JP2009010059A - Signal transfer device - Google Patents

Signal transfer device Download PDF

Info

Publication number
JP2009010059A
JP2009010059A JP2007168341A JP2007168341A JP2009010059A JP 2009010059 A JP2009010059 A JP 2009010059A JP 2007168341 A JP2007168341 A JP 2007168341A JP 2007168341 A JP2007168341 A JP 2007168341A JP 2009010059 A JP2009010059 A JP 2009010059A
Authority
JP
Japan
Prior art keywords
light
irradiation
light receiving
signal transfer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007168341A
Other languages
Japanese (ja)
Other versions
JP5044304B2 (en
Inventor
Kunihiro Hayashi
邦広 林
Kaoru Kumagai
薫 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2007168341A priority Critical patent/JP5044304B2/en
Publication of JP2009010059A publication Critical patent/JP2009010059A/en
Application granted granted Critical
Publication of JP5044304B2 publication Critical patent/JP5044304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact signal transfer device for enabling the transfer of a signal in a plurality of signal systems. <P>SOLUTION: This signal transfer device 10 includes a transmitting mechanism 11 and a receiving mechanism 12 for transferring a signal between a supporting base 51 and a rotating body 52 relatively rotatable about a rotation axis 13. The transmitting mechanism 11 has a light emitting portion 14 rotated about the rotation axis 13 for the receiving mechanism 12 by the relative rotation between the supporting base 51 and the rotating body 52. The light emitting portion 14 can form an annular irradiation region 19 surrounding the rotation axis 13 on the irradiation surface 18 orthogonal to the rotation axis 13 by emitting a light flux toward the receiving mechanism 12 when it is rotated about the rotation axis 13 with respect to the receiving mechanism 12, and the receiving mechanism 12 has a light-receiving portion 22 arranged corresponding to the irradiation region 19 so that it can receive the light flux emitted from the light emitting portion 14 irrespective of the rotational position of the light emitting portion 14 about the rotation axis 13 with respect to the receiving mechanism 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、単一の軸線回りに相対的に回転される送信機構と受信機構との間での信号の転送のための信号転送装置に関する。   The present invention relates to a signal transfer apparatus for transferring a signal between a transmission mechanism and a reception mechanism that are relatively rotated around a single axis.

例えば、土木工事等に伴う測量では、基台上に測距部が回転可能に設けられて構成された測量機が用いられることが知られている。この測量機では、回転する測距部が受信した信号を基台側に設けられた制御演算部に送信する必要があり、測距部側の出力端子と基台側の入力端子とを、回転する回転子に摺動接触する接触子が設けられて構成されたスリップリングを介して電気的に接続することが考えられている。   For example, it is known that in surveying associated with civil engineering work or the like, a surveying instrument having a ranging unit rotatably provided on a base is used. In this surveying instrument, it is necessary to transmit the signal received by the rotating ranging unit to the control calculation unit provided on the base side, and the output terminal on the ranging unit side and the input terminal on the base side are rotated. It is considered that the rotor is electrically connected via a slip ring configured to be provided with a contact that makes sliding contact with the rotor.

ところが、測量機では、基台に対して測距部を高速に回転駆動させつつ測距部からの受信信号を基台側の制御演算部に適切に送信することが求められることから、回転子と接触子とが摺動するスリップリングでは、接触子および回転子の磨耗による劣化、互いの振動等に起因する接触不良を招く虞があり、適切に信号を転送する観点、信頼性の観点等から改善されることが望ましい。   However, in the surveying instrument, it is required to appropriately transmit the reception signal from the distance measuring unit to the control calculation unit on the base side while rotating the distance measuring unit at high speed with respect to the base. In a slip ring where the contact and the contact slide, there is a risk of causing deterioration due to wear of the contact and the rotor, contact failure due to mutual vibration, etc. It is desirable to improve from.

そこで、非接触で信号の転送を可能とする光スリップリングを用いることが考えられている(例えば、特許文献1参照)。この光スリップリングは、固定部材(上記した例では基台に相当する。)と回転部材(上記した例では測距部に相当する。)との双方に、回転軸上に位置するように光受信器が設けられるとともに、対向される部材の光受信器へ向けて光信号を出射可能に光送信器が設けられており、固定部材に対する回転部材の回転位置が変化しても、一方の部材の光送信器から出射された光信号を他方の部材の光受信器で受光することができるので、相対的に回転される固定部材と回転部材との間で信号を転送することができる。
特開2004−111696号公報
Therefore, it is considered to use an optical slip ring that enables signal transfer without contact (see, for example, Patent Document 1). This light slip ring is a light beam that is positioned on the rotation axis on both the fixed member (corresponding to the base in the above example) and the rotating member (corresponding to the distance measuring unit in the above example). Even if a receiver is provided and an optical transmitter is provided so that an optical signal can be emitted toward the optical receiver of the opposite member, even if the rotational position of the rotary member relative to the fixed member changes, one member Since the optical signal emitted from the optical transmitter can be received by the optical receiver of the other member, the signal can be transferred between the fixed member and the rotating member that are relatively rotated.
JP 2004-111696 A

しかしながら、上記した光スリップリングでは、回転部材から固定部材への信号の転送が、一対の光送信器と光受信器との間でのみ可能な構成であることから、複数の信号を同時に転送することができない。   However, in the optical slip ring described above, since a signal can be transferred from the rotating member to the fixed member only between the pair of optical transmitters and optical receivers, a plurality of signals are simultaneously transferred. I can't.

本発明は、上記の事情に鑑みて為されたもので、複数の信号系統での信号の転送を可能とする非接触の信号転送装置を提供することにある。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a non-contact signal transfer apparatus that enables signal transfer in a plurality of signal systems.

上記した課題を解決するために、請求項1に記載の信号転送装置は、支持台と、該支持台に対し回転軸回りに回転可能に同心的に支持された回転体との間での信号の転送のために、前記支持台および前記回転体の一方に設けられた送信機構と、前記支持台および前記回転体の他方に設けられた受信機構とを備える信号転送装置であって、前記送信機構は、前記支持台と前記回転体との相対的な回転により前記受信機構に対して前記回転軸回りに回転される発光部を有し、該発光部が、前記受信機構に対して前記回転軸回りに回転されている際に前記受信機構へ向けて光束を出射することにより、前記回転軸に直交する照射面上に前記回転軸を取り巻く環状の照射領域を形成可能とされ、前記受信機構は、前記発光部の前記受信機構に対する前記回転軸回りの回転位置に拘わらず前記発光部から出射された光束を受光可能に前記照射領域に対応して配置された受光部を有することを特徴とする。   In order to solve the above-described problem, the signal transfer device according to claim 1 is a signal between a support base and a rotating body supported concentrically with respect to the support base so as to be rotatable about a rotation axis. A transfer mechanism provided on one of the support base and the rotating body, and a reception mechanism provided on the other of the support base and the rotary body, for transmitting The mechanism includes a light emitting unit that is rotated about the rotation axis with respect to the receiving mechanism by relative rotation of the support base and the rotating body, and the light emitting unit rotates with respect to the receiving mechanism. By emitting a light beam toward the receiving mechanism while rotating around the axis, an annular irradiation region surrounding the rotating shaft can be formed on an irradiation surface orthogonal to the rotating shaft, and the receiving mechanism Is a front of the light emitting unit with respect to the receiving mechanism. And having a light receiving portion which are disposed corresponding to the receivable with said irradiation area of light flux emitted from the light emitting portion regardless of the rotational position of the rotary axis.

請求項2の信号転送装置は、請求項1に記載の信号転送装置であって、前記送信機構は、複数の前記発光部と該各発光部に対応する複数の前記受光部とを有し、前記各発光部は、前記回転軸を取り巻く環状の照射光束で、前記照射面上に互いに重ならない独立した前記照射領域を形成可能とされ、前記各受光部は、それぞれが対応する前記照射領域を半径方向に網羅していることを特徴とする。   The signal transfer device according to claim 2 is the signal transfer device according to claim 1, wherein the transmission mechanism includes a plurality of the light emitting units and a plurality of the light receiving units corresponding to the light emitting units, Each of the light emitting units is an annular irradiation light beam surrounding the rotation axis, and can form the independent irradiation regions that do not overlap each other on the irradiation surface, and each of the light receiving units has a corresponding irradiation region. It is characterized by covering in the radial direction.

請求項3の信号転送装置は、請求項2に記載の信号転送装置であって、前記各発光部は、発光素子と円錐形状のプリズムとを有し、前記発光素子から出射された光束を前記照射面上で前記回転軸を取り巻く環状の照射光束とすべく前記各プリズムの底面と前記発光素子の出射個所とが対向されて配置され、前記各プリズムが異なる頂角とされていることを特徴とする。   The signal transfer device according to claim 3 is the signal transfer device according to claim 2, wherein each of the light emitting units includes a light emitting element and a conical prism, and the light flux emitted from the light emitting element is The bottom surface of each prism and the emission part of the light emitting element are arranged to face each other to form an annular irradiation light beam surrounding the rotation axis on the irradiation surface, and each prism has a different apex angle. And

請求項4の信号転送装置は、請求項2に記載の信号転送装置であって、前記送信機構は、2つの前記発光部を有し、前記両発光部とそれに対応される2つの前記受光部との間には、2つの前記照射領域のうち前記回転軸に近い照射中心領域に重複しつつ前記回転軸と同心位置に配置された円柱形状を呈し一端平面から入射された光束を他端平面から出射する中心導光部材と、2つの前記照射領域のうち前記照射中心領域を取り巻く照射周辺領域に重複しつつ前記回転軸と同心位置に配置された円筒形状を呈し一端平面から入射された光束を他端平面から出射する周辺導光部材とが設けられ、前記各受光部は、前記中心導光部材または前記周辺導光部材の前記他端平面から出射された光束を個別に受光可能とされていることを特徴とする。   The signal transfer device according to claim 4 is the signal transfer device according to claim 2, wherein the transmission mechanism includes two light emitting units, the two light emitting units and the two light receiving units corresponding thereto. Between the two irradiation regions, the cylindrical light beam arranged in a concentric position with the rotation axis while overlapping the irradiation center region close to the rotation axis, and the light beam incident from one end plane A central light guide member that exits from the center, and a light beam that is incident from one end plane and has a cylindrical shape that is disposed concentrically with the rotation axis while overlapping the irradiation peripheral region surrounding the irradiation center region of the two irradiation regions A peripheral light guide member that emits light from the other end plane, and each of the light receiving portions can individually receive the light beam emitted from the central light guide member or the other end plane of the peripheral light guide member. It is characterized by.

請求項5の信号転送装置は、請求項2に記載の信号転送装置であって、前記送信機構は、3つ以上の前記発光部を有し、前記各発光部と前記各受光部との間には、前記各照射領域のうち最も前記回転軸に近い照射中心領域に重複しつつ前記回転軸と同心位置に配置された円柱形状を呈し一端平面から入射された光束を他端平面から出射する中心導光部材と、前記各照射領域のうち前記照射中心領域を取り巻く各照射周辺領域に個別に重複しつつ前記回転軸と同心位置に配置された円筒形状を呈し一端平面から入射された光束を他端平面から出射する2つ以上の周辺導光部材とが設けられ、前記各受光部は、前記中心導光部材または前記各周辺導光部材の前記他端平面から出射された光束を個別に受光可能とされていることを特徴とする。   The signal transfer device according to claim 5 is the signal transfer device according to claim 2, wherein the transmission mechanism includes three or more light-emitting portions, and each of the light-emitting portions and the light-receiving portions is interposed between the light-emitting portions and the light-receiving portions. In the irradiation area, a light beam incident on one end plane is emitted from the other end plane, overlapping with the irradiation center area closest to the rotation axis among the irradiation areas, and having a cylindrical shape arranged concentrically with the rotation axis. A central light guide member and a light beam incident from one end plane, having a cylindrical shape arranged concentrically with the rotation axis while individually overlapping each irradiation peripheral region surrounding the irradiation central region among the irradiation regions. Two or more peripheral light guide members that exit from the other end plane, and each of the light receiving parts individually emits the light beam emitted from the central light guide member or the other end plane of each of the peripheral light guide members. It is possible to receive light.

請求項6の信号転送装置は、請求項1または請求項2に記載の信号転送装置であって、前記受光部は、対応する前記照射領域を網羅する受光面を有する受光素子で構成されていることを特徴とする。   A signal transfer device according to a sixth aspect is the signal transfer device according to the first or second aspect, wherein the light receiving unit is formed of a light receiving element having a light receiving surface that covers the corresponding irradiation region. It is characterized by that.

