JP2009010551A - Method of estimating propagation environment and transmission control - Google Patents

Method of estimating propagation environment and transmission control Download PDF

Info

Publication number
JP2009010551A
JP2009010551A JP2007168438A JP2007168438A JP2009010551A JP 2009010551 A JP2009010551 A JP 2009010551A JP 2007168438 A JP2007168438 A JP 2007168438A JP 2007168438 A JP2007168438 A JP 2007168438A JP 2009010551 A JP2009010551 A JP 2009010551A
Authority
JP
Japan
Prior art keywords
station
stations
propagation
propagation environment
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007168438A
Other languages
Japanese (ja)
Inventor
Hidesato Yamazaki
秀聡 山崎
Tsutomu Mukai
務 向井
Naotake Yamamoto
尚武 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007168438A priority Critical patent/JP2009010551A/en
Publication of JP2009010551A publication Critical patent/JP2009010551A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Small-Scale Networks (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform transmission control by estimating a propagation environment between other stations and using the results of the estimation under such an environment where the other stations having no simultaneous transmission function coexist. <P>SOLUTION: Transmission signals of the other stations 13 and 14 are intercepted, propagation environments between a self-station and the other stations which are represented by propagation loss between the self-station 11 and the other stations are estimated from a difference between their transmitted power and received power, and a propagation environment between the other stations is estimated on the basis of the two results of estimating the propagation environments between the self-station and the other stations. Simultaneous transmission is executed between a link between the other stations, and a link between the self-station and the other stations on the basis of the result of estimating the propagation environment between the other stations. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の無線局が同時に信号の送信を行う通信システムに関し、特に無線局が他局の信号と同時に送信を行う同時送信の判断材料とするために、周辺の無線局間の伝搬環境を推定する伝搬環境推定方法および、この推定結果を用いた送信制御方法に関する。   The present invention relates to a communication system in which a plurality of radio stations transmit signals at the same time, and more particularly to a propagation environment between neighboring radio stations in order to make a decision for simultaneous transmission in which radio stations transmit simultaneously with signals from other stations. And a transmission control method using the estimation result.

従来、無線LANなどのパケット無線伝送を行う無線通信システムにおいては、キャリアセンスに基づくアクセス制御方式が広く用いられている。例えば非特許文献1では、受信信号強度に基づくキャリアセンスに加えて、RTS、CTSを用いるCSMA/CA方式が記載されている。CSMA/CAは、自局から存在を検知できないが通信相手局には干渉を与える、いわゆる隠れ端末によるパケットの衝突を回避することを目的としたものである。しかし、上記CSMA方式やCSMA/CA方式では、キャリアセンス機能により干渉信号を一旦検知してしまうと、たとえ目的の通信の障害にならないような弱い受信信号強度であっても、自局は送信を行わなくなってしまう、いわゆる「さらされ端末問題」が生じるため、システム全体としての伝送容量が制限されるという問題があった。   Conventionally, in a wireless communication system that performs packet wireless transmission such as a wireless LAN, an access control method based on carrier sense has been widely used. For example, Non-Patent Document 1 describes a CSMA / CA method using RTS and CTS in addition to carrier sense based on received signal strength. The purpose of CSMA / CA is to avoid collision of packets caused by so-called hidden terminals that cannot detect the presence of the local station but interfere with a communication partner station. However, in the above CSMA system and CSMA / CA system, once the interference signal is detected by the carrier sense function, even if the received signal strength is weak enough not to hinder the intended communication, the local station transmits. Since the so-called “exposed terminal problem” occurs, the transmission capacity of the entire system is limited.

図33(A)は上記従来のCSMA方式の動作を説明するためのシステム概念図、図33(B)はそのシステムにおけるパケット伝送の時間的なシーケンスを表す図である。図9において、101〜104は無線局である。無線局101は無線局102へ、無線局103は無線局104へ、それぞれCSMA方式に基づいてデータを伝送する。図33(B)において、最初に無線局103がキャリアセンス(CS)を行い、キャリアが検出されなかったため無線局104宛にデータを送信する。このデータの送信中に無線局101が送信開始を試みる場合、まずキャリアセンス(CS)を行う。すると、無線局103が送信しているデータの信号を検出してしまうため、送信が禁止される。逆に無線局101が送信しているときに無線局103が送信開始を試みる場合も、無線局103はキャリアセンスで無線局101の信号を検出してしまうため、送信が禁止される。   FIG. 33A is a system conceptual diagram for explaining the operation of the conventional CSMA method, and FIG. 33B is a diagram showing a temporal sequence of packet transmission in the system. In FIG. 9, 101-104 are radio stations. The wireless station 101 transmits data to the wireless station 102 and the wireless station 103 transmits data to the wireless station 104 based on the CSMA method. In FIG. 33B, first, the wireless station 103 performs carrier sense (CS), and transmits data to the wireless station 104 because no carrier is detected. When the wireless station 101 attempts to start transmission during transmission of this data, carrier sense (CS) is first performed. Then, since the data signal transmitted by the wireless station 103 is detected, transmission is prohibited. Conversely, when the wireless station 103 tries to start transmission when the wireless station 101 is transmitting, the wireless station 103 detects the signal of the wireless station 101 by carrier sense, and thus transmission is prohibited.

たとえ、無線局101から無線局104に与える干渉波の強度が、無線局103から無線局104宛の希望波の強度に比べて十分弱く通信の支障にならない場合においても、のような送信禁止状態が発生してしまうため、システム全体の伝送容量を向上させることができない。   Even if the intensity of the interference wave applied from the wireless station 101 to the wireless station 104 is sufficiently weak compared to the intensity of the desired wave addressed to the wireless station 104 from the wireless station 103 and does not hinder communication, such a transmission prohibited state as in FIG. Therefore, the transmission capacity of the entire system cannot be improved.

このようなさらされ端末問題が発生する要因として、遅れて送信を希望する周辺局(例えば無線局101)が先に通信を開始した他局間(例えば、無線局103−無線局104間)の伝搬環境(例えば、無線局104における希望波の強度等)を知ることができず、自局(無線局101)が他局(無線局103)と同時送信を行った場合に、他局(例えば無線局104)の受信の障害になるか否かが判断できないため、キャリアセンスによる他局からの信号強度の閾値等荒い情報を基に送信制御を行っていること等が挙げられる。   Propagation between other stations (for example, between the radio station 103 and the radio station 104) where the peripheral station (for example, the radio station 101) desiring to transmit with delay has started communication as a factor that causes such an exposed terminal problem. When the environment (for example, the intensity of a desired wave in the wireless station 104) cannot be known and the local station (the wireless station 101) performs simultaneous transmission with another station (the wireless station 103), the other station (for example, wireless Since it cannot be determined whether or not it becomes an obstacle to reception of the station 104), transmission control is performed based on rough information such as a threshold of signal strength from other stations by carrier sense.

この問題に対し、非特許文献1に、従来の無線LAN規格で定められたパケットに伝搬環境情報を付加して送受信することにより周辺の他局間の伝搬環境を推定する技術が開示されている。図34は非特許文献1の技術を用いた無線システムの概念図である。非特許文献1の無線システムでは、IEEE802.11規格で定められた機構であるRTSパケット(以下、パケットを省略しRTSと記す)とCTSパケット(以下、パケットを省略しCTSと記す)が利用されることを前提としている。   To deal with this problem, Non-Patent Document 1 discloses a technique for estimating a propagation environment between other peripheral stations by adding and transmitting a propagation environment information to a packet defined by a conventional wireless LAN standard. . FIG. 34 is a conceptual diagram of a wireless system using the technology of Non-Patent Document 1. In the wireless system of Non-Patent Document 1, RTS packets (hereinafter abbreviated as RTS) and CTS packets (hereinafter abbreviated as CTS), which are mechanisms defined in the IEEE 802.11 standard, are used. It is assumed that.

図34を用いて、先ずRTS/CTSについて説明する。送信局103はデータ送信の前に受信局104宛にRTSを送信する。RTSを受信した受信局104は送信局103へCTSを返信する。送信局103は、CTSを受信することで受信局104が受信できる状態であると認識して、データ送信を開始する。RTS/CTSにはキャリアを利用する期間の情報が記載されており、送信局103、受信局104以外でRTS/CTSを受信した無線局がRTS/CTSに記載された利用期間の送信を中止で、受信局104からは見えるが送信局103からは見えない隠れ端末(例えば、無線局105)と送信局103との信号が衝突することを避けることができる。このようにRTS/CTSは、いわゆる隠れ端末問題に対応する目的で、IEEE802.11規格に定義されている。   First, RTS / CTS will be described with reference to FIG. The transmitting station 103 transmits an RTS to the receiving station 104 before data transmission. The receiving station 104 that has received the RTS returns a CTS to the transmitting station 103. The transmitting station 103 recognizes that the receiving station 104 can receive the data by receiving the CTS, and starts data transmission. The RTS / CTS describes information on the period during which the carrier is used. A radio station that has received the RTS / CTS other than the transmitting station 103 and the receiving station 104 can stop transmitting the usage period described in the RTS / CTS. Thus, it is possible to avoid collision of signals between the transmitting station 103 and a hidden terminal (for example, the wireless station 105) that is visible from the receiving station 104 but not from the transmitting station 103. Thus, RTS / CTS is defined in the IEEE 802.11 standard for the purpose of dealing with the so-called hidden terminal problem.

非特許文献1では、さらされ端末問題に対応するため、受信局104はRTSの受信電力を測定し、CTSにその受信電力情報等の伝搬環境パラメータを付加して返信することが提案されている。CTSを受信した周辺端末は、他局間伝搬環境をCTSに付加された伝搬環境パラメータから推定し、推定結果から自局が送信しても他局間の通信に支障を与えないと判断できる場合、必ずしも送信を中止せず同時送信を行う。このようにして、システム全体としての伝送容量を向上させている。   In Non-Patent Document 1, in order to cope with the exposed terminal problem, it is proposed that the receiving station 104 measures the received power of the RTS, adds a propagation environment parameter such as the received power information to the CTS, and sends it back. . When the peripheral terminal that has received the CTS estimates the propagation environment between the other stations from the propagation environment parameters added to the CTS, it can be determined from the estimation result that there is no hindrance to communication between the other stations even if the local station transmits it. , It does not necessarily stop transmission, and performs simultaneous transmission. In this way, the transmission capacity of the entire system is improved.

送信局103が受信局104にデータ送信を行う場合を例に、さらに具体的に説明する。送信局103はデータ送信前に受信局104へRTSを送信し、受信局104は送信局103へCTSを送信する。ここで受信局104は、希望波であるRTSの受信電力情報(希望波電力情報)と受信局102で受信される干渉波の干渉波電力情報とをCTSに付加して返信する。周辺の無線局101は、そのCTSを受信すると、付加された前述の希望波電力情報と干渉波電力情報を抽出するとともに、CTSの受信電力を測定する。無線局101は、無線局101と送信局103が等電力で送信を行うならば、自局が送信した場合、自局で測定されたCTSの受信電力の分だけ、受信局104の干渉波電力が増加すると推定する。無線局101は、CTSから抽出した前述の電力情報と干渉波電力の推定結果を基に、自局が送信した場合の受信局104における希望波電力と干渉波電力の比(SIR)を算出する。そして、無線局101は、自局が同時送信しても受信局104の受信に支障を与えないと判断すれば、自局の通信相手先である無線局102へRTSを送信し、送信局103との同時送信を図る。   The case where the transmitting station 103 transmits data to the receiving station 104 will be described more specifically. The transmitting station 103 transmits an RTS to the receiving station 104 before transmitting data, and the receiving station 104 transmits a CTS to the transmitting station 103. Here, the receiving station 104 adds the RTS received power information (desired wave power information), which is the desired wave, and the interference wave power information of the interference wave received by the receiving station 102 to the CTS and returns the CTS. When the neighboring radio station 101 receives the CTS, it extracts the desired wave power information and the interference wave power information added as described above, and measures the received power of the CTS. If the wireless station 101 and the transmitting station 103 perform transmission with equal power, the wireless station 101 transmits the interference wave power of the receiving station 104 by the amount of CTS received power measured by the local station when the local station transmits. Is estimated to increase. Based on the above-described power information extracted from the CTS and the estimation result of the interference wave power, the wireless station 101 calculates the ratio (SIR) of the desired wave power and the interference wave power at the receiving station 104 when the local station transmits. . If the wireless station 101 determines that there is no hindrance to reception of the receiving station 104 even if the local station transmits simultaneously, the wireless station 101 transmits an RTS to the wireless station 102 that is the communication partner of the local station, and the transmitting station 103 Simultaneous transmission with.

このように、非特許文献1では、CTSに受信電力情報と干渉電力情報を付加することで、周辺の無線局は103と104の間の他局間伝搬環境や、102と自局101との伝搬環境(自局−他局伝搬環境)を推定している。
Interference Aware(IA)MAC:an Enhancement to IEEE802.11b DCF/IEEE VTC Fall2003
As described above, in Non-Patent Document 1, by adding the received power information and the interference power information to the CTS, the surrounding radio stations can communicate with each other between the inter-station propagation environment between 103 and 104, and between the 102 and the own station 101. The propagation environment (own station-other station propagation environment) is estimated.
Interference Aware (IA) MAC: an Enhancement to IEEE 802.11b DCF / IEEE VTC Fall 2003

しかしながら、非特許文献1の無線システムでは、RTS/CTSを利用することが前提となっている。RTS/CTSは無線局の密度が高い場合には有効な技術であるものの、制御パケットであるRTS/CTSの交換に通信帯域を使うため、オーバーヘッドが大きくなるという課題がある。また、非特許文献1の技術は、従来IEEE802.11規格で定義されたRTS/CTSに新たな仕組みを追加することになるので、非特許文献1の技術を搭載した無線局同士でしか効果を発揮できない。そのため、現在世の中に普及しているIEEE802.11a/b/g等の規格に準拠した既存の無線局が稼動する環境下に非特許文献1で記載された技術を搭載した無線局を設置しても、さらされ端末問題に対する改善効果をあまり得ることができないという課題を有している。   However, the wireless system of Non-Patent Document 1 is premised on using RTS / CTS. Although RTS / CTS is an effective technique when the density of radio stations is high, there is a problem that overhead is increased because a communication band is used for exchanging RTS / CTS as control packets. In addition, since the technology of Non-Patent Document 1 adds a new mechanism to RTS / CTS defined in the conventional IEEE 802.11 standard, it is effective only between wireless stations equipped with the technology of Non-Patent Document 1. I can't show it. For this reason, a radio station equipped with the technology described in Non-Patent Document 1 is installed in an environment where an existing radio station conforming to standards such as IEEE 802.11a / b / g that is widely used in the world operates. However, there is a problem that the improvement effect on the exposed terminal problem cannot be obtained so much.

例えば、図35のように、自宅Aでは、全ての無線局A1,A2に非特許文献1の技術を搭載して無線LANシステムを構築していても、隣接する家屋Bでは、IEEE802.11a/b/g規格準拠の無線局B1,B2が使用されている環境下では、家屋Bの無線局が送信するCTSには前述の受信電力情報や干渉電力情報が含まれないため、家屋Aの無線局がキャリアセンスの閾値を越える強度で家屋Bの無線局の送信信号を傍受してしまった場合、家屋Aの無線局が送信した場合に家屋Bの無線局で受信される干渉波の強度がたとえ家屋Bでの通信の障害にならないような弱い強度であっても、家屋Aの無線局は送信を行わなくなってしまう。このように、図35のような環境下では、やはりさらされ端末問題が生じてしまう。   For example, as shown in FIG. 35, at home A, even if the wireless LAN system is constructed by mounting the technology of Non-Patent Document 1 on all the radio stations A1 and A2, the adjacent home B has IEEE802.11a / In an environment where radio stations B1 and B2 conforming to the b / g standard are used, the CTS transmitted by the radio station of the house B does not include the received power information and the interference power information described above. When the station intercepts the transmission signal of the wireless station of house B at an intensity exceeding the carrier sense threshold, the intensity of the interference wave received by the wireless station of house B when the wireless station of house A transmits Even if the intensity is weak enough not to hinder communication in the house B, the radio station in the house A does not transmit. Thus, in the environment as shown in FIG. 35, the terminal problem is also caused.

本発明は、このような実情に鑑みてなされたもので、RTS/CTSを利用することなく、既存の無線局と本発明の技術を搭載した無線局が共存するような環境下においても、既存の無線局を含む他局間の伝搬環境をすることを可能とする他局間伝搬環境推定方法及び推定装置、並びその推定方法を用いてさらされ端末問題に対する改善効果を発揮する送信制御方法の提供を目的とする。   The present invention has been made in view of such a situation, and the existing wireless station and the wireless station equipped with the technology of the present invention coexist without using RTS / CTS. Of a propagation environment estimation method and an estimation device between other stations that enable a propagation environment between other stations including a wireless station, and a transmission control method that exhibits an improvement effect on a terminal problem exposed by using the estimation method For the purpose of provision.

本発明は、上記課題を解決するために、無線局(自局)が他の無線局(他局)間の伝搬環境パラメータを推定する伝搬環境推定方法として、第1の他局が送信した第1の他局信号を受信して第1の他局と自局との間の第1の自他局間伝搬環境パラメータを推定する第1のステップと、第2の他局が送信した第2の他局信号を受信して第2の他局と自局との間の第2の自他局間伝搬環境パラメータを推定する第2のステップと、第1及び第2のステップで推定した自他局間伝搬環境パラメータ推定結果を基に、自局が第1の他局と第2の他局との間の他局間伝搬環境パラメータを推定する他局間伝搬環境推定ステップとを含んでいる。   In order to solve the above problems, the present invention provides a propagation environment estimation method in which a wireless station (own station) estimates propagation environment parameters between other wireless stations (other stations). A first step of receiving a first other station signal and estimating a first propagation environment parameter between the first other station and the own station; and a second step transmitted by the second other station. A second step of receiving a second station signal and estimating a second propagation environment parameter between the second station and the second station; and the first and second steps estimated by the second step. The inter-station propagation environment estimation step in which the own station estimates the inter-station propagation environment parameter between the first other station and the second other station based on the inter-station propagation environment parameter estimation result. Yes.

伝搬環境パラメータは、例えば、無線局間の伝搬損であり、第1のステップにおいて、第1の他局信号の送信電力と自局が第2の他局信号を受信したときの受信電力とから、第1の自他局間伝搬損を推定し、第2のステップにおいて、第2の他局信号の送信電力推定値と自局が第2の他局信号を受信したときの受信電力とから、第2の自他局間伝搬損を推定する。そして、他局間伝搬環境推定ステップにおいて、第1、第2の自他局間伝搬損の推定結果を基に、第1、第2の他局間の他局間伝搬損を推定する。   The propagation environment parameter is, for example, a propagation loss between radio stations, and in the first step, from the transmission power of the first other station signal and the reception power when the own station receives the second other station signal. , Estimating the first inter-other-station propagation loss, and in the second step, from the transmission power estimation value of the second other-station signal and the received power when the own-station received the second other-station signal The second propagation loss between the own station and the other station is estimated. Then, in the inter-station propagation environment estimation step, the inter-station propagation loss between the first and second other stations is estimated based on the estimation results of the first and second own-other station propagation losses.

推定結果を基にする際、例えば、第1、第2の自他局間伝搬損推定値のうち大なる方の値を基にして、その値に所定の誤差マージン(0又は負の値も含む)を加えた値を、第1、第2の他局間の他局間伝搬損として推定すればよい。好ましくは、所定の誤差マージンを第1の自他局間伝搬損と第2の自他局間伝搬損との差分を基にして、その差分値に応じて決定するとよい。また、推定結果を基にする際、例えば、第1の自他局間伝搬損と第2の自他局間伝搬損との差分を基にして、その差が所定値以下の場合に、所定の伝搬損値を第1、第2の他局間の他局間伝搬損と推定してもよい。   Based on the estimation result, for example, based on the larger one of the first and second own-other-station propagation loss estimated values, a predetermined error margin (0 or a negative value is also included) The value including the above may be estimated as the propagation loss between other stations between the first and second other stations. Preferably, the predetermined error margin may be determined according to the difference value based on the difference between the first own-other station propagation loss and the second own-other station propagation loss. Also, when the estimation result is used as a basis, for example, when the difference between the first own-other station propagation loss and the second own-other station propagation loss is less than a predetermined value, May be estimated as the inter-other-station propagation loss between the first and second other stations.

さらに、他局間伝搬環境推定ステップにおいて、第1、第2の自他局間伝搬損の比較結果を基にして第1、第2の他局間の他局間伝搬損として推定するとともに、第1、第2の他局信号のうち少なくとも一方に、他局間の通信が成立するために必要な最低限の受信電力(最小受信感度)が分かる情報が含まれている場合には、その情報から得られる最小受信感度と送信電力との差を基にして第1、第2の他局間伝搬損を推定し、両者をを比較して、小なる方の値を第1、第2の他局間の他局間伝搬損と推定することが望ましい。   Further, in the inter-station propagation environment estimation step, based on the comparison result of the first and second own-other-station propagation loss, as the other-station propagation loss between the first and second other stations, If at least one of the first and second other station signals includes information that indicates the minimum reception power (minimum reception sensitivity) necessary for establishing communication between the other stations, Based on the difference between the minimum reception sensitivity obtained from the information and the transmission power, the first and second inter-station propagation losses are estimated, and both are compared, and the smaller value is set to the first and second values. It is desirable to estimate the propagation loss between other stations between other stations.

また、伝搬環境パラメータは、例えば、無線局の送信電力と受信電力であってもよい。この場合、第1、第2のステップにおいて、第1、第2の他局信号の送信電力と、自局が第1、第2の他局信号を受信したときの受信電力を推定する。そして、他局間伝搬環境推定ステップにおいて、第1の他局信号の送信電力と第2の他局信号の送信電力との差である送信電力差分値と第1の受信電力と第2の受信電力との差である受信電力差分値とを比較するか、又は第1の他局信号の送信電力と第1の受信電力との差である第1差分値と第2の他局信号の送信電力と第2の受信電力との差である第2差分値とを比較し、その比較結果を基に、第2の他局における第1の他局信号の受信電力と第1の他局における第2の他局信号の受信電力とのうち両方または片方を推定するとよい。さらに、第1、第2の他局信号のうち少なくとも一方に、他局間の通信が成立するために必要な最低限の受信電力(最小受信感度)が分かる情報が含まれている場合には、その情報から得られる最小受信感度と、前述の方法で推定した第1又は第2の他局における他局信号の受信電力とを比較して、大なる方の値を第1又は第2の他局における他局信号の受信電力と推定することが望ましい。   Further, the propagation environment parameter may be, for example, transmission power and reception power of a radio station. In this case, in the first and second steps, the transmission power of the first and second other station signals and the reception power when the own station receives the first and second other station signals are estimated. Then, in the inter-station propagation environment estimation step, the transmission power difference value, which is the difference between the transmission power of the first other station signal and the transmission power of the second other station signal, the first reception power, and the second reception The received power difference value that is the difference from the power is compared, or the first difference value that is the difference between the transmission power of the first other station signal and the first received power and the transmission of the second other station signal. The second difference value that is the difference between the power and the second received power is compared, and based on the comparison result, the received power of the first other station signal in the second other station and the first other station Both or one of the received powers of the second other station signal may be estimated. Further, when at least one of the first and second other station signals includes information that indicates the minimum received power (minimum reception sensitivity) necessary for establishing communication between the other stations. Then, the minimum reception sensitivity obtained from the information is compared with the reception power of the other station signal at the first or second other station estimated by the above-described method, and the larger value is set to the first or second value. It is desirable to estimate the received power of the other station signal at the other station.

なお、送信電力情報が第1、第2の他局信号のうち少なくとも一方に含まれる場合には、自局は第1、第2のステップにおいて、その送信電力情報から他局信号の送信電力を推定すればよい。また、送信電力情報が第1、第2の他局信号のどちらにも含まれない場合には、他局信号の送信電力を業界平均の送信電力や、そのシステムで定められた送信電力、過去取得した送信電力情報の平均値などによって推定すればよい。   When the transmission power information is included in at least one of the first and second other station signals, the own station obtains the transmission power of the other station signal from the transmission power information in the first and second steps. It may be estimated. When the transmission power information is not included in either the first or second other station signal, the transmission power of the other station signal is set to the industry average transmission power, the transmission power determined by the system, the past What is necessary is just to estimate by the average value etc. of the acquired transmission power information.

また、伝搬環境の推定精度を高めるために、他局間伝搬環境推定ステップにおいて、自局が少なくとも1つ以上の他の自局が推定した第1、第2の他局間の他局間伝搬環境パラメータ推定値を受信し、その推定値と自局の推定値とを基に、第1、第2の他局間の他局間伝搬環境パラメータ推定値を補正する補正ステップをさらに含めることが望ましい。   Further, in order to improve the estimation accuracy of the propagation environment, in the inter-station propagation environment estimation step, the inter-station propagation between the first and second other stations estimated by the own station by at least one or more other stations. The method may further include a correction step of receiving the environmental parameter estimated value and correcting the inter-station propagation environment parameter estimated value between the first and second other stations based on the estimated value and the estimated value of the own station. desirable.

補正ステップでは、例えば、自局の推定値と他の自局の推定値との平均値を算出して、その値を補正後の他局間伝搬環境パラメータ推定値とすればよい。あるいは、自局の推定値と他の自局の推定値とのうちの最大値又は最小値を算出して、その値を補正後の他局間伝搬環境パラメータ推定値としてもよい。   In the correction step, for example, an average value of the estimated value of the own station and the estimated value of the other own station may be calculated, and the value may be used as the corrected inter-station propagation environment parameter estimated value. Alternatively, the maximum value or the minimum value of the estimated value of the own station and the estimated value of the other own station may be calculated, and the value may be used as the corrected inter-station propagation environment parameter estimated value.

また、伝搬環境の推定精度を高めるために、他局間伝搬環境推定ステップにおいて、自局が少なくとも1つ以上の他の自局が第1、第2の他局間の他局間伝搬環境パラメータを推定するために用いる他自局推定情報を他の自局から受信し、他自局推定情報を用いて、自局が推定した第1、第2の他局間の他局間伝搬環境パラメータ推定値を補正する補正ステップをさらにさらに含めてもよい。他自局推定情報として、例えば、他の自局が推定した第1の自他局間伝搬環境パラメータと第2の自他局間伝搬環境パラメータとの差分値を用いればよい。この場合、補正ステップでは、例えば、自局が推定した第1の自他局間伝搬環境パラメータと第2の自他局間伝搬環境パラメータとの差分値と他の自局が推定した差分値との平均差分値を算出し、平均差分値が所定値以下の場合に、所定の伝搬環境パラメータ値を第1、第2の他局間の他局間伝搬環境パラメータ推定値とすればよい。あるいは、自局が推定した第1の自他局間伝搬環境パラメータと第2の自他局間伝搬環境パラメータとの差分値と他の自局が推定した差分値との中で最大又は最小となる差分値を算出し、最大又は最小となる差分値が所定値以下の場合に、所定の伝搬環境パラメータ値を第1、第2の他局間の他局間伝搬環境パラメータ推定値と推定してもよい。あるいは、自局及び他の自局が推定した複数の差分値のうち、所定値以下となる差分値の数が所定個以上の場合に、所定の伝搬環境パラメータ値を第1、第2の他局間の他局間伝搬環境パラメータ推定値としてもよい。   Further, in order to improve the estimation accuracy of the propagation environment, in the propagation environment estimation step between other stations, the own station is at least one other own station is the propagation environment parameter between other stations between the first and second other stations. The other-station propagation environment parameter between the first and second other stations estimated by the own station using the other-station estimation information received from the other-station estimation information. A correction step for correcting the estimated value may be further included. For example, the difference value between the first own-other-station propagation environment parameter and the second own-other-station propagation environment parameter estimated by the other own station may be used as the other-owner station estimation information. In this case, in the correction step, for example, the difference value between the first own-other-station propagation environment parameter estimated by the own station and the second own-other-station propagation environment parameter, and the difference value estimated by the other own station, When the average difference value is equal to or less than a predetermined value, the predetermined propagation environment parameter value may be used as the inter-other-station propagation environment parameter estimated value between the first and second other stations. Alternatively, the maximum or minimum difference between the difference value between the first own-other-station propagation environment parameter estimated by the own station and the second own-other-station propagation environment parameter and the difference value estimated by the other own station And when the maximum or minimum difference value is less than or equal to the predetermined value, the predetermined propagation environment parameter value is estimated as the inter-other-station propagation environment parameter estimation value between the first and second other stations. May be. Alternatively, when the number of difference values that are less than or equal to a predetermined value among a plurality of difference values estimated by the own station and other own stations is equal to or more than a predetermined value, the predetermined propagation environment parameter value is set to the first and second other values. It is good also as an inter-station propagation environment parameter estimated value between stations.

また、伝搬環境の推定精度を高めるために、自局に他局間伝搬損最大値を予め記憶しておき、他局間伝搬環境推定ステップにおいて、推定した第1、第2の他局間の他局間伝搬損推定値が予め記憶させた他局間伝搬損最大値より大きい場合、他局間伝搬損最大値を第1、第2の他局間の他局間伝搬損推定値として補正する補正ステップをさらに含めてもよい。他局間伝搬損最大値は、例えば、周辺環境をユーザーが観察して決定してもよいし、伝搬環境推定装置にモード選択スイッチを設けておき、ユーザーが使用環境に応じてモード選択することで決定してもよい。   Further, in order to improve the estimation accuracy of the propagation environment, the maximum propagation loss value between other stations is stored in advance in the own station, and in the propagation environment estimation step between other stations, between the estimated first and second other stations. When the estimated propagation loss between other stations is larger than the maximum stored propagation loss between other stations, the maximum propagation loss between other stations is corrected as the estimated propagation loss between other stations between the first and second other stations. A correction step may be further included. The maximum propagation loss between other stations may be determined, for example, by observing the surrounding environment by the user, or a mode selection switch is provided in the propagation environment estimation device, and the user selects the mode according to the usage environment. You may decide by.

