擦部材3と同じ形状のものを形成してもかまわない。このように一体形成することで、摩擦部材3と弾性部材2を接着する手間が省け、コスト低減が可能になる。   In the above-described embodiment, the example in which the friction member 3 and the elastic member 2 are made of different materials has been described. However, the friction member 3 and the elastic member 2 may be integrated. That is, the elastic member 2 may be integrally formed with the same shape as the friction member 3. By integrally forming in this way, the labor of bonding the friction member 3 and the elastic member 2 can be saved, and the cost can be reduced.

本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.

本駆動装置は、被駆動体の安定的な駆動を実現することが可能であるので、例えば、カメラの撮影レンズ等、光学装置におけるレンズの駆動の用途に適用できる。   Since this driving device can realize stable driving of the driven body, it can be applied to the use of driving a lens in an optical device such as a photographing lens of a camera.

本発明の実施の一形態の駆動装置の構成を示す斜視図である。It is a perspective view which shows the structure of the drive device of one Embodiment of this invention. バイモルフ構造の圧電素子の構成を示し、(a)は側面図であり、(b)は、圧電素子の屈曲変位の様子を示す図である。The structure of the piezoelectric element of a bimorph structure is shown, (a) is a side view, (b) is a figure which shows the mode of the bending displacement of a piezoelectric element. (a)は、本駆動装置における、屈曲変位部材、弾性部材、及び摩擦部材の位置関係を示した側面図であり、(b)は、駆動装置の構成を示した平面図である。(A) is the side view which showed the positional relationship of the bending displacement member, the elastic member, and the friction member in this drive device, (b) is the top view which showed the structure of the drive device. 2枚の屈曲変位部材に印加される駆動電圧波形を示すグラフである。It is a graph which shows the drive voltage waveform applied to two bending displacement members. (a)・(b)は、図4に示された駆動電圧波形に基づく摩擦部材の先端部の円弧駆動を説明するための説明図である。(A) * (b) is explanatory drawing for demonstrating circular arc drive of the front-end | tip part of a friction member based on the drive voltage waveform shown by FIG. 弾性部材の振動、及びそれに伴い振動する摩擦部材の接触部の軌跡を模式的に示した模式図である。It is the schematic diagram which showed typically the locus | trajectory of the contact part of the friction member which vibrates with it, and the vibration of an elastic member. 摩擦部材の駆動半径Dと接触部の曲率半径rとの比r/D、及び位置変化量の関係を示すグラフである。It is a graph which shows ratio r / D of the drive radius D of a friction member, and the curvature radius r of a contact part, and the relationship of a positional change amount. (a)・(b)は、位置変化量がどの程度の範囲であれば、鏡筒を安定的に駆動可能であるのかを検証した実験で用いた鏡筒の駆動機構を模式的に示した模式図である。(A) and (b) schematically show the driving mechanism of the lens barrel used in the experiment for verifying how much the position change amount can be driven stably. It is a schematic diagram. 図8に示された駆動機構により駆動される鏡筒4の速度を測定した結果を示すグラフである。It is a graph which shows the result of having measured the speed of the lens-barrel 4 driven by the drive mechanism shown by FIG. 本発明の実施の一形態の駆動装置における摩擦部材の形状の一例を示した図である。It is the figure which showed an example of the shape of the friction member in the drive device of one Embodiment of this invention. 本発明の実施の一形態の駆動装置における摩擦部材の形状の他の例を示した図である。It is the figure which showed the other example of the shape of the friction member in the drive device of one Embodiment of this invention. 本発明の実施の一形態の駆動装置における摩擦部材の形状のさらに他の例を示した図である。It is the figure which showed the further another example of the shape of the friction member in the drive device of one Embodiment of this invention. 本発明の実施の一形態の駆動装置における摩擦部材の形状のさらに他の例を示した図である。It is the figure which showed the further another example of the shape of the friction member in the drive device of one Embodiment of this invention. 本発明の実施の一形態の駆動装置における摩擦部材の形状のさらに他の例を示した図である。It is the figure which showed the further another example of the shape of the friction member in the drive device of one Embodiment of this invention. 従来の駆動装置の問題を説明するための説明図であり、振動体が被駆動体に対し理想的に取り付けられた状態を示す。It is explanatory drawing for demonstrating the problem of the conventional drive device, and shows the state by which the vibrating body was ideally attached with respect to the to-be-driven body. 従来の駆動装置の問題を説明するための説明図であり、振動体が被駆動体に対し傾斜して取り付けられた状態を示す。It is explanatory drawing for demonstrating the problem of the conventional drive device, and shows the state by which the vibrating body was attached with inclination with respect to the to-be-driven body.

符号の説明Explanation of symbols

1A 屈曲変位部材(第1の屈曲変位部材,駆動源)
1B 屈曲変位部材(第2の屈曲変位部材,駆動源)
2 弾性部材(振動基材,振動体)
2a 窪み部
3 摩擦部材(振動体,接触部)
3a 接触部
4 鏡筒(被駆動体)
5 ガイド軸
6 カメラモジュール筐体(筐体)
7A 駆動回路(第1の駆動回路)
7B 駆動回路(第2の駆動回路)
D 駆動半径
r 曲率半径
1A bending displacement member (first bending displacement member, drive source)
1B bending displacement member (second bending displacement member, drive source)
2 Elastic member (vibrating substrate, vibrating body)
2a hollow part 3 friction member (vibrating body, contact part)
3a Contact part 4 Lens barrel (driven body)
5 Guide shaft 6 Camera module housing (housing)
7A drive circuit (first drive circuit)
7B Drive circuit (second drive circuit)
D Drive radius r Curvature radius