請求項7の信号転送装置は、請求項2に記載の信号転送装置であって、前記各受光部は、それぞれが対応する前記各照射領域を網羅する受光面を有する受光素子で構成され、該各受光素子のうちの少なくとも1つは、環状の前記受光面を有する環状受光素子であることを特徴とする。   The signal transfer device according to claim 7 is the signal transfer device according to claim 2, wherein each of the light receiving units includes a light receiving element having a light receiving surface that covers each of the corresponding irradiation regions, At least one of the light receiving elements is an annular light receiving element having the annular light receiving surface.

請求項8の信号転送装置は、請求項1に記載の信号転送装置であって、前記各受光部は、複数の受光素子が、対応する前記各照射領域で受光面が周回方向に沿って隣接するように環状に配置されて構成されていることを特徴とする。   The signal transfer device according to claim 8 is the signal transfer device according to claim 1, wherein each of the light receiving units includes a plurality of light receiving elements, and a light receiving surface adjacent to each other in the corresponding irradiation region along a circumferential direction. It is characterized by being arranged in a ring shape.

請求項9の信号転送装置は、請求項1または請求項2に記載の信号転送装置であって、前記受光部は、受光素子と、対応する前記照射領域の全域を前記受光素子に接続する複数の光ファイバとを有することを特徴とする。   The signal transfer device according to claim 9 is the signal transfer device according to claim 1 or 2, wherein the light receiving unit is configured to connect a light receiving element and a corresponding entire irradiation region to the light receiving element. It is characterized by having an optical fiber.

請求項10の受光素子は、受光面において受けた光束を電気信号に変換可能な受光素子であって、全体に環状を呈する本体部により規定される環状面が受光面とされていることを特徴とする。   The light-receiving element according to claim 10 is a light-receiving element capable of converting a light beam received on the light-receiving surface into an electric signal, and an annular surface defined by a main body portion having an annular shape as a whole is a light-receiving surface. And

本発明の信号転送装置によれば、送信機構の発光部の受信機構に対する回転軸回りの回転位置に拘わらず、受信機構の受光部が、対応する発光部が形成する回転軸を取り巻く環状の光束を受光することができるので、例えば、この発光部と受光部との組み合わせを複数用いたり、発光部と受光部との組み合わせの他に回転軸線上で発光部からの光信号を受光部が受光する構成を用いたりすることで、送信機構と受信機構との信号の転送のための接触個所を設けることなく、複数の系統で同時に信号を転送することができる。   According to the signal transfer device of the present invention, regardless of the rotational position of the light emitting unit of the transmission mechanism around the rotational axis relative to the receiving mechanism, the light receiving unit of the receiving mechanism has an annular light beam surrounding the rotational axis formed by the corresponding light emitting unit. For example, the light receiving unit receives a plurality of combinations of the light emitting unit and the light receiving unit or receives an optical signal from the light emitting unit on the rotation axis in addition to the combination of the light emitting unit and the light receiving unit. By using such a configuration, it is possible to transfer signals simultaneously in a plurality of systems without providing contact points for signal transfer between the transmission mechanism and the reception mechanism.

特に、送信機構が、複数の発光部とこれらに対応する複数の受光部とを有し、各発光部が、回転軸を取り巻く環状の照射光束で、照射面上に互いに重ならない独立した照射領域を形成可能とされ、各受光部が、それぞれが対応する照射領域を半径方向に網羅していると、送信機構の各発光部の受信機構に対する回転軸回りの回転位置に拘わらず、各照射領域では周回方向で見たどの角度位置においても各発光部からの環状の照射光束により照射されていることとなり、各照射領域を半径方向に網羅する各受光部では、常に各発光部からの環状の照射光束の一部を受光することができるので、送信機構の各発光部の受信機構に対する回転軸回りの回転位置に拘わらず、受信機構の各受光部が、対応する発光部から出射された光束を受光することができる。   In particular, the transmission mechanism has a plurality of light emitting units and a plurality of light receiving units corresponding thereto, and each light emitting unit is an annular irradiation light beam surrounding the rotation axis, and is an independent irradiation region that does not overlap each other on the irradiation surface And each light receiving section covers the corresponding irradiation area in the radial direction, regardless of the rotation position of the light emitting section of the transmission mechanism around the rotation axis relative to the reception mechanism. In any angular position seen in the circumferential direction, the light is irradiated by the annular irradiation light beam from each light emitting unit. In each light receiving unit that covers each irradiation region in the radial direction, the annular light from each light emitting unit is always Since a part of the irradiated light beam can be received, the light beam emitted from the corresponding light emitting unit by each light receiving unit of the receiving mechanism regardless of the rotational position of the light emitting unit of the transmitting mechanism around the rotation axis relative to the receiving mechanism. Receiving light It can be.

特に、各発光部が、発光素子と円錐形状のプリズムとを有し、発光素子から出射された光束を照射面上で回転軸を取り巻く環状の照射光束とすべく各プリズムの底面と発光素子の出射個所とが対向されて配置され、各プリズムが異なる頂角とされていると、簡易な構成で、照射面上で回転軸を取り巻く環状の照射光束を形成することができる。   In particular, each light-emitting unit has a light-emitting element and a conical prism, and the bottom surface of each prism and the light-emitting element are formed so that the light beam emitted from the light-emitting element becomes an annular irradiation light beam surrounding the rotation axis on the irradiation surface. When the prisms are arranged so as to face each other and the prisms have different apex angles, it is possible to form an annular irradiation light beam surrounding the rotation axis on the irradiation surface with a simple configuration.

特に、送信機構が、2つの発光部を有し、両発光部とそれに対応される2つの受光部との間に、2つの照射領域のうち回転軸に近い照射中心領域に重複しつつ回転軸と同心位置に配置された円柱形状を呈し一端平面から入射された光束を他端平面から出射する中心導光部材と、2つの照射領域のうち照射中心領域を取り巻く照射周辺領域に重複しつつ回転軸と同心位置に配置された円筒形状を呈し一端平面から入射された光束を他端平面から出射する周辺導光部材とが設け、各受光部が、中心導光部材または周辺導光部材の他端平面から出射された光束を個別に受光可能とされていると、2つの発光部から出射された光束が、周回方向のいずれの角度位置であっても常にそれぞれに対応する中心導光部材または周辺導光部材へと一端平面から入射することから、中心導光部材または周辺導光部材の他端平面から出射された光束を受光する各受光部では、送信機構の各発光部の受信機構に対する回転軸回りの回転位置に拘わらず、対応する発光部から出射された光束を受光することができる。   In particular, the transmission mechanism has two light emitting units, and the rotation axis overlaps the irradiation center region close to the rotation axis among the two irradiation regions between the two light emitting units and the two light receiving units corresponding thereto. A central light guide member that is arranged in a concentric position and emits a light beam incident from one end plane from the other end plane, and rotates while overlapping an irradiation peripheral area surrounding the irradiation central area of the two irradiation areas. A peripheral light guide member that has a cylindrical shape arranged concentrically with the shaft and emits a light beam incident from one end plane from the other end plane, and each light receiving portion is a center light guide member or a peripheral light guide member If the light beams emitted from the end planes can be individually received, the light beams emitted from the two light emitting units always correspond to the central light guide member corresponding to each of the angular positions in any of the circumferential directions. From one end plane to the peripheral light guide member In each light receiving part that receives the light beam emitted from the other end plane of the central light guide member or the peripheral light guide member, the light emitting part of the transmission mechanism is irrespective of the rotational position around the rotation axis with respect to the reception mechanism. The light flux emitted from the corresponding light emitting unit can be received.

特に、送信機構が、3つ以上の発光部を有し、各発光部と各受光部との間に、各照射領域のうち最も回転軸に近い照射中心領域に重複しつつ回転軸と同心位置に配置された円柱形状を呈し一端平面から入射された光束を他端平面から出射する中心導光部材と、各照射領域のうち照射中心領域を取り巻く各照射周辺領域に個別に重複しつつ回転軸と同心位置に配置された円筒形状を呈し一端平面から入射された光束を他端平面から出射する2つ以上の周辺導光部材とが設け、各受光部は、中心導光部材または各周辺導光部材の他端平面から出射された光束を個別に受光可能とされていると、3つ以上の発光部から出射された光束が、周回方向のいずれの角度位置であっても常にそれぞれに対応する中心導光部材または周辺導光部材へと一端平面から入射することから、中心導光部材または周辺導光部材の他端平面から出射された光束を受光する各受光部では、送信機構の各発光部の受信機構に対する回転軸回りの回転位置に拘わらず、対応する発光部から出射された光束を受光することができる。   In particular, the transmission mechanism has three or more light emitting units, and is concentric with the rotation axis while overlapping the irradiation center region closest to the rotation axis among the irradiation regions between each light emitting unit and each light receiving unit. A central light guide member that has a cylindrical shape and is emitted from one end plane and exits from the other end plane, and a rotation axis that individually overlaps each irradiation peripheral area surrounding the irradiation center area of each irradiation area And two or more peripheral light guide members that emit a light beam incident from one end plane from the other end plane, and each light receiving portion is a central light guide member or each peripheral guide. If the light beams emitted from the other end plane of the optical member can be individually received, the light beams emitted from three or more light emitting sections always correspond to each angular position in the rotation direction. One end plane to the center light guide member or peripheral light guide member Therefore, in each light receiving part that receives the light beam emitted from the other end plane of the central light guide member or the peripheral light guide member, the light receiving part of each transmission mechanism is related to the rotational position around the rotation axis with respect to the reception mechanism. First, the light beam emitted from the corresponding light emitting unit can be received.

特に、受光部が、対応する照射領域を網羅する受光面を有する受光素子で構成されていると、発光部からの光束が、送信機構の発光部の受信機構に対する回転軸回りの回転位置に拘わらず、常に対応された受光素子の受光面の一部を照射することとなるので、受光部では、送信機構の発光部の受信機構に対する回転軸回りの回転位置に拘わらず、対応する発光部から出射された光束を受光することができる。このような構成は、受光面において受けた光束を電気信号に変換可能な受光素子であって、全体に環状を呈する本体部により規定される環状面が受光面とされている受光素子を用いると、容易に実施することができる。   In particular, when the light receiving unit is configured by a light receiving element having a light receiving surface that covers the corresponding irradiation region, the light flux from the light emitting unit is related to the rotational position of the light emitting unit of the transmission mechanism around the rotation axis relative to the receiving mechanism. Therefore, the light receiving unit always irradiates a part of the light receiving surface of the corresponding light receiving element. Therefore, in the light receiving unit, regardless of the rotational position of the light emitting unit of the transmission mechanism around the rotation axis with respect to the receiving mechanism, The emitted light beam can be received. Such a configuration is a light-receiving element that can convert a light beam received on the light-receiving surface into an electric signal, and uses a light-receiving element in which an annular surface defined by a main body portion that has an annular shape as a whole is a light-receiving surface. Can be implemented easily.

特に、各受光部は、複数の受光素子が、対応する各照射領域で受光面が周回方向に沿って隣接するように環状に配置されて構成されていると、送信機構の各発光部の受信機構に対する回転軸回りの回転位置に拘わらず、各受光部が対応する発光部から出射された光束を受光することができる。   In particular, each light-receiving unit is configured such that a plurality of light-receiving elements are arranged in an annular shape so that the light-receiving surfaces are adjacent to each other in the corresponding irradiation regions in the circumferential direction. Regardless of the rotational position around the rotation axis with respect to the mechanism, each light receiving unit can receive the light beam emitted from the corresponding light emitting unit.

特に、受光部は、受光素子と、対応する照射領域の全域を受光素子に接続する複数の光ファイバとを有すると、送信機構の発光部の受信機構に対する回転軸回りの回転位置に拘わらず、受光部が対応する発光部から出射された光束を受光することができる。   In particular, when the light receiving unit includes a light receiving element and a plurality of optical fibers that connect the entire irradiation region to the light receiving element, regardless of the rotational position of the light emitting unit of the transmission mechanism about the rotation axis around the rotation axis, The light receiving unit can receive the light beam emitted from the corresponding light emitting unit.

以下に、図面を参照しつつ本発明の各実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、実施例1に係る信号転送装置10が搭載された測量機50を示す模式的な斜視図である。図2は、測量機50における信号転送装置10の構成を説明するための模式的な断面図であり、図3は、信号転送装置10の構成を説明するための模式的な斜視図である。図4は、信号転送装置10の3つの発光部14a、14b、14cが照射面18上に3つの照射領域19a、19b、19cを形成する様子を説明するための説明図である。   FIG. 1 is a schematic perspective view illustrating a surveying instrument 50 in which the signal transfer apparatus 10 according to the first embodiment is mounted. FIG. 2 is a schematic cross-sectional view for explaining the configuration of the signal transfer device 10 in the surveying instrument 50, and FIG. 3 is a schematic perspective view for explaining the configuration of the signal transfer device 10. FIG. 4 is an explanatory diagram for explaining how the three light emitting units 14 a, 14 b, and 14 c of the signal transfer device 10 form three irradiation regions 19 a, 19 b, and 19 c on the irradiation surface 18.