伝搬環境パラメータは、例えば、無線局間の伝搬距離であり、第1のステップにおいて、第1の他局信号の送信電力と自局が第2の他局信号を受信したときの受信電力とから、第1の自他局間伝搬距離を推定し、第2のステップにおいて、第2の他局信号の送信電力推定値と自局が第2の他局信号を受信したときの受信電力とから、第2の自他局間伝搬距離を推定し、他局間伝搬環境推定ステップにおいて、自局は、他の自局が推定した第1の自他局間伝搬距離推定値、第2の自他局間伝搬距離推定値を他の自局からの送信信号を受信して抽出し、他の自局からの送信信号の送信電力と自局における受信電力とから他の自局と自局間の自局間伝搬距離を推定し、自局が推定した第1、第2の自他局間伝搬距離と他の自局が推定した第1、第2の自他局間伝搬距離と自局間伝搬距離とを用いて第1の他局と第2の他局との間の他局間伝搬距離を推定する。   The propagation environment parameter is, for example, the propagation distance between the radio stations, and in the first step, from the transmission power of the first other station signal and the reception power when the own station receives the second other station signal. , Estimating the propagation distance between the first and second stations, and in the second step, from the estimated transmission power of the second other station signal and the received power when the own station receives the second other station signal , Estimating the second inter-station propagation distance, and in the inter-station propagation environment estimation step, the local station determines the first self-other station propagation distance estimate, Estimate the propagation distance between other stations by receiving the transmission signal from the other station and extract the transmission power of the transmission signal from the other station and the received power at the own station. The first-second propagation distance between the first and second stations estimated by the own station and the first and second estimated by the other own stations are estimated. The other stations among the propagation distance between the first other station and a second remote station is estimated by using the inter-own and other stations propagation distance and local station between the propagation distance.

伝搬環境パラメータは、例えば、他局の位置情報と他局間伝搬距離であり、第1のステップにおいて、複数の自局が情報を交換し合うことにより第1の他局の位置情報を推定し、第2のステップにおいて、複数の自局が情報を交換し合うことにより第2の他局の位置情報を推定し、他局間伝搬環境推定ステップにおいて、第1、第2のステップにおいて推定した第1の他局の位置情報と第2の他局の位置情報から第1の他局と第2の他局との間の他局間伝搬距離を推定する。他局の位置情報は、例えば、自局(自局)が2つの他の自局から他の自局の位置情報と他の自局が他局信号を受信した時の位相情報とを受信し、自局を含めた3つの自局と他局間の位相差とから他局と各自局間の距離の差を計算し、初期値設定として、任意の自局の1つと他局との推定距離を仮定距離とし、仮定距離から他の自局と他局との距離も仮定し、仮定した各自局との距離と、各自局から通知された位置情報とを用いて他局の仮定位置を算出し、算出された仮定位置から求めた他局との算出距離と、他局との仮定距離との差が特定値より小さくなるまで、算出距離を仮定距離にフィードバックしながら算出を繰り返し、算出距離と仮定距離との差が特定値より小さくなった時の仮定位置を他局の位置とする位置算出方法を用いて推定すればよい。   The propagation environment parameter is, for example, the position information of the other station and the propagation distance between the other stations. In the first step, the position information of the first other station is estimated by exchanging information between the plurality of own stations. In the second step, the location information of the second other station is estimated by exchanging information between the plurality of own stations, and the estimation is performed in the first and second steps in the inter-station propagation environment estimation step. The inter-station propagation distance between the first other station and the second other station is estimated from the position information of the first other station and the position information of the second other station. For example, the position information of the other station is received by the own station (own station) from two other own stations, the position information of the other own station, and the phase information when the other own station receives the other station signal. Calculate the difference in distance between the other station and each own station from the phase difference between the three own stations including the own station and the other station, and estimate the initial value setting between one of the own stations and the other station. The distance is assumed as the assumed distance, the distance between the other station and other stations is also assumed from the assumed distance, and the assumed position of the other station is determined using the assumed distance from each station and the position information notified from each station. Calculate and repeat the calculation while feeding back the calculated distance to the assumed distance until the difference between the calculated distance to the other station calculated from the calculated assumed position and the assumed distance to the other station is smaller than a specific value. Estimated using a position calculation method in which the assumed position when the difference between the distance and the assumed distance is less than a specific value is the position of the other station It may be Re.

伝搬環境パラメータは、無線局間の伝搬距離および伝搬損であり、上述の方法で推定した他局間伝搬距離を基に、他局間伝搬損を推定する。   The propagation environment parameters are the propagation distance and propagation loss between radio stations, and the propagation loss between other stations is estimated based on the propagation distance between other stations estimated by the above-described method.

本発明は、上記課題を解決するために、第1の無線局(自局)が第1の他局から第2の他局への伝送リンクと、自局から第2の無線局への伝送リンクとが互いに干渉せず同時送信可能な自局の送信電力を推定する方法として、上述の伝搬環境推定方法を用いて推定した第1の他局と第2の他局との間の他局間伝搬損推定値と第1の他局から第2の他局宛てに送信した信号の送信電力とから第2の他局における受信電力を推定し、その受信電力推定値と、第2の他局における所定の所要CIRと、上述の伝搬環境推定方法を用いて推定した第2の自他局間伝搬損推定値とを基に、同時送信可能な自局の送信電力を推定する。   In order to solve the above problems, the present invention provides a transmission link from a first other station to a second other station and a transmission from the first station to the second radio station. Other stations between the first other station and the second other station estimated using the above-described propagation environment estimation method as a method of estimating the transmission power of the own station that can simultaneously transmit without interfering with the link The received power at the second other station is estimated from the inter-station propagation loss estimated value and the transmission power of the signal transmitted from the first other station to the second other station, and the received power estimated value and the second other Based on the predetermined required CIR in the station and the second estimated propagation loss between other stations estimated using the above-described propagation environment estimation method, the transmission power of the own station that can be simultaneously transmitted is estimated.

また、あるいは、第1の無線局(自局)が第1の他局から第2の他局への伝送リンクと、自局から第2の無線局への伝送リンクとが互いに干渉せず同時送信可能な自局の送信電力を推定するための方法として、第1の無線局は、上述の伝搬環境推定方法を用いて推定した第1の他局から第2の他局宛てに送信した信号の第2の他局における受信電力と、第2の自他局間伝搬損推定値と、第2の他局における所定の所要CIRとを基に、同時送信可能な自局の送信電力を推定する。   Alternatively, the transmission link from the first other station to the second other station and the transmission link from the first station to the second radio station may not interfere with each other at the same time. As a method for estimating the transmission power of the local station that can be transmitted, the first radio station transmits a signal transmitted from the first other station to the second other station estimated using the above-described propagation environment estimation method. Based on the received power at the second other station, the second estimated propagation loss between the other stations, and the predetermined required CIR at the second other station, the transmission power of the own station that can simultaneously transmit is estimated. To do.

なお、自局は、上記の方法で推定した同時送信可能な許容送信電力で、第1の他局が第2の他局に宛てた第1送信パケットに重複するタイミングで自局からパケットを同時送信し、第2の他局の応答結果又は第1送信パケットに対する第1の他局からの再送パケットの有無を基に同時送信可否判定を行い、同時送信可能と判断した場合には次回以降も前記第1の他局が前記第2の他局へ信号を送信する時間に重複させて同時送信を実施し、同時送信不可能と判断した場合には次回以降も前記第1の他局が前記第2の他局へ信号を送信する時間には同時送信を実施しないか、許容送信電力を下げて同時送信を再試行することが望ましい。   In addition, the local station simultaneously transmits packets from the local station at the timing at which the first other station overlaps the first transmission packet addressed to the second other station with the allowable transmission power that can be simultaneously transmitted estimated by the above method. Transmit and determine whether or not simultaneous transmission is possible based on the response result of the second other station or the presence / absence of a retransmission packet from the first other station with respect to the first transmission packet. When the first other station performs simultaneous transmission overlapping the time for transmitting a signal to the second other station and determines that simultaneous transmission is impossible, the first other station will continue to perform It is desirable not to carry out simultaneous transmission at the time of transmitting a signal to the second other station, or to reduce the allowable transmission power and retry the simultaneous transmission.

以上、本発明によれば、RTS/CTSを利用することなく、既存の無線局を含む他局間の伝搬環境を推定することが可能であり、推定結果を基に他局間の通信に支障を与えず同時送信が可能となる送信電力を推定してその電力で同時送信を図ることが可能となるため、既存の無線局と本発明の技術を搭載した無線局が共存するような環境下においても、さらされ端末問題に対する改善効果を発揮することができる。   As described above, according to the present invention, it is possible to estimate a propagation environment between other stations including an existing radio station without using RTS / CTS, and it is difficult to communicate between other stations based on the estimation result. In this environment, existing radio stations and radio stations equipped with the technology of the present invention coexist. In addition, the improvement effect on the exposed terminal problem can be exhibited.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における無線通信システムの概念を示す図である。図1において、11、12、13、14は無線局である。無線局11と12、13と14が、それぞれ通信を行っており、d12は無線局11から無線局12宛のデータパケット、a21は無線局12から無線局11へ受信確認として返すACKパケット、d34は無線局13から無線局14宛のデータパケット、a43は無線局14から無線局13へ受信確認として返すACKパケットである。また、無線局13と14は隣接家屋B内で通信し、無線局11と12は自宅Aで通信する。以下では、無線局11、12をそれぞれ自局11、12、無線局13、14をそれぞれ他局13、14と呼ぶ。
(Embodiment 1)
FIG. 1 is a diagram showing a concept of a radio communication system according to Embodiment 1 of the present invention. In FIG. 1, 11, 12, 13, and 14 are radio stations. The wireless stations 11 and 12, 13 and 14 are communicating, respectively, d12 is a data packet addressed from the wireless station 11 to the wireless station 12, a21 is an ACK packet returned from the wireless station 12 to the wireless station 11 as a reception confirmation, d34 Is a data packet addressed from the wireless station 13 to the wireless station 14, and a43 is an ACK packet returned from the wireless station 14 to the wireless station 13 as a reception confirmation. The wireless stations 13 and 14 communicate in the adjacent house B, and the wireless stations 11 and 12 communicate in the home A. Hereinafter, the wireless stations 11 and 12 are referred to as own stations 11 and 12, respectively, and the wireless stations 13 and 14 are referred to as other stations 13 and 14, respectively.

自局11は、後述する本発明の伝搬環境推定方法を用いて他局13、14間の伝搬環境を推定し、その推定結果を基に、他局13、14間の通信タイミングと重なるタイミングで自局11からパケットを送信しても他局間の通信に支障を与えないかどうかの判定(以下、同時判定と記す)を行う。そして、自局13は、同時送信判定の結果、他局間の通信に支障なしと判断すると、他局13、14間でパケットが伝送されているタイミングでもキャリアセンスの結果に関わらず、データパケットを同時送信する。   The own station 11 estimates the propagation environment between the other stations 13 and 14 using the propagation environment estimation method of the present invention to be described later, and at a timing overlapping with the communication timing between the other stations 13 and 14 based on the estimation result. It is determined whether or not communication between other stations will be hindered even if a packet is transmitted from the own station 11 (hereinafter referred to as simultaneous determination). If the own station 13 determines that there is no problem in communication between the other stations as a result of the simultaneous transmission determination, the data packet is transmitted regardless of the carrier sense result even when the packet is transmitted between the other stations 13 and 14. Are sent simultaneously.

図2は、本発明の説明で用いる無線局間の伝搬環境及び各局の伝搬環境パラメータを表す記号を示した図である。図2において、両矢印の線に付けれた記号は各局間の伝搬損と距離を表している。すなわち、自局11と自局12の間の伝搬損はL12、その間の距離はD12、自局11と他局13の間の伝搬損はL13、その間の距離はD13、自局11と他局14の間の伝搬損はL14、その間の距離はD14、自局12と他局13の間の伝搬損はL23、その間の距離はD23、自局12と他局14の間の伝搬損はL24、その間の距離はD24、他局13と他局14の間の伝搬損はL34、その間の距離はD34とする。また、図2において、片矢印の線の始点と終点(矢印の先)に付けられた記号は、それぞれその線の始点に位置する局から図1のパケットが送信される際の送信電力とそのパケットが矢印の先の局で受信される際の受信電力を表している。すなわち、自局11から送信されるパケットの送信電力はP1、そのパケットが自局12、他局13、14で受信される際の各局における受信電力はそれぞれR12、R13、R14、他局13から送信されるパケットの送信電力はP3、そのパケットが自局11、12、他局14で受信される際の各局における受信電力はそれぞれR31、R32、R34、他局14から送信されるパケットの送信電力はP4、そのパケットが自局11、12、他局13で受信される際の各局における受信電力はそれぞれR41、R42、R43、とする。なお、ここで、送信電力、受信電力、伝搬損はすべてデシベルで表現した値とする。   FIG. 2 is a diagram showing symbols representing the propagation environment between wireless stations and the propagation environment parameter of each station used in the description of the present invention. In FIG. 2, the symbols attached to the double-headed arrows represent the propagation loss and distance between the stations. That is, the propagation loss between the own station 11 and the own station 12 is L12, the distance between them is D12, the propagation loss between the own station 11 and the other station 13 is L13, the distance between them is D13, the own station 11 and the other station 14 is L14, the distance between them is D14, the propagation loss between the own station 12 and the other station 13 is L23, the distance between them is D23, and the propagation loss between the own station 12 and the other station 14 is L24. The distance between them is D24, the propagation loss between the other stations 13 and 14 is L34, and the distance between them is D34. In FIG. 2, the symbols attached to the starting point and ending point (point of the arrow) of the single arrow line are the transmission power when the packet of FIG. 1 is transmitted from the station located at the starting point of the line. It represents the received power when the packet is received at the station indicated by the arrow. That is, the transmission power of the packet transmitted from the own station 11 is P1, and the received power at each station when the packet is received by the own station 12 and the other stations 13 and 14 is R12, R13, R14, and the other station 13, respectively. The transmission power of the packet to be transmitted is P3, and the reception power at each station when the packet is received by the own station 11, 12 and other station 14 is the transmission of the packet transmitted from R31, R32, R34 and the other station 14, respectively. The power is P4, and the received power at each station when the packet is received by the own stations 11 and 12 and the other station 13 is R41, R42, and R43, respectively. Here, transmission power, reception power, and propagation loss are all values expressed in decibels.

図3は、図1の無線通信システムにおける、同時送信を試行するまでの伝送シーケンスを示す図である。ここでは、他局13、14は、従来のCSMA方式にしたがってデータ送信直前に所定時間のキャリアセンス(CS)を行い、キャリアが検出されなかった場合、データパケットの送出を行っている。また、自局11も後述する許容送信電力を決定するまでは、従来のCSMA方式と同様に、所定時間のキャリアセンス(CS)を行い、キャリアが検出されなかった場合、データパケットの送出を行う。図3では、まず他局13がキャリアセンスを行った後、他局14宛のデータパケットd34を送信し、他局14はデータパケットd34を受信した直後にACKパケットa43を送信する。自局11は、後述する許容送信電力を決定するまでは、データパケットd34が送信されている期間であれば、キャリアセンスを行った際にデータパケットd34のキャリアが検出されて、送信禁止状態となる。ここで、802.11a/b/gの規格に準拠したパケットと同じく、データパケットd34には送信元アドレスと宛先アドレスが、ACKパケットa43には宛先アドレス(データパケットの送信元アドレス)が含まれている。   FIG. 3 is a diagram illustrating a transmission sequence until simultaneous transmission is attempted in the wireless communication system of FIG. Here, the other stations 13 and 14 perform carrier sensing (CS) for a predetermined time immediately before data transmission according to the conventional CSMA method, and when no carrier is detected, the other stations 13 and 14 transmit data packets. Also, the own station 11 performs carrier sense (CS) for a predetermined time until the allowable transmission power described later is determined, and transmits a data packet when no carrier is detected, as in the conventional CSMA method. . In FIG. 3, first, after the other station 13 performs carrier sense, the data packet d34 addressed to the other station 14 is transmitted, and the other station 14 transmits the ACK packet a43 immediately after receiving the data packet d34. The own station 11 detects the carrier of the data packet d34 when performing carrier sense until the allowable transmission power to be described later is determined, and is in a transmission prohibited state. Become. Here, similarly to the packet conforming to the 802.11a / b / g standard, the data packet d34 includes a source address and a destination address, and the ACK packet a43 includes a destination address (a source address of the data packet). ing.

本実施形態の無線通信システムでは、自局11は、図3に示す他局信号d34、a43を傍受して、他局13、14間の他局間伝搬環境を推定し、推定結果を基に許容送信電力を決定し、キャリアセンスを行うとキャリアが検出される場合でも、決定した許容送信電力で同時送信を行うことを試みる。そして、自局11は、他局13から他局14へのリンクに対し、自局11の通信相手先の無線局(例えば、自局12)へのリンクを同時に成立させることができるかどうかを、以下の手順で自律的に判断する。   In the wireless communication system of the present embodiment, the own station 11 intercepts the other station signals d34 and a43 shown in FIG. 3, estimates the inter-station propagation environment between the other stations 13 and 14, and based on the estimation result. Even when a carrier is detected when the allowable transmission power is determined and carrier sense is performed, simultaneous transmission is attempted with the determined allowable transmission power. Whether or not the own station 11 can simultaneously establish a link to the radio station (for example, own station 12) of the communication partner of the own station 11 with respect to the link from the other station 13 to the other station 14. Judgment is made autonomously by the following procedure.

まず、自局11は、図3のデータパケットd34を傍受した際、データパケットd34から他局13の送信電力情報が抽出できる場合にはその情報から送信電力P3を推定するとともに、その受信電力R31を測定し、自局11と他局13との間の自他局間伝搬損L13を
L13=P3−R31 ―――(式1)
として推定する。このように、他局信号から送信電力情報を抽出できる場合にはその情報を用いることにより精度良く、自他局間伝搬損を推定できる。次に、自局11は、図3のACKパケットa43を傍受した際、ACKパケットa43から他局14の送信電力情報が抽出できる場合にはその情報から送信電力P4を推定、抽出できない場合にはデータパケットd34を傍受した際に推定した送信電力を送信電力P4と推定するとともに、その受信電力R41を測定し、自局11と他局14との間の自他局間伝搬損L14を
L14=P4−R41 ―――(式2)
として推定する。なお、他局信号d34、a43のどちらにも送信電力情報が含まれない場合等で両方の他局の送信電力が正確に把握できない場合、自局11は、業界平均の送信電力や、そのシステムで定められた送信電力、過去取得した送信電力情報の平均値など所定の送信電力として定め、それを送信電力P3と推定すればよい。これにより、他局信号に送信電力情報が付加されていない場合にも、自他局間伝搬損を推定することが可能となる。
First, when the own station 11 intercepts the data packet d34 in FIG. 3, if the transmission power information of the other station 13 can be extracted from the data packet d34, the own station 11 estimates the transmission power P3 from the information and receives the received power R31. , And the propagation loss L13 between the own station 11 and the other station 13 is expressed as L13 = P3-R31 (1)
Estimate as In this way, when transmission power information can be extracted from other station signals, the propagation loss between the own station and other stations can be estimated with high accuracy by using the information. Next, when the own station 11 intercepts the ACK packet a43 in FIG. 3, if the transmission power information of the other station 14 can be extracted from the ACK packet a43, the transmission power P4 cannot be estimated and extracted from the information. The transmission power estimated when the data packet d34 is intercepted is estimated as the transmission power P4, the reception power R41 is measured, and the propagation loss L14 between the own station 11 and the other station 14 is expressed as L14 = P4-R41 ――― (Formula 2)
Estimate as When the transmission power information is not included in any of the other station signals d34 and a43 and the transmission power of both other stations cannot be accurately grasped, the local station 11 determines the industry average transmission power and its system. The predetermined transmission power such as the transmission power determined in step 1 and the average value of transmission power information acquired in the past may be determined and estimated as the transmission power P3. Thereby, even when transmission power information is not added to the other station signal, it is possible to estimate the propagation loss between the own station and the other station.

次に、自局11は、推定した2つの自他局間伝搬損L13、L14を比較して、大きい方の値を他局13、14間の他局間伝搬損L34と推定する。そして、無線局11は、推定した送信電力P3と他局間伝搬損L34から、他局14におけるデータパケットd34の受信電力R34を
R34=P3−L34 ―――(式3)
として推定する。また、自局11は、傍受したデータパケットd34又はACKパケットa43に含まれる情報から他局14がデータパケットd34を受信する際に必要な所要CIR(CIR34とする)を推定できる場合にはその情報を基にCIR34を推定、CIR34を推定するための情報がデータパケットd34又はACKパケットa43に含まれない場合には所定の所要CIR値をCIR34と推定する。そして、自局11は、推定した自他局間伝搬損質L14と受信電力R34とCIR34から、データパケットd34の送信時に、自局11から他局間の通信に支障を与えず同時送信できる最大の電力(以下、許容送信電力と記す)P1を
P1=R34+L14−CIR34 ―――(式4)
として決定する。なお、他局信号d34、a43のどちらにもCIR34についての情報が含まれない場合、自局11は、所定の所要CIRを、業界平均の所要CIRや、そのシステムで定められた所要CIR、過去取得した所要CIRの平均値などによって推定すればよい。これによって、他局信号に所要CIRの情報が付加されていない場合にも、他局間伝搬損を推定することが可能となる。
Next, the own station 11 compares the estimated two propagation losses L13 and L14 between the other stations and estimates the larger value as the other-station propagation loss L34 between the other stations 13 and 14. Then, the wireless station 11 determines the received power R34 of the data packet d34 at the other station 14 from the estimated transmission power P3 and the propagation loss L34 between other stations: R34 = P3-L34 (3)
Estimate as In addition, when the local station 11 can estimate the required CIR (referred to as CIR34) required when the other station 14 receives the data packet d34 from the information included in the intercepted data packet d34 or ACK packet a43, the information CIR 34 is estimated based on the above, and when the information for estimating CIR 34 is not included in data packet d 34 or ACK packet a 43, a predetermined required CIR value is estimated as CIR 34. Then, the own station 11 can transmit the data packet d34 from the estimated propagation loss L14, the received power R34, and the CIR 34 between the own station 11 and the other station at the same time without causing any trouble in communication between the other stations. Power P1 (hereinafter referred to as “allowable transmission power”) P1 = R34 + L14−CIR34 —— (Formula 4)
Determine as. If neither of the other station signals d34 and a43 includes information on the CIR 34, the local station 11 determines the predetermined required CIR, the industry average required CIR, the required CIR determined by the system, the past What is necessary is just to estimate by the average value etc. of the acquired required CIR. This makes it possible to estimate the inter-station propagation loss even when the required CIR information is not added to the other-station signal.

以上のように、自局11は、データパケットd34とそれに対するACKパケットa43を傍受することにより、同時送信を試行するための許容送信電力を決定する。次に、自局11は、図3に示すように、許容送信電力が決定されたデータパケットd34を再び傍受しそのヘッダからそのパケットがデータパケットd34と認識すると、その直後に先に決定した許容送信電力P1でデータパケットd12の同時送信を試行する。そして、自局12はデータパケット12を正常受信できれば、ACKパケットa21を返信する。そして、自局11は、その後、ACKパケットa43を傍受できかつACKパケットa21も受信できた場合、又は、ACKパケットa21を受信できかつその後に送信されたデータパケットd34が再送パケットでなかった場合に、同時送信成功とみなす。自局11は、この同時送信の試行を所定回数実施し、同時送信成功回数が所定回数以上の場合に、他局13から他局14へのリンクに対し、自局11から自局12へのリンクを同時に成立させることができる判断する。そして、自局11は、他局13から14にデータパケットd34が伝送されている期間でもキャリアセンスの結果に関わらず、自局12に送信すべきデータを保有している場合は、データパケットd12を同時送信する。なお、自局11は、この同時送信の試行を所定回数実施し、同時送信成功回数が所定回数に満たなかった場合には、他局13から他局14へのリンクに対し、自局11から自局12へのリンクを同時に成立させることは不可能と判断し、これまで通りキャリアセンスの結果に応じて送信を禁止する。   As described above, the local station 11 determines the allowable transmission power for attempting simultaneous transmission by intercepting the data packet d34 and the corresponding ACK packet a43. Next, as shown in FIG. 3, the local station 11 again intercepts the data packet d34 for which the allowable transmission power has been determined, and when the packet 11 recognizes the packet as the data packet d34 from the header, Attempt simultaneous transmission of data packet d12 with transmission power P1. If the own station 12 can normally receive the data packet 12, it returns an ACK packet a21. Then, the local station 11 can intercept the ACK packet a43 and can also receive the ACK packet a21, or can receive the ACK packet a21 and the data packet d34 transmitted thereafter is not a retransmission packet. , Regarded as simultaneous transmission success. The own station 11 performs this simultaneous transmission trial a predetermined number of times, and when the number of successful simultaneous transmissions is equal to or greater than the predetermined number of times, the own station 11 communicates with the own station 12 from the other station 13 to the other station 14. Determine that the links can be established simultaneously. If the local station 11 holds data to be transmitted to the local station 12 regardless of the result of the carrier sense even during a period in which the data packet d34 is transmitted from the other station 13 to 14, the local station 11 receives the data packet d12. Are sent simultaneously. The local station 11 performs this simultaneous transmission trial a predetermined number of times, and if the number of successful simultaneous transmissions is less than the predetermined number, the local station 11 transmits a link from the local station 13 to the local station 14. It is determined that it is impossible to establish a link to the own station 12 at the same time, and transmission is prohibited according to the result of carrier sense as before.

なお、自局11は、同時送信を実施する際、データパケットd34のヘッダからパケット長情報も抽出しておき、その情報を基に、図3のようにデータパケットd34の終了とほぼ同時にデータパケットd12が終了するように、d12のデータ長を制御する。このように、同時送信するリンクの送信時間を揃えることで、同時送信が行われている時間率を高めて、より効果的に伝送容量を向上させることができる。なお、自局12が自局11と同じ同時送信可否判定機能を有している場合、自局11は同時送信をさせるデータパケットd12には、同時送信中である旨を示す情報を含めておく。自局12は、同時送信を行っているデータパケットd12に対するACKパケットa12を、d12終了後直ちに送信するのではなく、図3のように通常のACK送信が完了するだけの間隔を空けて送信する。これにより、ACKパケットa43にa21が衝突することを防止する。なお、自局12が他局13、14と同じくIEEE802.11a/b/g規格準拠の無線局ように同時送信判定の仕組みを持たない局である場合、自局11は、最初にデータパケットd34とそれに対するACKパケットa43を傍受した際に、データパケットd34の受信終了時刻からACKパケットa43の受信開始時刻までをSIFS時間として記憶しておき、同時送信を実施する際、データパケットd34のヘッダから抽出したパケット長情報とその記憶したSIFS時間を基に、データパケットd34の終了時刻からSIFS時間経過した時刻にデータパケットd12が終了するように、d12のデータ長を制御する。通信相手先の自局がIEEE802.11a/b/g規格準拠の無線局ように同時送信判定の仕組みを持たない局であっても、このようにしてデータパケットd12の終了時刻をデータパケットd34の終了時刻より遅らせACKパケットa43の開始時刻辺りに揃えることにより、ACKパケットa21の送信開始タイミングをACKパケットa43の送信開始タイミングより遅らせて、ACKパケットa43とACKパケットa21との衝突時間を短くすることができるため、他局13、自局11において、それぞれのデータパケットに対するACKパケットを正常に受信できる確率を高めることができる。   The local station 11 also extracts packet length information from the header of the data packet d34 when performing simultaneous transmission, and based on that information, the data packet d34 is almost simultaneously with the end of the data packet d34 as shown in FIG. The data length of d12 is controlled so that d12 ends. As described above, by arranging the transmission times of the links to be transmitted simultaneously, the time rate during which the simultaneous transmission is performed can be increased, and the transmission capacity can be improved more effectively. When the own station 12 has the same simultaneous transmission permission determination function as the own station 11, the data packet d12 to be transmitted simultaneously includes information indicating that simultaneous transmission is being performed. . The own station 12 does not transmit the ACK packet a12 corresponding to the data packet d12 performing simultaneous transmission immediately after the completion of d12, but transmits the ACK packet a12 with an interval for completing normal ACK transmission as shown in FIG. . This prevents a21 from colliding with the ACK packet a43. When the own station 12 is a station that does not have a mechanism for simultaneous transmission determination like the other stations 13 and 14, such as a wireless station conforming to the IEEE802.11a / b / g standard, the own station 11 first transmits the data packet d34. And when the ACK packet a43 is intercepted, from the reception end time of the data packet d34 to the reception start time of the ACK packet a43 is stored as a SIFS time, and when performing simultaneous transmission, from the header of the data packet d34 Based on the extracted packet length information and the stored SIFS time, the data length of d12 is controlled so that the data packet d12 ends when the SIFS time elapses from the end time of the data packet d34. Even if the communication partner's own station is a station that does not have a simultaneous transmission determination mechanism such as a wireless station conforming to the IEEE802.11a / b / g standard, the end time of the data packet d12 is set in this way in the data packet d34. By delaying from the end time and aligning around the start time of the ACK packet a43, the transmission start timing of the ACK packet a21 is delayed from the transmission start timing of the ACK packet a43, and the collision time between the ACK packet a43 and the ACK packet a21 is shortened. Therefore, the probability that the other station 13 and the own station 11 can normally receive the ACK packet for each data packet can be increased.

なお、本実施の形態において、同時送信試行時に送信させるデータパケットd12は、その時に自局11から自局12宛てに送信したいデータが実際にある場合にはそのデータを含めたデータパケットとし、送信したいデータがない場合にはダミーデータ(例えば、ランダムなビット列)を含めたデータパケットとする。このように、実際に送信する必要のあるデータを用いて、同時送信を試行することにより、同時送信の可否判定をするための専用のテストパケットを常に同時送信の試行に使用する場合に比べて、周波数利用効率の良い同時送信の可否判定が行える。   In this embodiment, the data packet d12 to be transmitted at the time of simultaneous transmission trial is a data packet including the data when there is actually data to be transmitted from the local station 11 to the local station 12 at that time. If there is no data to be processed, a data packet including dummy data (for example, a random bit string) is used. In this way, by using data that actually needs to be transmitted and trying simultaneous transmission, a dedicated test packet for determining whether simultaneous transmission is possible is always used for simultaneous transmission attempts. Therefore, it is possible to determine whether or not simultaneous transmission with high frequency utilization efficiency is possible.