Claims (6)

円弧状に振動する振動体と、
上記振動体を振動させる駆動源とを備え、
上記振動体は、被駆動体と接触可能な接触部を有し、
上記接触部が、上記振動体の円弧状の振動に伴い、円弧状軌跡を描いて被駆動体を駆動するようになっている駆動装置であって、
上記接触部は、円形状を有し、
該円形状の曲率半径をrとし、接触部の上記円弧状軌跡の半径を駆動半径Dとしたとき、
曲率半径rと駆動半径Dとが、下記条件
0.5≦r/D≦1.5
を満たすことを特徴とする駆動装置。
A vibrating body that vibrates in an arc shape;
A drive source for vibrating the vibrator,
The vibrating body has a contact portion that can contact the driven body,
The contact portion is a drive device configured to drive a driven body while drawing an arc-shaped trajectory with the arc-shaped vibration of the vibrating body,
The contact portion has a circular shape,
When the radius of curvature of the circular shape is r and the radius of the arcuate locus of the contact portion is the driving radius D,
The radius of curvature r and the driving radius D satisfy the following conditions: 0.5 ≦ r / D ≦ 1.5
The drive device characterized by satisfy | filling.
上記曲率半径rと上記駆動半径Dとが、下記条件
0.9≦r/D≦1.1
を満たすことを特徴とする請求項1に記載の駆動装置。
The curvature radius r and the driving radius D satisfy the following condition 0.9 ≦ r / D ≦ 1.1.
The drive device according to claim 1, wherein:
上記曲率半径rと上記駆動半径Dとが、下記条件
r=D
を満たすことを特徴とする請求項1に記載の駆動装置。
The radius of curvature r and the driving radius D satisfy the following condition r = D
The drive device according to claim 1, wherein:
上記接触部は、被駆動体と摩擦係合する摩擦部材で構成されていることを特徴とする請求項1〜3の何れか1項に記載の駆動装置。   The drive device according to any one of claims 1 to 3, wherein the contact portion is formed of a friction member that frictionally engages with the driven body. 上記振動体は、上記駆動源により振動する振動基材と、上記摩擦部材とからなり、
上記摩擦部材は、球または円柱形状を有し、上記振動基材に接着されていることを特徴とする請求項4に記載の駆動装置。
The vibrating body includes a vibration base material that vibrates by the drive source and the friction member.
The drive device according to claim 4, wherein the friction member has a spherical or cylindrical shape and is bonded to the vibration base material.
上記振動基材には、上記摩擦部材を収容可能な窪み部が形成されていることを特徴とする請求項5に記載の駆動装置。   The driving device according to claim 5, wherein the vibration base is formed with a recess capable of accommodating the friction member.
JP2007169652A 2007-06-27 2007-06-27 Drive device Pending JP2009011072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169652A JP2009011072A (en) 2007-06-27 2007-06-27 Drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169652A JP2009011072A (en) 2007-06-27 2007-06-27 Drive device

Publications (1)

Publication Number Publication Date
JP2009011072A true JP2009011072A (en) 2009-01-15

Family

ID=40325580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169652A Pending JP2009011072A (en) 2007-06-27 2007-06-27 Drive device

Country Status (1)

Country Link
JP (1) JP2009011072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025541A (en) * 2019-07-31 2021-02-22 日本電産サンキョー株式会社 Valve element driving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025541A (en) * 2019-07-31 2021-02-22 日本電産サンキョー株式会社 Valve element driving device
JP7340378B2 (en) 2019-07-31 2023-09-07 ニデックインスツルメンツ株式会社 Valve body drive device

Similar Documents

Publication Publication Date Title
US8094391B2 (en) Driving device, imaging device including the same, and imaging apparatus
US8675294B2 (en) Lens driving device
JP4521165B2 (en) Vibration wave linear motor
US9813596B2 (en) Vibration-type actuator, interchangeable lens, image pickup apparatus, and automatic stage
JP4739357B2 (en) DRIVE DEVICE, IMAGING DEVICE HAVING THE SAME, AND IMAGING DEVICE
JP4512408B2 (en) Vibration wave linear motor and lens device using the same
JP2008199826A (en) Drive device
JP2005057839A (en) Vibration wave linear motor and lens unit employing it
JP2007127926A (en) Lens drive device
JP2008051936A (en) Optical module system
US20080278034A1 (en) Driving device
JP4899634B2 (en) Linear drive device, lens drive device, and camera shake prevention device
JP2009011072A (en) Drive device
JPWO2010109825A1 (en) Actuator, drive device, lens unit, and imaging device
JP2008122465A (en) Lens drive unit and imaging apparatus
JP6849424B2 (en) Vibration type actuator, lens barrel with it, image pickup device and stage device
US7813063B2 (en) Driving unit and optical pick-up device including the same
JP2011186073A (en) Lens drive device
JP2009038888A (en) Drive apparatus, image-pickup device, image-pickup apparatus, and assembly method of drive apparatus
JP2019215476A (en) Lens driving device
JP2010004718A (en) Drive unit, image pickup unit and electronic apparatus equipped with them
JP2008191608A (en) Lens driving device, camera, and cellular phone with camera
KR101553006B1 (en) Lens moving module and piezoelectric actuator assembly
JP2011120414A (en) Linear drive device
JP2010004648A (en) Driving unit