信号転送装置10は、図2に示すように、支持台(51)と、その支持台(51)に対し回転軸13回り回転可能に同心的に支持された回転体(52)との間での信号の転送のために用いられるものであり、実施例1では、測量機50(図1参照)に適用されている。以下の説明および各図面では、理解容易のために、回転軸13をZ軸方向とし、そこに直交する平面をX−Y平面とする。   As shown in FIG. 2, the signal transfer device 10 is provided between a support base (51) and a rotating body (52) that is concentrically supported so as to be rotatable around the rotation shaft 13 with respect to the support base (51). And is applied to the surveying instrument 50 (see FIG. 1) in the first embodiment. In the following description and each drawing, for easy understanding, the rotation axis 13 is defined as the Z-axis direction, and a plane orthogonal to the rotation axis 13 is defined as an XY plane.

測量機50は、図1に示すように、支持台としての基準面形成部51と、回転体としての測距部52とを備える。この測量機50は、測量の際に既知点に設置され、基準面形成用レーザ光線53を一定の速度で回転照射するとともに測距光54を回転照射し、図示を略す測定対象物により反射された測距光54を受光することで、当該測定対象物までの距離を測定することができる。   As shown in FIG. 1, the surveying instrument 50 includes a reference surface forming unit 51 as a support base and a distance measuring unit 52 as a rotating body. This surveying instrument 50 is installed at a known point at the time of surveying, and irradiates the reference surface forming laser beam 53 at a constant speed and irradiates the distance measuring light 54, and is reflected by a measuring object (not shown). By receiving the distance measuring light 54, the distance to the measurement object can be measured.

この測量機50は、図2に示すように、測距部52が回転軸13回りに回転可能に基準面形成部51に支持されて構成されており、測距部52に測距制御盤55が設けられ、基準面形成部51に演算制御盤56が設けられている。測量機50は、測距制御盤55からの各種信号(例えば、反射された測距光54の受光信号)を演算制御盤56が受信して演算することにより、測定対象物までの距離を測定する。この測距制御盤55から演算制御盤56への各種信号の転送のために、信号転送装置10が設けられている。   As shown in FIG. 2, the surveying instrument 50 is configured such that a ranging unit 52 is supported by a reference surface forming unit 51 so as to be rotatable about a rotation axis 13, and a ranging control panel 55 is provided on the ranging unit 52. Is provided, and an arithmetic control panel 56 is provided in the reference surface forming portion 51. The surveying instrument 50 measures the distance to the measurement object by the arithmetic control panel 56 receiving and calculating various signals (for example, the received light signal of the reflected distance measuring light 54) from the distance measuring control panel 55. To do. A signal transfer device 10 is provided for transferring various signals from the distance measurement control board 55 to the calculation control board 56.

信号転送装置10は、送信機構11と受信機構12とを備える。この信号転送装置10では、回転軸13に直交する平面とされた測距部52の下面52aに送信機構11が設けられ、下面52aに平行に対向された基準面形成部51の凹所に設けられた上面51aに受信機構12が設けられている。送信機構11は、回転軸13回りに一体的に回転可能に測距部52に設けられ、測距制御盤55に電気的に接続されており、受信機構12は、基準面形成部51に設けられ演算制御盤56に電気的に接続されている。   The signal transfer device 10 includes a transmission mechanism 11 and a reception mechanism 12. In this signal transfer device 10, the transmission mechanism 11 is provided on the lower surface 52 a of the distance measuring unit 52 that is a plane orthogonal to the rotation shaft 13, and is provided in the recess of the reference surface forming unit 51 that faces the lower surface 52 a in parallel. The receiving mechanism 12 is provided on the upper surface 51a. The transmission mechanism 11 is provided in the distance measurement unit 52 so as to be integrally rotatable around the rotation shaft 13 and is electrically connected to the distance measurement control panel 55, and the reception mechanism 12 is provided in the reference plane forming unit 51. Is electrically connected to the arithmetic control panel 56.

送信機構11は、複数の発光部14を有する。各発光部14は、測距部52が基準面形成部51に対して回転軸13回りに回転駆動されることにより、受信機構12に対して回転軸13回りに回転される。実施例1の信号転送装置10では、受信機構12が3つの発光部14を有し、この3つの発光部14が回転軸13に直交する面で見て回転軸13を中心とする単一の円上で互いに等しい間隔となるように配置されている。各発光部14は、発光素子としてのLED15と、その出射光軸上で軸線が一致するように設けられた円錐形状を呈するコーンプリズム16とを有する。   The transmission mechanism 11 includes a plurality of light emitting units 14. Each light emitting unit 14 is rotated about the rotation axis 13 with respect to the receiving mechanism 12 when the distance measuring unit 52 is driven to rotate about the rotation axis 13 with respect to the reference surface forming unit 51. In the signal transfer device 10 according to the first embodiment, the receiving mechanism 12 includes three light emitting units 14, and the three light emitting units 14 have a single center around the rotation axis 13 when viewed in a plane orthogonal to the rotation axis 13. They are arranged at equal intervals on the circle. Each light emitting unit 14 includes an LED 15 as a light emitting element, and a cone prism 16 having a conical shape provided so that the axes coincide with each other on the outgoing optical axis.

各LED15は、平行光束を出射可能とされており、実施例1ではそれぞれがZ軸方向に沿う(回転軸13と平行な)出射光軸で受信機構12側へ向けて平行光束を出射可能とされている。各LED15は、測距制御盤55に接続されており、測距制御盤55からの信号の転送のために当該測距制御盤55により点灯制御される。このため、各LED15からは、測距制御盤55からの信号光が出射されることとなる。この各LED15の出射個所151と、各コーンプリズム16の底面161とが対向するように、各発光部14が構成されている。   Each LED 15 can emit a parallel light beam, and in the first embodiment, each LED 15 can emit a parallel light beam toward the receiving mechanism 12 side along the Z-axis direction (parallel to the rotation shaft 13). Has been. Each LED 15 is connected to a distance measurement control board 55, and is controlled to be turned on by the distance measurement control board 55 in order to transfer a signal from the distance measurement control board 55. For this reason, the signal light from the distance measurement control board 55 is emitted from each LED 15. Each light emitting portion 14 is configured such that the emission portion 151 of each LED 15 and the bottom surface 161 of each cone prism 16 face each other.

この各発光部14では、LED15から出射された平行光束が、底面161からコーンプリズム16へと入射して側面162から出射されることにより、環状の照射光束17とされて受信機構12側を照射することができる(図3および図4参照)。ここで、各コーンプリズム16は、その軸線に沿う断面で見た頂角が、発光部14毎に異なる構成とされており、各発光部14からの3つの環状の照射光束17は、互いに異なる大きさ寸法とされている。   In each light emitting unit 14, the parallel light beam emitted from the LED 15 is incident on the cone prism 16 from the bottom surface 161 and is emitted from the side surface 162, thereby forming an annular irradiation light beam 17 and irradiating the receiving mechanism 12 side. (See FIGS. 3 and 4). Here, each cone prism 16 has a different apex angle as viewed in a cross section along the axis line for each light emitting unit 14, and the three annular irradiation light beams 17 from the respective light emitting units 14 are different from each other. It is a size.

この3つの環状の照射光束17は、受信機構12が設けられた基準面形成部51の上面51aを照射するので、この上面51aが、実施例1では、照射面18に相当する。3つの環状の照射光束17は、図4に示すように、照射面18上において、それぞれが回転軸13を含むことなく回転軸13を取り囲んでいる。各環状の照射光束17は、各発光部14が受信機構12に対して回転軸13回りに回転(公転)されることにより、照射面18上に回転軸13を中心とする円環状の軌跡を描くこととなり、この円環状の軌跡が照射領域19となる。ここで、各発光部14は、照射面18上において、互いに重なることなく回転軸13を取り囲む照射領域19を形成するように、換言するとそれぞれ独立して回転軸13を取り囲む3つの円環状の照射領域19を同心的に形成するように、設定されている。詳細には、図2に示すように、第1コーンプリズム16aを最も小さな頂角とし、第3コーンプリズム16cを最も大きな頂角とし、第2コーンプリズム16bをそれらの間の頂角として、これらの各頂角と各発光部14から照射面18までの距離とを適宜調節することにより、以下のように設定されている。   The three annular irradiation light beams 17 irradiate the upper surface 51a of the reference surface forming unit 51 provided with the receiving mechanism 12, and thus the upper surface 51a corresponds to the irradiation surface 18 in the first embodiment. As shown in FIG. 4, the three annular irradiation light beams 17 surround the rotation shaft 13 without including the rotation shaft 13 on the irradiation surface 18. Each annular irradiation light beam 17 has an annular locus centered on the rotation axis 13 on the irradiation surface 18 by rotating (revolving) each light emitting unit 14 around the rotation axis 13 with respect to the receiving mechanism 12. This circular locus becomes the irradiation area 19. Here, each light emitting unit 14 forms three irradiation regions 19 surrounding the rotation shaft 13 independently so as to form an irradiation region 19 surrounding the rotation shaft 13 on the irradiation surface 18 without overlapping each other. The region 19 is set so as to be formed concentrically. Specifically, as shown in FIG. 2, the first cone prism 16a is the smallest apex angle, the third cone prism 16c is the largest apex angle, and the second cone prism 16b is the apex angle between them. By appropriately adjusting each apex angle and the distance from each light emitting portion 14 to the irradiation surface 18, the following is set.

ここで、各環状の照射光束17を、大きさ寸法の小さい方(回転軸13に近い方)から順に、第1環状照射光束17a、第2環状照射光束17b、第3環状照射光束17cとし、第1環状照射光束17aが形成する照射領域を第1照射領域19a、第2環状照射光束17bが形成する照射領域を第2照射領域19b、第3環状照射光束17cが形成する照射領域を第3照射領域19cとする(図4参照)。また、第1環状照射光束17aを形成する発光部を第1発光部14a(第1LED15aおよび第1コーンプリズム16a)とし、第2環状照射光束17bを形成する発光部を第2発光部14b(第2LED15bおよび第2コーンプリズム16b)とし、第3環状照射光束17cを形成する発光部を第3発光部14c(第3LED15cおよび第3コーンプリズム16c)とする(図3および図4参照)。   Here, the respective annular irradiation light beams 17 are sequentially designated as a first annular irradiation light beam 17a, a second annular irradiation light beam 17b, and a third annular irradiation light beam 17c in order from the smaller size (the one closer to the rotation shaft 13). The irradiation region formed by the first annular irradiation light beam 17a is the first irradiation region 19a, the irradiation region formed by the second annular irradiation light beam 17b is the second irradiation region 19b, and the irradiation region formed by the third annular irradiation light beam 17c is the third. Let it be an irradiation region 19c (see FIG. 4). The light emitting part that forms the first annular irradiation light beam 17a is the first light emitting part 14a (the first LED 15a and the first cone prism 16a), and the light emitting part that forms the second annular irradiation light beam 17b is the second light emitting part 14b (the first light emitting part 14b). 2LED 15b and the second cone prism 16b), and the light emitting part that forms the third annular irradiation light beam 17c is the third light emitting part 14c (the third LED 15c and the third cone prism 16c) (see FIGS. 3 and 4).

第1発光部14aは、図4に示すように、形成する第1照射領域19aが回転軸13上を含まない環状となるように、第1発光部14a(第1コーンプリズム16a)の軸位置から回転軸13までの間隔d1よりも、照射面18上における第1環状照射光束17aの内側の半径ri1の方が大きく設定されている。   As shown in FIG. 4, the first light emitting unit 14 a has an axial position of the first light emitting unit 14 a (first cone prism 16 a) so that the first irradiation region 19 a to be formed has an annular shape not including the rotation shaft 13. The radius ri1 inside the first annular irradiation light beam 17a on the irradiation surface 18 is set to be larger than the distance d1 from the rotation axis 13 to the rotation axis 13.

また、第2発光部14bは、形成する第2照射領域19bが第1照射領域19aと間隔を置きつつその第1照射領域19aを同心状に取り囲むように、回転軸13から第1環状照射光束17aの外周における最も離間した位置までの間隔d2よりも、回転軸13から第2環状照射光束17bの内周における最も近接した位置までの間隔d3の方が大きく設定されている。   In addition, the second light emitting unit 14b has a first annular irradiation light beam from the rotary shaft 13 so that the second irradiation region 19b to be formed concentrically surrounds the first irradiation region 19a while being spaced apart from the first irradiation region 19a. The distance d3 from the rotary shaft 13 to the closest position on the inner circumference of the second annular irradiation light beam 17b is set larger than the distance d2 to the most distant position on the outer circumference of 17a.