図4は、本発明の無線局における、自局11の無線通信装置の構成例を示す図である。図4において、41は復調部、42は受信電力検出部、43は送信電力制御部、44はリンク情報管理部、45は同時送信リンク管理部、47は送信部、s1はアンテナからの入力信号、s2は復調データ、s3は受信しているパケットの受信電力情報、s4は同時送信を行う際に自局に許可される送信電力情報、s5は送信電力制御信号、s6は送信データ、s7は同時送信リンク判定情報、s9は同時送信タイミング信号、s10は同時送信パケット長情報、s12は送信信号である。復調部41は、アンテナからの入力信号41を受信して復調し、復調データを得る。復調データには、伝送されているパケットのヘッダ情報も含まれている。受信電力検出部は、受信されているパケットの受信電力を測定し、受信電力情報s3を出力する。   FIG. 4 is a diagram illustrating a configuration example of the wireless communication device of the own station 11 in the wireless station of the present invention. In FIG. 4, 41 is a demodulator, 42 is a received power detector, 43 is a transmission power controller, 44 is a link information manager, 45 is a simultaneous transmission link manager, 47 is a transmitter, and s1 is an input signal from an antenna. , S2 is the demodulated data, s3 is the received power information of the received packet, s4 is the transmission power information permitted to the local station when performing simultaneous transmission, s5 is the transmission power control signal, s6 is the transmission data, and s7 is Simultaneous transmission link determination information, s9 is a simultaneous transmission timing signal, s10 is simultaneous transmission packet length information, and s12 is a transmission signal. The demodulator 41 receives and demodulates the input signal 41 from the antenna to obtain demodulated data. The demodulated data also includes header information of the packet being transmitted. The received power detector measures the received power of the received packet and outputs received power information s3.

リンク情報管理部44は、復調データs2から伝送されているパケットのヘッダ情報を抽出すると共に、測定した受信電力s3を使用して、復調データから抽出できない他局間リンクの伝搬損を推定し、記憶する。さらにリンク情報管理部44は、それらの情報に基づいて現在受信中の他局リンクに対して同時送信する場合に自局に許可する許容送信電力情報s4と受信したパケットのアドレス情報s7を出力する。   The link information management unit 44 extracts the header information of the packet transmitted from the demodulated data s2, and estimates the propagation loss of the link between other stations that cannot be extracted from the demodulated data using the measured received power s3. Remember. Further, the link information management unit 44 outputs the allowable transmission power information s4 permitted to the own station and the address information s7 of the received packet when simultaneously transmitting to the other station link currently being received based on the information. .

同時送信リンク管理部は、アドレス情報s7を用いて、現在受信中の他局の送信データに対して同時送信を試行した回数と同時送信成功回数と同時送信を試行した相手先の自局アドレスとを記憶しておき、現在受信中の他局の送信データに対して、同時送信可能な自局のリンクがあるかどうかを判定する。同時送信可能な自局のリンクがあると判定した場合は、同時送信を行うための同時送信タイミング信号s8を出力する。さらに、復調データs2のパケットヘッダからパケット長情報を抽出し、それに基づいて、今から同時送信を行うパケット(同時送信パケット)の終了時刻が既に送信中のリンクのパケット終了時刻とほぼ同時になるための同時送信パケットの長さを決定し、パケット長情報s9として出力する。さらに、同時送信可能な自局アドレスを示す自局アドレス情報s10を出力する。なお、同時送信リンク管理部は、現在受信中の他局の送信データに対して過去に同時送信を試行した回数が所定回数より少ない自局の通信相手局がある場合にも、同時送信可否判定を行うためのテストパケットをその通信相手局宛に送信させるため、自局アドレス情報としてその通信相手局のアドレス情報を出力する。   The simultaneous transmission link management unit uses the address information s7 to determine the number of simultaneous transmission attempts to the transmission data of the other station currently being received, the number of successful simultaneous transmissions, and the local station address of the other party that has attempted the simultaneous transmission. Is stored, and it is determined whether or not there is a link of the own station capable of simultaneous transmission with respect to the transmission data of the other station currently being received. When it is determined that there is a link of the local station that can be simultaneously transmitted, a simultaneous transmission timing signal s8 for performing simultaneous transmission is output. Further, since the packet length information is extracted from the packet header of the demodulated data s2, and based on this, the end time of the packet to be simultaneously transmitted (simultaneous transmission packet) is almost the same as the packet end time of the link that is already being transmitted. Is determined as packet length information s9. Further, local station address information s10 indicating the local station address capable of simultaneous transmission is output. Note that the simultaneous transmission link management unit determines whether simultaneous transmission is possible even when there is a communication partner station of the local station where the number of simultaneous transmission attempts in the past with respect to transmission data of other stations currently being received is less than a predetermined number. In order to transmit a test packet for performing communication to the communication partner station, the address information of the communication partner station is output as its own station address information.

送信部46は、自局アドレス情報s10に対応する送信データS6が存在する場合、それを受け取り、データパケットを生成し、送信信号s12を生成して送信する。また、自局アドレス情報s11に対応する送信データS6が存在しない場合には、所定データ入れたデータパケットを生成し、送信信号s12を生成して送信する。CSMAの手順に従っているときは、送信部46は受信電力s3に基づいてキャリアセンスを行い、送信の可否を判断する。しかし、同時送信リンク管理部から同時送信タイミング信号を受け取った場合は、受信電力s3によるキャリアセンス結果とは無関係に、直ちに同時送信を行う判断を下し、同時送信タイミング信号s8およびパケット長情報s9、自局アドレス情報s10に基づいてパケットを生成して送信する。送信電力制御部43は、送信電力情報s4が入力されている場合はその情報を基に自局が送信する送信信号の電力を決定し、s4の入力がない場合は所定の送信電力を選択し、送信部に対して送信電力制御情報s5を与えて制御している。   When the transmission data S6 corresponding to the local station address information s10 exists, the transmission unit 46 receives it, generates a data packet, and generates and transmits a transmission signal s12. If there is no transmission data S6 corresponding to the local station address information s11, a data packet containing predetermined data is generated, and a transmission signal s12 is generated and transmitted. When following the CSMA procedure, the transmitter 46 performs carrier sense based on the received power s3 and determines whether or not transmission is possible. However, when the simultaneous transmission timing signal is received from the simultaneous transmission link management unit, a determination is made immediately to perform simultaneous transmission regardless of the carrier sense result by the received power s3, and the simultaneous transmission timing signal s8 and the packet length information s9 are determined. Then, a packet is generated based on the local station address information s10 and transmitted. When the transmission power information s4 is input, the transmission power control unit 43 determines the power of the transmission signal transmitted by the own station based on the information, and when there is no input of s4, selects the predetermined transmission power. The transmission power control information s5 is given to the transmitter for control.

図5は、図4におけるリンク情報管理部44の構成例を示す図である。図5において、51は所要CIR情報推定部、52は送信電力情報推定部、53はアドレス抽出部、54は自他局間伝搬損推定部、55は自他局間伝搬損記憶部、56は他局間伝搬損推定部、57は他局間伝搬損記憶部、58は許容送信電力算出部である。その他、図4と同じ記号については説明を省略する。   FIG. 5 is a diagram illustrating a configuration example of the link information management unit 44 in FIG. In FIG. 5, 51 is a required CIR information estimation unit, 52 is a transmission power information estimation unit, 53 is an address extraction unit, 54 is a propagation loss estimation unit between its own and other stations, 55 is a propagation loss storage unit between its own and other stations, and 56 is An inter-station propagation loss estimation unit, 57 is an inter-station propagation loss storage unit, and 58 is an allowable transmission power calculation unit. Description of other symbols that are the same as those in FIG. 4 is omitted.

所要CIR情報推定部51、送信電力情報推定部52は、それぞれ、復調データs2に現在受信している信号の宛先局における所要CIR情報、現在受信している信号の送信電力情報が含まれる場合には、復調データs2から、送信電力値、CIR値を抽出し送信電力情報s12、所要CIR情報s13として出力する。また、復調データs2に所要CIR情報、送信電力情報が含まれない場合には、所定の送信電力値、CIR値を送信電力情報s12、所要CIR情報s13として出力する。   The required CIR information estimation unit 51 and the transmission power information estimation unit 52 respectively include the required CIR information at the destination station of the currently received signal and the transmission power information of the currently received signal in the demodulated data s2. Extracts the transmission power value and the CIR value from the demodulated data s2, and outputs them as transmission power information s12 and required CIR information s13. When the demodulated data s2 does not include required CIR information and transmission power information, predetermined transmission power values and CIR values are output as transmission power information s12 and required CIR information s13.

アドレス抽出部53は、パケットのヘッダ情報に含まれるパケットの送信元アドレスと宛先アドレスを抽出し、アドレス情報s7として出力する。なお、IEEE802.11a/b/g規格準拠の無線局等では、ACKパケットに宛先アドレス(データパケットを送信した送信元アドレス)しか抽出されないが、アドレス抽出部53は、データパケットを傍受し、パケットの受信終了時刻から時間をカウントし、SIFS時間経過した時刻辺りでACKパケットを傍受し、抽出した宛先アドレスが、直前に傍受したデータパケットの送信元アドレスである場合には、このACKパケットは直前に傍受したデータパケットの宛先局から送信されたパケットであると推定して、送信元アドレスも出力する。   The address extraction unit 53 extracts the transmission source address and the destination address of the packet included in the packet header information, and outputs them as address information s7. Note that in a wireless station or the like conforming to the IEEE802.11a / b / g standard, only the destination address (the source address that transmitted the data packet) is extracted from the ACK packet. However, the address extraction unit 53 intercepts the data packet, ACK packet is intercepted around the time when SIFS time elapses, and if the extracted destination address is the source address of the data packet just intercepted, this ACK packet Assuming that the data packet is transmitted from the destination station of the data packet intercepted in step S1, the source address is also output.

自他局間伝搬損推定部54は、測定した受信電力s3を他局の送信電力値s12から差し引くことにより、自局と他局との間の伝搬損である自他局間伝搬損を推定し、自他局間伝搬損推定値s14を出力する。自他局間伝搬損記憶部55は、アドレス情報s7に含まれる送信元アドレスを認識して現在受信中の信号を送信している他局のアドレスとその他局に対する自他局間伝搬損推定値s14とを図7(a)のような自他局間伝搬損記憶テーブルに記憶する。   The own-other station propagation loss estimation unit 54 estimates the own-other station propagation loss, which is a propagation loss between the own station and the other station, by subtracting the measured received power s3 from the transmission power value s12 of the other station. The own-other-station propagation loss estimated value s14 is output. The own-other-station propagation loss storage unit 55 recognizes the transmission source address included in the address information s7 and transmits the currently received signal and the other-station propagation loss estimated value for the other station. s14 is stored in the own-other station propagation loss storage table as shown in FIG.

他局間伝搬損推定部56は、アドレス情報s7に含まれる他局信号の送信元アドレスと宛先アドレスを認識し、認識した2つのアドレスのそれぞれに対応する2つの自他局間伝搬損推定値を自他局間伝搬損記憶部55の自他局間伝搬損記憶テーブルから参照する。そして、他局間伝搬損推定部56は、2つの自他局間伝搬損推定値を比較して、大きい方の値を現在受信中の送信元アドレスと宛先アドレスに対応する他局間伝搬損推定値s15とする。なお、他局間伝搬損推定部56は、自他局間伝搬損記憶テーブルに参照しようとする他局アドレスに対応する伝搬損推定値が未だ記憶されていない場合には、他局間伝搬損推定を実施せず、他局間伝搬損推定値s15を出力しない。   The other-station propagation loss estimation unit 56 recognizes the source address and destination address of the other-station signal included in the address information s7, and two own-other-station propagation loss estimation values corresponding to the two recognized addresses, respectively. Is referred to from the own-other-station propagation loss storage table of the own-other-station propagation loss storage unit 55. Then, the inter-other-station propagation loss estimation unit 56 compares the two own-other-station propagation loss estimated values, and determines the larger value between the other-station propagation losses corresponding to the source address and the destination address that are currently being received. The estimated value is s15. The inter-station propagation loss estimation unit 56 determines the inter-station propagation loss when the estimated propagation loss corresponding to the other-station address to be referred to is not yet stored in the own-other-station propagation loss storage table. The estimation is not performed, and the inter-station propagation loss estimated value s15 is not output.

図1における自局11が、はじめて他局13、14間リンクの信号を傍受して、他局13、14間の伝搬損を推定する場合を例に、もう少し具体的に他局間伝搬損が推定されるまでについて説明する。先ず、他局13が送信したデータパケットd34を傍受して、自局11と他局13との間の自他局間伝搬損L13が自他局間伝搬損推定部54で推定され、自他局間伝搬損記憶部55に記憶されるが、この時点では、未だ自局11と他局14との間の自他局間伝搬損L14が自他局間伝搬損記憶部55に記憶されていないので、他局間伝搬損推定部56は他局間伝搬損推定を実施しない。次に、他局14が他局13のデータパケットd34に対するACKパケットa43を送信すると、自局11はその信号を傍受し、自局11と他局14との間の自他局間伝搬損L14を自他局間伝搬損推定部54で推定し、自他局間伝搬損記憶部55に記憶する。この時点で、他局13、14に対する自他局間伝搬損推定値が存在するので、他局間伝搬損推定部56は、2つの自他局間伝搬損推定値を比較して、大きい方の値を他局13、14間の他局間伝搬損推定値s15として出力する。例えば、自他局間伝搬損推定値が図7(a)の場合には、自局11と他局14との間の伝搬損推定値71(dB)が選択され、他局間伝搬損L34の推定値として出力される。   In the case where the own station 11 in FIG. 1 intercepts the signal of the link between the other stations 13 and 14 for the first time and estimates the propagation loss between the other stations 13 and 14, the propagation loss between the other stations is more specifically described. The process until estimation is described. First, the data packet d34 transmitted by the other station 13 is intercepted, and the own-other station propagation loss L13 between the own station 11 and the other station 13 is estimated by the own-other station propagation loss estimation unit 54. Although it is stored in the inter-station propagation loss storage unit 55, at this time, the own-other station propagation loss L14 between the own station 11 and the other station 14 is still stored in the own-other-station propagation loss storage unit 55. Therefore, the inter-station propagation loss estimation unit 56 does not perform inter-station propagation loss estimation. Next, when the other station 14 transmits an ACK packet a43 for the data packet d34 of the other station 13, the own station 11 intercepts the signal and the own-other station propagation loss L14 between the own station 11 and the other station 14 is detected. Is estimated by the own-other station propagation loss estimation unit 54 and stored in the own-other station propagation loss storage unit 55. At this point, since the own-other-station propagation loss estimation value for the other stations 13 and 14 exists, the other-station propagation loss estimation unit 56 compares the two other-station propagation loss estimation values, Is output as a propagation loss estimated value s15 between other stations 13 and 14. For example, when the propagation loss estimated value between the own station and the other station is shown in FIG. 7A, the estimated propagation loss value 71 (dB) between the own station 11 and the other station 14 is selected and the propagation loss L34 between other stations is selected. Is output as an estimated value.

他局間伝搬損記憶部57は、アドレス情報s7に含まれる送信元アドレスと宛先アドレスを認識して現在受信中の信号のリンクを示すその2つのアドレスと他局間伝搬損推定値s15とを図7(b)のような他局間伝搬損記憶テーブルに記憶する。   The inter-station propagation loss storage unit 57 recognizes the source address and the destination address included in the address information s7 and obtains the two addresses indicating the link of the signal currently being received and the inter-station propagation loss estimated value s15. This is stored in the inter-station propagation loss storage table as shown in FIG.

許容送信電力推定部58は、アドレス情報s7に含まれる他局信号の送信元アドレスと宛先アドレスを認識し、認識した2つのアドレスに対応する他局間伝搬損推定値を他局間伝搬損記憶部57の他局間伝搬損記憶テーブルから参照し、その参照値と送信電力情報s12とから現在送信されている他局信号が宛先アドレスで指定された他局で受信される際の宛先局受信電力を推定する。次に、許容送信電力推定部58は、宛先アドレスに対応する自他局間伝搬損推定値を自他局間伝搬損記憶部55の自他局間伝搬損記憶テーブルから参照し、宛先局受信電力推定値に自他局間伝搬損推定値を加えた値から所要CIR推定値s13を差し引いた値を、現在受信中の他局信号に対して同時送信する場合の許容送信電力推定値s4として出力する。   The allowable transmission power estimation unit 58 recognizes the transmission source address and destination address of the other station signal included in the address information s7, and stores the propagation loss estimated value between other stations corresponding to the two recognized addresses. The destination station reception when the other station signal currently transmitted from the reference value and the transmission power information s12 is received by the other station designated by the destination address with reference to the other station propagation loss storage table of the unit 57 Estimate power. Next, the allowable transmission power estimation unit 58 refers to the own-other-station propagation loss estimated value corresponding to the destination address from the own-other-station propagation loss storage table of the own-other-station propagation loss storage 55, and receives the destination station. A value obtained by subtracting the required CIR estimated value s13 from the value obtained by adding the propagation loss estimated value between the own station and the other station to the estimated power value as the allowable transmission power estimated value s4 when simultaneously transmitting to the other station signal currently being received. Output.

図6は、図4の同時送信リンク管理部45の構成例を示す図である。図6において、61は同時送信リンク記憶部、62はパケット長抽出部、63は同時送信判定部63はパケット長演算部、s18は記憶された同時送信リンク情報、s19は復調データから抽出されたパケット長情報である。   FIG. 6 is a diagram illustrating a configuration example of the simultaneous transmission link management unit 45 of FIG. In FIG. 6, 61 is a simultaneous transmission link storage unit, 62 is a packet length extracting unit, 63 is a simultaneous transmission determining unit 63 is a packet length calculating unit, s18 is stored simultaneous transmission link information, and s19 is extracted from demodulated data. Packet length information.

同時送信リンク記憶部61は、アドレス情報s7を用いて、現在受信中の送信データに対して同時送信を試行した回数と同時送信成功回数と同時送信を試行した相手先の自局アドレスとを、図7(c)のような同時送信リンク情報テーブルに記憶しておく。   The simultaneous transmission link storage unit 61 uses the address information s7 to determine the number of times that simultaneous transmission has been attempted for the currently received transmission data, the number of successful simultaneous transmissions, and the address of the other party that has attempted simultaneous transmission. It is stored in the simultaneous transmission link information table as shown in FIG.

同時送信判定部63は、アドレス情報s7を用いて、現在受信中の他局間リンクを認識し、同時送信リンク情報テーブルを参照して現在受信中の送信データに対して同時送信可能な自局の通信相手先があるかどうかを判定する。自局の通信相手先候補局全てに対して同時送信の試行が所定回数実施されている場合には、同時送信判定部63は、同時送信リンク情報テーブルの同時送信成功回数が所定回数以上である自局通信相手先アドレスを探索し、発見できればその自局通信相手先アドレスを自局アドレス情報s10とし、同時送信を行うための同時送信タイミング信号s8と、自局アドレス情報s10を出力する。なお、同時送信リンク判定部63は、自局の通信相手先候補局のうち同時送信試行回数が所定回数に満たない局が存在する場合には、同時送信可否判定を行うためのテストパケットをその通信相手局宛に送信させるため、自局アドレス情報10としてその通信相手局のアドレス情報を出力する。   The simultaneous transmission determination unit 63 uses the address information s7 to recognize the link between other stations currently being received, and refers to the simultaneous transmission link information table so that the local station can simultaneously transmit the currently received transmission data. It is determined whether there is a communication partner. When simultaneous transmission trials have been performed a predetermined number of times for all the communication partner candidate stations of the local station, the simultaneous transmission determination unit 63 has the number of successful simultaneous transmissions in the simultaneous transmission link information table equal to or greater than the predetermined number The local station communication partner address is searched, and if the local station communication partner address can be found, the local station communication partner address is set as the local station address information s10, and the simultaneous transmission timing signal s8 for simultaneous transmission and the local station address information s10 are output. Note that the simultaneous transmission link determination unit 63, when there is a station whose number of simultaneous transmission attempts is less than the predetermined number among the communication partner candidate stations of its own station, In order to transmit to the communication partner station, the address information of the communication partner station is output as the own station address information 10.

例えば、自局11の通信相手先として自局9、10、12が存在するとする。(自局9、10は図1には図示しないが自宅A内で稼動しているものとする。)そして、同時送信可否判定を行うために、パケットの同時送信を試行する所定回数を2回とし、同時送信成功回数が2回以上の自局通信相手局を同時送信可能局とした場合に、同時送信リンク情報テーブルの記憶状態が図7(c)の状態だったとする。この場合、他局13から他局14に宛てられた他局信号に対して、通信相手先候補局である自局12の同時送信試行回数が所定回数に満たないため、同時送信リンク判定部63は、アドレス情報s7から現在受信中の送信データが他局13から他局14へ宛てられた信号と認識すると、同時送信タイミング信号s8と、無線局12のアドレスを示す自局アドレス情報s10とを出力する。そして、同時送信を自局12宛てに試行した結果、同時送信に成功した場合、図17(c)の他局13から他局14に宛てられた他局信号に対する通信相手先候補局である自局12の同時送信試行回数と同時送信成功回数は共に2回となるので、同時送信リンク判定部63は、次にアドレス情報s7から現在受信中の送信データが他局13から他局14へ宛てられた信号と認識すると、同時送信タイミング信号s8と、自局10と12のアドレスを含む自局アドレス情報s10とを出力する。また一方、他局13から他局15に宛てられた他局信号に対して同時送信可能な自局通信相手先は存在しないため、同時送信リンク判定部63は、アドレス情報s7から現在受信中の送信データが他局13から他局15へ宛てられた信号と認識すると、そのリンクに対しては同時送信不可として、同時送信タイミング信号s8も自局アドレス情報s10も出力しない。   For example, it is assumed that the own station 9, 10, 12 exists as a communication partner of the own station 11. (It is assumed that the own stations 9 and 10 are operating in the home A although not shown in FIG. 1.) Then, in order to determine whether or not simultaneous transmission is possible, the predetermined number of times of simultaneous packet transmission is determined twice. Assume that the storage state of the simultaneous transmission link information table is the state shown in FIG. 7C when the local communication partner station having the number of successful simultaneous transmissions of 2 or more is a station capable of simultaneous transmission. In this case, since the number of simultaneous transmission attempts of the own station 12 which is the communication partner candidate station is less than the predetermined number for the other station signal addressed from the other station 13 to the other station 14, the simultaneous transmission link determination unit 63 When the transmission data currently being received from the address information s7 is recognized as a signal addressed from the other station 13 to the other station 14, the simultaneous transmission timing signal s8 and the own station address information s10 indicating the address of the wireless station 12 are obtained. Output. If the simultaneous transmission is successful as a result of trying the simultaneous transmission to the local station 12, the local station candidate station corresponding to the other station signal addressed from the other station 13 to the other station 14 in FIG. Since the number of simultaneous transmission attempts and the number of successful simultaneous transmissions of the station 12 are both two times, the simultaneous transmission link determination unit 63 next sends the transmission data currently being received from the address information s7 to the other station 14 from the other station 13. When the received signal is recognized, the simultaneous transmission timing signal s8 and the local station address information s10 including the addresses of the local stations 10 and 12 are output. On the other hand, since there is no local communication partner that can simultaneously transmit other station signals addressed to the other station 15 from the other station 13, the simultaneous transmission link determination unit 63 is currently receiving from the address information s7. If the transmission data is recognized as a signal addressed from the other station 13 to the other station 15, simultaneous transmission is not possible for the link, and neither the simultaneous transmission timing signal s8 nor the own station address information s10 is output.

パケット長抽出部63は、復調データs2からパケット長情報を抽出する。パケット長演算部65は、抽出された現在受信中のパケットのパケット長に対して、同時送信の際の送信開始遅延時間分だけパケット長が短くなるような同時送信パケットの長さを求め、パケット長情報s10として出力する。つまり、現在受信中のパケットとこれから送信する同時送信パケットの終了時刻がほぼ同時になるようにパケット長を設定する。   The packet length extraction unit 63 extracts packet length information from the demodulated data s2. The packet length calculation unit 65 obtains the length of the simultaneous transmission packet such that the packet length is shortened by the transmission start delay time at the time of simultaneous transmission with respect to the extracted packet length of the currently received packet. Output as long information s10. That is, the packet length is set so that the end time of the currently received packet and the simultaneous transmission packet to be transmitted is almost the same.

以上の構成を図1の自局11に適用することで、隣接する家屋で現在世の中に普及しているIEEE802.11a/b/g規格準拠の無線局のように同時送信判定機能を持たない他局が稼動する環境下においても、自局において自律的に他局間の伝搬環境を推定することでき、その推定結果を用いて安全性の高い同時送信を実現できる。   By applying the above configuration to the own station 11 shown in FIG. 1, there is no simultaneous transmission determination function such as a wireless station compliant with the IEEE802.11a / b / g standard that is currently popular in neighboring houses. Even in an environment where the station is operating, the propagation environment between other stations can be estimated autonomously in the own station, and simultaneous transmission with high safety can be realized using the estimation result.

なお、本実施の形態において、自局11は、他局13が他局14に宛てたデータパケットd34とそれに対して他局14が返信するACKパケットa43を傍受して、他局間伝搬損L34の推定するために用いる2つの自他局間伝搬損推定値L13、L14を求めるものとしたが。自他局間伝搬損推定値L13、L14の求めるために使用する他局信号はこれに限らない。例えば、自局11は、他局13、14がそれぞれ図示しない他局や自局11宛てに送信した信号を受信し、その信号の送信電力推定と自局11における受信電力測定を行って自他局間伝搬損L13、L14を推定してもよい。このように、他局13、14間で送受信されるデータパケットd34とそのACKパケットa43以外にも、他局13、14が送信する信号を利用して自他局間伝搬損L13、L14を求めることにより、他局13、14間でデータの送受信実施されていない期間にも、他局間伝搬損L34を推定して同時送信のための許容送信電力P1を決定できる。そのため、他局13、14間で送受信されるデータパケットd34とそのACKパケットa43のみを利用する場合に比べ、より早く同時送信の試行を開始できる場合も生じる。   In the present embodiment, the own station 11 intercepts the data packet d34 addressed to the other station 14 by the other station 13 and the ACK packet a43 returned from the other station 14 in response to the data packet d34. It is assumed that the two propagation loss estimation values L13 and L14 between the own station and other stations used for estimating the above are obtained. Other station signals used for obtaining the own-other station propagation loss estimation values L13 and L14 are not limited to this. For example, the own station 11 receives signals transmitted from the other stations 13 and 14 to other stations (not shown) and to the own station 11, performs transmission power estimation of the signals and measures received power at the own station 11, The inter-station propagation losses L13 and L14 may be estimated. In this way, in addition to the data packet d34 transmitted and received between the other stations 13 and 14 and the ACK packet a43 thereof, the propagation loss L13 and L14 between the own stations is obtained using the signals transmitted by the other stations 13 and 14. As a result, even during a period in which data transmission / reception is not performed between the other stations 13 and 14, the inter-station propagation loss L34 can be estimated and the allowable transmission power P1 for simultaneous transmission can be determined. Therefore, there may be a case where the simultaneous transmission attempt can be started earlier than when only the data packet d34 transmitted / received between the other stations 13 and 14 and the ACK packet a43 are used.

なお、本実施の形態においては、無線局11の動作説明を簡単化するために、他局13が他局14に宛てたデータパケットd34とそれに対して他局14が返信するACKパケットa43を1回ずつ傍受して得た自他局間伝搬損推定値L13、L14を用いて他局間伝搬損L34の推定を行うものとした。しかし、受信電力の測定誤差、一時的な雑音、一時的な伝搬路変動等の要因により、1回ずつ傍受した他局信号のみから自他局間伝搬損や他局間伝搬損を推定すると推定誤差が大きくなる場合があるので、最近の複数回受信した他局信号d34、a43に対する複数の自他局間伝搬損推定値L13、L14をそれぞれ平均したものを基にして、他局間伝搬損L34を推定することが望ましい場合もある。複数回の平均を取る方法としては、所定回数の平均を取る方法、所定時間内の平均を取る方法、直前の平均値に1未満の忘却係数を乗じて最新の推定値を加算した後正規化する方法など、各種の平均化手法が利用可能である。   In this embodiment, in order to simplify the explanation of the operation of the radio station 11, the data packet d34 addressed to the other station 14 by the other station 13 and the ACK packet a43 returned by the other station 14 in response to the data packet d34 It is assumed that the propagation loss L34 between other stations is estimated using the estimated propagation loss values L13 and L14 between the own station and other stations obtained by intercepting each time. However, due to factors such as received power measurement errors, temporary noise, and temporary propagation path fluctuations, it is estimated that the propagation loss between other stations and the propagation loss between other stations are estimated from only the other station signals that are intercepted once. Since the error may become large, the propagation loss between other stations is based on the average of the plurality of own-other-station propagation loss estimates L13, L14 for the other-station signals d34, a43 received a plurality of times recently. It may be desirable to estimate L34. As a method of taking an average of a plurality of times, a method of taking an average of a predetermined number of times, a method of taking an average within a predetermined time, normalizing after multiplying the immediately preceding average value by a forgetting factor of less than 1 and adding the latest estimated value Various averaging methods can be used such as

以上のように、本実施の形態の他局間伝搬環境推定方法では、2つの他局信号を傍受して、少なくともその2つ他局信号の送信元局さえ認識できれば、その2つの送信元局である他局と自局間の自他局間伝搬損を推定し、その2つの推定結果を基に他局間伝搬損を推定する。したがって、本実施の形態の推定方法を用いることにより、他局がIEEE802.11a/b/g規格準拠の無線局ように同時送信判定の仕組みを持たない局である場合でも、他局間伝搬損推定を推定できる。   As described above, in the inter-station propagation environment estimation method of the present embodiment, if two other station signals are intercepted and at least the transmission source stations of the two other station signals can be recognized, the two transmission source stations The other-station propagation loss between the other station and the own station is estimated, and the propagation loss between other stations is estimated based on the two estimation results. Therefore, by using the estimation method of the present embodiment, even when the other station is a station that does not have a simultaneous transmission determination mechanism such as a wireless station compliant with the IEEE802.11a / b / g standard, Estimate can be estimated.