さらに、第3発光部14cは、形成する第3照射領域19cが第2照射領域19bと間隔を置きつつその第2照射領域19bを同心状に取り囲むように、回転軸13から第2環状照射光束17bの外周における最も離間した位置までの間隔d4よりも、回転軸13から第3環状照射光束17cの内周における最も近接した位置までの間隔d5の方が大きく設定されている。   Further, the third light emitting unit 14c is configured so that the formed third irradiation region 19c is concentrically surrounded by the second annular irradiation light beam from the rotary shaft 13 so as to be spaced apart from the second irradiation region 19b. The distance d5 from the rotary shaft 13 to the closest position on the inner periphery of the third annular irradiation light beam 17c is set larger than the distance d4 to the most distant position on the outer periphery of 17b.

この各照射領域19で各発光部14からの光束を受光するために、図2に示すように、基準面形成部51の上面51aすなわち照射面18に受信機構12が設けられている。受信機構12は、3つの発光部14に対応して、フォトダイオードからなる3つの受光素子20を有し、この各受光素子20が、基準面形成部51の上面51aすなわち照射面18の一部を受光面21で形成するように、基準面形成部51に設けられている。各受光素子20は、それぞれ別個に基準面形成部51の演算制御盤56に接続されている。各受光素子20は、図4に示すように、それぞれが対応する照射領域19を半径方向に縦断して配置されており、それぞれが対応する照射領域19を半径方向に網羅する構成と、すなわち円環状の照射領域19を半径方向で見て最内位置から最外位置に至る間を漏らすことなく受光可能とされている。このため、各受光素子20は、各発光部14の回転位置に拘わらず、それぞれが対応する発光部14から出射された環状の照射光束17の一部を受光することができる。これは、送信機構11の各発光部14の受信機構12に対する回転軸13回りの回転位置に拘わらず、各照射領域19では周回方向で見たどの角度位置においても各発光部14からの環状の照射光束17により照射されていることとなり、各照射領域19を半径方向に網羅する各受光素子20では、常に各発光部14からの環状の照射光束17の一部を受光することができることによる。各受光素子20が各発光部14からの環状の照射光束17の一部を受光すると、この受光に基づく情報がそれぞれ別個に基準面形成部51の演算制御盤56に送信される。換言すると、各発光部14から出射された信号光が、対応する各受光素子20に受光されることにより、信号が演算制御盤56に伝えられる。このため、信号転送装置10では、各受光素子20が受信機構12における受光部22として機能することとなる。以下では、第1発光部14aに対応する受光素子を第1受光素子20aとし、第2発光部14bに対応する受光素子を第2受光素子20bとし、第3発光部14cに対応する受光素子を第3受光素子20cとする。   In order to receive the light flux from each light emitting unit 14 in each irradiation region 19, the receiving mechanism 12 is provided on the upper surface 51a of the reference surface forming unit 51, that is, the irradiation surface 18, as shown in FIG. The receiving mechanism 12 has three light receiving elements 20 made of photodiodes corresponding to the three light emitting units 14, and each of the light receiving elements 20 is a part of the upper surface 51 a of the reference surface forming unit 51, that is, a part of the irradiation surface 18. Is formed on the reference surface forming portion 51 so as to be formed on the light receiving surface 21. Each light receiving element 20 is connected to the calculation control board 56 of the reference surface forming unit 51 separately. As shown in FIG. 4, each light receiving element 20 is arranged by vertically irradiating the corresponding irradiation region 19 in the radial direction, and each of the light receiving elements 20 covers the corresponding irradiation region 19 in the radial direction, that is, a circle. It is possible to receive light without leaking from the innermost position to the outermost position when the annular irradiation region 19 is viewed in the radial direction. Therefore, each light receiving element 20 can receive a part of the annular irradiation light beam 17 emitted from the corresponding light emitting unit 14 regardless of the rotational position of each light emitting unit 14. Regardless of the rotational position of the light emitting unit 14 of the transmitting mechanism 11 around the rotation axis 13 with respect to the receiving mechanism 12, the annular region from each of the light emitting units 14 in each irradiation region 19 at any angular position viewed in the circumferential direction. This is because each light receiving element 20 that covers each irradiation region 19 in the radial direction can always receive a part of the annular irradiation light beam 17 from each light emitting unit 14. When each light receiving element 20 receives a part of the annular irradiation light beam 17 from each light emitting unit 14, information based on this light reception is separately transmitted to the calculation control board 56 of the reference surface forming unit 51. In other words, the signal light emitted from each light emitting unit 14 is received by each corresponding light receiving element 20, whereby the signal is transmitted to the calculation control board 56. For this reason, in the signal transfer device 10, each light receiving element 20 functions as the light receiving unit 22 in the receiving mechanism 12. Hereinafter, the light receiving element corresponding to the first light emitting part 14a is referred to as the first light receiving element 20a, the light receiving element corresponding to the second light emitting part 14b is referred to as the second light receiving element 20b, and the light receiving element corresponding to the third light emitting part 14c is referred to. The third light receiving element 20c is assumed.

上記したように、信号転送装置10では、受信機構12に対して送信機構11が回転軸13回りに回転されても、常に第1発光部14aから第1受光素子20aを経る系統と、第2発光部14bから第2受光素子20bを経る系統と、第3発光部14cから第3受光素子20cを経る系統とで同時に信号を転送することができるので、送信機構11から受信機構12へと複数(実施例1では3つ)の信号を同時に転送することができる。このため、信号転送装置10が搭載された測量機50では、測量を行うために測距部52が基準面形成部51に対して回転駆動されている場合であっても、測距部52の測距制御盤55から基準面形成部51の演算制御盤56へと複数の信号を随時転送することができ、迅速に測量することができる。   As described above, in the signal transfer apparatus 10, even when the transmission mechanism 11 is rotated around the rotation shaft 13 with respect to the reception mechanism 12, the system always passes from the first light emitting unit 14 a to the first light receiving element 20 a, and the second Since signals can be simultaneously transferred from the light emitting unit 14b through the second light receiving element 20b and the system from the third light emitting unit 14c through the third light receiving element 20c, a plurality of signals can be transmitted from the transmission mechanism 11 to the receiving mechanism 12. (In the first embodiment, three signals) can be transferred simultaneously. For this reason, in the surveying instrument 50 in which the signal transfer device 10 is mounted, even if the ranging unit 52 is rotationally driven with respect to the reference plane forming unit 51 to perform surveying, A plurality of signals can be transferred from the distance measurement control board 55 to the calculation control board 56 of the reference plane forming unit 51 at any time, and the survey can be performed quickly.

また、信号転送装置10では、受信機構12に設けられた複数の発光部14(実施例1では3つ)と、送信機構11に設けられた複数の受光素子20(実施例1では3つ)との間での光の授受により信号を転送するものであることから、受信機構12と送信機構11との間での信号の転送のために物理的な接触個所がないので、磨耗による劣化、互いの振動等に起因する接触不良が生じることはなく、適切に信号を転送することができる。   Further, in the signal transfer device 10, a plurality of light emitting units 14 (three in the first embodiment) provided in the reception mechanism 12 and a plurality of light receiving elements 20 (three in the first embodiment) provided in the transmission mechanism 11. Since there is no physical contact point for transferring the signal between the receiving mechanism 12 and the transmitting mechanism 11, deterioration due to wear, Contact failure due to mutual vibration or the like does not occur, and signals can be transferred appropriately.

さらに、信号転送装置10では、一対にLED15およびコーンプリズム16で各発光部14が構成され、当該発光部14により形成される各照射領域19に適合する位置にそれぞれ受光素子20を設ける構成であることから、例えばレンズを用いて焦点位置を調節する構成のように高い設定精度を必要とすることなく、例えば複雑な光学的特性のレンズを使用する構成のように高い加工精度を必要とすることのない、簡易な構成で非接触での複数の信号の転送を実現することができる。   Further, in the signal transfer device 10, each light emitting unit 14 is configured by a pair of the LED 15 and the cone prism 16, and the light receiving element 20 is provided at a position suitable for each irradiation region 19 formed by the light emitting unit 14. Therefore, high processing accuracy is required, for example, a configuration using a lens having a complicated optical characteristic without requiring high setting accuracy, for example, a configuration in which the focal position is adjusted using a lens. It is possible to realize a non-contact transfer of a plurality of signals with a simple configuration without any problem.

信号転送装置10では、第1照射領域19aが、回転軸13上を含まない環状とされていることから、第1発光部14aに対応された第1受光素子20aでは、第1発光部14aの回転位置に拘わらず常に、第1環状照射光束17aのうちの周回方向で見た1個所のみを受光することとなるので、安定して正確に第1発光部14aからの信号を受信することができる。これは、第1発光部14aの回転位置によって、第1環状照射光束17aのうちの周回方向で見た1個所のみを受光する場合と、第1環状照射光束17aのうちの周回方向で見た2個所を受光する場合とが混在すると、第1受光素子20aでの受光により生成された信号に含まれる誤差が大きくなる虞があることによる。   In the signal transfer device 10, since the first irradiation region 19 a has an annular shape that does not include the rotation shaft 13, the first light receiving element 20 a corresponding to the first light emitting unit 14 a has the first light emitting unit 14 a of the first light emitting unit 14 a. Regardless of the rotational position, only one portion of the first annular irradiation light beam 17a viewed in the circumferential direction is always received, so that the signal from the first light emitting unit 14a can be received stably and accurately. it can. This is based on the rotational position of the first light emitting portion 14a, when receiving only one portion of the first annular irradiation light beam 17a as viewed in the rotation direction and when viewed in the rotation direction of the first annular irradiation light beam 17a. This is because if there are two cases where light is received, an error included in a signal generated by light reception by the first light receiving element 20a may increase.

したがって、実施例1の信号転送装置10では、相対的に回転される送信機構11と受信機構12とを非接触としつつ、複数の信号系統で同時に信号を転送することができる。   Therefore, in the signal transfer apparatus 10 according to the first embodiment, signals can be simultaneously transferred by a plurality of signal systems while the transmission mechanism 11 and the reception mechanism 12 that are relatively rotated are not in contact with each other.

なお、上記した信号転送装置10では、第1発光部14aが、第2発光部14bおよび第3発光部14cと同一の軌道上で回転軸13回りを公転する構成とされていたが、実施例1に限定されるものではない。例えば、図5に示すように、第1発光部14aを回転軸13と同軸上に設けられLED15のみで構成し、そこから出射される平行光束が形成する円形の照射領域を第1照射領域19a´とするとともに、この円形の第1照射領域19a´に重複する受光面を有する第1受光素子20a´を配置してもよい。この場合であっても、第1照射領域19a´と間隔を置きつつその第1照射領域19a´を同心状に取り囲むように第2照射領域19b´を形成し、この第2照射領域19b´と間隔を置きつつその第2照射領域19b´を同心状に取り囲むように第3照射領域19c´を形成するように、第2発光部14bおよび第3発光部14cを適宜設定すればよい。   In the signal transfer device 10 described above, the first light emitting unit 14a is configured to revolve around the rotation axis 13 on the same track as the second light emitting unit 14b and the third light emitting unit 14c. It is not limited to 1. For example, as shown in FIG. 5, the first light emitting portion 14a is provided on the same axis as the rotating shaft 13 and is composed only of the LED 15, and the circular irradiation region formed by the parallel light flux emitted therefrom is the first irradiation region 19a. And a first light receiving element 20a ′ having a light receiving surface overlapping the circular first irradiation region 19a ′ may be disposed. Even in this case, the second irradiation region 19b ′ is formed so as to concentrically surround the first irradiation region 19a ′ while being spaced apart from the first irradiation region 19a ′. What is necessary is just to set suitably the 2nd light emission part 14b and the 3rd light emission part 14c so that the 3rd irradiation area | region 19c 'may be formed so that the 2nd irradiation area | region 19b' may be concentrically surrounded at intervals.

また、上記した信号転送装置10では、各コーンプリズム16が互いの軸線が平行となるように設定されていたが、互いの照射領域19が重ならないように設定されていれば、例えば、各コーンプリズム16が配置位置を考慮しつつ軸線をZ軸方向に対して適宜傾斜させるものであってもよく、実施例1に限定されるものではない。この例の場合、各コーンプリズム(16)を経た光束による照射面18上での各照射光束(17)は楕円形状となるが、送信機構11と受信機構12との相対的に回転に伴う各照射光束(17)の振れ量すなわち各照射領域(19)の半径方向の幅を小さくすることができる。このため、信号転送装置(10)をよりコンパクトなものとすることができるとともに、大きさ寸法の増大を抑制しつつより多くの信号系統を設けることすなわち発光部(14)と受光部(22)との組み合わせを増やすことができる。   In the signal transfer device 10 described above, the cone prisms 16 are set so that their axes are parallel to each other. However, if the cones 16 are set so that the irradiation areas 19 do not overlap with each other, for example, the cones 16 The prism 16 may appropriately tilt the axis with respect to the Z-axis direction while considering the arrangement position, and is not limited to the first embodiment. In the case of this example, each irradiation light beam (17) on the irradiation surface 18 by the light beam passing through each cone prism (16) has an elliptical shape, but each of the transmission mechanism 11 and the reception mechanism 12 is relatively rotated. The shake amount of the irradiation light beam (17), that is, the radial width of each irradiation region (19) can be reduced. Therefore, the signal transfer device (10) can be made more compact, and more signal systems can be provided while suppressing an increase in size, that is, the light emitting unit (14) and the light receiving unit (22). The number of combinations can be increased.

さらに、上記した信号転送装置10では、各コーンプリズム16の頂角を異なる構成とすることにより、各発光部14が形成する照射領域19が重ならないものとしていたが、例えば、各コーンプリズム16と照射面18との間隔を適宜異なる構成とすることにより各発光部14が形成する照射領域19が重ならないものとしてもよく、上記した実施例1に限定されるものではない。   Furthermore, in the above-described signal transfer device 10, the apex angles of the cone prisms 16 are different from each other so that the irradiation areas 19 formed by the light emitting units 14 do not overlap. By making the interval with the irradiation surface 18 appropriately different, the irradiation regions 19 formed by the light emitting units 14 may not overlap each other, and the present invention is not limited to the first embodiment described above.

次に、実施例2の信号転送装置102について説明する。実施例2の信号転送装置102は、実施例1の信号転送装置10において、送信機構と受信機構との間に導光部23が配置されるとともに、その導光部23に合わせて送信機構および受信機構が一部異なる構成とされた例である。信号転送装置102は、その基本的な構成は実施例1の信号転送装置10と同様であるので、同一機能部分には実施例1と同一の符号を付し、その詳細な説明は省略する。なお、図6は、信号転送装置102の構成を模式的に示す図2と同様の断面図であり、図7は、信号転送装置102における送信機構112の各発光部142および導光部23を模式的に示す斜視図である。   Next, the signal transfer apparatus 102 of Example 2 is demonstrated. In the signal transfer apparatus 102 according to the second embodiment, in the signal transfer apparatus 10 according to the first embodiment, the light guide unit 23 is disposed between the transmission mechanism and the reception mechanism, and the transmission mechanism and the light transmission unit This is an example in which the receiving mechanism is partially different. Since the basic configuration of the signal transfer device 102 is the same as that of the signal transfer device 10 of the first embodiment, the same functional parts are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted. 6 is a cross-sectional view similar to FIG. 2 schematically showing the configuration of the signal transfer device 102. FIG. 7 shows the light emitting units 142 and the light guides 23 of the transmission mechanism 112 in the signal transfer device 102. It is a perspective view showing typically.

信号転送装置102は、図6に示すように、送信機構112と、受信機構122と、それらの間に設けられた導光部23とを有する。送信機構112は、実施例1の送信機構11の発光部14と同様のLED15が3つ用いられて3つの発光部142が構成され、各LED15が測距部52の測距制御盤55に接続されている。3つの発光部142すなわち3つのLED15は、測距部52が基準面形成部51に対して回転駆動されると、図7に示すように、それぞれ異なる半径位置で回転軸13回りを公転するように設定されている。このため、3つのLED15(発光部142)は、回転軸13に直交する任意の平面上に回転軸13を中心とする3つの同心状の照射領域192を形成する。この3つの照射領域192に対応して、導光部23が設けられている。   As illustrated in FIG. 6, the signal transfer apparatus 102 includes a transmission mechanism 112, a reception mechanism 122, and a light guide unit 23 provided therebetween. The transmission mechanism 112 uses three LEDs 15 similar to the light emitting section 14 of the transmission mechanism 11 of the first embodiment to form three light emitting sections 142, and each LED 15 is connected to the distance measurement control panel 55 of the distance measuring section 52. Has been. As shown in FIG. 7, the three light emitting units 142, that is, the three LEDs 15 revolve around the rotation axis 13 at different radial positions as shown in FIG. 7 when the distance measuring unit 52 is rotationally driven with respect to the reference plane forming unit 51. Is set to For this reason, the three LEDs 15 (light emitting units 142) form three concentric irradiation regions 192 around the rotation axis 13 on an arbitrary plane orthogonal to the rotation axis 13. Corresponding to these three irradiation areas 192, the light guide 23 is provided.

導光部23は、円柱形状を呈する中心導光部材23aと、そこと間隔を置きつつ取り囲む円筒形状を呈する第1周辺導光部材23bと、そこと間隔を置きつつ取り囲む円筒形状を呈する第2周辺導光部材23cとを有する。この中心導光部材23a、第1周辺導光部材23bおよび第2周辺導光部材23cは、上面231から光束が入射されると、その入射位置に拘わらず、側面から出射させることなく下面232の全領域から略一様に出射させる構成とされている。   The light guide unit 23 has a central light guide member 23a having a columnar shape, a first peripheral light guide member 23b having a cylindrical shape surrounding the central light guide member 23a with a space therebetween, and a second cylindrical shape having a cylindrical shape surrounding the space. And a peripheral light guide member 23c. The central light guide member 23 a, the first peripheral light guide member 23 b, and the second peripheral light guide member 23 c, when a light beam is incident from the upper surface 231, are not emitted from the side surface regardless of the incident position. The light is emitted substantially uniformly from the entire region.

中心導光部材23aは、上面が最内側の第1LED15aが形成する第1照射領域192aに重複するように、第1周辺導光部材23bは、上面が真中の第2LED15bが形成する第2照射領域192bに重複するように、第2周辺導光部材23cは、上面が最外側の第3LED15cが形成する第3照射領域192cに重複するように、設定されている。このため、実施例2の信号転送装置102では、導光部23(中心導光部材23a、第1周辺導光部材23bおよび第2周辺導光部材23c)の上面を照射面18とみなすことができる。この中心導光部材23a、第1周辺導光部材23bおよび第2周辺導光部材23cの下面には、それぞれに実施例1の受信機構12と同様の個別の受光素子20が、受光面21を対向させて配置されている。各受光素子20(中心導光部材23aの下面に配置されたものを第1受光素子20aとし、第1周辺導光部材23bの下面に配置されたものを第2受光素子20bとし、第2周辺導光部材23cの下面に配置されたものを第3受光素子20cとする。)は、図6に示すように、それぞれ基準面形成部51の演算制御盤56に接続されている。   The first peripheral light guide member 23b is a second irradiation area formed by the second LED 15b whose upper surface is the middle so that the upper surface overlaps the first irradiation area 192a formed by the innermost first LED 15a. The second peripheral light guide member 23c is set so that the upper surface overlaps the third irradiation region 192c formed by the outermost third LED 15c so as to overlap with 192b. For this reason, in the signal transfer apparatus 102 according to the second embodiment, the upper surface of the light guide 23 (the central light guide member 23a, the first peripheral light guide member 23b, and the second peripheral light guide member 23c) can be regarded as the irradiation surface 18. it can. On the lower surfaces of the central light guide member 23a, the first peripheral light guide member 23b, and the second peripheral light guide member 23c, individual light receiving elements 20 similar to the receiving mechanism 12 of the first embodiment are provided with the light receiving surface 21, respectively. It is arranged to face each other. Each light receiving element 20 (the element disposed on the lower surface of the central light guide member 23a is referred to as a first light receiving element 20a, and the element disposed on the lower surface of the first peripheral light guiding member 23b is referred to as a second light receiving element 20b. The one arranged on the lower surface of the light guide member 23c is referred to as a third light receiving element 20c.) Is connected to the calculation control panel 56 of the reference surface forming unit 51, as shown in FIG.

このように、信号転送装置102では、各LED15(発光部142)が形成する各照射領域192に合わせて導光部23(中心導光部材23a、第1周辺導光部材23bおよび第2周辺導光部材23c)が配置されており、各LED15から出射された光束は、それぞれが対応する導光部23を経て、それぞれが対応する各受光素子20により受光される。各受光素子20が各発光部142からの光束を受光すると、この受光に基づく情報がそれぞれ別個に基準面形成部51の演算制御盤56に送信される。このため、信号転送装置102では、各受光素子20が受信機構122における受光部222として機能することとなる。   As described above, in the signal transfer device 102, the light guides 23 (the central light guide member 23a, the first peripheral light guide member 23b, and the second peripheral guides) are matched to the respective irradiation regions 192 formed by the respective LEDs 15 (light emitting units 142). The optical members 23c) are arranged, and the light beams emitted from the respective LEDs 15 are received by the respective light receiving elements 20 corresponding thereto through the corresponding light guide portions 23, respectively. When each light receiving element 20 receives a light beam from each light emitting unit 142, information based on the received light is separately transmitted to the calculation control board 56 of the reference surface forming unit 51. For this reason, in the signal transfer apparatus 102, each light receiving element 20 functions as the light receiving unit 222 in the receiving mechanism 122.

よって、信号転送装置102では、受信機構122に対して送信機構112が回転軸13回りに回転されても、常に第1LED15aから中心導光部材23aを経て第1受光素子20aに至る系統と、第2LED15bから第1周辺導光部材23bを経て第2受光素子20bに至る系統と、第1LED15aから中心導光部材23aを経て第3受光素子20cに至る系統と、で同時に信号を転送することができるので、送信機構112から受信機構122へと複数(実施例2では3つ)の信号を転送することができる。このため、信号転送装置10が搭載された測量機50では、測量を行うために測距部52が基準面形成部51に対して回転駆動されている場合であっても、測距部52の測距制御盤55から基準面形成部51の演算制御盤56へと複数の信号を同時に転送することができる。   Therefore, in the signal transfer device 102, even when the transmission mechanism 112 is rotated around the rotation shaft 13 with respect to the reception mechanism 122, the first LED 15a always passes through the central light guide member 23a and reaches the first light receiving element 20a. Signals can be transferred simultaneously in the system from the 2LED 15b through the first peripheral light guide member 23b to the second light receiving element 20b and the system from the first LED 15a through the central light guide member 23a to the third light receiving element 20c. Therefore, a plurality of signals (three in the second embodiment) can be transferred from the transmission mechanism 112 to the reception mechanism 122. For this reason, in the surveying instrument 50 in which the signal transfer device 10 is mounted, even if the ranging unit 52 is rotationally driven with respect to the reference plane forming unit 51 to perform surveying, A plurality of signals can be simultaneously transferred from the distance measurement control board 55 to the calculation control board 56 of the reference plane forming unit 51.

また、信号転送装置102では、複数(実施例2では3つ)のLED15が形成する複数の照射領域192に対応する導光部23(実施例2では、中心導光部材23a、第1周辺導光部材23bおよび第2周辺導光部材23c)を配置し、その導光部材23の下面に受光面21を対向させて受光素子20を設けるだけでよいことから、容易に実施することができる。   Further, in the signal transfer device 102, the light guide portions 23 (in the second embodiment, the central light guide member 23a and the first peripheral guide) corresponding to the plurality of irradiation regions 192 formed by the plurality of (three in the second embodiment) LEDs 15 are formed. Since it is only necessary to dispose the light member 23b and the second peripheral light guide member 23c), and to provide the light receiving element 20 with the light receiving surface 21 facing the lower surface of the light guide member 23, this can be easily performed.

したがって、実施例2の信号転送装置102では、実施例1の信号転送装置10と同様に、相対的に回転される送信機構112と受信機構122とを非接触としつつ、複数の信号系統を有するすなわち複数の信号を同時に転送することができる。   Therefore, the signal transfer apparatus 102 according to the second embodiment has a plurality of signal systems while the transmission mechanism 112 and the reception mechanism 122 that are relatively rotated are not in contact with each other, similarly to the signal transfer apparatus 10 according to the first embodiment. That is, a plurality of signals can be transferred simultaneously.