さらに、本実施の形態の他局間伝搬環境推定方法では、2つの自他局間伝搬損推定結果のうちの大きい方の値を他局間伝搬損と推定し、その推定結果から許容送信電力を決定して同時送信判定を試行させる。これにより、自局は「安全性」の高い同時送信を試行・実施できる。   Furthermore, in the inter-station propagation environment estimation method of the present embodiment, the larger value of the two own-other-station propagation loss estimation results is estimated as the inter-station propagation loss, and the allowable transmission power is determined from the estimation result. To determine simultaneous transmission. As a result, the local station can try and implement simultaneous transmission with high “safety”.

ここで「安全性」とは、他局と同時送信を行った場合に他局間の通信に支障を与える危険性が少ないことを意味する。本実施の形態では、他局間の伝搬損を自他局間伝搬損の大きい方の値を用いて推定しているので、安全性を高くすることができる。そのことについて以下説明する。一般に、屋内等の近距離伝搬時の伝搬損Ltotalは、局間の距離による減衰量と、局間に存在する壁等における透過減衰量との関数として表される。例えば、ITU−R P.1238では、屋内伝搬損推定は式1を用いることが推奨されている。   Here, “safety” means that there is little risk of hindering communication between other stations when simultaneous transmission with other stations is performed. In this embodiment, since the propagation loss between other stations is estimated using the larger value of the propagation loss between its own and other stations, safety can be increased. This will be described below. In general, the propagation loss Ltotal at the time of short-distance propagation such as indoors is expressed as a function of the attenuation amount due to the distance between stations and the transmission attenuation amount in a wall or the like existing between the stations. For example, ITU-RP. In 1238, it is recommended to use Equation 1 for indoor propagation loss estimation.

Ltotal=20log10f+Nlog10d+Lf−28 ―――(式5)
f:使用周波数[MHz]
d:局間の距離
N:距離減衰係数
Lf:透過減衰量
図1のような環境、すなわち、自宅Aと隣接家屋Bや次隣接家屋等の周辺地域とで別々の無線局が同じ周波数で稼動する環境においては、式5のf、Nは同じ値が用いられるため、自他局間伝搬損L13、L14、他局間伝搬損L34の差は、局間の距離の差と、局間の遮蔽物による透過減衰量の差で決まる。
Ltotal = 20log10f + Nlog10d + Lf−28 (5)
f: Frequency used [MHz]
d: Distance between stations N: Distance attenuation coefficient Lf: Transmission attenuation Separate radio stations operate at the same frequency in the environment shown in FIG. 1, that is, in the surrounding area such as home A and adjacent house B and the next adjacent house. Since the same value is used for f and N in Equation 5, the difference between the own-other-station propagation loss L13, L14 and the other-station propagation loss L34 is the difference between the distances between the stations and between the stations. It is determined by the difference in transmission attenuation due to the shield.

上記のような環境では、自宅Aで稼動する自局11や12から見て、周辺家屋Bで稼動する他局13や14は、一般的に全て同じ側に存在する。つまり、図1において、自局11と他局13と他局14で構成される三角形の辺の長さを考えると分かるように、他局間の距離は、自他局間距離の長い方(図1では自局11と他局14との距離)より通常短い。したがって、局間の距離による減衰量は自他局間伝搬損L14が通常最も大きくなる。一方、他局間の遮蔽物として通常想定される同じ家屋内の壁や天井による透過減衰量は、自他局間の遮蔽物として通常存在する家の外壁による透過減衰量以下であると、通常考えられる。また、2つの自他局間伝搬損L13、L14の透過減衰量ついて考察してみると、伝搬距離が長くなる程その間に遮蔽物が介在し易いと通常考えられる。したがって、透過減衰量についても自他局間伝搬損L14が通常最も大きくなる。   In the environment as described above, the other stations 13 and 14 operating in the peripheral house B are generally on the same side as viewed from the own stations 11 and 12 operating in the home A. That is, in FIG. 1, as can be understood from the length of the triangle formed by the own station 11, the other station 13, and the other station 14, the distance between the other stations is the longer distance between the other stations ( In FIG. 1, it is usually shorter than the distance between the own station 11 and the other station 14). Accordingly, the propagation loss L14 between the own station and the other station is usually the largest as the attenuation due to the distance between the stations. On the other hand, if the transmission attenuation due to the wall or ceiling in the same house that is normally assumed as a shield between other stations is less than or equal to the transmission attenuation due to the outer wall of the house that normally exists as a shield between the other stations, Conceivable. Further, considering the transmission attenuation amounts of the two own-other-station propagation losses L13 and L14, it is usually considered that the longer the propagation distance is, the easier the shield is interposed between them. Therefore, the propagation loss L14 between the own station and the other station is usually the largest for the transmission attenuation amount.

したがって、本実施の形態のように、他局間伝搬損L34を自他局間伝搬損の大きい方の値L14として推定した場合、他局間伝搬損L34の実際の値に対して、+の誤差が通常生じることになる。この+の誤差は、送信電力推定値と実際の送信電力との誤差、所要CIRの推定誤差、他局の受信機特性の変動やばらつき、他局に対して干渉信号や雑音が同時に存在する場合等、諸々の誤差に対するマージンとなる。それ故、本実施の形態の他局間伝搬損推定方法を用いて同時送信判定を行うことにより、安全性の高い同時送信を実施できる。   Therefore, as in the present embodiment, when the inter-station propagation loss L34 is estimated as the larger value L14 of the inter-other-station propagation loss L, the actual value of the inter-station propagation loss L34 is + An error will usually occur. This + error is an error between the transmission power estimated value and the actual transmission power, a required CIR estimation error, fluctuations or variations in receiver characteristics of other stations, and interference signals or noises simultaneously with other stations It becomes a margin for various errors. Therefore, by performing simultaneous transmission determination using the inter-station propagation loss estimation method of the present embodiment, simultaneous transmission with high safety can be performed.

なお、第1の実施の形態において、他局間伝搬損L34の推定方法として、2つの自他局間伝搬損推定値L13、L14のうち、大きい方の値をL34と推定するとしたが、推定方法はこれに限らない。例えば、L13、L14のうち、大きい方の値を基準値として、それに所定の誤差マージンを加えた値を推定値L34としてもよい。このように推定することで、さらに安全性の高い同時送信を試行できる。あるいは逆に、L13、L14のうち、大きい方の値を基準値として、それから所定の誤差マージンを減じた値を推定値L34としてもよい。このように推定することで、自局11からの許容送信電力が大きくなるため、安全性は下がるが、同時送信時における自局間の通信が成立する可能性は高くなる。   In the first embodiment, as the method of estimating the propagation loss L34 between other stations, the larger one of the two own-other-station propagation loss estimated values L13 and L14 is estimated as L34. The method is not limited to this. For example, a larger value of L13 and L14 may be used as a reference value, and a value obtained by adding a predetermined error margin thereto may be used as the estimated value L34. By estimating in this way, it is possible to try a more secure simultaneous transmission. Or conversely, a larger value of L13 and L14 may be used as a reference value, and a value obtained by subtracting a predetermined error margin from the larger value may be used as the estimated value L34. By estimating in this way, the allowable transmission power from the own station 11 is increased, and thus the safety is lowered, but the possibility that communication between the own stations at the time of simultaneous transmission is established is increased.

また、図5に示した他局間伝搬損推定部56の機能を上述の実施例とは逆にして、L13、L14のうち、小さい方の値を基準値とし、基準値に所定の誤差マージンを加減した値を推定値L34として推定する方法も取り得る。この方法を用いると、L13、L14のうち大きい方の値を基準値にする場合に比べ、許容送信電力が大きくなる分、同時送信時の安全性は下がるが、同時送信時における自局間の通信が成立する可能性は高くなる。   Further, the function of the inter-station propagation loss estimation unit 56 shown in FIG. 5 is reversed from the above-described embodiment, and the smaller value of L13 and L14 is used as a reference value, and a predetermined error margin is included in the reference value. A method of estimating the value obtained by adding or subtracting as the estimated value L34 may be used. When this method is used, compared with the case where the larger value of L13 and L14 is used as the reference value, the safety at the time of simultaneous transmission is reduced because the allowable transmission power is increased. There is a high possibility that communication will be established.

このように同時送信を試行した時の安全性と自局間通信成立の可能性とはトレードオフの関係にある。この安全性と自局間通信成立の可能性とうまくバランスさせて、他局11、12間リンクにおける所要CIRを満たす最大の許容送信電力で同時送信を試行することが最も理想的である。この理想に近づけるためには、誤差マージンを必要以上に大きくとらないことが重要となる。そこで、例えば、本実施の形態の推定方法で許容送信電力を導くために用いる各要素(送信電力P3やCIR34や受信電力R14等)が高い精度で推定できる場合には、前述の諸々の誤差に対するマージンはそれ程大きくとる必要はないと判断し、所定の誤差マージンを基準値から差し引き、逆に各要素の精度が悪い場合には所定の誤差マージンを基準値に加えればよい。このように基準値に所定の誤差マージンを加減して推定する場合、例えば、自他局間伝搬損L13、L14の複数回の推定結果のばらつき(例えば、分散値)を求めて、ばらつきが(例えば、所定の分散値より)大きければ、伝搬環境が不安定であり、許容送信電力を導くために用いる各要素の推定精度が悪いと判断して所定の誤差マージン(例えば3dB)を加え、逆にばらつきが(例えば、所定の分散値より)小さければ、伝搬環境が安定しており、各要素推定精度が高いと判断して所定の誤差マージン(例えば3dB)を減じるというようにしてもよい。また、例えば、他局信号から他局の送信電力や所要CIRを推定するために有効な情報を抽出できる場合には、許容送信電力を導くために用いる各要素の推定精度が高いと判断して所定の誤差マージンを加え、逆の場合には誤差マージンを減じるというようにしてもよい。また、例えば、自他局間伝搬損L13、L14の差を求めて、その差が大きければ、伝搬環境が不安定であると判断して所定の誤差マージンを加え、逆にその差が小さければ、伝搬環境が安定していると判断して所定の誤差マージンを減じるというようにしてもよい。このように、各要素の精度を考慮して、所定の誤差マージンを加減して他局間伝搬損や許容送信電力を推定することにより、安全性と自局間通信成立の可能性とのバランスを良くして、同時送信を実施できる。   Thus, there is a trade-off relationship between the safety when attempting simultaneous transmission and the possibility of establishment of communication between the local stations. It is most ideal to try the simultaneous transmission with the maximum allowable transmission power that satisfies the required CIR in the link between the other stations 11 and 12 in a good balance between the safety and the possibility of establishment of communication between the own stations. In order to approach this ideal, it is important not to increase the error margin more than necessary. Therefore, for example, when each element (transmission power P3, CIR 34, reception power R14, etc.) used for deriving the allowable transmission power by the estimation method of the present embodiment can be estimated with high accuracy, It is determined that the margin need not be so large, and the predetermined error margin is subtracted from the reference value. Conversely, when the accuracy of each element is poor, the predetermined error margin may be added to the reference value. When estimation is performed by adding or subtracting a predetermined error margin to the reference value in this way, for example, a variation (for example, a variance value) of a plurality of estimation results of the own-other-station propagation loss L13, L14 is obtained. For example, if it is larger (predetermined dispersion value), the propagation environment is unstable, and it is determined that the estimation accuracy of each element used for deriving the allowable transmission power is poor, and a predetermined error margin (for example, 3 dB) is added. If the variation is small (for example, smaller than a predetermined dispersion value), it may be determined that the propagation environment is stable and each element estimation accuracy is high, and a predetermined error margin (for example, 3 dB) is reduced. Also, for example, when effective information can be extracted from the other station signal to estimate the transmission power and required CIR of the other station, it is determined that the estimation accuracy of each element used to derive the allowable transmission power is high. A predetermined error margin may be added, and in the opposite case, the error margin may be reduced. Further, for example, when the difference between the own and other station propagation losses L13 and L14 is obtained and the difference is large, it is determined that the propagation environment is unstable and a predetermined error margin is added. The predetermined error margin may be reduced by determining that the propagation environment is stable. In this way, the balance between safety and the possibility of establishment of inter-station communication is established by estimating the propagation loss between other stations and the allowable transmission power by adjusting the predetermined error margin in consideration of the accuracy of each element. To improve simultaneous transmission.

<変形例1>
なお、第1の実施の形態においては、式1、式2に基いて、自他局間伝搬損推定部54で自他局間伝搬損L13、L14を推定して、その推定値を自他局間伝搬損記憶部55に記録し、自他局間伝搬損推定値L13、L14を他局間伝搬損推定部56で比較して他局間伝搬損L34を推定したが、
L13>L14 ―――(式6)
が成立する場合、式1、式2を式6に代入すれば分かるように
P3−R31>P4−R41 ―――(式7)
成立する。また、式7を変形すれば分かるように、
P3−P4>R31−R41 ―――(式8)
が成立する。したがって、自局11は、第1の実施形態のように2つの自他局間伝搬損L13、L14を推定、記録し、それらを比較して他局間伝搬損L34を推定するリンク情報管理部41に替えて、図8のように図5の自他局間伝搬損推定部54と自他局間伝搬損記憶部55に替えて他局送信電力推定値P3、P4及び受信電力測定値R31、R41を記憶する電力記憶部81をリンク情報管理部内に具備したリンク情報管理部841を用いることも可能である。そして、他局間伝搬損推定部82において、電力記憶部81に記憶したP3、P4、R31、R41を参照して、式7又は式8が成立するかどうかを比較判定し、成立する場合、
L34=P3−R31 ―――(式9)
成立しない場合、
L34=P4−R41 ―――(式10)
と推定し、許容送信電力推定部83で、
R34=P3−L34 ―――(式3)
P1=R34+P4−R41−CIR34 ―――(式11)
式3と式11とに基いて許容送信電力P1を推定してもよい。
<Modification 1>
In the first embodiment, the own-other-station propagation loss estimation unit 54 estimates the own-other-station propagation loss L13, L14 based on the equations 1 and 2, and the estimated values are determined by the other users. It is recorded in the inter-station propagation loss storage unit 55, and the own-other station propagation loss estimation values L13 and L14 are compared by the other-station propagation loss estimation unit 56 to estimate the other-station propagation loss L34.
L13> L14 ――― (Formula 6)
If Eq. 1 and Eq. 2 are substituted into Eq. 6, then P3-R31> P4-R41 --- (Eq. 7)
To establish. Also, as you can see by transforming Equation 7,
P3-P4> R31-R41 ――― (Formula 8)
Is established. Accordingly, the own station 11 estimates and records the two own and other station propagation losses L13 and L14 as in the first embodiment, and compares them to estimate the other station propagation loss L34. In place of 41, the other-station transmission power estimation values P3 and P4 and the received power measurement value R31 are replaced with the own-other-station propagation loss estimation unit 54 and the own-other-station propagation loss storage unit 55 shown in FIG. It is also possible to use a link information management unit 841 provided with a power storage unit 81 for storing R41 in the link information management unit. Then, the inter-station propagation loss estimation unit 82 refers to P3, P4, R31, and R41 stored in the power storage unit 81 to compare and determine whether or not Expression 7 or Expression 8 is satisfied.
L34 = P3-R31 ――― (Formula 9)
If not,
L34 = P4-R41 ――― (Formula 10)
In the allowable transmission power estimation unit 83,
R34 = P3-L34 ――― (Formula 3)
P1 = R34 + P4-R41-CIR34 --- (Formula 11)
The allowable transmission power P1 may be estimated based on Equation 3 and Equation 11.

<変形例2>
あるいは、式3を式11に代入すればわかるように、
P1=P3−L34+P4−R41−CIR34 ―――(式12)
と表される。L34は、式7、8が成立するかどうかで、式9または式10で推定される。すなわち、式7,8が成立する場合、
P1=R31+P4−R41−CIR34 ―――(式13)
成立しない場合、
P1=P3−CIR34 ―――(式14)
と推定できる。したがって、自局11は、リンク情報管理部41に替えて、図9のようなリンク情報管理部941を具備してもよい。リンク情報管理部941は、内部に他局間伝搬損記憶部も持たず、他局間伝搬環境推定部92において、電力記憶部81に記憶したP3、P4、R31、R41を参照して、式7又は式8が成立するかどうかを比較判定し、その判定結果を比較判定結果信号s20として許容送信電力部93へ出力し、許容送信電力推定部93は比較判定結果信号s20にしたがって、式13又は式14に基いて許容送信電力P1を推定する。このように、一旦他局間伝搬損を推定するとういことを行わずに、他局の送信電力P3,P4、自局における他局信号の受信電力R31、R41を比較することにより、許容送信電力P1を推定することも可能である。
<Modification 2>
Alternatively, as you can see by substituting Equation 3 into Equation 11,
P1 = P3-L34 + P4-R41-CIR34 --- (Formula 12)
It is expressed. L34 is estimated by Formula 9 or Formula 10 depending on whether Formulas 7 and 8 hold. That is, when Equations 7 and 8 hold,
P1 = R31 + P4-R41-CIR34 --- (Formula 13)
If not,
P1 = P3-CIR34 ――― (Formula 14)
Can be estimated. Accordingly, the local station 11 may include a link information management unit 941 as shown in FIG. 9 instead of the link information management unit 41. The link information management unit 941 does not have an inter-station propagation loss storage unit inside, and the inter-station propagation environment estimation unit 92 refers to P3, P4, R31, and R41 stored in the power storage unit 81 to obtain an equation. 7 or 8 is compared and determined, and the determination result is output to the allowable transmission power unit 93 as a comparison determination result signal s20. The allowable transmission power estimation unit 93 performs the expression 13 according to the comparison determination result signal s20. Alternatively, the allowable transmission power P1 is estimated based on Expression 14. As described above, the transmission power P3 and P4 of the other station and the reception powers R31 and R41 of the other station signal in the local station are compared without temporarily estimating the propagation loss between the other stations. It is also possible to estimate P1.

(実施の形態2)
第1の実施の形態では、他局間伝搬環境として他局の送信電力、他局間伝搬損、他局における受信電力等を推定し、推定結果から所要CIRを満足する許容送信電力を決定して、その決定した電力で同時送信を試行して、同時送信の可否判断を実施していた。本実施の形態では、自局11の送信電力P1は他局間伝搬環境に無関係に所定の値が決定されるものとする。
(Embodiment 2)
In the first embodiment, the transmission power of other stations, the propagation loss between other stations, the received power at other stations, etc. are estimated as the propagation environment between other stations, and the allowable transmission power that satisfies the required CIR is determined from the estimation result. Thus, simultaneous transmission is attempted with the determined power, and whether or not simultaneous transmission is possible is determined. In the present embodiment, it is assumed that the transmission power P1 of the own station 11 is determined to be a predetermined value regardless of the propagation environment between other stations.

図10は第2の実施形態における自局11の構成を示した図である。   FIG. 10 is a diagram showing the configuration of the own station 11 in the second embodiment.

図10において、第1の実施形態の構成と異なる部分は、送信電力制御部103、リンク情報管理部104、同時送信リンク管理部105、送信部107である。その他の図4と同じ符号を付した信号及びブロックは第1の実施の形態と同じであるため、説明を省略し、以下では、第1の実施の形態と異なる部分を中心に図10を用いて説明する。   In FIG. 10, portions different from the configuration of the first embodiment are a transmission power control unit 103, a link information management unit 104, a simultaneous transmission link management unit 105, and a transmission unit 107. The other signals and blocks having the same reference numerals as those in FIG. 4 are the same as those in the first embodiment, and thus the description thereof will be omitted. In the following, FIG. I will explain.

送信制御部103は、自局が送信する送信信号の電力を決定し、送信部に対して送信電力制御情報s5を与えて制御している。それと同時に、自局の送信電力情報s21をリンク情報管理部44に与える。   The transmission control unit 103 determines the power of the transmission signal transmitted by the local station, and controls the transmission unit by giving transmission power control information s5. At the same time, the transmission power information s21 of the own station is given to the link information management unit 44.

リンク情報管理部104は、復調データs2から伝送されているパケットのヘッダ情報を抽出すると共に、測定した受信電力s3を用いて復調データから抽出できないリンクの伝搬損を推定し、記憶する。そして、自局の送信電力情報s21や他局間伝搬損推定値等の情報に基づいて、現在傍受している他局間リンクが同時送信可能なリンクであるかどうかを判定し、同時送信リンク判定情報s22と傍受したパケットのアドレス情報s7とを出力する。   The link information management unit 104 extracts the header information of the packet transmitted from the demodulated data s2, and estimates and stores the propagation loss of the link that cannot be extracted from the demodulated data using the measured received power s3. Then, based on information such as the transmission power information s21 of the own station and the propagation loss estimated value between other stations, it is determined whether or not the link between other stations currently intercepted is a link that can be transmitted simultaneously, and the simultaneous transmission link The judgment information s22 and the intercepted packet address information s7 are output.

同時送信リンク管理部105は、同時送信リンク判定情報s22とアドレス情報s7とに基づいて同時送信可能なリンク情報を記憶しておくと共に、アドレス情報s7から、過去に記憶されている同時送信リンク情報と照合することで現在受信中のリンクが同時送信可能なリンクかどうかを判定する。同時送信可能なリンクであると判定した場合は、同時送信を行うための同時送信タイミング信号s8と第1の実施形態と同じくパケット長情報s9を出力する。   The simultaneous transmission link management unit 105 stores link information that can be simultaneously transmitted based on the simultaneous transmission link determination information s22 and the address information s7, and from the address information s7, the simultaneous transmission link information stored in the past is stored. To determine whether the currently received link is a link that can be transmitted simultaneously. If it is determined that the link can be transmitted simultaneously, the simultaneous transmission timing signal s8 for performing simultaneous transmission and the packet length information s9 are output as in the first embodiment.

送信部107は、送信部46は、送信データs6を受け取り、パケットを生成し、送信信号s12を生成して送信する。CSMAの手順に従っているときは、送信部107は受信信号電力s3に基づいてキャリアセンスを行い、送信の可否を判断する。しかし、同時送信リンク管理部から同時送信タイミング信号を受け取った場合は、キャリアセンス結果とは無関係に、直ちに同時送信を行う判断を下し、同時送信タイミング信号s9およびパケット長情報s10に基づいてパケットを生成して送信する。   In the transmission unit 107, the transmission unit 46 receives the transmission data s6, generates a packet, and generates and transmits a transmission signal s12. When following the CSMA procedure, the transmitter 107 performs carrier sense based on the received signal power s3 and determines whether or not transmission is possible. However, when a simultaneous transmission timing signal is received from the simultaneous transmission link management unit, a determination is made immediately to perform simultaneous transmission regardless of the carrier sense result, and the packet is determined based on the simultaneous transmission timing signal s9 and the packet length information s10. Generate and send.

図11は、図10におけるリンク情報管理部104の構成例を示す図である。図11において、第1の実施形態における図5のリンク情報管理部44との違いは、図5の許容送信電力推定部58に替えてCIR判定部110を具備し、自局の送信電力情報s21が入力され、許容送信電力s4替えて同時送信リンク判定情報s22を出力する点である。その他、図5と同じ記号を付した信号及びブロックについては第1の実施の形態と同じであるため、説明を省略する。   FIG. 11 is a diagram illustrating a configuration example of the link information management unit 104 in FIG. 11 differs from the link information management unit 44 of FIG. 5 in the first embodiment in that it includes a CIR determination unit 110 instead of the allowable transmission power estimation unit 58 of FIG. Is input, and the simultaneous transmission link determination information s22 is output by changing the allowable transmission power s4. Other signals and blocks with the same symbols as those in FIG. 5 are the same as those in the first embodiment, and thus the description thereof is omitted.

第1の実施形態と同じく、図1の無線システムにおいて、自局11が他局13のデータパケットd34を傍受した場合を例に、リンク情報管理部104の動作を説明する。CIR判定部110は、アドレス情報s7に含まれる他局信号の送信元アドレス(他局13のアドレス)と宛先アドレス(他局14のアドレス)を認識し、認識した2つのアドレスに対応する他局間伝搬損推定値L34を他局間伝搬損記憶部57の他局間伝搬損記憶テーブルから参照する。そして、CIR判定部110は、他局間伝搬損記憶テーブルに当該参照値L34が記憶されている場合、送信電力情報s12とから得た他局13の送信電力推定値P3から他局間伝搬損推定値L34を差し引いて、現在送信されているデータパケットd34の他局14における受信電力R34を推定する。次に、CIR判定部110は、宛先アドレスに対応する自他局間伝搬損推定値L14を自他局間伝搬損記憶部55の自他局間伝搬損記憶テーブルから参照し、受信電力推定値R34、自他局間伝搬損推定値L14、所要CIR情報s13から得られるデータパケットd34に対する所要CIR推定値CIR34と、送信電力情報s21から得られる自局の送信電力P1との間に、
P1≦R34+L14−CIR34 ―――(式15)
の関係が成立するかどうかを判定し、判定結果を同時送信リンク判定情報s22として出力する。
As in the first embodiment, the operation of the link information management unit 104 will be described by taking as an example the case where the own station 11 intercepts the data packet d34 of the other station 13 in the wireless system of FIG. The CIR determination unit 110 recognizes the transmission source address (address of the other station 13) and the destination address (address of the other station 14) of the other station signal included in the address information s7, and the other stations corresponding to the two recognized addresses. The inter-station propagation loss estimated value L34 is referred to from the inter-station propagation loss storage table 57. Then, when the reference value L34 is stored in the inter-station propagation loss storage table, the CIR determination unit 110 determines the inter-station propagation loss from the transmission power estimated value P3 of the other station 13 obtained from the transmission power information s12. By subtracting the estimated value L34, the received power R34 at the other station 14 of the currently transmitted data packet d34 is estimated. Next, the CIR determination unit 110 refers to the own-other station propagation loss estimated value L14 corresponding to the destination address from the own-other station propagation loss storage table of the own-other station propagation loss storage unit 55, and receives the estimated received power value. Between the R34, the own-other-station propagation loss estimated value L14, the required CIR estimated value CIR34 for the data packet d34 obtained from the required CIR information s13, and the transmission power P1 of the own station obtained from the transmission power information s21,
P1 ≦ R34 + L14−CIR34 —— (Formula 15)
Is determined, and the determination result is output as simultaneous transmission link determination information s22.

図12は、図10における同時送信リンク管理部105の構成例を示す図である。図11において、第1の実施形態における図6の同時送信リンク管理部45との違いは、図6の同時送信記憶部61に替えて同時送信リンク判定情報s22受信する同時送信記憶部121を具備し、同時送信判定部63に替えて同時送信判定部123を具備している点である。その他、図6と同じ記号を付した信号及びブロックについては第1の実施の形態と同じであるため、説明を省略する。   FIG. 12 is a diagram illustrating a configuration example of the simultaneous transmission link management unit 105 in FIG. 11 is different from the simultaneous transmission link management unit 45 of FIG. 6 in the first embodiment in that it includes a simultaneous transmission storage unit 121 that receives the simultaneous transmission link determination information s22 instead of the simultaneous transmission storage unit 61 of FIG. However, a simultaneous transmission determination unit 123 is provided instead of the simultaneous transmission determination unit 63. Other signals and blocks with the same symbols as those in FIG. 6 are the same as those in the first embodiment, and thus the description thereof is omitted.

同時送信リンク記憶部121は、同時送信リンク判定情報s22に基いて、判定結果が同時送信可能の場合には、アドレス情報s7から現在受信中の送信元アドレスと宛先アドレスを同時送信可能なリンクの情報として、図13のような同時送信リンク記憶テーブルに記憶しておく。   The simultaneous transmission link storage unit 121, based on the simultaneous transmission link determination information s22, if the determination result can be transmitted simultaneously, the transmission source address and the destination address currently being received from the address information s7 can be transmitted simultaneously. Information is stored in a simultaneous transmission link storage table as shown in FIG.

同時送信判定部63は、アドレス情報s7に基いて、現在受信中の他局間リンクを認識し、同時送信リンク情報テーブルを参照して現在受信中の送信データに対して同時送信可能かどうかを判定する。同時送信可能と判定した場合、同時送信判定部63は、同時送信を行うための同時送信タイミング信号s8を出力する。   The simultaneous transmission determination unit 63 recognizes the link between other stations currently being received based on the address information s7, and refers to the simultaneous transmission link information table to determine whether or not simultaneous transmission is possible for the currently received transmission data. judge. When it is determined that simultaneous transmission is possible, the simultaneous transmission determination unit 63 outputs a simultaneous transmission timing signal s8 for performing simultaneous transmission.

以上のように、本実施の形態の他局間伝搬環境推定方法では、第1の実施形態と同じく、2つの他局信号を傍受して、少なくともその2つ他局信号の送信元局さえ認識できれば、その2つの送信元局である他局と自局間の自他局間伝搬損を推定し、その2つの推定結果を基に他局間伝搬損を推定する。したがって、本実施の形態の推定方法を用いることにより、他局がIEEE802.11a/b/g規格準拠の無線局ように同時送信判定の仕組みを持たない局である場合でも、他局間伝搬損推定を推定できる。   As described above, in the inter-station propagation environment estimation method of this embodiment, as in the first embodiment, two other-station signals are intercepted and at least the source station of the two other-station signals is recognized. If possible, the propagation loss between the own station and the other station that is the two transmission source stations is estimated, and the propagation loss between the other stations is estimated based on the two estimation results. Therefore, by using the estimation method of the present embodiment, even when the other station is a station that does not have a simultaneous transmission determination mechanism such as a wireless station compliant with the IEEE802.11a / b / g standard, Estimate can be estimated.

さらに、本実施の形態の他局間伝搬環境推定方法では、2つの自他局間伝搬損推定結果のうち、大きい方の値を他局間伝搬損と推定し、その推定結果から自局が同時送信を試行した場合に他局の所要CIRが満たすか否かを判定する。これにより、自局は「安全性」の高い同時送信判定を実施できる。したがって、以上の構成を図1の自局11に適用することで、送信電力が他局間伝搬環境に依らず自局11において決められる場合にも、隣接する家屋で現在世の中に普及しているIEEE802.11a/b/g規格準拠の無線局のように同時送信判定機能を持たない他局が稼動する環境下で、自局において自律的に他局間の伝搬環境を推定することでき、その推定結果を用いて、第1の実施形態同様に、安全性の高い同時送信を試行できる。   Furthermore, in the inter-station propagation environment estimation method of this embodiment, the larger value of the two inter-station / other-station propagation loss estimation results is estimated as the inter-station propagation loss. When simultaneous transmission is attempted, it is determined whether or not the required CIR of another station is satisfied. As a result, the local station can perform simultaneous transmission determination with high “safety”. Therefore, by applying the above configuration to the own station 11 of FIG. 1, even when the transmission power is determined in the own station 11 regardless of the propagation environment between other stations, it is now widely used in adjacent houses. In an environment where other stations that do not have a simultaneous transmission determination function such as a wireless station conforming to the IEEE802.11a / b / g standard operate, the propagation environment between other stations can be estimated autonomously in the own station. By using the estimation result, a highly secure simultaneous transmission can be attempted as in the first embodiment.