次に、実施例3の信号転送装置103について説明する。実施例3の信号転送装置103は、実施例2の信号転送装置102において、導光部23を設けることに代えて、受信機構が異なる構成とされた例である。信号転送装置103は、その基本的な構成は実施例2の信号転送装置102と同様であるので、同一機能部分には実施例2と同一の符号を付し、その詳細な説明は省略する。なお、図8は、信号転送装置103の構成を模式的に示す図6と同様の断面図であり、図9は、信号転送装置103における受信機構123の各受光素子203を模式的に示す斜視図である。   Next, the signal transfer apparatus 103 according to the third embodiment will be described. The signal transfer device 103 according to the third embodiment is an example in which the receiving mechanism is different from the signal transfer device 102 according to the second embodiment in place of providing the light guide unit 23. Since the basic configuration of the signal transfer device 103 is the same as that of the signal transfer device 102 of the second embodiment, the same reference numerals as those of the second embodiment are assigned to the same functional parts, and detailed description thereof is omitted. 8 is a cross-sectional view similar to FIG. 6 schematically showing the configuration of the signal transfer apparatus 103, and FIG. 9 is a perspective view schematically showing each light receiving element 203 of the reception mechanism 123 in the signal transfer apparatus 103. FIG.

信号転送装置103では、図8および図9に示すように、送信機構113において、第1LED15aが回転軸13回りに自転する構成とされ、第2LED15bおよび第3LED15cが互いに間隔を置いて回転軸13回りに公転する構成とされている。   In the signal transfer device 103, as shown in FIGS. 8 and 9, in the transmission mechanism 113, the first LED 15a is configured to rotate about the rotation shaft 13, and the second LED 15b and the third LED 15c are spaced from each other around the rotation shaft 13. It is supposed to revolve around.

受信機構123は、図8に示すように、それぞれ3つの受光素子203(第1受光素子203a、第2受光素子203bおよび第3受光素子203c)により構成されている。この第2受光素子203bおよび第3受光素子203cは、第1受光素子203a(回転軸13)に対して同心的に入れ子状に配置可能な円環状の本体部203b1、203c1を有し、その上面が受光面213とされ、それぞれ基準面形成部51の演算制御盤56に接続されている。   As shown in FIG. 8, the receiving mechanism 123 includes three light receiving elements 203 (a first light receiving element 203a, a second light receiving element 203b, and a third light receiving element 203c). The second light receiving element 203b and the third light receiving element 203c have annular main body parts 203b1 and 203c1 that can be arranged concentrically with respect to the first light receiving element 203a (rotating shaft 13), and their upper surfaces. Are the light receiving surfaces 213, and are connected to the calculation control panel 56 of the reference surface forming unit 51.

第1受光素子203aは、第1LED15aが形成する円形状の第1照射領域193aに重複する、すなわち当該第1照射領域193aを網羅する円形状の第1受光面213aを有している。第2受光素子203bは、第2LED15bが形成する円環状の第2照射領域193bに重複する、すなわち当該第2照射領域193bを網羅する円環状の第2受光面213bを有している。第3受光素子203cは、第3LED15cが形成する円環状の第3照射領域193cに重複する、すなわち当該第3照射領域193cを網羅する円環状の第3受光面213cを有している。   The first light receiving element 203a has a circular first light receiving surface 213a that overlaps the circular first irradiation region 193a formed by the first LED 15a, that is, covers the first irradiation region 193a. The second light receiving element 203b has an annular second light receiving surface 213b that overlaps the annular second irradiation region 193b formed by the second LED 15b, that is, covers the second irradiation region 193b. The third light receiving element 203c has an annular third light receiving surface 213c that overlaps the annular third irradiation region 193c formed by the third LED 15c, that is, covers the third irradiation region 193c.

このように、信号転送装置103では、各LED15(発光部143)が形成する各照射領域193に合わせて3つの第1受光素子203a、第2受光素子203bおよび第3受光素子203cが設けられていることから、各発光部143から出射された光束は、それぞれが対応する第1受光素子203a、第2受光素子203bおよび第3受光素子203cにより受光される。各受光素子203が各LED15からの光束を受光すると、この受光に基づく情報がそれぞれ別個に基準面形成部51の演算制御盤56に送信される。このため、信号転送装置103では、各受光素子203が受信機構123における受光部223として機能することとなる。   Thus, in the signal transfer apparatus 103, the three first light receiving elements 203a, the second light receiving elements 203b, and the third light receiving elements 203c are provided in accordance with the respective irradiation regions 193 formed by the respective LEDs 15 (light emitting units 143). Therefore, the light beams emitted from the light emitting units 143 are received by the corresponding first light receiving element 203a, second light receiving element 203b, and third light receiving element 203c. When each light receiving element 203 receives a light beam from each LED 15, information based on this light reception is separately transmitted to the calculation control board 56 of the reference surface forming unit 51. For this reason, in the signal transfer apparatus 103, each light receiving element 203 functions as the light receiving unit 223 in the receiving mechanism 123.

よって、信号転送装置103では、受信機構123に対して送信機構113が回転軸13回りに回転されても、常に第1LED15aから第1受光素子203aに至る系統と、第2LED15bから第2受光素子203bに至る系統と、第3LED15cから第3受光素子203cに至る系統と、で同時に信号を転送することができるので、送信機構113から受信機構123へと複数(実施例2では3つ)の信号を転送することができる。このため、信号転送装置103が搭載された測量機50では、測量を行うために測距部52が基準面形成部51に対して回転駆動されている場合であっても、測距部52の測距制御盤55から基準面形成部51の演算制御盤56へと複数の信号を同時に転送することができる。   Therefore, in the signal transfer device 103, even when the transmission mechanism 113 is rotated around the rotation shaft 13 with respect to the reception mechanism 123, the system always extends from the first LED 15a to the first light receiving element 203a, and the second LED 15b to the second light receiving element 203b. Since the signal can be simultaneously transferred in the system extending to 3 and the system extending from the third LED 15c to the third light receiving element 203c, a plurality of (three in the second embodiment) signals are transmitted from the transmission mechanism 113 to the reception mechanism 123. Can be transferred. For this reason, in the surveying instrument 50 in which the signal transfer device 103 is mounted, even if the ranging unit 52 is rotationally driven with respect to the reference plane forming unit 51 to perform surveying, A plurality of signals can be simultaneously transferred from the distance measurement control board 55 to the calculation control board 56 of the reference plane forming unit 51.

また、信号転送装置103では、複数(実施例2では3つ)のLED15が形成する複数の照射領域193に対応する形状の受光面213を有する第1受光素子203a、第2受光素子203bおよび第3受光素子203cを設けるだけでよいことから、容易に実施することができる。   In the signal transfer device 103, the first light receiving element 203a, the second light receiving element 203b, and the second light receiving elements 203b each having a light receiving surface 213 having a shape corresponding to a plurality of irradiation regions 193 formed by a plurality of (three in the second embodiment) LEDs 15 are provided. Since it is only necessary to provide the three light receiving elements 203c, it can be easily implemented.

したがって、実施例3の信号転送装置103では、上記した信号転送装置10および信号転送装置102と同様に、相対的に回転される送信機構113と受信機構123とを非接触としつつ、複数の信号系統を有するすなわち複数の信号を同時に転送することができる。   Therefore, in the signal transfer device 103 according to the third embodiment, similarly to the signal transfer device 10 and the signal transfer device 102 described above, the transmission mechanism 113 and the reception mechanism 123 that are relatively rotated are not contacted, and a plurality of signals are transmitted. It has a system, that is, a plurality of signals can be transferred simultaneously.

次に、実施例4の信号転送装置104について説明する。実施例4の信号転送装置104は、実施例3の信号転送装置103において、受信機構が異なる構成とされた例である。信号転送装置104は、その基本的な構成は実施例3の信号転送装置103と同様であるので、同一機能部分には実施例3と同一の符号を付し、その詳細な説明は省略する。なお、図10は、信号転送装置104における受信機構124の各受光部224を模式的に示す斜視図である。   Next, the signal transfer apparatus 104 of Example 4 is demonstrated. The signal transfer device 104 according to the fourth embodiment is an example in which the reception mechanism is different from the signal transfer device 103 according to the third embodiment. Since the basic configuration of the signal transfer device 104 is the same as that of the signal transfer device 103 according to the third embodiment, the same reference numerals as those in the third embodiment are given to the same functional parts, and detailed description thereof is omitted. FIG. 10 is a perspective view schematically showing each light receiving unit 224 of the receiving mechanism 124 in the signal transfer apparatus 104.

受信機構124は、図10に示すように、それぞれ複数の受光素子20を有する3つの受光部224(回転軸13側から順に、第1受光部224a、第2受光部224b、第3受光部224c)により構成されている。   As shown in FIG. 10, the receiving mechanism 124 includes three light receiving units 224 each having a plurality of light receiving elements 20 (in order from the rotating shaft 13 side, a first light receiving unit 224a, a second light receiving unit 224b, and a third light receiving unit 224c). ).

第1受光部224aは、第1LED15aが形成する第1照射領域193aに重複するように、複数の受光素子20の受光面21が周回方向に沿って隣接されて構成されており、これらの各受光素子20が、第1受光部224aによる受光であることを認識可能とされて基準面形成部51(図8参照)の演算制御盤56に接続されている。   The first light receiving unit 224a is configured such that the light receiving surfaces 21 of the plurality of light receiving elements 20 are adjacent to each other in the circumferential direction so as to overlap the first irradiation region 193a formed by the first LED 15a. The element 20 can recognize that the light is received by the first light receiving unit 224a and is connected to the arithmetic control panel 56 of the reference surface forming unit 51 (see FIG. 8).

また、第2受光部224bは、第2LED15bが形成する第2照射領域193bに重複するように、複数の受光素子20の受光面21が周回方向に沿って隣接されて構成されており、これらの各受光素子20が、第2受光部224bによる受光であることを認識可能とされて基準面形成部51の演算制御盤56に接続されている。   Further, the second light receiving unit 224b is configured such that the light receiving surfaces 21 of the plurality of light receiving elements 20 are adjacent to each other in the circumferential direction so as to overlap the second irradiation region 193b formed by the second LED 15b. Each light receiving element 20 can recognize that the light is received by the second light receiving unit 224 b and is connected to the calculation control panel 56 of the reference surface forming unit 51.

さらに、第3受光部224cは、第3LED15cが形成する第3照射領域193cに重複するように、複数の受光素子20の受光面21が周回方向に沿って隣接されて構成されており、これらの各受光素子20が、第3受光部224cによる受光であることを認識可能とされて基準面形成部51の演算制御盤56に接続されている。   Further, the third light receiving unit 224c is configured such that the light receiving surfaces 21 of the plurality of light receiving elements 20 are adjacent to each other in the circumferential direction so as to overlap the third irradiation region 193c formed by the third LED 15c. Each light receiving element 20 can recognize that the light is received by the third light receiving unit 224 c and is connected to the calculation control panel 56 of the reference surface forming unit 51.

よって、信号転送装置104では、受信機構124に対して送信機構113が回転軸13回りに回転されても、常に第1LED15aから第1受光部224aに至る系統と、第2LED15bから第2受光部224bに至る系統と、第3LED15cから第3受光部224cに至る系統と、で同時に信号を転送することができるので、送信機構113から受信機構124へと複数(実施例2では3つ)の信号を転送することができる。このため、信号転送装置104が搭載された測量機50では、測量を行うために測距部52が基準面形成部51に対して回転駆動されている場合であっても、測距部52の測距制御盤55から基準面形成部51の演算制御盤56へと複数の信号を同時に転送することができる。   Therefore, in the signal transfer device 104, even when the transmission mechanism 113 is rotated around the rotation shaft 13 with respect to the reception mechanism 124, the system always extends from the first LED 15a to the first light receiving unit 224a, and the second LED 15b to the second light receiving unit 224b. Since the signal can be simultaneously transferred in the system from the third LED 15c to the third light receiving unit 224c, a plurality of (three in the second embodiment) signals are transmitted from the transmission mechanism 113 to the reception mechanism 124. Can be transferred. For this reason, in the surveying instrument 50 in which the signal transfer device 104 is mounted, even if the ranging unit 52 is rotationally driven with respect to the reference plane forming unit 51 in order to perform surveying, A plurality of signals can be simultaneously transferred from the distance measurement control board 55 to the calculation control board 56 of the reference plane forming unit 51.

また、信号転送装置104では、複数(実施例2では3つ)のLED15が形成する複数の照射領域193に対応するように複数の受光素子20を周回方向に沿って隣接させて受光部224を構成するだけでよいことから、容易に実施することができる。   Further, in the signal transfer device 104, the plurality of light receiving elements 20 are adjacent to each other in the circumferential direction so as to correspond to the plurality of irradiation regions 193 formed by the plurality (three in the second embodiment) of the LEDs 15, and the light receiving unit 224 is formed. Since it only needs to be configured, it can be easily implemented.

したがって、実施例4の信号転送装置104では、信号転送装置10、信号転送装置102および信号転送装置103と同様に、相対的に回転される送信機構113と受信機構124とを非接触としつつ、複数の信号系統を有するすなわち複数の信号を同時に転送することができる。   Therefore, in the signal transfer device 104 according to the fourth embodiment, similarly to the signal transfer device 10, the signal transfer device 102, and the signal transfer device 103, the transmission mechanism 113 and the reception mechanism 124 that are relatively rotated are not in contact with each other. It has a plurality of signal systems, that is, a plurality of signals can be transferred simultaneously.

次に、実施例5の信号転送装置105について説明する。実施例5の信号転送装置105は、実施例3の信号転送装置103において、受信機構が異なる構成とされた例である。信号転送装置105は、その基本的な構成は実施例3の信号転送装置103と同様であるので、同一機能部分には実施例3と同一の符号を付し、その詳細な説明は省略する。なお、図11は、信号転送装置105における受信機構125の各受光部225を模式的に示す斜視図である。   Next, the signal transfer apparatus 105 of Example 5 is demonstrated. The signal transfer device 105 according to the fifth embodiment is an example in which the reception mechanism is different from the signal transfer device 103 according to the third embodiment. Since the basic configuration of the signal transfer device 105 is the same as that of the signal transfer device 103 of the third embodiment, the same reference numerals as those of the third embodiment are given to the same functional parts, and detailed description thereof is omitted. FIG. 11 is a perspective view schematically showing each light receiving unit 225 of the receiving mechanism 125 in the signal transfer apparatus 105.

受信機構125は、図11に示すように、3つの受光部225(回転軸13側から順に、第1受光部225a、第2受光部225b、第3受光部225c)を有する。この各受光部225は、それぞれに対応する受光素子205を有しており、受光素子205の受光面215と、照射面18における各受光領域24(回転軸13側から順に、第1受光領域24a、第2受光領域24b、第3受光領域24c)とが複数の光ファイバ25により接続されて構成されている。この各受光素子205は、基準面形成部51(図8参照)の演算制御盤56に接続されている。   As shown in FIG. 11, the receiving mechanism 125 includes three light receiving units 225 (a first light receiving unit 225a, a second light receiving unit 225b, and a third light receiving unit 225c in this order from the rotating shaft 13 side). Each of the light receiving portions 225 has a corresponding light receiving element 205, and the light receiving surface 215 of the light receiving element 205 and each light receiving area 24 on the irradiation surface 18 (first light receiving area 24a in order from the rotating shaft 13 side). The second light receiving region 24b and the third light receiving region 24c) are connected by a plurality of optical fibers 25. Each light receiving element 205 is connected to the calculation control panel 56 of the reference plane forming unit 51 (see FIG. 8).

第1受光部225aの第1受光領域24aは、第1LED15aが形成する第1照射領域193aに重複するように設定されており、この第1受光領域24aには、各光ファイバ25の一端面25aが敷き詰められ、各光ファイバ25の他端面25bが、対応する第1受光素子205aの第1受光面215aに対向されている。また、第2受光部225bの第2受光領域24bは、第2LED15bが形成する第2照射領域193bに重複するように設定されており、この第2受光領域24bには、各光ファイバ25の一端面25aが敷き詰められ、各光ファイバ25の他端面25bが、対応する第2受光素子205bの第2受光面215bに対向されている。さらに、第3受光部225cの第3受光領域24cは、第3LED15cが形成する第3照射領域193cに重複するように設定されており、この第3照射領域193cには、各光ファイバ25の一端面25aが敷き詰められ、各光ファイバ25の他端面25bが、対応する第3受光素子205cの第3受光面215cに対向されている。   The first light receiving region 24a of the first light receiving unit 225a is set so as to overlap the first irradiation region 193a formed by the first LED 15a, and the first light receiving region 24a includes one end face 25a of each optical fiber 25. The other end surface 25b of each optical fiber 25 is opposed to the first light receiving surface 215a of the corresponding first light receiving element 205a. The second light receiving region 24b of the second light receiving unit 225b is set to overlap the second irradiation region 193b formed by the second LED 15b, and the second light receiving region 24b includes one optical fiber 25. The end face 25a is spread, and the other end face 25b of each optical fiber 25 is opposed to the second light receiving face 215b of the corresponding second light receiving element 205b. Further, the third light receiving region 24c of the third light receiving unit 225c is set so as to overlap the third irradiation region 193c formed by the third LED 15c, and the third irradiation region 193c includes one of the optical fibers 25. The end face 25a is spread, and the other end face 25b of each optical fiber 25 is opposed to the third light receiving face 215c of the corresponding third light receiving element 205c.

よって、信号転送装置105では、受信機構125に対して送信機構113が回転軸13回りに回転されても、常に第1LED15aから第1受光部225aに至る系統と、第2LED15bから第2受光部225bに至る系統と、第3LED15cから第3受光部225cに至る系統と、で同時に信号を転送することができるので、送信機構113から受信機構125へと複数(実施例5では3つ)の信号を転送することができる。このため、信号転送装置105が搭載された測量機50では、測量を行うために測距部52が基準面形成部51に対して回転駆動されている場合であっても、測距部52の測距制御盤55から基準面形成部51の演算制御盤56へと複数の信号を同時に転送することができる。   Therefore, in the signal transfer device 105, even when the transmission mechanism 113 is rotated around the rotation shaft 13 with respect to the reception mechanism 125, the system always extends from the first LED 15a to the first light receiving unit 225a, and the second LED 15b to the second light receiving unit 225b. Since the signal can be simultaneously transferred in the system from the third LED 15c to the third light receiving unit 225c, a plurality of signals (three in the fifth embodiment) are transmitted from the transmission mechanism 113 to the reception mechanism 125. Can be transferred. For this reason, in the surveying instrument 50 in which the signal transfer device 105 is mounted, even if the ranging unit 52 is rotationally driven with respect to the reference plane forming unit 51 in order to perform surveying, A plurality of signals can be simultaneously transferred from the distance measurement control board 55 to the calculation control board 56 of the reference plane forming unit 51.

また、信号転送装置105では、複数(実施例5では3つ)のLED15が形成する複数の照射領域193に対応する各受光領域24に複数の光ファイバ25の一端25aを敷き詰めて、それらの他端を各受光素子205の受光面215に対向させるだけでよいことから、容易に実施することができる。   Further, in the signal transfer device 105, one end 25a of a plurality of optical fibers 25 is spread over each light receiving region 24 corresponding to a plurality of irradiation regions 193 formed by a plurality of (three in the fifth embodiment) LEDs 15, and the others. Since it is only necessary to make the end face the light receiving surface 215 of each light receiving element 205, it can be easily implemented.

したがって、実施例5の信号転送装置105では、信号転送装置10、信号転送装置102、信号転送装置103および信号転送装置104と同様に、相対的に回転される送信機構113と受信機構125とを非接触としつつ、複数の信号系統を有するすなわち複数の信号を同時に転送することができる。   Therefore, in the signal transfer device 105 of the fifth embodiment, the transmission mechanism 113 and the reception mechanism 125 that are relatively rotated are provided in the same manner as the signal transfer device 10, the signal transfer device 102, the signal transfer device 103, and the signal transfer device 104. A plurality of signal systems, that is, a plurality of signals can be simultaneously transferred while being non-contact.

なお、上記した各実施例では、送信機構に3つの発光部(LED)が設けられ、かつそれに対応して受信機構に3つの受光部が設けられていたが、送信機構から受信機構に至る間が各実施例と同様の構成とされていればよく、発光部(LED)および受光部の数は任意に設定することができる。   In each of the above-described embodiments, three light emitting units (LEDs) are provided in the transmission mechanism, and three light receiving units are provided in the reception mechanism corresponding thereto. However, during the period from the transmission mechanism to the reception mechanism, However, the number of light emitting units (LEDs) and light receiving units can be arbitrarily set.

また、上記した各実施例では、発光素子としてLED15が用いられていたが、信号伝達のために点灯制御(光束の出射の制御)が可能なものであれば、例えばレーザダイオードであってもよく、上記した実施例に限定されるものではない。   Further, in each of the above-described embodiments, the LED 15 is used as the light emitting element. However, a laser diode, for example, may be used as long as lighting control (control of emission of light flux) is possible for signal transmission. However, the present invention is not limited to the above-described embodiments.

さらに、上記した各実施例では、本発明にかかる信号転送装置は測量機50(図1参照)に搭載されていたが、図12に示すトータルステーションである測量機60等のように回転部を有する測量機全般、換言すると支持台とそれに対し回転軸回りに回転可能に同心的に支持された回転体との間で信号を転送する構成のもの全般であってもよく、上記した実施例に限定されるものではない。なお、測量機60は、主に望遠鏡部61、望遠鏡部61を上下方向に回転可能に支持する托架部62、托架部62を水平方向に回転可能に支持する基盤部63、基盤部63を支持する整準部64から構成され、整準部64は三脚等に取付け可能となっている。望遠鏡部61には、対物レンズ65を含む光学系、撮像部等が内蔵され、托架部62は、画像を表示する表示装置66、操作・入力部67を具備している。   Further, in each of the above-described embodiments, the signal transfer apparatus according to the present invention is mounted on the surveying instrument 50 (see FIG. 1), but has a rotating portion like the surveying instrument 60 that is a total station shown in FIG. It may be a general surveying instrument, in other words, a general configuration in which a signal is transferred between a support base and a rotating body that is concentrically supported so as to be rotatable around a rotation axis. Is not to be done. The surveying instrument 60 mainly includes a telescope unit 61, a frame unit 62 that supports the telescope unit 61 so as to be rotatable in the vertical direction, a base unit 63 that supports the rack unit 62 so as to be rotatable in the horizontal direction, and a base unit 63. The leveling unit 64 can be attached to a tripod or the like. The telescope unit 61 includes an optical system including an objective lens 65, an imaging unit, and the like. The mount unit 62 includes a display device 66 that displays an image and an operation / input unit 67.

信号転送装置が搭載された測量機を示す模式的な斜視図である。It is a typical perspective view which shows the surveying instrument equipped with the signal transfer apparatus. 測量機における信号転送装置の構成を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the structure of the signal transfer apparatus in a surveying instrument. 実施例1の信号転送装置の構成を説明するための模式的な斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic perspective view for explaining a configuration of a signal transfer apparatus according to a first embodiment. 信号転送装置の3つの発光部が照射面上に3つの照射領域を形成する様子を説明するための説明図である。It is explanatory drawing for demonstrating a mode that three light emission parts of a signal transfer apparatus form three irradiation areas on an irradiation surface. 図4とは異なる態様で3つの発光部が照射面上に3つの照射領域を形成する様子を説明するための説明図である。It is explanatory drawing for demonstrating a mode that three light emission parts form three irradiation area | regions on an irradiation surface by the aspect different from FIG. 実施例2の信号転送装置の構成を模式的に示す図2と同様の断面図である。FIG. 6 is a cross-sectional view similar to FIG. 2 schematically showing the configuration of the signal transfer apparatus according to the second embodiment. 実施例2の信号転送装置における送信機構の発光部および導光部材を模式的に示す斜視図である。It is a perspective view which shows typically the light emission part and light guide member of the transmission mechanism in the signal transfer apparatus of Example 2. FIG. 実施例3の信号転送装置の構成を模式的に示す図6と同様の断面図である。FIG. 7 is a cross-sectional view similar to FIG. 6 schematically showing the configuration of the signal transfer apparatus according to the third embodiment. 実施例3の信号転送装置における受信機構の受光素子を模式的に示す斜視図である。It is a perspective view which shows typically the light receiving element of the receiving mechanism in the signal transfer apparatus of Example 3. FIG. 実施例4の信号転送装置における受信機構の受光素子を模式的に示す図9と同様の斜視図である。It is a perspective view similar to FIG. 9 which shows typically the light receiving element of the receiving mechanism in the signal transfer apparatus of Example 4. FIG. 実施例5の信号転送装置における受信機構の受光素子を模式的に示す図9と同様の斜視図である。FIG. 10 is a perspective view similar to FIG. 9 schematically showing a light receiving element of a receiving mechanism in the signal transfer apparatus according to the fifth embodiment. 本発明に係る信号転送装置が搭載された図1とは異なる例の測量機を示す模式的な斜視図である。It is a typical perspective view which shows the surveying instrument of the example different from FIG. 1 with which the signal transmission apparatus which concerns on this invention is mounted.