(実施の形態3)
図14は第3の実施形態における自局11の構成を示した図である。図14における自局11の構成は、リンク情報管理部144が第1の実施形態の自局11の構成と異なる。その他の図4と同じ符号を付した信号及びブロックは第1の実施の形態と同じであるため、説明を省略し、以下では、第1の実施の形態と異なる部分を中心に説明する。
(Embodiment 3)
FIG. 14 is a diagram showing a configuration of the own station 11 in the third embodiment. The configuration of the local station 11 in FIG. 14 is different from the configuration of the local station 11 of the first embodiment by the link information management unit 144. The other signals and blocks denoted by the same reference numerals as those in FIG. 4 are the same as those in the first embodiment, and thus description thereof will be omitted. In the following, description will be made focusing on parts different from those in the first embodiment.

図15は、図14におけるリンク情報管理部144の構成例を示す図である。図11において、第1の実施形態における図5のリンク情報管理部44との違いは、他局間伝搬損推定部156である。   FIG. 15 is a diagram illustrating a configuration example of the link information management unit 144 in FIG. In FIG. 11, the difference from the link information management unit 44 of FIG. 5 in the first embodiment is an inter-station propagation loss estimation unit 156.

他局間伝搬損推定部156は、第1の実施形態と同様にアドレス情報s7に含まれる他局信号の送信元アドレスと宛先アドレスを認識し、認識した2つのアドレスのそれぞれに対応する2つの自他局間伝搬損推定値を自他局間伝搬損記憶部55の自他局間伝搬損記憶テーブルから参照する。そして、他局間伝搬損推定部156は、2つの自他局間伝搬損推定値の差分値を算出する。そして差分値が所定の値以下の場合、2つの他局が図1における自宅Aの周辺家屋の同一室内で稼動しているものとして、予め定めた他局間伝搬損質推定値を、現在受信中の送信元アドレスと宛先アドレスに対応する他局間伝搬損推定値s15とする。一方、差分値が所定の値より大きい場合、他局間伝搬損推定部156は、第1の実施形態と同じく、2つの自他局間伝搬損質推定値のうち大きい方の値を現在受信中の送信元アドレスと宛先アドレスに対応する他局間伝搬損推定値s15とする。   Similar to the first embodiment, the inter-other-station propagation loss estimation unit 156 recognizes the source address and destination address of the other-station signal included in the address information s7, and the two corresponding to each of the two recognized addresses. The own-other-station propagation loss estimated value is referred to from the own-other-station propagation loss storage table of the own-other-station propagation loss storage unit 55. Then, the inter-other-station propagation loss estimation unit 156 calculates a difference value between the two own-other-station propagation loss estimated values. If the difference value is equal to or smaller than the predetermined value, it is assumed that the two other stations are operating in the same room of the house around the home A in FIG. Assume that the inter-station propagation loss estimated value s15 corresponding to the source address and destination address in the middle. On the other hand, when the difference value is larger than the predetermined value, the inter-station propagation loss estimation unit 156 currently receives the larger one of the two local-station propagation loss estimation values as in the first embodiment. Assume that the inter-station propagation loss estimated value s15 corresponding to the source address and destination address in the middle.

図16に示すように、他局13、14が周辺家屋B内において互いに近距離に配置されている場合、2つの信号d34、a43はほぼ同じ伝搬ルートで自宅Aに配置された自局11で傍受される可能性が高い。2つの信号d34、a43がほぼ同じルートで伝搬する場合、2つの信号が自局11で傍受されるまでの、遮蔽物による減衰量と距離による減衰量はほぼ同じぐらいとなる可能性が高い。そこで、第3の実施形態の自局11では、この特性を利用して、他局13、14と自局11との自他局間伝搬損L13、L14の差が所定の差分値より小さい場合には、他局13、14が図6のような同一室内で互いに近距離に配置されていると判断し、所定の伝搬損を他局間伝搬損推定値L34とする。ここで、所定の差分値としては、例えば、一般家屋の平均的な部屋サイズの平面上の最大距離(部屋の対角線長)を想定し、2つの自他局間伝搬損推定値のうち小さい値を所定の伝搬損モデル式に代入し、逆算して自他局間伝搬距離を推定し、その推定距離に想定した対角線長を加えた距離に対する伝搬損を所定の伝搬損モデル式から求め、その伝搬損と自他局間伝搬距離推定に使用した伝搬損との差を所定の差分値とすればよい。また、所定の伝搬損としては、上記想定した部屋の対角線長に対する伝搬損を所定の伝搬損モデル式から求めた値を所定の伝搬損とすればよい。   As shown in FIG. 16, when the other stations 13 and 14 are arranged at a short distance from each other in the neighboring house B, the two signals d34 and a43 are transmitted from the own station 11 arranged at the home A with substantially the same propagation route. There is a high possibility of interception. When the two signals d34 and a43 propagate along substantially the same route, there is a high possibility that the attenuation amount due to the shielding object and the attenuation amount due to the distance until the two signals are intercepted by the local station 11 are approximately the same. Therefore, in the own station 11 of the third embodiment, the difference between the own station / other station propagation losses L13 and L14 between the other stations 13 and 14 and the own station 11 is smaller than a predetermined difference value by using this characteristic. Therefore, it is determined that the other stations 13 and 14 are arranged at a short distance from each other in the same room as shown in FIG. 6, and a predetermined propagation loss is set as an estimated propagation loss L34 between other stations. Here, as the predetermined difference value, for example, assuming the maximum distance (diagonal length of the room) on the plane of the average room size of a general house, the smaller value of the estimated propagation loss values between the two own stations Substituting into the predetermined propagation loss model equation, and calculating the propagation distance between its own and other stations by calculating backward, obtaining the propagation loss for the distance obtained by adding the assumed diagonal length to the estimated distance from the predetermined propagation loss model equation, The difference between the propagation loss and the propagation loss used for estimating the propagation distance between the own station and the other station may be a predetermined difference value. Further, as the predetermined propagation loss, a value obtained by determining the propagation loss with respect to the assumed diagonal length of the room from a predetermined propagation loss model formula may be used as the predetermined propagation loss.

ここで、実際の他局間伝搬損がITU−R P.1238で推奨されている2G帯の伝搬損推定式(式16)に一致すると仮定して、本実施形態における他局間伝搬損推定方法の一例とその効果について、具体的数値を使って説明する。   Here, the actual propagation loss between other stations is ITU-RP. Assuming that it matches the 2G band propagation loss estimation equation (Equation 16) recommended in 1238, an example of the inter-station propagation loss estimation method in this embodiment and its effect will be described using specific numerical values. .

Ltotal=20log10f+28log10d+4n−28 ―――(式16)
f:使用周波数[MHz]
d:局間の距離
4n:透過減衰量、nは遮蔽物の枚数
例えば、図16にのように、他局13、14は同部屋、伝送距離3mでその間に遮蔽物が無い環境に設置されており、自局11、12、他局13、14は周波数を2450MHzを使用していると想定する。また、一般家屋の平均的な部屋サイズを3m×3m、対角長を4mと想定し、式16にn=0、d=4を代入して、所定の伝搬損を57dBとする。他局自局11と他局13、14との自他局間伝搬損推定値L13、L14がそれぞれ70dB、71dBと推定されたとする。この時、自他局間伝搬損推定値L13、L14のうち小さい値(70dB)を所定の伝搬損モデル式(式16)の右辺に代入し、f=2484、n=2(遮蔽物を壁2枚と想定)を左辺に代入して、局間の距離dを逆算することにより、自他局間距離D13が6mと推定される。同じく、f=2484、n=2(遮蔽物を壁2枚と想定)とし、この推定距離(6m)と想定対角長(4m)を加えた距離(10m)を式16に代入すると、Ltotal=76(dB)となる。したがってこの場合、他局13、14が互いに近距離にあるかどうかの判断基準となる所定の差分値は、6dB(76dB−70dB)となる。したがって、上述したように、2つの自他局間伝搬損推定値L13、L14がそれぞれ70dB、71dBと推定されるとその差は1dBで、その差は所定の差分値として算出した6dB以下となるため、他局間伝搬損L34を所定の伝搬損57dBと推定する。式16より、実際の他局間伝搬損L34は53dBであるので、この場合の実際のL34と推定値との誤差は4dBとなる。一方、第1の実施形態の推定方法で推定した場合、L14、L13のうち大きい方の値がL34の推定値となるので、71dBが推定値となり、この場合、実際のL34と推定値との誤差は18dBとなる。したがって、第3の実施形態の推定方法により、第1の実施形態の推定方法に比べこの場合14dBも推定誤差を小さくすることができる。
Ltotal = 20log10f + 28log10d + 4n−28 (Equation 16)
f: Frequency used [MHz]
d: Distance between stations 4n: Transmission attenuation, n is the number of shielding objects For example, as shown in FIG. 16, the other stations 13 and 14 are installed in the same room with a transmission distance of 3 m and no shielding objects between them. It is assumed that the own stations 11 and 12 and the other stations 13 and 14 use a frequency of 2450 MHz. Further, assuming that the average room size of a general house is 3 m × 3 m and the diagonal length is 4 m, n = 0 and d = 4 are substituted into Equation 16, and a predetermined propagation loss is 57 dB. It is assumed that the propagation loss estimation values L13 and L14 between the own station 11 and the other stations 13 and 14 are estimated to be 70 dB and 71 dB, respectively. At this time, a smaller value (70 dB) of the own-other-station propagation loss estimated values L13 and L14 is substituted into the right side of a predetermined propagation loss model equation (Equation 16), and f = 2484, n = 2 By substituting the distance d between the stations by substituting 2 for the left side and calculating the distance d between the stations, the distance D13 between the own station and the other station is estimated to be 6 m. Similarly, when f = 2484 and n = 2 (assuming that the shielding object is two walls), and this estimated distance (6 m) and a distance (10 m) obtained by adding the assumed diagonal length (4 m) are substituted into Equation 16, Ltotal = 76 (dB). Therefore, in this case, the predetermined difference value serving as a criterion for determining whether or not the other stations 13 and 14 are close to each other is 6 dB (76 dB-70 dB). Therefore, as described above, when the two own-other-station propagation loss estimated values L13 and L14 are estimated to be 70 dB and 71 dB, respectively, the difference is 1 dB, and the difference is 6 dB or less calculated as a predetermined difference value. Therefore, the inter-station propagation loss L34 is estimated as a predetermined propagation loss 57 dB. From Equation 16, since the actual propagation loss L34 between other stations is 53 dB, the error between the actual L34 and the estimated value in this case is 4 dB. On the other hand, when estimated by the estimation method of the first embodiment, the larger value of L14 and L13 is the estimated value of L34, so 71 dB is the estimated value. In this case, the actual L34 and the estimated value The error is 18 dB. Therefore, the estimation method of the third embodiment can reduce the estimation error by 14 dB in this case as compared with the estimation method of the first embodiment.

第1の実施形態においては、他局間伝搬損を推定する際、2つの自他局間伝搬損の大小関係のみから他局間伝搬損を推定することで、簡単な方法でかつ諸々の誤差を考慮したマージンを十分に含めた値を他局間伝搬損推定値とした。しかし、上述した例のように他局13、14間の距離が近く遮蔽物が存在しないような場合、上記の誤差を考慮したマージンとなる実際の他局間伝搬損に対する推定誤差が大きくなり過ぎてしまうことが考えられる。そこで、第3の実施形態のように、2つの自他局間伝搬損の大小関係のみならず、その差を利用して他局間伝搬損を推定することにより、第1の実施形態の推定方法より、精度の高い他局間伝搬損推定が可能となる。   In the first embodiment, when estimating the propagation loss between other stations, the propagation loss between other stations is estimated from only the magnitude relationship between the propagation losses between the two other stations. A value that sufficiently includes a margin that takes into account is considered as an estimated propagation loss between other stations. However, when the distance between the other stations 13 and 14 is close and there is no shielding object as in the above-described example, the estimation error with respect to the actual propagation loss between other stations that becomes a margin considering the above error becomes too large. It can be considered. Therefore, as in the third embodiment, the estimation of the first embodiment is performed by estimating the propagation loss between other stations by using not only the magnitude relationship of the propagation loss between the two own stations but also the difference between them. By this method, it is possible to estimate the propagation loss between other stations with high accuracy.

(実施の形態4)
図17は第4の実施形態における自局11の構成を示した図である。図17における自局11の構成は、リンク情報管理部174が第1の実施形態の自局11の構成と異なる。その他の図4と同じ符号を付した信号及びブロックは第1の実施の形態と同じであるため、説明を省略し、以下では、第1の実施の形態と異なる部分を中心に説明する。
(Embodiment 4)
FIG. 17 is a diagram showing a configuration of the own station 11 in the fourth embodiment. The configuration of the local station 11 in FIG. 17 is different from the configuration of the local station 11 of the first embodiment by the link information management unit 174. The other signals and blocks denoted by the same reference numerals as those in FIG. 4 are the same as those in the first embodiment, and thus description thereof will be omitted. In the following, description will be made focusing on parts different from those in the first embodiment.

図18は、図17におけるリンク情報管理部174の構成例を示す図である。図18において、第1の実施形態における図5のリンク情報管理部44との違いは、他局間伝搬損推定部186である。   FIG. 18 is a diagram illustrating a configuration example of the link information management unit 174 in FIG. In FIG. 18, the difference from the link information management unit 44 in FIG. 5 in the first embodiment is an inter-station propagation loss estimation unit 186.

他局間伝搬損推定部186は、第1の実施形態と同様にアドレス情報s7に含まれる他局信号の送信元アドレスと宛先アドレスを認識し、認識した2つのアドレスのそれぞれに対応する2つの自他局間伝搬損推定値を自他局間伝搬損記憶部55の自他局間伝搬損記憶テーブルから参照する。そして、他局間伝搬損推定部186は、第1の実施形態と同様に2つの自他局間伝搬損推定値のうち大きい方の値を第1の他局間伝搬損推定値として一時的に保持する。さらに、他局間伝搬損推定部186は、あらかじめ図19のような伝送レートとその伝送レートで送信される信号の最小受信感度を対応させた感度テーブル1901を内部に保持しておき、復調データs2に現在受信している他局信号の伝送レート情報が含まれる場合、そのレート情報からその他局信号の宛先局における最小受信感度を推定し、送信電力値s12から最小受信感度推定値を減じた値を第2の他局間伝搬損推定値とする。そして、他局間伝搬損推定部186は、一時的に保持した第1の他局間伝搬損推定値と第2の他局間伝搬損推定値とを比較して小さい方の値を最終的に他局間伝搬損推定値s15として出力する。   Similar to the first embodiment, the inter-other-station propagation loss estimation unit 186 recognizes the source address and destination address of the other-station signal included in the address information s7, and two corresponding to each of the two recognized addresses. The own-other-station propagation loss estimated value is referred to from the own-other-station propagation loss storage table of the own-other-station propagation loss storage unit 55. Then, the inter-station propagation loss estimation unit 186 temporarily uses the larger value of the two inter-station propagation loss estimation values as the first inter-station propagation loss estimation value as in the first embodiment. Hold on. Further, the inter-station propagation loss estimation unit 186 internally stores a sensitivity table 1901 in which a transmission rate and a minimum reception sensitivity of a signal transmitted at the transmission rate are associated in advance as shown in FIG. When the transmission rate information of the other station signal currently received is included in s2, the minimum reception sensitivity at the destination station of the other station signal is estimated from the rate information, and the minimum reception sensitivity estimation value is subtracted from the transmission power value s12. The value is the second estimated propagation loss between other stations. Then, the inter-station propagation loss estimation unit 186 compares the temporarily stored first inter-station propagation loss estimation value with the second inter-station propagation loss estimation value and finally determines the smaller value. Is output as an inter-station propagation loss estimated value s15.

他局13、14間でデータの送受信が正常に行われる環境において、他局13のデータパケットd34が他局14で受信される際、他局14における受信電力R34は他局14の最小受信感度以上の大きさで受信されていると考えられる。したがって、他局間伝搬損L34は、他局13の送信電力P3から最小受信感度を減じた第2の他局間伝搬損推定値以下であると考えられる。第4の実施形態の他局間伝搬損推定部186は、この論理に従って、第1の実施形態と同様にして推定した第1の他局間伝搬損推定値が第2の他局間伝搬損推定値より大きい場合には、第2の他局間伝搬損推定値を実際の他局間伝搬損に近い値と判断し、最終的に他局間伝搬損記憶部57に出力する他局間伝搬損推定値とする。   In an environment where data transmission / reception is normally performed between the other stations 13 and 14, when the data packet d <b> 34 of the other station 13 is received by the other station 14, the received power R <b> 34 at the other station 14 is the minimum reception sensitivity of the other station 14. It is thought that it is received with the above size. Therefore, the inter-other-station propagation loss L34 is considered to be equal to or less than the second estimated inter-station propagation loss value obtained by subtracting the minimum reception sensitivity from the transmission power P3 of the other station 13. According to this logic, the inter-station propagation loss estimation unit 186 of the fourth embodiment uses the second inter-station propagation loss estimated value estimated in the same manner as in the first embodiment as the second inter-station propagation loss. If the estimated value is larger than the estimated value, the second estimated propagation loss between other stations is determined to be close to the actual propagation loss between other stations, and is finally output to the other-station propagation loss storage unit 57. Estimated propagation loss.

ここで、実際の他局間伝搬損がITU−R P.1238で推奨されている2G帯の伝搬損推定式(式16)に一致すると仮定して、本実施形態における他局間伝搬損推定方法の一例とその効果について、具体的数値を使って説明する。   Here, the actual propagation loss between other stations is ITU-RP. Assuming that it matches the 2G band propagation loss estimation equation (Equation 16) recommended in 1238, an example of the inter-station propagation loss estimation method in this embodiment and its effect will be described using specific numerical values. .

例えば、図20のように、他局13、14は伝搬距離5mでその間に遮蔽物(家の内壁)1枚がある環境に設置されており、自局11、12、他局13、14は周波数を2450MHzを使用していると想定する。この場合、式16の従って実際の他局間伝搬損L34は63dBと仮定する。そして、他局13が802.11g規格準拠の無線LAN端末で、送信電力+15dBm、伝送レート54Mbpsでデータパケットd34を送信して、他局14との間で通信が成立している。すなわち、他局14からのACKパケットa43も他局13で受信できているものとする。また、自局11において、自他局間伝搬損L13、L14はそれぞれ76dB、83dBと推定されたとする。この場合、第1の実施形態の他局間推定方法に従って推定される第1の他局間伝搬損推定値は83dB、伝送レート情報から図19の感度テーブルを参照して推定される第2の他局間伝搬損推定値は80dBとなるので、本実施形態の自局11は他局間伝搬損L34を最終的に80dBと推定する。したがって、第4の実施形態の推定方法により、第1の実施形態の推定方法に比べこの場合3dBの推定誤差改善ができる。   For example, as shown in FIG. 20, the other stations 13 and 14 are installed in an environment having a propagation distance of 5 m and one shielding object (inner wall of the house) between them, and the own stations 11 and 12 and the other stations 13 and 14 are Assume that a frequency of 2450 MHz is used. In this case, the actual propagation loss L34 between other stations is assumed to be 63 dB according to Equation 16. The other station 13 is a wireless LAN terminal compliant with the 802.11g standard, and transmits data packet d34 at a transmission power of +15 dBm and a transmission rate of 54 Mbps, and communication with the other station 14 is established. That is, it is assumed that the ACK packet a43 from the other station 14 can also be received by the other station 13. Further, it is assumed that the own station 11 estimates that the own and other station propagation losses L13 and L14 are 76 dB and 83 dB, respectively. In this case, the first inter-station propagation loss estimated value estimated according to the inter-other station estimation method of the first embodiment is 83 dB, and the second estimated from the transmission rate information with reference to the sensitivity table of FIG. Since the inter-station propagation loss estimated value is 80 dB, the own station 11 of this embodiment finally estimates the inter-station propagation loss L34 to 80 dB. Therefore, the estimation error of the fourth embodiment can improve the estimation error by 3 dB in this case as compared with the estimation method of the first embodiment.

このように、2つの自他局間伝搬損の大小関係のみならず、他局信号に含まれるレート情報から他局信号の宛先局での最小受信感度を推定して得た伝搬損とも比較して、他局間伝搬損を推定することにより、第1の実施形態の推定方法より、精度の高い他局間伝搬損推定が可能となる。   In this way, not only the magnitude relationship of the propagation loss between the two other stations, but also the propagation loss obtained by estimating the minimum reception sensitivity at the destination station of the other station signal from the rate information included in the other station signal. Thus, by estimating the propagation loss between other stations, it is possible to estimate the propagation loss between other stations with higher accuracy than the estimation method of the first embodiment.

なお、第4の実施の形態においては、図19のように、伝送レートと最小受信感度の対応テーブルによって、データパケットd34の最小受信感度を推定したが、必ずしもこの手段に限定されることは無い。例えば伝送レートの代わりに、変調方式や、変調多値数の情報と最小受信感度のテーブルを用いても同等の効果を得ることができる。   In the fourth embodiment, as shown in FIG. 19, the minimum reception sensitivity of the data packet d34 is estimated from the correspondence table between the transmission rate and the minimum reception sensitivity. However, the present invention is not necessarily limited to this means. . For example, the same effect can be obtained by using a modulation scheme, modulation multi-level information and minimum reception sensitivity table instead of the transmission rate.

<変形例>
なお、第4の実施の形態においては、式1、式2に基いて、自他局間伝搬損推定部54で自他局間伝搬損L13、L14を推定して、その推定値を自他局間伝搬損記憶部55に記録し、自他局間伝搬損推定値L13、L14を他局間伝搬損推定部56で比較して第1の他局間伝搬損L34(1)を推定し、他局13の送信電力P3と最小受信感度Sより、
L34(2)=P3−S ―――(式17)
として、第2の他局間伝搬損L34(2)を推定し、
L34(1)>L34(2) ―――(式18)
が成立する場合、最終的な他局間伝搬損L34を
L34=L34(2) ―――(式19)
成立しない場合、
L34=L34(1) ―――(式20)
と推定した。
<Modification>
In the fourth embodiment, the own-other-station propagation loss L13 and L14 are estimated by the own-other-station propagation loss estimation unit 54 based on the equations 1 and 2, and the estimated values are determined by the other users. It is recorded in the inter-station propagation loss storage unit 55, and the own-other-station propagation loss estimation values L13 and L14 are compared by the other-station propagation loss estimation unit 56 to estimate the first other-station propagation loss L34 (1). From the transmission power P3 of the other station 13 and the minimum reception sensitivity S,
L34 (2) = P3-S ――― (Formula 17)
And estimate the second inter-station propagation loss L34 (2),
L34 (1)> L34 (2) ――― (Formula 18)
Is established, the final propagation loss L34 between other stations is expressed as L34 = L34 (2) ――― (Equation 19)
If not,
L34 = L34 (1) ――― (Formula 20)
Estimated.

L13>L14 ―――(式6)
が成立する場合、式18は
L34(1)=L13>L34(2) ―――(式21)
と表される。式21が成立するならば、式1、式17を式21に代入すれば分かるように
S>R31 ―――(式22)
成立する。また、式6が成立しない場合、式18は、
L34(1)=L14>L34(2) ―――(式23)
と表される。式23が成立するならば、式2、式17を式23に代入すれば分かるように
S>R41+(P3−P4) ―――(式24)
が成立する。したがって、第1の実施形態の変形例と同様に、自局11は、リンク情報管理部1741に替えて、図21のようなリンク情報管理部214を具備してもよい。リンク情報管理部214は、図18の自他局間伝搬損推定部54と自他局間伝搬損記憶部55に替えて、他局送信電力推定値P3、P4及び受信電力測定値R31、R41を記憶する電力記憶部81を具備し、他局間伝搬損記憶部を持たず、他局間伝搬環境推定部216において、電力記憶部81に記憶したP3、P4、R31、R41を参照して、先ず式7又は式8が成立するかどうかを比較判定し、成立する場合、式22に従って最小受信感度Sと受信電力R31を比較して大きい方の値を他局14における受信電力R34と推定する。一方、式7又は式8が成立しない場合、式24に従って最小受信感度Sと、受信電力R41に送信電力P3とP4との差を加えた値とを比較して、大きい方の値を他局14における受信電力R34と推定する。そして、推定した受信電力R34を比較判定結果信号s23として許容送信電力部93へ出力する。許容送信電力推定部2193は、
P1=R34+P4−R41−CIR34 ―――(式11)
比較判定結果信号s23から得られる受信電力推定値R34と、電力記憶部81を参照して得られる他局送信電力推定値P4と受信電力測定値R41と所要CIR34とを基に、式11により許容送信電力P1を推定する。このように、一旦他局間伝搬損を推定するとういことを行わずに、許容送信電力P1を推定することも可能である。
L13> L14 ――― (Formula 6)
When the above holds, the equation 18 becomes L34 (1) = L13> L34 (2) --- (Equation 21)
It is expressed. If equation 21 holds, as is understood by substituting equation 1 and equation 17 into equation 21, S> R31 (Equation 22)
To establish. If equation 6 does not hold, equation 18 is
L34 (1) = L14> L34 (2) --- (Formula 23)
It is expressed. If equation 23 holds, as is understood by substituting equation 2 and equation 17 into equation 23, S> R41 + (P3-P4) ――― (equation 24)
Is established. Therefore, as in the modification of the first embodiment, the local station 11 may include a link information management unit 214 as illustrated in FIG. 21 instead of the link information management unit 1741. The link information management unit 214 replaces the own-other-station propagation loss estimation unit 54 and the own-other-station propagation loss storage unit 55 shown in FIG. 18 with other-station transmission power estimated values P3 and P4 and received power measurement values R31 and R41. Is stored in the power storage unit 81 in the inter-station propagation environment estimation unit 216 with reference to P3, P4, R31, and R41 stored in the power storage unit 81. First, whether or not Expression 7 or Expression 8 is established is compared, and if it is established, the minimum reception sensitivity S and the reception power R31 are compared according to Expression 22, and the larger value is estimated as the reception power R34 at the other station 14. To do. On the other hand, when Equation 7 or Equation 8 does not hold, the minimum reception sensitivity S is compared with the value obtained by adding the difference between the transmission power P3 and P4 to the reception power R41 according to Equation 24, and the larger value is determined as the other station. 14 is estimated to be the received power R34. Then, the estimated received power R34 is output to the allowable transmission power unit 93 as the comparison determination result signal s23. The allowable transmission power estimation unit 2193
P1 = R34 + P4-R41-CIR34 --- (Formula 11)
Based on the received power estimated value R34 obtained from the comparison determination result signal s23, the other station transmission power estimated value P4 obtained by referring to the power storage unit 81, the received power measured value R41, and the required CIR 34, the allowable value is given by Expression 11. The transmission power P1 is estimated. Thus, it is also possible to estimate the allowable transmission power P1 without once estimating the propagation loss between other stations.

(実施の形態5)
図22は、本発明の実施の形態5における無線通信システムの概念を示す図である。図22において、本発明の実施の形態1と異なるのは、自局11のみならず、自局12においても自局11と同様にして他局間13、14間の伝搬環境を推定し、自局11が自局12の他局間環境推定結果も利用して、他局間伝搬環境を推定する点である。各自局における、自局単独で他局間伝搬環境推定方法は上述した実施の形態1〜5と同じであるので、説明を省略する。以下では自局11が自局12で推定された他局間伝搬損推定値を利用して、自局11の他局間伝搬損推定値を補正する手順について説明する。なお、以下の説明では、自局11、12の他局間伝搬損推定値をそれぞれL34(11)、L34(12)、と表記する。
(Embodiment 5)
FIG. 22 is a diagram illustrating the concept of the wireless communication system according to the fifth embodiment of the present invention. In FIG. 22, the difference from Embodiment 1 of the present invention is that not only the own station 11 but also the own station 12 estimates the propagation environment between the other stations 13 and 14 in the same manner as the own station 11, and The point is that the station 11 also estimates the inter-station propagation environment using the inter-station environment estimation result of the own station 12. Since the local station independent propagation environment estimation method in each local station is the same as in Embodiments 1 to 5 described above, description thereof is omitted. Below, the procedure which the own station 11 correct | amends the propagation loss estimated value between other stations of the own station 11 using the estimated propagation loss between other stations estimated by the own station 12 is demonstrated. In the following description, the inter-station propagation loss estimated values of the own stations 11 and 12 are denoted as L34 (11) and L34 (12), respectively.

図22において、自局11は、自局12に対して、自局12が推定した他局間伝搬環境推定結果送るように要求する要求パケットd12sを送付する。そして、要求パケットd12sを受信した自局12は、自局12の他局間伝搬損推定値L34(12)の情報を含む応答パケットa21sを返信する。自局11は、応答パケットa21sから他局間伝搬損推定値L34(12)を抽出し、自局11の他局間伝搬損推定値L34(11)を自局12の他局間伝搬損推定値L34(12)を用いて補正する。   In FIG. 22, the own station 11 sends a request packet d <b> 12 s requesting the own station 12 to send the inter-station propagation environment estimation result estimated by the own station 12. Then, the local station 12 that has received the request packet d12s returns a response packet a21s including information on the inter-station propagation loss estimated value L34 (12) of the local station 12. The own station 11 extracts the propagation loss estimated value L34 (12) between other stations from the response packet a21s, and estimates the propagation loss estimated value L34 (11) between other stations of the own station 11 between other stations. Correction is performed using the value L34 (12).

自局11が他の自局で推定された他局間伝搬損推定値を用いて、自局11の他局間伝搬損推定値を補正する方法として様々な方法が考えられるが、例えば、各自局が第1の実施形態の他局間伝搬損推定方法を用いている場合には、他局間伝搬損推定値L34(11)とL34(12)とを比較して、小さい方の値を最終的な他局間伝搬損推定値L34(11)とするとよい。なぜなら、第1の実施形態の他局間伝搬損推定方法は安全性の高い推定方法であるが、その反面、誤差マージンを大きく取りすぎてしまう危険性もある。そこで、複数の自局における他局間伝搬損推定値の中で最も小さい推定値を最終的な他局間伝搬損推定値とすることにより、この危険性を少なくして、より精度の高い他局間伝搬損推定を実施できる。   Various methods can be considered as a method of correcting the inter-station propagation loss estimated value of the local station 11 using the inter-station propagation loss estimated value estimated by the local station 11. When the station uses the inter-station propagation loss estimation method of the first embodiment, the inter-station propagation loss estimation values L34 (11) and L34 (12) are compared, and the smaller value is obtained. The final inter-station propagation loss estimated value L34 (11) may be used. This is because the inter-station propagation loss estimation method of the first embodiment is a highly secure estimation method, but on the other hand, there is a risk that an error margin is excessively large. Therefore, this risk is reduced by setting the smallest estimated value among the propagation loss estimates between other stations in a plurality of own stations as the final estimated propagation loss between other stations, thereby reducing the risk. Inter-station propagation loss estimation can be performed.

図23は、第5の実施形態における自局11のリンク情報管理部234の構成を示した図である。第5の実施形態における自局11では、第1の実施形態の自局11とは図4のリンク情報管理部44がリンク情報管理部234に置き換わっている以外は同じであり、他のブロックの動作は同じであるため、自局11の構成の図示及びリンク情報管理部以外の説明省略する。図23において、第1の実施形態における図5のリンク情報管理部44との違いは、伝搬損推定補正部2357をさらに具備している点である。   FIG. 23 is a diagram illustrating a configuration of the link information management unit 234 of the local station 11 in the fifth embodiment. The own station 11 in the fifth embodiment is the same as the own station 11 in the first embodiment except that the link information management unit 44 in FIG. 4 is replaced with the link information management unit 234. Since the operation is the same, the illustration of the configuration of the own station 11 and the description other than the link information management unit are omitted. In FIG. 23, the difference from the link information management unit 44 of FIG. 5 in the first embodiment is that a propagation loss estimation correction unit 2357 is further provided.

伝搬損推定補正部2357は、アドレス情報s7より送信元アドレスとして自局12のアドレスを検出すると、復調データs2より他局間伝搬損推定値L34(12)を抽出する。そして、他局間伝搬損記憶部57より既に推定して記憶されている他局間伝搬損推定値L34(11)を参照し、L34(11)とL34(12)を比較して、小さい方の値を最終的な他局間伝搬損推定値L34(11)として、他局間伝搬損記憶部のL34(11)の値を更新する。   When the propagation loss estimation correction unit 2357 detects the address of the local station 12 as the transmission source address from the address information s7, the propagation loss estimation value L34 (12) between other stations is extracted from the demodulated data s2. Then, the inter-station propagation loss estimated value L34 (11) that has already been estimated and stored in the inter-station propagation loss storage unit 57 is referred to, and L34 (11) and L34 (12) are compared with each other. Is used as the final inter-station propagation loss estimated value L34 (11), and the value of L34 (11) in the inter-station propagation loss storage unit is updated.

以上のように、他の自局(例えば自局12)で推定された他局間伝搬損推定値と自局11での推定値を比較して、小さい値を最終的な推定値として選択することにより、第1の実施例に比べ、誤差マージンを大きく取りすぎてしまう危険性を少なくして、より精度の高い他局間伝搬損推定を実施できる。   As described above, the inter-station propagation loss estimated value estimated by another local station (for example, the local station 12) is compared with the estimated value at the local station 11, and a small value is selected as the final estimated value. As a result, compared with the first embodiment, it is possible to reduce the risk of taking an error margin too large, and to perform more accurate estimation of propagation loss between other stations.

なお、本実施の形態で説明した要求パケットd12s、応答パケットa12sは必ずしも、専用のパケットである必要はない。自局が送信するデータパケットd12や、ACKパケットa12、ビーコンパケットやRTS、CTS等の既存送信パケットに付加することで同等の効果を得ることができる。   Note that the request packet d12s and the response packet a12s described in the present embodiment are not necessarily dedicated packets. The same effect can be obtained by adding the data packet d12 transmitted by the own station, the ACK packet a12, the beacon packet, the existing transmission packet such as RTS, CTS, or the like.

なお、本実施の形態では、2つの自局で推定した他局間伝搬損推定値を比較して、他局間伝搬損推定値の補正を行う説明をしたが、自局11は、自局が3つ以上の場合も要求パケット送出する自局の通信相手局を変えて、同様にして他局間伝搬損推定値の補正を行うことができる。すなわち、本実施の形態では、複数の他局間伝搬損推定値のうち最小値が最終的な他局間伝搬損推定値となる。   In the present embodiment, the inter-station propagation loss estimated value estimated by the two local stations is compared to correct the inter-station propagation loss estimated value. However, the local station 11 Even when there are three or more, it is possible to correct the estimated propagation loss between other stations in the same manner by changing the communication partner station of the own station that transmits the request packet. That is, in the present embodiment, the minimum value among the plurality of inter-station propagation loss estimated values is the final inter-station propagation loss estimated value.

なお、本実施の形態では、各自局の他局間伝搬損推定方法は第1の実施形態と同じとしたが、言うまでもなく、第3、第4の実施形態に対しても、本実施の形態による他局間伝搬損推定値の補正が可能である。   In this embodiment, the inter-station propagation loss estimation method for each station is the same as that in the first embodiment. Needless to say, this embodiment also applies to the third and fourth embodiments. It is possible to correct the estimated propagation loss between other stations.

なお、本実施の形態では、複数の自局で推定した他局間伝搬損推定値を比較して、最小値を最終的な他局間伝搬損推定値としたが、複数の他局間伝搬損推定値の平均値を最終的な他局間伝搬損推定値としてもよい。この場合、最小値を用いる場合に比べ、誤差マージンを大きく取りすぎてしまう危険性は高めるが、その反面同時送信試行時の安全性を高めることができる。   In this embodiment, the propagation loss estimated values between other stations estimated by a plurality of own stations are compared, and the minimum value is set as the final estimated propagation loss between other stations. The average value of the estimated loss values may be used as the final estimated inter-station propagation loss value. In this case, compared with the case where the minimum value is used, the risk that the error margin is excessively increased is increased, but on the other hand, the safety at the time of simultaneous transmission trial can be increased.

なお、本実施の形態では、自局単独での他局間伝搬損推定値を補正するために、複数の自局間で他局間伝搬損推定値自身を受け渡しするものとしたが、受け渡しを行う伝搬環境パラメータはこれに限らず、例えば、各自局における2つの自他局間伝搬損推定値の差分値情報であってもよい。例えば、自局11は、複数の他の自局から差分値情報を受け取り、所定値以下となる差分値の数が所定の割合(あるは、所定個)以上の場合や、複数の差分値の平均値が所定値以下となる場合に限り、第3の実施形態の他局間伝搬損推定方法と同様にして、所定の伝搬損値を他局間伝搬損推定値としても良い。また、例えば、自局11は、複数の自局から差分値情報を受け取り、複数の差分値のうち最大値が所定値以下となる場合に限り、第3の実施形態の他局間伝搬損推定方法と同様にして、所定の伝搬損値を他局間伝搬損推定値としても良い。この場合、第3の実施形態より、同時送信試行時の安全性を高めることができる。以下、自局と他局の配置例を示した図16、図24、図25を用いてこの効果について詳しく説明する。   In this embodiment, in order to correct the propagation loss estimated value between other stations by itself, the propagation loss estimated value between other stations itself is transferred between a plurality of own stations. The propagation environment parameter to be performed is not limited to this, and may be, for example, difference value information of two own-other-station propagation loss estimation values in each own station. For example, the local station 11 receives difference value information from a plurality of other local stations, and when the number of difference values equal to or less than a predetermined value is equal to or greater than a predetermined ratio (or a predetermined number), Only when the average value is equal to or smaller than the predetermined value, the predetermined propagation loss value may be used as the inter-station propagation loss estimated value in the same manner as the third embodiment other-station propagation loss estimation method. Also, for example, the local station 11 receives difference value information from a plurality of local stations, and only when the maximum value among the plurality of differential values is a predetermined value or less, estimates the propagation loss between other stations in the third embodiment. Similarly to the method, a predetermined propagation loss value may be used as an inter-station propagation loss estimated value. In this case, the security at the time of simultaneous transmission trial can be improved from the third embodiment. Hereinafter, this effect will be described in detail with reference to FIGS. 16, 24, and 25 showing examples of arrangement of the own station and other stations.

第3の実施形態について説明したように、図16に示すように、他局13、14が周辺家屋B内において互いに近距離に配置されている場合、2つの信号d34、a43が自局11で傍受されるまでの、遮蔽物による減衰量と距離による減衰量はほぼ同じぐらいとなる可能性が高い。そのため、第3の実施形態では、2つの自他局間伝搬損の差が小さい場合に他局間が近いと推定した。ここで、例えば、自局11、12、他局13、14が図24のような位置関係となっていた場合について考察する。自局11では、図16の場合と同様に2つの自他局間伝搬損L13、L14の差は小さく、第3の実施形態の方法により他局間が近いと判断して精度の高い推定ができる。一方、自局12では、自局12−他局13間の遮蔽状況と自局12−他局14間の遮蔽状況とが異なるために、2つの自他局間伝搬損L23、L24の差は所定値以上となってしまい、第3の実施形態の方法により他局間が近いと判断できず推定精度が悪くなる可能性が高い。このような場合でも、例えば、自局11と自局12との間で互いの自他局間伝搬損の差分値を交換し合い、所定値以下となる差分値の数が所定の割合(例えば半分)以上の場合に、他局間は近いと判断し、第3の実施形態の方法と同様にして他局間伝搬損推定値を所定の伝搬損値と推定することにより、精度の高い推定ができる。また、ここで、例えば、自局10、11、12、他局13、14が図25のような位置関係となっていた場合について考察する。図25の場合、他局13−他局14間の距離は比較的離れているが、自局11―他局13間の距離及び遮蔽状況と自局11―他局14間の距離及び遮蔽状況とが似通っており2つの自他局間伝搬損L13、L14の差は所定値以内に納まる可能性が高く、自局11が第3の実施形態の方法で他局間伝搬損L34を単独で推定すると、実際の他局13−他局14間の伝搬損よりも推定値を小さく見積もってしまう可能性がある。そして、その推定値から許容送信電力を推定して同時送信を試行すると、他局13−14の通信を妨害する可能性がある。一方、自局12−他局13間と自局12−他局14間の距離は同程度であるが、遮蔽状況が異なるため、2つの自他局間伝搬損L13、L14の差は所定値を越える可能性が高い。また、自局10−他局13間と自局10−他局14間の遮蔽状況は同程度であるが、距離がかなり異なるため、2つの自他局間伝搬損L13、L14の差は所定値を越える可能性が高い。このような場合でも、自局11が他の自局10、12から各局で推定された自他局間伝搬損の差分値を入手し、例えば、それら複数の差分値のうち所定値以下となる差分値の数が所定の割合(例えば半分)以上の場合に、他局間は近いと判断し、第3の実施形態の方法と同様にして他局間伝搬損推定値を所定の伝搬損値と推定すれば、自局11は誤って他局13、14間が近いと判定することを回避し、精度の高い推定ができる。   As described in the third embodiment, as shown in FIG. 16, when the other stations 13 and 14 are arranged at a short distance from each other in the surrounding house B, the two signals d34 and a43 are the own station 11. There is a high possibility that the attenuation by the shield and the attenuation by the distance until interception will be almost the same. Therefore, in 3rd Embodiment, when the difference of the propagation loss between two own other station was small, it estimated that the other station was near. Here, for example, consider a case where the own stations 11 and 12 and the other stations 13 and 14 are in the positional relationship as shown in FIG. Similar to the case of FIG. 16, the own station 11 has a small difference between the propagation losses L13 and L14 between the own station and the other station, and it is determined that the other stations are close by the method of the third embodiment. it can. On the other hand, in the own station 12, since the shielding situation between the own station 12 and the other station 13 and the shielding situation between the own station 12 and the other station 14 are different, the difference between the propagation losses L23 and L24 between the two own stations is different. There is a high possibility that the estimation accuracy will be deteriorated because it is not less than a predetermined value and it cannot be determined that the other stations are close by the method of the third embodiment. Even in such a case, for example, the own station 11 and the own station 12 exchange the difference value of the propagation loss between the own station and the other station, and the number of difference values that are equal to or less than a predetermined value is a predetermined ratio (for example, In the case of more than half), it is determined that the other stations are close to each other, and the estimated loss value between the other stations is estimated as a predetermined propagation loss value in the same manner as in the method of the third embodiment, so that the estimation with high accuracy is possible. Can do. Here, for example, consider a case where the own stations 10, 11, 12 and the other stations 13, 14 are in the positional relationship as shown in FIG. In the case of FIG. 25, the distance between the other station 13 and the other station 14 is relatively far, but the distance between the own station 11 and the other station 13 and the shielding situation, and the distance between the own station 11 and the other station 14 and the shielding situation. And the difference between the propagation losses L13 and L14 between the two own stations is likely to be within a predetermined value, and the own station 11 independently determines the propagation loss L34 between the other stations by the method of the third embodiment. If estimated, the estimated value may be estimated to be smaller than the actual propagation loss between the other station 13 and the other station 14. Then, if the allowable transmission power is estimated from the estimated value and simultaneous transmission is attempted, there is a possibility that the communication of the other stations 13-14 is disturbed. On the other hand, the distance between the own station 12 and the other station 13 and the distance between the own station 12 and the other station 14 are approximately the same, but since the shielding situation is different, the difference between the propagation losses L13 and L14 between the two own stations is a predetermined value. There is a high possibility of exceeding. Further, although the shielding situation between the own station 10 and the other station 13 and that between the own station 10 and the other station 14 are approximately the same, the distance between the own station 10 and the other station 14 is quite different, so the difference between the two own-other station propagation losses L13 and L14 is predetermined. The possibility of exceeding the value is high. Even in such a case, the own station 11 obtains the difference value of the propagation loss between the own station and the other station estimated at each station from the other own stations 10 and 12, and becomes, for example, a predetermined value or less among the plurality of difference values. When the number of difference values is equal to or greater than a predetermined ratio (for example, half), it is determined that the other stations are close to each other, and the inter-station propagation loss estimated value is determined as the predetermined propagation loss value in the same manner as in the third embodiment. If this is estimated, the own station 11 can avoid erroneously determining that the other stations 13 and 14 are close to each other, and can perform highly accurate estimation.

このように、ある自局が他の自局から差分値情報を入手し、自局単独での他局間伝搬損推定値を補正して最終的な他局間伝搬損推定値を求めることにより、第3の実施形態よりさらに推定精度の高めることができる。   In this way, a certain own station obtains differential value information from other own stations, corrects the estimated propagation loss between other stations by itself and obtains the final estimated propagation loss between other stations. Further, the estimation accuracy can be further improved than in the third embodiment.

また、例えば、自局11は、複数の自局から差分値情報を受け取り、複数の差分値のうち最小値が所定値以下となる場合に、第3の実施形態の他局間伝搬損推定方法と同様にして、所定の他局間伝搬損を他局間伝搬損推定値としても良い。この場合、第3の実施の形態より、他局間伝搬損を実際より小さく見積もる危険性は増すが、さらに誤差マージンを大きく取りすぎてしまう危険性を抑えて、同時送信機会を増加させることができる。   Also, for example, the own station 11 receives difference value information from a plurality of own stations, and when the minimum value among the plurality of difference values is equal to or smaller than a predetermined value, the inter-station propagation loss estimation method of the third embodiment Similarly, the predetermined inter-station propagation loss may be used as the inter-station propagation loss estimated value. In this case, although the risk of estimating the propagation loss between other stations smaller than the actual increase from the third embodiment, the risk of excessively taking an error margin is further suppressed, and the simultaneous transmission opportunity can be increased. it can.

なお、本実施の形態では、他局間伝搬環境の推定対象(伝搬環境パラメータ)として他局間の伝搬損を自局間で受け渡ししてその推定値を補正するものとしたが、受け渡しを行う伝搬環境パラメータおよび補正対象もこれに限らず、例えば、各自局において推定した他局14におけるデータパケットd34受信時の受信電力推定値R34を受け渡しして、複数の受信電力推定値の平均値や最大値を最終的な受信電力推定値R34として、同時送信の試行を開始するようにしてもよい。   In this embodiment, the propagation loss between other stations is passed between the own stations as the estimation target (propagation environment parameter) of the propagation environment between other stations, and the estimated value is corrected. The propagation environment parameter and the correction target are not limited to this. For example, the reception power estimation value R34 at the time of reception of the data packet d34 in the other station 14 estimated in each own station is passed, and the average value or the maximum of the plurality of reception power estimation values is passed. A trial of simultaneous transmission may be started with the value as the final received power estimation value R34.

なお、本実施の形態では、複数の自局で推定した他局間伝搬環境推定値を比較して、推定の補正を実施するものとしたが、他局間伝搬環境推定値とともに推定の確からしさを示す情報を受け渡して、確からしさの高い他局間伝搬環境推定値を最終的な他局間伝搬環境推定値としてもよい。   In this embodiment, the estimated propagation environment between other stations estimated by a plurality of local stations is compared and the correction of the estimation is performed. The inter-station propagation environment estimated value with high probability may be used as the final inter-station propagation environment estimated value.

確からしさを示す情報としては、例えば、推定を行った時刻情報が用いてもよい。例えば、この時刻情報を利用して、現時刻から所定時間以内前までに推定した伝搬損は、推定値の補正を行うための比較対象とし、現時刻から所定時間以上過去に推定された伝搬損は、確からしさが低いとして、推定値の補正を行うための比較対象から除外するといった方法が考えられる。これによって、時間的に伝搬路が変動しやすい環境下でも、より精度の高い推定ができる。   As information indicating the certainty, for example, time information at which estimation is performed may be used. For example, using this time information, the propagation loss estimated up to a predetermined time before the current time is used as a comparison target for correcting the estimated value, and the propagation loss estimated for a predetermined time or more in the past from the current time For example, a method of excluding from the comparison target for correcting the estimated value is considered because the probability is low. This makes it possible to perform estimation with higher accuracy even in an environment where the propagation path is likely to fluctuate with time.

また、確からしさを示す情報として、例えば、同時送信を試行した結果を用いてもよい。例えば、他局間伝搬環境推定値を用いて同時送信の試行を実施済みでその結果が同時送信成功である他局間伝搬環境推定を最も確からしい推定値、未だ同時送信の試行に用いていない他局間伝搬環境推定値を次に確からしい他局間伝搬環境推定値、他局間伝搬環境推定値を用いて同時送信の試行を実施済みでその結果が同時送信失敗であった他局間伝搬環境推定を最も不確かな他局間伝搬環境推定値とする。そして、複数の他局間伝搬環境推定値の中に最も確からしい推定値があればその推定値のみを用いて推定値の補正を行い、複数の他局間伝搬環境推定値の中に最も確からしい推定値がなく次に確からしい推定値があればその推定値のみを用いて推定値の補正を行い、複数の他局間伝搬環境推定値の中に最も不確かな推定値しかなければ推定値の補正を行わないようにすればよい。これによって、不確かの推定値を使用してかえって推定誤差を大きくしてしまうことを防ぎ、より精度の高い推定ができる。   Further, as information indicating the probability, for example, a result of trying simultaneous transmission may be used. For example, the inter-station propagation environment estimation has been performed using the inter-station propagation environment estimation value, and the result is that the simultaneous transmission has been successful. The inter-station propagation environment estimation value is the next most likely inter-station propagation environment estimation value and the inter-station propagation environment estimation value. The propagation environment estimate is the most uncertain propagation environment estimate between other stations. Then, if there is the most probable estimated value among the multiple other-station propagation environment estimated values, the estimated value is corrected using only the estimated value, and the most reliable among the other-station propagation environment estimated values is obtained. If there is no probable estimated value and there is a next probable estimated value, the estimated value is corrected using only that estimated value, and if there is the most uncertain estimated value among the multiple other-station propagation environment estimated values, the estimated value It suffices to avoid the correction. As a result, it is possible to prevent an estimation error from being increased by using an uncertain estimated value, and to perform estimation with higher accuracy.

(実施の形態6)
図26は第6の実施形態における自局11の構成を示した図である。図26における自局11の構成は、リンク情報管理部264が第1の実施形態の構成と異なる。その他の図4と同じ符号を付した信号及びブロックは第1の実施の形態と同じであるため、説明を省略し、以下では、第1の実施の形態と異なる部分を中心に説明する。
(Embodiment 6)
FIG. 26 is a diagram showing a configuration of the own station 11 in the sixth embodiment. The configuration of the own station 11 in FIG. 26 is different from the configuration of the first embodiment in the link information management unit 264. The other signals and blocks denoted by the same reference numerals as those in FIG. 4 are the same as those in the first embodiment, and thus description thereof will be omitted. In the following, description will be made focusing on parts different from those in the first embodiment.

図27は、図26におけるリンク情報管理部264の構成例を示す図である。図27において、第1の実施形態における図5のリンク情報管理部44との違いは、他局間最大伝搬損設定部271を具備すること他局間伝搬損推定部276である。   FIG. 27 is a diagram illustrating a configuration example of the link information management unit 264 in FIG. In FIG. 27, the difference from the link information management unit 44 of FIG. 5 in the first embodiment is that the inter-station propagation loss estimation unit 276 includes the inter-station maximum propagation loss setting unit 271.

他局間最大伝搬損設定部271には、自局の周囲で稼動すると想定される他局間の最大の伝搬損値(以下、最大伝搬損設定値と記す)が設定されている。他局間伝搬損推定部276は第1の実施形態と同様に自他局間伝搬損記憶部55から2つの自他局間伝搬損L13、L14を参照するが、その2つのうちの大きい方の値を無条件に他局間伝搬損L34と見なすのではなく、他局間最大伝搬損設定部271に設定された最大伝搬損設定値をさらに参照し、L13、L14のうちの大きい方の値が最大伝搬損設定値を越える場合には最大伝搬損設定値を他局間伝搬損推定値とする。   The maximum propagation loss setting unit 271 between other stations is set with a maximum propagation loss value between other stations assumed to operate around the own station (hereinafter referred to as a maximum propagation loss setting value). Similarly to the first embodiment, the inter-other-station propagation loss estimation unit 276 refers to the two own-other-station propagation loss L13 and L14 from the own-other-station propagation loss storage unit 55, and the larger of the two Is unconditionally regarded as the inter-station propagation loss L34, and the maximum propagation loss setting value set in the inter-station maximum propagation loss setting unit 271 is further referred to, and the larger of L13 and L14 When the value exceeds the maximum propagation loss setting value, the maximum propagation loss setting value is set as the propagation loss estimated value between other stations.

このように、予め自局の周囲で稼動すると想定される他局間の最大の伝搬損値を設定しておき、これまでに述べた実施形態の推定方法で得られる他局間伝搬損推定値が最大伝搬損設定値を越える場合には最大伝搬損設定値を他局間伝搬損推定値とすることにより、誤差マージンを大きく取りすぎて同時送信の機会を低減させてしまう危険性を抑えることができる。   In this way, the maximum propagation loss value between other stations assumed to operate in the vicinity of the own station is set in advance, and the propagation loss estimated value between other stations obtained by the estimation method of the above-described embodiments is set. If the maximum propagation loss setting value exceeds the maximum propagation loss setting value, the maximum propagation loss setting value is used as the inter-station propagation loss estimation value, thereby reducing the risk of excessive error margins and reducing the chance of simultaneous transmission. Can do.

なお、この最大伝搬損設定値の設定方法としては様々な方法が考えられる。例えば、自局11に「マンション環境モード」や「一戸建て住宅モード」というようなモードを有するモード選択スイッチを付加しておき、ユーザーが使用環境に応じてモード選択スイッチを選択することにより、その使用環境に応じた適当な最大伝搬損設定値が設定されるようにしてもよい。あるいは、自局11にパソコン等と接続するインタフェースを設けておき、ユーザーが自局11の設定を行うためのソフトウェアを起動して、モードを選択してもよいし、適当な伝搬損値を直接設定するようにしてもよい。なお、ユーザーが適当な伝搬損値を適切に決定することは、電波伝搬に関する知識のない一般ユーザーには難しい。そこで、ソフトウェアを起動してユーザーが適当な伝搬損値を直接設定する際には、伝搬損値をユーザーが直接入力するのではなく、ユーザーは自宅Aの周辺家屋を観測して周辺家屋内に設置しうる他局間の最大距離(通常、周辺家屋の対角線上の端から端までの距離)をざっと見積もって入力するだけにすればよい。そして、ソフトウェア側で、その入力された距離と所定の伝搬損モデル式(例えば自由空間損の算出式)から距離による減衰量を算出し、部屋間の遮蔽による減衰量を考慮した所定のマージンを加えた値を適当な伝搬損値として決定し、その決定値が他局間最大伝搬損設定部271に設定されるようにするとよい。また、マンションや団地やアパートといった集合住宅の間取りは一般的に隣室どうしで似ているため、このような集合住宅では、自局が稼動する自宅における最大の自局間伝搬損と、他局が稼動する隣室等における最大の他局間伝搬損とはほぼ等しいと考えられる。それ故、例えば、ソフトウェアに最大伝搬損測定モードを用意しておき、ユーザーが自宅内の最も伝搬損が大きいと想定される場所(通常、自宅内の対角線上の端と端)に自局11、自局12を仮設置した後、最大伝搬損測定モードを働かせて伝搬損測定し、その測定値が他局間最大伝搬損設定部271に設定されるようにしてもよい。   Various methods are conceivable as a method for setting the maximum propagation loss setting value. For example, a mode selection switch having a mode such as “condominium environment mode” or “detached house mode” is added to the own station 11, and the user selects the mode selection switch according to the usage environment, and the use is thereby performed. An appropriate maximum propagation loss setting value according to the environment may be set. Alternatively, the own station 11 may be provided with an interface for connecting to a personal computer, etc., and the user may start the software for setting the own station 11 and select a mode, or may directly input an appropriate propagation loss value. You may make it set. In addition, it is difficult for a general user who does not have knowledge about radio wave propagation to appropriately determine an appropriate propagation loss value. Therefore, when the software is started and the user directly sets an appropriate propagation loss value, the user does not directly input the propagation loss value, but the user observes the surrounding house in home A and places it in the surrounding house. It is only necessary to roughly estimate and input the maximum distance between other stations that can be installed (usually, the distance from one end to the other on the diagonal line of the surrounding house). Then, on the software side, the attenuation amount due to the distance is calculated from the input distance and a predetermined propagation loss model equation (for example, a calculation equation for free space loss), and a predetermined margin considering the attenuation amount due to shielding between rooms is calculated. The added value may be determined as an appropriate propagation loss value, and the determined value may be set in the inter-station maximum propagation loss setting unit 271. In addition, the layout of apartment houses such as apartments, housing complexes, and apartments is generally similar between adjacent rooms. It is considered that the maximum propagation loss between other stations in the adjacent room or the like in operation is approximately equal. Therefore, for example, a maximum propagation loss measurement mode is prepared in the software, and the local station 11 is located at a place where the user is assumed to have the largest propagation loss in the home (usually at the diagonal end in the home). Alternatively, after the own station 12 is temporarily installed, the maximum propagation loss measurement mode may be used to measure the propagation loss, and the measured value may be set in the maximum propagation loss setting unit 271 between other stations.

(実施の形態7)
図28は第7の実施形態における自局11の構成を示した図である。図28における自局11の構成は、リンク情報管理部284が第1の実施形態の構成と異なる。その他の図4と同じ符号を付した信号及びブロックは第1の実施の形態と同じであるため、説明を省略し、以下では、第1の実施の形態と異なる部分を中心に説明する。
(Embodiment 7)
FIG. 28 is a diagram showing a configuration of the own station 11 in the seventh embodiment. The configuration of the own station 11 in FIG. 28 is different from the configuration of the first embodiment in the link information management unit 284. The other signals and blocks denoted by the same reference numerals as those in FIG. 4 are the same as those in the first embodiment, and thus description thereof will be omitted. In the following, description will be made focusing on parts different from those in the first embodiment.

図29は、図28におけるリンク情報管理部284の構成例を示す図である。図29において、第1の実施形態における図5のリンク情報管理部44との違いは、自他局間伝搬損推定部54が伝搬損推定部294に、自他局間伝搬損記憶部55が局間伝搬損記憶部295に、他局間伝搬損推定部56が他局間伝搬損推定部296に、それぞれ替わり、新たに局間距離推定部297を具備することである。   FIG. 29 is a diagram illustrating a configuration example of the link information management unit 284 in FIG. 29, the difference between the link information management unit 44 of FIG. 5 in the first embodiment is that the own-other station propagation loss estimation unit 54 is the propagation loss estimation unit 294, and the own-other station propagation loss storage unit 55 is different. The inter-station propagation loss storage unit 295 is replaced with an inter-station propagation loss estimation unit 56 in place of the inter-station propagation loss estimation unit 296, and a new inter-station distance estimation unit 297 is provided.

伝搬損推定部294は、アドレス情報s7に含まれる送信元アドレスを認識し、現在受信中の信号の送信元局と自局との間の局間伝搬損を図5の自他局間伝搬損推定部54と同様に送信電力値s12と受信電力値s3との差分から推定する。そして、自局11自身のアドレスと、他局のアドレス又は他の自局(例えば自局12)のアドレスをアドレス情報s29とするとともに、自他局間伝搬損推定値または自局と他の自局との間の伝搬損推定値(自局間伝搬損推定値)を伝搬損推定値s14とし、s29とs14を局間伝搬損記憶部に出力する。さらに、伝搬損推定部294は、復調データs2も受信し、アドレス情報s7に含まれる送信元アドレスが他の自局のアドレスで復調データs2中に他の自局で推定された自他局間伝搬損推定値が含まれている場合には、その自他局間伝搬損推定を抽出してs14とするとともに、それに対応する他の自局と他局のアドレスをアドレス情報s29とし、s29とs14を出力する。局間伝搬損記憶部295は、アドレス情報s29と伝搬損推定値s14を基に、自局間、他局間を問わず2つの局のアドレスとその2つの局間の伝搬損推定値とを図30のような局間伝搬損記憶テーブルに記憶する。   The propagation loss estimation unit 294 recognizes the transmission source address included in the address information s7, and determines the inter-station propagation loss between the transmission source station and the own station of the signal currently being received as shown in FIG. Similar to the estimation unit 54, the estimation is made from the difference between the transmission power value s12 and the reception power value s3. Then, the address of own station 11 and the address of another station or the address of another own station (for example, own station 12) are used as address information s29, and the estimated propagation loss between the own station and other stations or the own station and other stations. The propagation loss estimated value between the stations (the propagation loss estimated value between the own stations) is set as the propagation loss estimated value s14, and s29 and s14 are output to the interstation propagation loss storage unit. Further, the propagation loss estimator 294 also receives the demodulated data s2, and the source address included in the address information s7 is the address of the other local station and is estimated by the other local station in the demodulated data s2. If a propagation loss estimation value is included, the propagation loss estimation between the own station and other stations is extracted and set as s14, and the addresses of other stations and other stations corresponding thereto are set as address information s29. s14 is output. Based on the address information s29 and the propagation loss estimated value s14, the inter-station propagation loss storage unit 295 obtains the addresses of the two stations and the estimated propagation loss between the two stations regardless of the own station or between the other stations. This is stored in the inter-station propagation loss storage table as shown in FIG.

局間距離推定部297は、アドレス情報s7を基に現在受信中の他局信号の送信元アドレスと宛先アドレスを認識し、その2つの他局アドレスと2つの自局との間の4つの自他局間伝搬損を参照して、その参照値を所定の伝搬損モデル式に代入して逆算して4つの自他局間の距離を推定する。さらに、局間距離推定部297は、自他局間伝搬損推定値を参照した2つの自局間の伝搬損推定値も参照し、参照値を所定の伝搬損モデル式に代入して逆算して、2つの自局間の距離を推定する。そして、推定した合計5つの局間距離を基に、他局間距離を推定し、その他局間距離推定値を他局間伝搬損推定部296に出力する。   The inter-station distance estimation unit 297 recognizes the transmission source address and the destination address of the other station signal currently being received based on the address information s7, and four self-station addresses between the two other station addresses and the two own stations. By referring to the propagation loss between other stations and substituting the reference value into a predetermined propagation loss model equation, the distance between the four stations is estimated. Further, the inter-station distance estimation unit 297 also refers to the propagation loss estimated value between two own stations with reference to the own-other-station propagation loss estimated value, substitutes the reference value into a predetermined propagation loss model formula, and performs a reverse calculation. To estimate the distance between the two stations. Then, the inter-station distance is estimated based on the estimated total inter-station distance, and the inter-station distance estimation value is output to the inter-station propagation loss estimation unit 296.

他局間伝搬損推定部296は入力された他局間距離推定値を所定の伝搬損モデル式に代入して伝搬損を算出し、その算出値を他局間伝搬損推定値s15として他局間伝搬損記憶部57に出力する。   The inter-station propagation loss estimation unit 296 calculates the propagation loss by substituting the input inter-station distance estimation value into a predetermined propagation loss model formula, and uses the calculated value as the inter-station propagation loss estimation value s15. To the inter-propagation loss storage unit 57.

ここで、本実施形態における他局間伝搬損推定方法の一例と図31を使って具体的に説明する。図31のように、図2で説明した各局間の距離D12、D13、D14、D23、D24の距離を各々A,B,C,D,Eと表記する。そして、自局11−自局12間と自局12と他局14間とのなす角をφ、自局12−他局13間と自局12と他局14間とのなす角をθと表記する。この時、他局間距離D34は、余弦定理を用いて式25で表現できる。   Here, it demonstrates concretely using an example of the propagation loss estimation method between other stations in this embodiment, and FIG. As shown in FIG. 31, the distances D12, D13, D14, D23, and D24 between the stations described in FIG. 2 are represented as A, B, C, D, and E, respectively. An angle formed between the own station 11 and the own station 12 and between the own station 12 and the other station 14 is φ, and an angle formed between the own station 12 and the other station 13 and between the own station 12 and the other station 14 is θ. write. At this time, the distance D34 between other stations can be expressed by Equation 25 using the cosine theorem.

D342=D2+E2−2DE*cosθ ―――(式25)
さらに、余弦定理を用いて、θ、φについて、式26、27が成立するので、
θ+φ=cos−1{(A2+D2―B2)/(2AD)} ―――(式26)
φ=cos−1{(A2+E2―C2)/(2AE)} ―――(式27)
式25、26、27より、他局間距離D34は式28で表現できる。
D342 = D2 + E2-2DE * cos θ ――― (Formula 25)
Furthermore, using the cosine theorem, Equations 26 and 27 hold for θ and φ.
θ + φ = cos−1 {(A2 + D2−B2) / (2AD)} (Equation 26)
φ = cos-1 {(A2 + E2-C2) / (2AE)} --- (Formula 27)
From equations 25, 26, and 27, the inter-station distance D34 can be expressed by equation 28.

D34=(D2+E2−2DEcos[cos−1{(A2+D2―B2)/(2AD)}−cos−1{(A2+E2―C2)/(2AE)}]) ―――(式28)
式28から分かるように局間距離D34は4つの自他局間距離B、C、D、Eと自局間距離Aが求まれば推定できる。
D34 = (D2 + E2-2DEcos [cos-1 {(A2 + D2-B2) / (2AD)}-cos-1 {(A2 + E2-C2) / (2AE)}])-(Formula 28)
As can be seen from Equation 28, the inter-station distance D34 can be estimated if the four inter-station distances B, C, D, E and the inter-station distance A are obtained.

そこで、本実施例においては、自他局間距離B、C、D、Eは、ITU−R P.1238で推奨されている2G帯の伝搬損推定式(式16)用いて、(式16)の左辺に自他局間伝搬損推定値L13、L14、L23、L24を各々代入し、自局と他局との間の遮蔽物の数は2枚(n=2)と仮定して、式16より逆算して求める。また、自局間距離Aは、(式16)の左辺に自局間伝搬損推定値L12を代入し、他局間距離D34を推定する際には、自局11と自局12は間に遮蔽物が介在しない環境に設置するとして遮蔽物の数は0枚(n=0)として、式16より逆算して求める。このようにして推定した距離A,B、C、D、Eを式28に代入して距離D34を推定する。そして、推定距離D34を(式16)に代入し、他局間に介在する遮蔽物の数nを推定距離D34応じた値とし、(式16)を用いて推定する。推定距離D34応じた遮蔽物の数nは、例えば、推定距離D34が4m以下の場合は一般家屋の部屋サイズ程度なので、他局は同部屋にあると推定してn=0とし、4mを越える場合は、屋内の壁が存在するとして推定してn=1とすればよい。   Therefore, in the present embodiment, the distances B, C, D, and E between the own station and the other stations are set as ITU-RP. Using the propagation loss estimation formula (Equation 16) for 2G band recommended in 1238, the estimated values L13, L14, L23, and L24 between the own station and other stations are substituted for the left side of (Equation 16), and Assuming that the number of shields with other stations is two (n = 2), the calculation is performed by back calculation using Equation 16. Further, when the inter-station distance A is substituted for the inter-station propagation loss estimated value L12 in the left side of (Equation 16) and the inter-station distance D34 is estimated, Assuming that the system is installed in an environment in which no shielding object is present, the number of shielding objects is zero (n = 0), and is calculated by back calculation from Equation 16. The distances D34 are estimated by substituting the estimated distances A, B, C, D, and E into the equation 28. Then, the estimated distance D34 is substituted into (Expression 16), and the number n of shields interposed between other stations is set as a value corresponding to the estimated distance D34, and is estimated using (Expression 16). For example, when the estimated distance D34 is 4 m or less, the number n of shields according to the estimated distance D34 is about the size of a room of a general house. It may be assumed that an indoor wall exists and n = 1.

なお、上述の方法により推定した局間距離A〜Eには通常推定誤差が含まれるため、式26、27の{}内の値がその誤差によって1を越えてしまい、式28での推定ができない状況が生じ得る。このような状況に対処するため、式26、27の{}内の値が1を越える場合には、例えば、式26、27の{}内の値を1と見なして、式28に代入すればよい。   Since the inter-station distances A to E estimated by the above-described method usually include an estimation error, the values in {} of Expressions 26 and 27 exceed 1 due to the error, and the estimation by Expression 28 is performed. An impossible situation can arise. In order to cope with such a situation, when the value in {} of Expressions 26 and 27 exceeds 1, for example, the value in {} of Expressions 26 and 27 is regarded as 1 and substituted into Expression 28. That's fine.

以上の本実施の形態の構成を図1の自局11、自局12に適用することで、隣接する家屋で現在世の中に普及しているIEEE802.11a/b/g規格準拠の無線局のように同時送信判定機能を持たない他局が稼動する環境下でも、自局間で自律的に他局間の伝搬距離および伝搬損を推定することできる。   By applying the configuration of the present embodiment to the own station 11 and the own station 12 in FIG. Even in an environment where other stations that do not have the simultaneous transmission determination function operate, it is possible to estimate the propagation distance and propagation loss between the other stations autonomously between the own stations.

なお、本実施形態では、自局間の距離Aも自局11が自局12からの信号を受信して、その信号の送信電力値と自局11における受信電力との差分から自局間伝搬損を推定して求めたが、自局間距離Aの求め方はこれに限らず、例えば、他局間距離を推定する際の自局間距離は所定値に決定しておき、ユーザーが自局11、12をその所定値に合わせて仮設置した後、他局間距離を推定するものとしてもよい。あるいは、自局11、自局12を適当に設置し、ユーザーが自局間の距離をメジャー等で測定して、初期設定用のソフトウェア等を用いてその距離測定値を入力するものとしてもよい。このように自局間距離を実際に測定した値を使用することにより、他局間距離推定の精度を向上させることができる。   In this embodiment, the own station 11 also receives the signal from the own station 12 and the distance A between the own stations, and the propagation between the own stations from the difference between the transmission power value of the signal and the received power at the own station 11 Although the loss is estimated and determined, the method of determining the inter-station distance A is not limited to this. For example, the inter-station distance when estimating the inter-station distance is determined to be a predetermined value, and the user can The stations 11 and 12 may be temporarily installed according to the predetermined value, and then the distance between the other stations may be estimated. Alternatively, the own station 11 and the own station 12 may be appropriately installed, and the user may measure the distance between the own stations with a measure or the like, and input the distance measurement value using the initial setting software or the like. . As described above, by using the value obtained by actually measuring the distance between the own stations, it is possible to improve the accuracy of the distance estimation between other stations.

(実施の形態8)
図32(a)は第8の実施形態における他局間伝搬損推定方法の基本概念を示す図である。図32(a)は第8の実施形態における他局間伝搬損推定方法の実際の使用方法を説明するための図である。以下、図32(a)(b)を用いて第8の実施形態における他局間伝搬損推定方法を説明する。
(Embodiment 8)
FIG. 32A is a diagram showing the basic concept of the inter-station propagation loss estimation method in the eighth embodiment. FIG. 32A is a diagram for explaining an actual usage method of the inter-station propagation loss estimation method in the eighth embodiment. Hereafter, the propagation loss estimation method between other stations in 8th Embodiment is demonstrated using Fig.32 (a) (b).

図32(a)に示すように、第8の実施形態においては、自局11と通信できる他の自局として自局10、自局12が存在し、自局10、11、12は各々自分自身の位置情報(x0、y0、z0)、(x1、y1、z1)、(x2、y2、z2)を所有している。そして自局10、12は、自局11に対して自分自身の位置情報と自局と他局14との間の伝搬損推定値L04、L24を送信する。自局11は、自局10、12から送られた自他局間伝搬損推定値と自局11自身で推定した自他局間伝搬損L14から、第7の実施形態と同様にして、自他局間距離r0、r1、r2を推定する。そして、3点測量の手法を用いて、これらの自他局間距離推定値と各局の位置情報とを基に、自局10、11、12の位置を中心とする各々半径r0、r1、r2の3つの円の交点を算出し、その交点を他局14の位置と推定する。同様にして他局13の位置も推定する。そして、推定した他局13、14の位置から他局13、14間の距離を推定し、第7の実施形態と同様にして、所定の伝搬損モデル式にその距離推定値を代入して、他局間伝搬損L34を推定する。   As shown in FIG. 32A, in the eighth embodiment, the own station 10 and the own station 12 exist as other own stations that can communicate with the own station 11, and each of the own stations 10, 11, and 12 Own position information (x0, y0, z0), (x1, y1, z1), (x2, y2, z2). Then, the own stations 10 and 12 transmit their own position information and propagation loss estimated values L04 and L24 between the own station and the other station 14 to the own station 11. In the same manner as in the seventh embodiment, the own station 11 uses the own-other-station propagation loss estimated value sent from the own stations 10 and 12 and the own-other-station propagation loss L14 estimated by the own station 11 itself. Estimate the distances r0, r1, r2 between the other stations. Then, using the three-point surveying method, based on the estimated distance between the own station and other stations and the position information of each station, the radii r0, r1, r2 centered on the positions of the own stations 10, 11, 12 respectively. The intersection of the three circles is calculated, and the intersection is estimated as the position of the other station 14. Similarly, the position of the other station 13 is also estimated. Then, the distance between the other stations 13 and 14 is estimated from the estimated positions of the other stations 13 and 14, and in the same manner as in the seventh embodiment, the distance estimation value is substituted into a predetermined propagation loss model equation, The inter-station propagation loss L34 is estimated.

なお、各自局10、11、12で推定された自他局間伝搬損には誤差が含まれるため、3つの円の交点は1点交わらず、図32(b)に黒四角、黒三角の印で示したように通常6つの交点生じることになる。そこで、第8の実施形態においては、このように推定誤差により交点が1点で交わらない場合には、6つの交点のうち最も互いに近接する3点の中心を他局の位置と推定する。図32(b)では、自局より右側にある3つの黒四角、黒三角の印を各々頂点とする三角形の中心が他局13、14の推定位置となる。   In addition, since the propagation loss between the own station and the other station estimated by each of the own stations 10, 11, and 12 includes an error, the intersection of the three circles does not intersect one point, and a black square and a black triangle are shown in FIG. As indicated by the mark, there will usually be six intersections. Therefore, in the eighth embodiment, when the intersection does not intersect at one point due to the estimation error in this way, the center of three points closest to each other among the six intersections is estimated as the position of the other station. In FIG. 32 (b), the estimated positions of the other stations 13 and 14 are the centers of triangles each having three black squares and black triangle marks on the right side of the own station as vertices.

本実施の形態の他局間伝搬損推定方法では、少なくとも他局信号の送信元アドレスさえ認識できれば、第1の実施形態と同様にして自他局間伝搬損が推定でき、自局間でその伝搬損推定値と自局の位置情報を送受信して、他局間伝搬損を推定することができる。したがって、本実施の形態の他局間伝搬損推定方法を用いることにより、他局がIEEE802.11a/b/g規格準拠の無線局ように同時送信判定の仕組みを持たない局である場合でも、他局間伝搬損推定を推定できる。   In the inter-station propagation loss estimation method of this embodiment, if at least the source address of the other-station signal can be recognized, the inter-station propagation loss can be estimated in the same manner as in the first embodiment. The propagation loss between other stations can be estimated by transmitting / receiving the propagation loss estimated value and the position information of the own station. Therefore, by using the inter-station propagation loss estimation method of the present embodiment, even when the other station is a station that does not have a simultaneous transmission determination mechanism such as a wireless station compliant with the IEEE802.11a / b / g standard, Estimate propagation loss estimation between other stations.

なお、上述したように本実施の形態では、3点測量の方法を基本的に用いて、他局の位置を推定したが、他局位置の推定方法はこれに限らず、様々な他局位置の推定方法をもちいることができる。例えば、特開2001−298764に開示された位置算出手法を応用することにより、他局位置を推定してもよい。   As described above, in the present embodiment, the position of the other station is estimated by basically using the three-point surveying method. However, the estimation method of the other station position is not limited to this, and various other station positions are estimated. The estimation method can be used. For example, the position of the other station may be estimated by applying the position calculation method disclosed in JP-A-2001-298664.

特開2001−298764に開示された位置算出手法の応用方法を簡単に説明する。特開2001−298764では、基地局(本発明の自局)が位置情報を移動局(本発明の他局)に通知し、移動局は、3つの基地局からの位置情報から移動局と各基地局装置との距離の差を計算し、位置測定手段で、1つの基地局と移動局との距離の推定値と距離の差から各基地局の仮定距離を求め、各仮定距離と各位置情報から移動局の仮定位置を算出し、仮定位置から求めた距離と仮定距離との差が所定値以下となるまで、この算出を繰り返して精度良く移動局の位置と推定するものである。本発明では他局は同時送信に関する機能を有していない802.11a/b/gのような無線局を想定しているので、逆に自局側で他局の位置を推定する。そのために、自局11は、2つの他の自局10、12から位置情報と、自局10、12が他局14の信号を傍受した時の位相情報とを受信し、自局11を含めた3つの自局と他局14間の位相差とから他局14と各自局10、11、12間の距離の差を計算し、初期値設定として、任意の自局(例えば自局11)の1つと他局14との推定距離D14を仮定距離とし、仮定距離から他の自局10、12と他局14との距離も仮定し、仮定した各自局との距離と、各自局から通知された位置情報とを用いて他局14の仮定位置を算出し、算出された仮定位置から求めた自局と他局14との算出距離と仮定距離との差が所定値より小さくなるまで、算出距離を仮定距離にフィードバックしながら算出を繰り返し、算出距離と仮定距離との差が所定値より小さくなった時の仮定位置を他局14の位置と推定する。このように、他局が同時送信判定の仕組みのない局であっても、従来の開示技術を用いて、2つの他局位置を推定して他局間伝搬損を推定することも可能である。   An application method of the position calculation method disclosed in Japanese Patent Laid-Open No. 2001-298964 will be briefly described. In Japanese Patent Application Laid-Open No. 2001-298774, a base station (the own station of the present invention) notifies position information to a mobile station (another station of the present invention). The distance difference between the base station apparatus is calculated, and the position measurement means obtains the assumed distance of each base station from the estimated distance of the distance between one base station and the mobile station and the distance difference. The assumed position of the mobile station is calculated from the information, and this calculation is repeated until the difference between the distance obtained from the assumed position and the assumed distance becomes a predetermined value or less, and the position of the mobile station is estimated with high accuracy. In the present invention, since the other station assumes a wireless station such as 802.11a / b / g that does not have a function related to simultaneous transmission, the position of the other station is estimated on the own station side. Therefore, the own station 11 receives the position information from the two other own stations 10 and 12 and the phase information when the own stations 10 and 12 intercept the signal of the other station 14 and includes the own station 11. Further, the difference in distance between the other station 14 and each of the own stations 10, 11, 12 is calculated from the phase difference between the three own stations and the other station 14, and an arbitrary own station (for example, the own station 11) is set as an initial value setting. The estimated distance D14 between one of the stations and the other station 14 is assumed to be an assumed distance, the distance between the other stations 10, 12 and the other station 14 is also assumed from the assumed distance, and the assumed distance to each station is notified from each station. The assumed position of the other station 14 is calculated using the obtained position information, and the difference between the calculated distance between the own station and the other station 14 obtained from the calculated assumed position and the assumed distance becomes smaller than a predetermined value. The calculation is repeated while feeding back the calculated distance to the assumed distance, and the difference between the calculated distance and the assumed distance is predetermined. It estimates the presumed position of when it smaller and the position of other stations 14. As described above, even if the other station is a station that does not have a simultaneous transmission determination mechanism, it is possible to estimate the propagation loss between the other stations by estimating the position of the two other stations using the conventional disclosed technique. .

なお、上述した各実施の形態では使用する伝搬損モデル式として、ITU−R P.1238で推奨されている2G帯の伝搬損推定式(式16)を用いるものとして説明したが、使用する伝搬損モデル式は、これに限らず、過去あるは将来の屋内伝搬実験や屋内−屋外間伝搬実験等の電波伝搬研究の成果として推奨される他のモデル式を用いることももちろん可能である。   In each of the above-described embodiments, the propagation loss model equation used is ITU-RP. The 2G band propagation loss estimation equation (Equation 16) recommended in 1238 has been described. However, the propagation loss model equation to be used is not limited to this, and the past or future indoor propagation experiment or indoor-outdoor It is of course possible to use other model formulas recommended as a result of radio wave propagation research such as inter-propagation experiments.

なお、本発明における実施の形態において開示された各機能ブロックは典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されても良いし、一部または全てを含むように1チップ化されても良い。   Note that each functional block disclosed in the embodiment of the present invention is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include some or all of them.

ここではLSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSI、と呼称されることもある。   The name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.

また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用しても良い。あるいはプロセッサやメモリ等を備えたハードウエア資源においてプロセッサがROMに格納された制御プログラムを実行することにより制御される構成が用いられても良い。   Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used. Alternatively, a configuration in which a processor is controlled by executing a control program stored in a ROM in hardware resources including a processor and a memory may be used.

さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行っても良い。バイオ技術の適応等が可能性としてありえる。   Further, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Biotechnology can be applied.

本発明は、複数の無線局が存在する無線通信システムにおける無線局の周辺伝搬環境推定方法および、送信制御方法等として有用である。特に、周辺の無線局が同時送信判定機能を持たない無線局である場合にも有用である。   INDUSTRIAL APPLICABILITY The present invention is useful as a wireless station peripheral propagation environment estimation method and a transmission control method in a wireless communication system in which a plurality of wireless stations exist. In particular, it is also useful when the surrounding wireless stations are wireless stations that do not have a simultaneous transmission determination function.

本発明における無線システム概念図Wireless system conceptual diagram in the present invention 本発明における無線システムの無線局間及び各局の伝搬環境パラメータを表す記号を示した図The figure which showed the symbol showing the propagation environment parameter between the radio stations of the radio system in this invention, and each station 本発明の実施の形態1における、同時送信試行までの伝送シーケンスを示す図The figure which shows the transmission sequence until the simultaneous transmission trial in Embodiment 1 of this invention. 本発明の実施の形態1における自局の無線通信装置の構成図Configuration diagram of radio communication apparatus of own station in Embodiment 1 of the present invention 本発明の実施の形態1におけるリンク情報管理部の構成図Configuration diagram of the link information management unit in Embodiment 1 of the present invention 本発明の実施の形態1における同時送信リンク管理部の構成図Configuration diagram of simultaneous transmission link management section in Embodiment 1 of the present invention 実施の形態1における伝搬テーブルに関する説明図Explanatory drawing regarding the propagation table in the first embodiment 本発明の実施の形態1の変形例1におけるリンク情報管理部の構成図The block diagram of the link information management part in the modification 1 of Embodiment 1 of this invention 本発明の実施の形態1の変形例2におけるリンク情報管理部の構成図The block diagram of the link information management part in the modification 2 of Embodiment 1 of this invention 本発明の実施の形態2における自局の無線通信装置の構成図Configuration diagram of radio communication apparatus of own station in embodiment 2 of the present invention 本発明の実施の形態2におけるリンク情報管理部の構成図Configuration diagram of link information management unit in Embodiment 2 of the present invention 本発明の実施の形態2における同時送信リンク管理部の構成図Configuration diagram of simultaneous transmission link management section in Embodiment 2 of the present invention 実施の形態2における伝搬テーブルに関する説明図Explanatory drawing regarding the propagation table in the second embodiment 本発明の実施の形態3における自局の無線通信装置の構成図Configuration diagram of radio communication apparatus of own station in embodiment 3 of the present invention 本発明の実施の形態3におけるリンク情報管理部の構成図Configuration diagram of link information management unit in Embodiment 3 of the present invention 本発明の実施の形態3の効果を説明するための無線システム配置例を示す図The figure which shows the example of radio | wireless system arrangement | positioning for demonstrating the effect of Embodiment 3 of this invention. 本発明の実施の形態4における自局の無線通信装置の構成図Configuration diagram of radio communication apparatus of own station in embodiment 4 of the present invention 本発明の実施の形態4におけるリンク情報管理部の構成図Configuration diagram of link information management unit in Embodiment 4 of the present invention 本発明の実施の形態4における伝搬テーブルに関する説明図Explanatory drawing about the propagation table in Embodiment 4 of this invention 本発明の実施の形態4の効果を説明するための無線システム配置例を示す図The figure which shows the example of radio | wireless system arrangement | positioning for demonstrating the effect of Embodiment 4 of this invention. 本発明の実施の形態4の変形例におけるリンク情報管理部の構成図The block diagram of the link information management part in the modification of Embodiment 4 of this invention 本発明の実施の形態5における無線システムの概念図Conceptual diagram of radio system in Embodiment 5 of the present invention 本発明の実施の形態5におけるリンク情報管理部の構成図Configuration diagram of link information management unit in Embodiment 5 of the present invention 本発明の実施の形態5効果を説明するための無線システム配置例を示す図The figure which shows the example of radio | wireless system arrangement | positioning for demonstrating the effect of Embodiment 5 of this invention 本発明の実施の形態5効果を説明するための無線システム配置例を示す図The figure which shows the example of radio | wireless system arrangement | positioning for demonstrating the effect of Embodiment 5 of this invention 本発明の実施の形態6における自局の無線通信装置の構成図Configuration diagram of radio communication apparatus of own station in embodiment 6 of the present invention 本発明の実施の形態6におけるリンク情報管理部の構成図Configuration diagram of link information management unit in Embodiment 6 of the present invention 本発明の実施の形態7における自局の無線通信装置の構成図Configuration diagram of radio communication apparatus of own station in embodiment 7 of the present invention 本発明の実施の形態7におけるリンク情報管理部の構成図Configuration diagram of link information management unit in Embodiment 7 of the present invention 発明の実施の形態7における伝搬テーブルに関する説明図Explanatory drawing about the propagation table in Embodiment 7 of invention 本発明の実施の形態7における他局間伝搬損推定方法の説明図Explanatory drawing of the propagation loss estimation method between other stations in Embodiment 7 of this invention 本発明の実施の形態8における他局間伝搬環境推定方法の説明図Explanatory drawing of the propagation environment estimation method between other stations in Embodiment 8 of this invention. (A)従来のCSMAを用いる無線通信システムの概念図(B)従来のCSMAを用いる無線通信システムの伝送シーケンス図(A) Conceptual diagram of wireless communication system using conventional CSMA (B) Transmission sequence diagram of wireless communication system using conventional CSMA 従来の同時送信可否判定を行う無線通信システムの概念図Conceptual diagram of a conventional wireless communication system that determines whether simultaneous transmission is possible 従来の同時送信可否判定の問題点を指摘する無線通信システムの概念図Conceptual diagram of a wireless communication system that points out the problems of conventional simultaneous transmission availability determination

符号の説明Explanation of symbols

11〜14,101〜104 無線局
41 復調部
42 受信信号強度検出部
43,103 送信電力制御部
44,841,941,104,144,174,214 リンク情報管理部
45,105 同時送信リンク管理部
47,107 送信部
d12,d34 データパケット
a21,a43 ACKパケット
11-14, 101-104 Radio station 41 Demodulator 42 Received signal strength detector 43, 103 Transmission power controller 44, 841, 941, 104, 144, 174, 214 Link information manager 45, 105 Simultaneous transmission link manager 47, 107 Transmitter d12, d34 Data packet a21, a43 ACK packet

Claims (31)

無線局(自局)が他の無線局(他局)間の伝搬環境パラメータを推定する伝搬環境推定方法であって、
第1の他局が送信した第1の他局信号を受信して前記第1の他局と前記自局との間の第1の自他局間伝搬環境パラメータを推定する第1のステップと、
第2の他局が送信した第2の他局信号を受信して前記第2の他局と前記自局との間の第2の自他局間伝搬環境パラメータを推定する第2のステップと、
前記第1及び第2のステップで推定した自他局間伝搬環境パラメータ推定結果を基に、前記自局が前記第1の他局と前記第2の他局との間の他局間伝搬環境パラメータを推定する他局間伝搬環境推定ステップとを含む伝搬環境推定方法。
A propagation environment estimation method in which a wireless station (own station) estimates propagation environment parameters between other wireless stations (other stations),
A first step of receiving a first other station signal transmitted by the first other station and estimating a first own-other station propagation environment parameter between the first other station and the own station; ,
A second step of receiving a second other station signal transmitted by the second other station and estimating a second propagation environment parameter between the second other station and the own station; ,
Based on the estimation result of the propagation environment parameter between the own station and the other station estimated in the first and second steps, the propagation environment between the other stations between the first other station and the second other station is determined by the own station. A propagation environment estimating method including a propagation environment estimating step between other stations for estimating a parameter;
前記伝搬環境パラメータは前記無線局間の伝搬損であり、
前記第1のステップにおいて、前記第1の他局信号の送信電力と前記自局が前記第2の他局信号を受信したときの受信電力とから、第1の自他局間伝搬損を推定し、
前記第2のステップにおいて、前記第2の他局信号の送信電力推定値と前記自局が前記第2の他局信号を受信したときの受信電力とから、第2の自他局間伝搬損を推定し、
前記他局間伝搬環境推定ステップにおいて、前記第1、第2の自他局間伝搬損の推定結果を基に、前記第1、第2の他局間の他局間伝搬損を推定することを特徴とする請求項1記載の伝搬環境推定方法。
The propagation environment parameter is a propagation loss between the wireless stations,
In the first step, a first inter-other-station propagation loss is estimated from the transmission power of the first other-station signal and the received power when the own-station receives the second other-station signal. And
In the second step, from the transmission power estimated value of the second other station signal and the received power when the own station receives the second other station signal, the second inter-other station propagation loss is calculated. Estimate
In the inter-other-station propagation environment estimation step, estimating the inter-other-station propagation loss between the first and second other stations based on the first and second own-other-station propagation loss estimation results. The propagation environment estimation method according to claim 1.
前記第1の自他局間伝搬環境パラメータは前記第1の他局信号の送信電力と、前記自局が前記第1の他局信号を受信したときの第1の受信電力であり、
前記第2の自他局間伝搬環境パラメータは前記第2の他局信号の送信電力と、前記自局が前記第2の他局信号を受信したときの第2の受信電力であり、
前記第1の他局と前記第2の他局との間の他局間伝搬環境パラメータは前記第2の他局における前記第1の他局信号の受信電力であって、
前記他局間伝搬環境推定ステップにおいて、前記第1の他局信号の送信電力と前記第2の他局信号の送信電力との差である送信電力差分値と前記第1の受信電力と前記第2の受信電力との差である受信電力差分値とを比較するか、又は前記第1の他局信号の送信電力と前記第1の受信電力との差である第1差分値と前記第2の他局信号の送信電力と前記第2の受信電力との差である第2差分値とを比較し、その比較結果を基に前記他局間伝搬環境パラメータを推定することを特徴とする請求項1記載の伝搬環境推定方法。
The first inter-other-station propagation environment parameter is a transmission power of the first other-station signal and a first reception power when the own-station receives the first other-station signal,
The second own-other-station propagation environment parameter is a transmission power of the second other-station signal and a second received power when the own-station receives the second other-station signal,
The inter-station propagation environment parameter between the first other station and the second other station is a reception power of the first other station signal in the second other station,
In the inter-other-station propagation environment estimation step, a transmission power difference value that is a difference between the transmission power of the first other-station signal and the transmission power of the second other-station signal, the first received power, and the first The received power difference value, which is a difference between the first received power and the second received power, or the first difference value, which is the difference between the transmission power of the first other station signal and the first received power, and the second received power. A comparison is made between a second difference value that is a difference between a transmission power of another station signal and the second received power, and the propagation environment parameter between the other stations is estimated based on the comparison result. Item 2. The propagation environment estimation method according to Item 1.
前記送信電力は、前記第1、第2の他局信号のうち少なくとも一方に含まれる送信電力情報から推定されることを特徴とする請求項2および3記載の伝搬環境推定方法。 4. The propagation environment estimation method according to claim 2, wherein the transmission power is estimated from transmission power information contained in at least one of the first and second other station signals. 前記他局間伝搬環境推定ステップにおいて、前記第1、第2の自他局間伝搬損のうち大なる方の値を基に、前記第1、第2の他局間の他局間伝搬損を推定することを特徴とする請求項2記載の伝搬環境推定方法。 In the inter-station propagation environment estimation step, the inter-station propagation loss between the first and second other stations based on the larger one of the first and second own-station propagation losses. The propagation environment estimation method according to claim 2, wherein: 前記他局間伝搬環境推定ステップにおいて、前記第1、第2の自他局間伝搬損のうち大なる方の値に所定の誤差マージン(0又は負の値も含む)を加えた値を、前記第1、第2の他局間の他局間伝搬損推定値とすることを特徴とする請求項5記載の伝搬環境推定方法。 In the inter-other-station propagation environment estimation step, a value obtained by adding a predetermined error margin (including 0 or a negative value) to the larger one of the first and second own-other-station propagation losses, 6. The propagation environment estimation method according to claim 5, wherein an inter-station propagation loss estimation value between the first and second other stations is used. 前記他局間伝搬環境推定ステップにおいて、前記第1の自他局間伝搬損と前記第2の自他局間伝搬損との差分を基に、前記第1、第2の他局間の他局間伝搬損を推定することを特徴とする請求項2記載の伝搬環境推定方法。 In the inter-station propagation environment estimation step, based on the difference between the first self-other station propagation loss and the second self-other station propagation loss, the other between the first and second other stations. 3. The propagation environment estimation method according to claim 2, wherein an inter-station propagation loss is estimated. 前記他局間伝搬環境推定ステップにおいて、前記第1の自他局間伝搬損と前記第2の自他局間伝搬損との差に応じて、前記所定の誤差マージンを決定することを特徴とする請求項6記載の伝搬環境推定方法。 In the inter-station propagation environment estimation step, the predetermined error margin is determined according to a difference between the first self-other station propagation loss and the second self-other station propagation loss. The propagation environment estimation method according to claim 6. 前記他局間伝搬環境推定ステップにおいて、前記第1の自他局間伝搬損と前記第2の自他局間伝搬損との差が所定値以下の場合に、所定の伝搬損値を前記第1、第2の他局間の他局間伝搬損推定値とすることを特徴とする請求項7記載の伝搬環境推定方法。 In the inter-other-station propagation environment estimation step, when a difference between the first own-other station propagation loss and the second own-other station propagation loss is a predetermined value or less, a predetermined propagation loss value is The propagation environment estimation method according to claim 7, wherein the propagation loss estimation value between other stations between the first and second other stations is used. 前記第1、第2のステップにおいて、前記第1、第2の他局が前記第1、第2の他局信号を送信する際の送信電力推定値と前記自局が前記第1、第2の他局信号を各々受信したときの受信電力情報とから、前記第1、第2の自他局間伝搬環境パラメータとして各々第1、第2の自他局間伝搬損を推定し、
前記他局間伝搬環境推定ステップにおいて、前記第1、第2の自他局間伝搬損の推定結果を基に前記第1、第2の他局間の伝搬損を第1の他局間伝搬損として推定し、
前記第1、第2の他局信号のうち少なくとも一方に含まれる最小受信感度情報と前記送信電力との差を基に前記第1、第2の他局間の伝搬損を第2の他局間伝搬損として推定し、
前記第1の他局間伝搬損と、前記第2の他局間伝搬損とを比較して、小なる方の値を前記第1、第2の他局間の他局間伝搬損推定値とすることを特徴とする請求項2記載の伝搬環境推定方法。
In the first and second steps, when the first and second other stations transmit the first and second other station signals, the transmission power estimation value and the own station are the first and second From the received power information when each other station signal is received, the first and second own-other-station propagation environment parameters are estimated as the first and second own-other-station propagation environment parameters, respectively.
In the inter-station propagation environment estimation step, the propagation loss between the first and second other stations is determined as the first inter-station propagation based on the estimation result of the first and second own-other-station propagation losses. Estimated as loss,
Based on the difference between the minimum reception sensitivity information contained in at least one of the first and second other station signals and the transmission power, the propagation loss between the first and second other stations is determined as the second other station. Estimated as inter-propagation loss,
Comparing the first inter-station propagation loss and the second inter-station propagation loss, the smaller value is the inter-other-station propagation loss estimated value between the first and second other stations. The propagation environment estimation method according to claim 2, wherein:
前記他局間伝搬環境推定ステップにおいて、前記第1の他局信号の送信電力と前記第2の他局信号の送信電力との差である送信電力差分値と前記第1の受信電力と前記第2の受信電力との差である受信電力差分値とを比較するか、又は前記第1の他局信号の送信電力と前記第1の受信電力との差である第1差分値と前記第2の他局信号の送信電力と前記第2の受信電力との差である第2差分値とを比較し、その比較結果を基に前記他局間伝搬環境パラメータを推定し、その結果を第1他局間伝搬環境推定値とし、前記第1、第2の他局信号のうち少なくとも一方に含まれる最小受信感度情報と前記第1他局間伝搬環境推定値とを比較して、大なる方の値を基に前記第1、第2の他局間の他局間伝搬環境パラメータを推定することを特徴とする請求項3記載の伝搬環境推定方法。 In the inter-other-station propagation environment estimation step, a transmission power difference value that is a difference between the transmission power of the first other-station signal and the transmission power of the second other-station signal, the first received power, and the first The received power difference value, which is a difference between the first received power and the second received power, or the first difference value, which is the difference between the transmission power of the first other station signal and the first received power, and the second received power. The transmission power of the other station signal and the second difference value, which is the difference between the second received power, are compared, the inter-station propagation environment parameter is estimated based on the comparison result, and the result is Comparing the minimum reception sensitivity information contained in at least one of the first and second other station signals with the first inter-station propagation environment estimation value as the other-station propagation environment estimation value, the larger one The propagation environment parameter between other stations between the first and second other stations is estimated based on the value of Motomeko 3 propagation environment estimation method described. 前記他局間伝搬環境推定ステップにおいて、前記自局が少なくとも1つ以上の他の自局が推定した前記第1、第2の他局間の他局間伝搬環境パラメータ推定値を前記他の自局から受信し、前記他の自局が推定した前記第1、第2の他局間の他局間伝搬環境パラメータ推定値と、自局が推定した前記第1、第2の他局間の他局間伝搬環境パラメータ推定値とを基に、前記第1、第2の他局間の他局間伝搬環境パラメータ推定値を補正する補正ステップをさらに含むことを特徴とする請求項2および3記載の伝搬環境推定方法。 In the inter-other-station propagation environment estimation step, the own-station propagation environment parameter estimation value between the first and second other stations estimated by at least one or more other own stations is set as the other own-station propagation environment parameter estimation value. Between the first and second other stations estimated by the other own station, and between the first and second other stations estimated by the own station. The correction step of correcting the inter-station propagation environment parameter estimation value between the first and second other stations based on the inter-station propagation environment parameter estimation value is further included. The described propagation environment estimation method. 前記補正ステップにおいて、自局が推定した前記他局間伝搬環境パラメータ推定値と前記少なくとも1つ以上の他の自局が推定した前記他局間伝搬環境パラメータ推定値との平均値を算出し、前記平均値を前記第1、第2の他局間の他局間伝搬環境パラメータ推定値とすることを特徴とする請求項12記載の伝搬環境推定方法。 In the correction step, an average value of the propagation environment parameter estimation value between other stations estimated by the own station and the propagation environment parameter estimation value between other stations estimated by the at least one other own station is calculated, 13. The propagation environment estimation method according to claim 12, wherein the average value is used as an inter-station propagation environment parameter estimation value between the first and second other stations. 前記補正ステップにおいて、自局が推定した前記他局間伝搬環境パラメータ推定値と前記少なくとも1つ以上の他の自局が推定した前記他局間伝搬環境パラメータ推定値のうちの最大値又は最小値を算出し、前記最大値又は最小値を基に前記第1、第2の他局間の他局間伝搬環境パラメータを推定することを特徴とする請求項12記載の伝搬環境推定方法。 In the correction step, the maximum or minimum value of the inter-station propagation environment parameter estimation value estimated by the local station and the inter-station propagation environment parameter estimation value estimated by the at least one other local station 13. The propagation environment estimation method according to claim 12, wherein a propagation environment parameter between other stations between the first and second other stations is estimated based on the maximum value or the minimum value. 前記他局間伝搬環境推定ステップにおいて、前記自局が少なくとも1つ以上の他の自局が前記第1、第2の他局間の他局間伝搬環境パラメータを推定するために用いる他自局推定情報を前記他の自局から受信し、前記他自局推定情報を用いて、請求項2又は3記載の伝搬環境推定方法によって推定した前記第1、第2の他局間の他局間伝搬環境パラメータ推定値を補正する補正ステップをさらに含むことを特徴とする請求項2又は3記載の伝搬環境推定方法。 In the inter-other-station propagation environment estimation step, the own-station uses at least one or more other own-stations to estimate the inter-other-station propagation environment parameters between the first and second other-stations. 4. Between the other stations between the first and second other stations estimated by the propagation environment estimation method according to claim 2, receiving estimation information from the other own station and using the other own station estimation information 4. The propagation environment estimation method according to claim 2, further comprising a correction step of correcting the propagation environment parameter estimated value. 前記補正ステップにおける前記他自局推定情報は、前記他の自局が前記第1、第2のステップにおいて推定した前記第1の自他局間伝搬環境パラメータと前記第2の自他局間伝搬環境パラメータとの差分値であることを特徴とする請求項15記載の伝搬環境推定方法。 The other own station estimation information in the correcting step includes the first own and other station propagation environment parameters and the second own and other station propagation estimated by the other own station in the first and second steps. 16. The propagation environment estimation method according to claim 15, wherein the propagation environment estimation method is a difference value with respect to an environment parameter. 前記補正ステップにおいて、自局が推定した前記第1の自他局間伝搬環境パラメータと前記第2の自他局間伝搬環境パラメータとの差分値と前記少なくとも1つ以上の他の自局が推定した前記第1の自他局間伝搬環境パラメータと前記第2の自他局間伝搬環境パラメータとの差分値との平均差分値を算出し、前記平均差分値が所定値以下の場合に、所定の伝搬環境パラメータ値を前記第1、第2の他局間の他局間伝搬環境パラメータ推定値とすることを特徴とする請求項16記載の伝搬環境推定方法。 In the correction step, a difference value between the first own-other-station propagation environment parameter estimated by the own station and the second own-other-station propagation environment parameter and the at least one other own station estimate An average difference value between the difference value between the first own-other-station propagation environment parameter and the second own-other-station propagation environment parameter is calculated, and predetermined when the average difference value is equal to or less than a predetermined value. 17. The propagation environment estimation method according to claim 16, wherein the propagation environment parameter value is an inter-other-station propagation environment parameter estimate value between the first and second other stations. 前記補正ステップにおいて、自局が推定した前記第1の自他局間伝搬環境パラメータと前記第2の自他局間伝搬環境パラメータとの差分値と前記少なくとも1つ以上の他の自局が推定した前記第1の自他局間伝搬環境パラメータと前記第2の自他局間伝搬環境パラメータとの差分値との中で最大となる差分値を算出し、前記最大となる差分値が所定値以下の場合に、所定の伝搬環境パラメータ値を前記第1、第2の他局間の他局間伝搬環境パラメータ推定値とすることを特徴とする請求項16記載の伝搬環境推定方法。 In the correction step, a difference value between the first own-other-station propagation environment parameter estimated by the own station and the second own-other-station propagation environment parameter and the at least one other own station estimate The maximum difference value is calculated from the difference value between the first own-other-station propagation environment parameter and the second own-other-station propagation environment parameter, and the maximum difference value is a predetermined value. 17. The propagation environment estimation method according to claim 16, wherein a predetermined propagation environment parameter value is used as an inter-station propagation environment parameter estimation value between the first and second other stations in the following cases. 前記補正ステップにおいて、自局が推定した前記第1の自他局間伝搬環境パラメータと前記第2の自他局間伝搬環境パラメータとの差分値と前記少なくとも1つ以上の他の自局が推定した前記第1の自他局間伝搬環境パラメータと前記第2の自他局間伝搬環境パラメータとの差分値との中で最小となる差分値を算出し、前記最小となる差分値が所定値以下の場合に、所定の伝搬環境パラメータを前記第1、第2の他局間の他局間伝搬環境パラメータ推定値とすることを特徴とする請求項16記載の伝搬環境推定方法。 In the correction step, a difference value between the first own-other-station propagation environment parameter estimated by the own station and the second own-other-station propagation environment parameter and the at least one other own station estimate The difference value which becomes the minimum among the difference values between the first propagation environment parameter between the own station and the other station and the second propagation environment parameter between the own station and the other station is calculated, and the minimum difference value is a predetermined value. 17. The propagation environment estimation method according to claim 16, wherein a predetermined propagation environment parameter is used as an inter-station propagation environment parameter estimation value between the first and second other stations in the following cases. 前記補正ステップにおいて、自局及び他の自局が推定した複数の前記差分値のうち、所定値以下となる差分値の数が所定個以上の場合に、所定の伝搬環境パラメータ値を前記第1、第2の他局間の他局間伝搬環境パラメータ推定値とすることを特徴とする請求項16記載の伝搬環境推定方法。 In the correction step, when the number of difference values that are less than or equal to a predetermined value among the plurality of difference values estimated by the own station and other own stations is a predetermined value or more, a predetermined propagation environment parameter value is set to the first The propagation environment estimation method according to claim 16, wherein the propagation environment parameter estimation value between other stations between the second other stations is used. 前記自局は他局間伝搬損最大値を予め記憶しており、前記他局間伝搬環境推定ステップにおいて、請求項2記載の伝搬環境推定方法によって推定した前記第1、第2の他局間の他局間伝搬損推定値が前記他局間伝搬損最大値より大きい場合、前記他局間伝搬損最大値を前記第1、第2の他局間の他局間伝搬損推定値として補正する補正ステップをさらに含むことを特徴とする請求項2記載の伝搬環境推定方法。 The said own station has memorize | stored previously the propagation loss maximum value between other stations, and the said between 1st and 2nd other station estimated by the propagation environment estimation method of Claim 2 in the said propagation environment estimation step between other stations If the estimated propagation loss between other stations is larger than the maximum propagation loss between other stations, the maximum propagation loss between other stations is corrected as the estimated propagation loss between other stations between the first and second other stations. The propagation environment estimation method according to claim 2, further comprising a correcting step. 前記他局間伝搬損最大値は、周辺環境をユーザーが観察して決定することを特徴とする請求項21記載の伝搬環境推定方法。 The propagation environment estimation method according to claim 21, wherein the maximum propagation loss between other stations is determined by a user observing the surrounding environment. 前記他局間伝搬損最大値は、ユーザーが使用環境に応じて、モード選択スイッチを選択することにより決定されることを特徴とする請求項21記載の伝搬環境推定方法。 The propagation environment estimation method according to claim 21, wherein the maximum propagation loss between other stations is determined by a user selecting a mode selection switch according to a use environment. 前記伝搬環境パラメータは前記無線局間の伝搬距離であり、
前記第1のステップにおいて、前記第1の他局信号の送信電力と前記自局が前記第2の他局信号を受信したときの受信電力とから、第1の自他局間伝搬距離を推定し、
前記第2のステップにおいて、前記第2の他局信号の送信電力推定値と前記自局が前記第2の他局信号を受信したときの受信電力とから、第2の自他局間伝搬距離を推定し、
前記他局間伝搬環境推定ステップにおいて、前記自局は、他の自局が推定した第1の自他局間伝搬距離推定値、第2の自他局間伝搬距離推定値を前記他の自局からの送信信号を受信して抽出し、前記他の自局からの送信信号の送信電力と自局における受信電力とから前記自局と前記他の自局間の自局間伝搬距離を推定し、前記第1、第2のステップにおいて自局が推定した第1、第2の自他局間伝搬距離と前記他の自局が推定した第1、第2の自他局間伝搬距離と前記自局間伝搬距離とを用いて前記第1の他局と前記第2の他局との間の他局間伝搬距離を推定することを特徴とする請求項1記載の伝搬環境推定方法。
The propagation environment parameter is a propagation distance between the wireless stations,
In the first step, the propagation distance between the first and second stations is estimated from the transmission power of the first other station signal and the received power when the own station receives the second other station signal. And
In the second step, from the transmission power estimated value of the second other station signal and the received power when the own station receives the second other station signal, the second own-other-station propagation distance Estimate
In the inter-other-station propagation environment estimation step, the own station obtains the first own-other-station propagation distance estimation value and the second own-other-station propagation distance estimation value estimated by the other own station. Receives and extracts a transmission signal from the station, and estimates the propagation distance between the own station and the other own station from the transmission power of the transmission signal from the other own station and the received power at the own station The first and second own-other station propagation distances estimated by the own station in the first and second steps and the first and second own-other station propagation distances estimated by the other own stations The propagation environment estimation method according to claim 1, wherein the inter-station propagation distance between the first other station and the second other station is estimated using the inter-station propagation distance.
前記自他局間伝搬環境パラメータは前記他局の位置情報であり、前記他局間伝搬環境パラメータは他局間伝搬距離であって、
前記第1のステップにおいて、複数の前記自局が情報を交換し合うことにより前記第1の他局の位置情報を推定し、
前記第2のステップにおいて、複数の前記自局が情報を交換し合うことにより前記第2の他局の位置情報を推定し、
前記他局間伝搬環境推定ステップにおいて、前記第1、第2のステップにおいて推定した前記第1の他局の位置情報と前記第2の他局の位置情報から前記第1の他局と前記第2の他局との間の他局間伝搬距離を推定することを特徴とする請求項1記載の伝搬環境推定方法。
The own-other-station propagation environment parameter is position information of the other station, and the other-station propagation environment parameter is a propagation distance between other stations,
In the first step, the location information of the first other station is estimated by exchanging information among the plurality of local stations,
In the second step, the location information of the second other station is estimated by exchanging information among the plurality of local stations,
In the inter-other-station propagation environment estimation step, the first other-station and the first other-station from the first other-station position information and the second other-station position information estimated in the first and second steps. The propagation environment estimation method according to claim 1, wherein a propagation distance between other stations between two other stations is estimated.
前記第1の他局の位置情報と前記第2の他局の位置情報は、前記自局が2つの他の自局から前記他の自局の位置情報と前記他の自局が前記他局信号を受信した時の位相情報とを受信し、自局を含めた前記3つの自局と前記他局間の位相差とから前記他局と各自局間の距離の差を計算し、初期値設定として、任意の前記自局の1つと前記他局との推定距離を仮定距離とし、仮定距離から他の自局と前記他局との距離も仮定し、仮定した各自局との距離と、各自局から通知された位置情報とを用いて前記他局の仮定位置を算出し、算出された仮定位置から求めた前記他局との算出距離と、前記他局との仮定距離との差が特定値より小さくなるまで、算出距離を仮定距離にフィードバックしながら算出を繰り返し、算出距離と仮定距離との差が前記特定値より小さくなった時の仮定位置を前記他局の位置とする位置算出方法を用いて推定することを特徴とする請求項25記載の伝搬環境推定方法。 The location information of the first other station and the location information of the second other station are obtained from the two other own stations by the own station from the other own station and the other station by the other station. Phase information at the time of receiving a signal, and calculating the difference in distance between the other station and each own station from the phase difference between the three own stations including the own station and the other station, and an initial value As a setting, an estimated distance between any one of the own stations and the other station is assumed to be an assumed distance, a distance between the other own station and the other station is also assumed from the assumed distance, Calculate the assumed position of the other station using the position information notified from each own station, and the difference between the calculated distance from the other station obtained from the calculated assumed position and the assumed distance from the other station is The calculation is repeated while feeding back the calculated distance to the assumed distance until it becomes smaller than the specific value, and the difference between the calculated distance and the assumed distance is Propagation environment estimation method of claim 25, wherein the estimating the presumed position when smaller than value using the position calculating method of the position of the other stations. 前記伝搬環境パラメータは前記無線局間の伝搬距離および伝搬損であり、
請求項24又は25に記載の伝搬環境推定方法によって推定した前記他局間伝搬距離を基に、前記他局間伝搬損を推定する伝搬環境推定方法。
The propagation environment parameter is a propagation distance and a propagation loss between the wireless stations,
A propagation environment estimation method for estimating the propagation loss between other stations based on the propagation distance between other stations estimated by the propagation environment estimation method according to claim 24 or 25.
第1の無線局(自局)が第1の他局から第2の他局への伝送リンクと、自局から他の自局への伝送リンクとが互いに干渉せず同時送信可能な前記自局の許容送信電力を推定するための方法であって、
前記第1の無線局は、請求項2に記載の伝搬環境推定方法を用いて推定した前記第1の他局と第2の他局との間の他局間伝搬損推定値と前記第1の他局から前記第2の他局宛てに送信した信号の送信電力とから前記第2の他局における受信電力を推定し、所定の所要CIRと前記第2の他局における受信電力推定値と請求項2に記載の伝搬環境推定方法を用いて推定した前記第2の自他局間伝搬損推定値とを基に、前記許容送信電力を推定する、方法。
The first radio station (own station) is capable of simultaneous transmission of a transmission link from the first other station to the second other station and a transmission link from the own station to the other own station. A method for estimating an allowable transmission power of a station, comprising:
The first wireless station estimates the inter-station propagation loss estimated value between the first other station and the second other station estimated using the propagation environment estimation method according to claim 2, and the first radio station. A reception power at the second other station is estimated from a transmission power of a signal transmitted from the other station to the second other station, and a predetermined required CIR and a received power estimation value at the second other station, The method of estimating the said permissible transmission power based on the said 2nd own-other-station propagation loss estimated value estimated using the propagation environment estimation method of Claim 2.
第1の無線局(自局)が第1の他局から第2の他局への伝送リンクと、自局から他の自局への伝送リンクとが互いに干渉せず同時送信可能な前記自局の許容送信電力を推定するための方法であって、
前記第1の無線局は、請求項3に記載の伝搬環境推定方法を用いて推定した前記第1の他局から前記第2の他局宛てに送信した信号の前記第2の他局における受信電力および前記第2の自他局間伝搬損推定値と、所定の所要CIRとを基に、前記許容送信電力を推定する、方法。
The first radio station (own station) is capable of simultaneous transmission of a transmission link from the first other station to the second other station and a transmission link from the own station to the other own station. A method for estimating an allowable transmission power of a station, comprising:
The first wireless station receives, at the second other station, a signal transmitted from the first other station to the second other station estimated using the propagation environment estimation method according to claim 3. A method for estimating the allowable transmission power based on power, the second estimated propagation loss between other stations, and a predetermined required CIR.
第1の無線局(自局)が第1の他局から第2の他局へ信号を送信する時間に重複させて、前記自局から他の自局へ信号を送信する送信制御方法であって、
前記自局は、請求項28又は29に記載の方法を用いて許容送信電力を推定し、推定した許容送信電力で、前記第1の他局が前記第2の他局に宛てた第1送信パケットに重複するタイミングで前記自局からパケットを同時送信させ、前記第2の他局の応答結果又は前記第1送信パケットに対する前記第1の他局からの再送パケットの有無を基に同時送信可否判定を行い、同時送信可能と判断した場合には、次回以降の前記第1の他局が前記第2の他局へ信号を送信する時間に重複させて同時送信をすることを特徴とする送信制御方法。
This is a transmission control method in which a first wireless station (own station) transmits a signal from the local station to another local station by overlapping with a time when a signal is transmitted from the first other station to a second other station. And
The local station estimates the allowable transmission power using the method according to claim 28 or 29, and the first transmission of the first other station addressed to the second other station with the estimated allowable transmission power. Allows simultaneous transmission of packets from the local station at the same time as the packet overlap, and allows simultaneous transmission based on the response result of the second other station or the presence / absence of a retransmission packet from the first other station with respect to the first transmission packet If transmission is determined and simultaneous transmission is determined to be possible, the first other station performs transmission at the same time after the next other station transmits a signal to the second other station. Control method.
無線局間の伝搬環境を推定する伝搬環境推定装置であって、
自局と他局間の自他局間伝搬環境パラメータを推定する自他局間伝搬環境推定部と、前記自他局間伝搬環境推定部が推定した複数の他局に対する前記自他局間伝搬環境パラメータを比較する比較部と、前記比較部の比較結果を基に自局以外の他局間の他局間伝搬環境パラメータを推定する他局間伝搬環境推定部とを備える伝搬環境推定装置。
A propagation environment estimation device for estimating a propagation environment between radio stations,
Propagation environment estimation unit between own station and other stations for estimating propagation environment parameters between own station and other stations, and propagation between said own stations with respect to a plurality of other stations estimated by said own and other station propagation environment estimation unit A propagation environment estimation apparatus comprising: a comparison unit that compares environment parameters; and an inter-station propagation environment estimation unit that estimates inter-station propagation environment parameters between other stations other than the own station based on a comparison result of the comparison unit.
JP2007168438A 2007-06-27 2007-06-27 Method of estimating propagation environment and transmission control Pending JP2009010551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168438A JP2009010551A (en) 2007-06-27 2007-06-27 Method of estimating propagation environment and transmission control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168438A JP2009010551A (en) 2007-06-27 2007-06-27 Method of estimating propagation environment and transmission control

Publications (1)

Publication Number Publication Date
JP2009010551A true JP2009010551A (en) 2009-01-15

Family

ID=40325211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168438A Pending JP2009010551A (en) 2007-06-27 2007-06-27 Method of estimating propagation environment and transmission control

Country Status (1)

Country Link
JP (1) JP2009010551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177995A (en) * 2009-01-29 2010-08-12 Hitachi Ltd Communication control method of radio communication system, program therefor, and radio communication apparatus controller
JP2010193446A (en) * 2009-02-05 2010-09-02 Ntt Docomo Inc Method and apparatus for adaptively setting carrier sense threshold
JP2015130548A (en) * 2014-01-06 2015-07-16 三菱電機株式会社 Communication device and communication system
JP2017504005A (en) * 2013-11-27 2017-02-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated System and method for deploying an RTT-based indoor positioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177995A (en) * 2009-01-29 2010-08-12 Hitachi Ltd Communication control method of radio communication system, program therefor, and radio communication apparatus controller
JP2010193446A (en) * 2009-02-05 2010-09-02 Ntt Docomo Inc Method and apparatus for adaptively setting carrier sense threshold
JP2017504005A (en) * 2013-11-27 2017-02-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated System and method for deploying an RTT-based indoor positioning system
JP2015130548A (en) * 2014-01-06 2015-07-16 三菱電機株式会社 Communication device and communication system

Similar Documents

Publication Publication Date Title
JP4938657B2 (en) Wireless communication apparatus and wireless communication method
JP3435076B2 (en) Wireless LAN with enhanced capture facilities
JP4762007B2 (en) Relay device, communication terminal, and communication system
US20070286122A1 (en) Clear channel assessment threshold adaptation in a wireless network
WO2007026606A1 (en) Radio network system, radio communication method, and radio communication device
US20090252053A1 (en) Method and apparatus for estimating link quality
TWM275634U (en) Clear channel assessment optimization in a wireless local area network
CN102457869B (en) Transmitting power control
JP2001189971A (en) Communication method in mobile communication system and mobile station
Zhang et al. Energy-efficient cross-layer protocol of channel-aware geographic-informed forwarding in wireless sensor networks
US20040228311A1 (en) Communication system, communication apparatus, communication method, and program
JP2009010551A (en) Method of estimating propagation environment and transmission control
US20070201412A1 (en) Protocol for improved utilization of a wireless network using interference estimation
Nadeem et al. Location enhancement to IEEE 802.11 DCF
US9509449B2 (en) Methods and apparatus for interference management in wireless networking
US9338648B2 (en) Method and system for managing authentication of a mobile terminal
US20120057481A1 (en) System and method for measuring round trip time based on wireless local area network
Nadeem et al. Location-aware IEEE 802.11 for spatial reuse enhancement
JP4414286B2 (en) Multi-pop wireless communication device and carrier detection device
CN106255224B (en) Channel access method and device of wireless network
JP2008258937A (en) Propagation environment estimation method, apparatus and communication method
JP2005130010A (en) Radio lan system and communication control method thereof
Wang et al. Uncovering a hidden wireless menace: Interference from 802.11 x MAC acknowledgment frames
Farnham REM based approach for hidden node detection and avoidance in cognitive radio networks
Du et al. Receiver initiated network allocation vector clearing method in WLANs