符号の説明Explanation of symbols

10 信号転送装置
12、122、123、124、125 受信機構
11、112、113 送信機構
13 回転軸
14、142、143 発光部
15 (発光素子としての)LED
16 コーンプリズム
18 照射面
19、192、193 照射領域
20 受光素子
203b (環状の受光面を有する受光素子としての)第2受光素子
203c (環状の受光面を有する受光素子としての)第3受光素子
21 受光面
22、222、223、224、225 受光部
23a 中心導光部材
23b 周辺導光部材
23c 周辺導光部材
25 光ファイバ
51 (支持台としての)基準面形成部
52 (回転体としての)測距部
DESCRIPTION OF SYMBOLS 10 Signal transfer device 12, 122, 123, 124, 125 Reception mechanism 11, 112, 113 Transmission mechanism 13 Rotating shaft 14, 142, 143 Light emission part 15 LED (as a light emitting element)
16 Cone prism 18 Irradiation surface 19, 192, 193 Irradiation area 20 Light receiving element 203b Second light receiving element 203c (as a light receiving element having an annular light receiving surface) Third light receiving element (as a light receiving element having an annular light receiving surface) 21 Light-receiving surface 22, 222, 223, 224, 225 Light-receiving part 23a Central light guide member 23b Peripheral light guide member 23c Peripheral light guide member 25 Optical fiber 51 Reference surface forming part 52 (as a support) 52 (As a rotating body) Ranging section

Claims (10)

支持台と、該支持台に対し回転軸回りに回転可能に同心的に支持された回転体との間での信号の転送のために、前記支持台および前記回転体の一方に設けられた送信機構と、前記支持台および前記回転体の他方に設けられた受信機構とを備える信号転送装置であって、
前記送信機構は、前記支持台と前記回転体との相対的な回転により前記受信機構に対して前記回転軸回りに回転される発光部を有し、該発光部が、前記受信機構に対して前記回転軸回りに回転されている際に前記受信機構へ向けて光束を出射することにより、前記回転軸に直交する照射面上に前記回転軸を取り巻く環状の照射領域を形成可能とされ、
前記受信機構は、前記発光部の前記受信機構に対する前記回転軸回りの回転位置に拘わらず前記発光部から出射された光束を受光可能に前記照射領域に対応して配置された受光部を有することを特徴とする信号転送装置。
A transmission provided on one of the support base and the rotary body for transfer of signals between the support base and a rotary body that is concentrically supported so as to be rotatable about the rotation axis with respect to the support base. A signal transfer device comprising a mechanism and a receiving mechanism provided on the other of the support base and the rotating body,
The transmission mechanism includes a light emitting unit that is rotated about the rotation axis with respect to the receiving mechanism by relative rotation of the support base and the rotating body, and the light emitting unit is By emitting a light beam toward the receiving mechanism when rotating around the rotation axis, it is possible to form an annular irradiation region surrounding the rotation axis on an irradiation surface orthogonal to the rotation axis,
The receiving mechanism has a light receiving portion arranged corresponding to the irradiation region so as to be able to receive a light beam emitted from the light emitting portion regardless of a rotational position of the light emitting portion around the rotation axis with respect to the receiving mechanism. A signal transfer device.
前記送信機構は、複数の前記発光部と該各発光部に対応する複数の前記受光部とを有し、前記各発光部は、前記回転軸を取り巻く環状の照射光束で、前記照射面上に互いに重ならない独立した前記照射領域を形成可能とされ、
前記各受光部は、それぞれが対応する前記照射領域を半径方向に網羅していることを特徴とする請求項1に記載の信号転送装置。
The transmission mechanism includes a plurality of the light emitting units and a plurality of the light receiving units corresponding to the respective light emitting units, and each of the light emitting units is an annular irradiation light beam surrounding the rotation axis, and is disposed on the irradiation surface. It is possible to form independent irradiation areas that do not overlap each other,
The signal transfer device according to claim 1, wherein each of the light receiving units covers the corresponding irradiation region in the radial direction.
前記各発光部は、発光素子と円錐形状のプリズムとを有し、前記発光素子から出射された光束を前記照射面上で前記回転軸を取り巻く環状の照射光束とすべく前記各プリズムの底面と前記発光素子の出射個所とが対向されて配置され、前記各プリズムが異なる頂角とされていることを特徴とする請求項2に記載の信号転送装置。   Each of the light emitting units includes a light emitting element and a conical prism, and the bottom surface of each of the prisms is configured so that a light beam emitted from the light emitting element is an annular irradiation light beam surrounding the rotation axis on the irradiation surface. The signal transfer device according to claim 2, wherein the light emitting element is disposed so as to face an emission portion, and each prism has a different apex angle. 前記送信機構は、2つの前記発光部を有し、
前記両発光部とそれに対応される2つの前記受光部との間には、2つの前記照射領域のうち前記回転軸に近い照射中心領域に重複しつつ前記回転軸と同心位置に配置された円柱形状を呈し一端平面から入射された光束を他端平面から出射する中心導光部材と、2つの前記照射領域のうち前記照射中心領域を取り巻く照射周辺領域に重複しつつ前記回転軸と同心位置に配置された円筒形状を呈し一端平面から入射された光束を他端平面から出射する周辺導光部材とが設けられ、
前記各受光部は、前記中心導光部材または前記周辺導光部材の前記他端平面から出射された光束を個別に受光可能とされていることを特徴とする請求項2に記載の信号転送装置。
The transmission mechanism includes two light emitting units,
Between the two light emitting parts and the two light receiving parts corresponding thereto, a cylinder arranged concentrically with the rotation axis while overlapping the irradiation center area close to the rotation axis among the two irradiation areas. A central light guide member that has a shape and emits a light beam incident from one end plane from the other end plane, and is concentric with the rotation axis while overlapping an irradiation peripheral area surrounding the irradiation center area of the two irradiation areas. A peripheral light guide member that is arranged in a cylindrical shape and emits a light beam incident from one end plane from the other end plane;
3. The signal transfer device according to claim 2, wherein each of the light receiving portions is capable of individually receiving a light beam emitted from the other end plane of the central light guide member or the peripheral light guide member. .
前記送信機構は、3つ以上の前記発光部を有し、
前記各発光部と前記各受光部との間には、前記各照射領域のうち最も前記回転軸に近い照射中心領域に重複しつつ前記回転軸と同心位置に配置された円柱形状を呈し一端平面から入射された光束を他端平面から出射する中心導光部材と、前記各照射領域のうち前記照射中心領域を取り巻く各照射周辺領域に個別に重複しつつ前記回転軸と同心位置に配置された円筒形状を呈し一端平面から入射された光束を他端平面から出射する2つ以上の周辺導光部材とが設けられ、
前記各受光部は、前記中心導光部材または前記各周辺導光部材の前記他端平面から出射された光束を個別に受光可能とされていることを特徴とする請求項2に記載の信号転送装置。
The transmission mechanism includes three or more light emitting units,
Between each said light emission part and each said light-receiving part, the cylindrical shape arrange | positioned concentrically with the said rotating shaft is overlapped with the irradiation center area | region nearest to the said rotating axis among each said irradiation area | region, and one end plane A central light guide member that emits a light beam incident from the other end plane, and each irradiation peripheral region surrounding the irradiation central region among the irradiation regions, and is disposed concentrically with the rotation axis Two or more peripheral light guide members that have a cylindrical shape and emit a light beam incident from one end plane from the other end plane are provided.
3. The signal transfer according to claim 2, wherein each of the light receiving units is capable of individually receiving a light beam emitted from the other end plane of the central light guide member or each of the peripheral light guide members. apparatus.
前記受光部は、対応する前記照射領域を網羅する受光面を有する受光素子で構成されていることを特徴とする請求項1または請求項2に記載の信号転送装置。   The signal transfer device according to claim 1, wherein the light receiving unit includes a light receiving element having a light receiving surface that covers the corresponding irradiation region. 前記各受光部は、それぞれが対応する前記各照射領域を網羅する受光面を有する受光素子で構成され、該各受光素子のうちの少なくとも1つは、環状の前記受光面を有する環状受光素子であることを特徴とする請求項2に記載の信号転送装置。   Each of the light receiving portions is configured by a light receiving element having a light receiving surface that covers each of the corresponding irradiation regions, and at least one of the light receiving elements is an annular light receiving element having the annular light receiving surface. The signal transfer device according to claim 2, wherein the signal transfer device is provided. 前記各受光部は、複数の受光素子が、対応する前記各照射領域で受光面が周回方向に沿って隣接するように環状に配置されて構成されていることを特徴とする請求項2に記載の信号転送装置。   Each said light-receiving part is comprised by arrange | positioning cyclically | annularly so that a light-receiving surface may adjoin along the circumference direction in each said irradiation area | region corresponding to each said light-receiving part. Signal transfer device. 前記受光部は、受光素子と、対応する前記照射領域の全域を前記受光素子に接続する複数の光ファイバとを有することを特徴とする請求項1または請求項2に記載の信号転送装置。   3. The signal transfer device according to claim 1, wherein the light receiving unit includes a light receiving element and a plurality of optical fibers that connect the entire corresponding irradiation region to the light receiving element. 4. 受光面において受けた光束を電気信号に変換可能な受光素子であって、
全体に環状を呈する本体部により規定される環状面が受光面とされていることを特徴とする受光素子。
A light receiving element capable of converting a light beam received at a light receiving surface into an electric signal,
A light receiving element characterized in that an annular surface defined by a main body portion having an annular shape as a whole is a light receiving surface.
JP2007168341A 2007-06-27 2007-06-27 Signal transfer device Expired - Fee Related JP5044304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168341A JP5044304B2 (en) 2007-06-27 2007-06-27 Signal transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168341A JP5044304B2 (en) 2007-06-27 2007-06-27 Signal transfer device

Publications (2)

Publication Number Publication Date
JP2009010059A true JP2009010059A (en) 2009-01-15
JP5044304B2 JP5044304B2 (en) 2012-10-10

Family

ID=40324886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168341A Expired - Fee Related JP5044304B2 (en) 2007-06-27 2007-06-27 Signal transfer device

Country Status (1)

Country Link
JP (1) JP5044304B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223710A (en) * 1986-03-26 1987-10-01 Ocean Cable Co Ltd Rotary connector for optical fiber cable
JPS63250872A (en) * 1987-04-08 1988-10-18 Oki Electric Ind Co Ltd Bundle fiber type rotary photocoupler
JPH04362605A (en) * 1991-06-11 1992-12-15 Ricoh Co Ltd Rotary optical connector
JPH0799329A (en) * 1993-09-28 1995-04-11 Sharp Corp Photoreceptor element and light-emitting element and optically coupled device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223710A (en) * 1986-03-26 1987-10-01 Ocean Cable Co Ltd Rotary connector for optical fiber cable
JPS63250872A (en) * 1987-04-08 1988-10-18 Oki Electric Ind Co Ltd Bundle fiber type rotary photocoupler
JPH04362605A (en) * 1991-06-11 1992-12-15 Ricoh Co Ltd Rotary optical connector
JPH0799329A (en) * 1993-09-28 1995-04-11 Sharp Corp Photoreceptor element and light-emitting element and optically coupled device

Also Published As

Publication number Publication date
JP5044304B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP6169339B2 (en) Shape measuring method and apparatus
JP5915222B2 (en) Inner diameter measuring device
JP2009229462A (en) Detection device
JP4080503B2 (en) Non-contact connector
US8724092B2 (en) Optical signal transmission structure of laser distance measuring device
JP5322722B2 (en) Lens alignment device and control method of lens alignment device
US9733066B2 (en) Shape measuring method and device
JP2011257221A (en) Laser distance measurement apparatus
US10884111B2 (en) Distance measuring apparatus
US11047981B2 (en) Distance measurement device
US11029154B2 (en) Deflecting device and surveying instrument
US10901088B2 (en) Laser scanner with light
WO2021019902A1 (en) Laser radar
JP5044304B2 (en) Signal transfer device
JP5207948B2 (en) Machine with data transmission means between two machine parts capable of relative rotation
WO2021060919A1 (en) Lidar optical device and scanning method therefor
JP2016038291A (en) Absolute encoder, and survey instrument
JP2009163730A6 (en) Machine with data transmission means between two machine parts capable of relative rotation
US20160238525A1 (en) V-block refractometer
CN105717628A (en) Bore imaging system
JP2015114441A (en) Drive unit and optical equipment
JP7381969B2 (en) Optical wireless communication device and optical wireless communication method
US20170160103A1 (en) Optical measurement system, measurement method for errors of rotating platform, and two dimensional sine wave annulus grating
JPWO2010055880A1 (en) X-ray CT system
JP2009294036A (en) Visual axis directing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Ref document number: 5044304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees