JP2009009871A - Battery and its manufacturing method - Google Patents

Battery and its manufacturing method Download PDF

Info

Publication number
JP2009009871A
JP2009009871A JP2007171502A JP2007171502A JP2009009871A JP 2009009871 A JP2009009871 A JP 2009009871A JP 2007171502 A JP2007171502 A JP 2007171502A JP 2007171502 A JP2007171502 A JP 2007171502A JP 2009009871 A JP2009009871 A JP 2009009871A
Authority
JP
Japan
Prior art keywords
layer
electrode layer
battery
negative electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007171502A
Other languages
Japanese (ja)
Other versions
JP5104066B2 (en
Inventor
Hideaki Awata
英章 粟田
Katsuji Emura
勝治 江村
Kentaro Yoshida
健太郎 吉田
Taku Kamimura
卓 上村
Mitsuyasu Ogawa
光靖 小川
Rikizo Ikuta
力三 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007171502A priority Critical patent/JP5104066B2/en
Publication of JP2009009871A publication Critical patent/JP2009009871A/en
Application granted granted Critical
Publication of JP5104066B2 publication Critical patent/JP5104066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery with a high reliability which can dispense with a specific device for positioning or the like and can be manufactured efficiently in a simple manufacturing process as well and provide its manufacturing method. <P>SOLUTION: The battery is provided with an insulation film 1 and a battery pattern which is positioned on the one surface of the insulation film 1 and has a cathode layer 3, an electrolyte layer 4 and an anode layer 5. The electrolyte layer 4 extends in a longitudinal direction of the insulation film 1 and contacts with the cathode layer 3 and the anode layer 5 in different lapping portions respectively and is arranged between the cathode layer 3 and the anode layer 5, and the insulation film 1 is wound in a longitudinal direction and is housed in an outer can. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電池およびその製造方法に関し、より具体的には、信頼性の高い巻き電池およびその製造方法に関するものである。   The present invention relates to a battery and a method for manufacturing the same, and more specifically to a highly reliable wound battery and a method for manufacturing the same.

携帯用の電子機器に多様な電池が搭載される時代、電池には、常に軽量化、小型化または高エネルギー密度化が求められる。このような軽量化および高エネルギー密度化を図るため、たとえばリチウム電池において、(正極材/正極集電体)シートと、セパレータを含む電解質シートと、(負極材/負極集電体)シートとを重ねて渦巻き状に巻き、この渦巻き状の電池本体部を円筒形の金属ケースに収容する形態が用いられている。この場合、金属ケース上面に出る端子を正極端とし、金属ケース自身を負極端子とする。このような構成によれば、この電池に限定してみれば、形式上は高エネルギー密度化が可能となりそうであるが、実際のところは、電池形状が円柱形に限られ、また上記の方式で渦巻き状とされた電池本体部の容積が大きくなりスペース効率がそれほど向上しないという問題がある。   In the era when a variety of batteries are mounted on portable electronic devices, the batteries are always required to be lighter, smaller or have higher energy density. In order to achieve such weight reduction and high energy density, for example, in a lithium battery, a (positive electrode material / positive electrode current collector) sheet, an electrolyte sheet including a separator, and a (negative electrode material / negative electrode current collector) sheet A form is used in which a spiral battery body is housed in a cylindrical metal case. In this case, the terminal appearing on the upper surface of the metal case is the positive electrode end, and the metal case itself is the negative electrode terminal. According to such a configuration, if it is limited to this battery, it is likely that high energy density will be possible in terms of form. However, in reality, the battery shape is limited to a cylindrical shape, and the above method is used. Therefore, there is a problem in that the volume of the battery main body that is spiraled is increased and the space efficiency is not improved so much.

上記の問題を打開するために、渦巻き状の電池形態または櫛状の電池形態の層(渦巻き形態または櫛状形態の横断面薄層)をパターン化して、そのパターン層を気相プロセスで個別に形成し、これら個別層を何層も積層して、積層型渦巻き状電池または積層型櫛状電池とする構造が提案された(特許文献1)。   In order to overcome the above problems, a spiral battery-like or comb-like battery-like layer (swirl-like or comb-like thin cross-section thin layer) is patterned, and the pattern layer is individually processed by a gas phase process. A structure has been proposed in which a plurality of these individual layers are stacked to form a stacked spiral battery or a stacked comb battery (Patent Document 1).

特開平6−236768号公報JP-A-6-236768

上記の積層型渦巻き状電池は、複数枚の上記渦巻き状パターンを積層して一体化する際に、高度の位置決め精度を必要とし、信頼性の高い電池とするためには高精度の位置決め装置が必要である。また、上記積層型渦巻き状電池の製造にあたっては、複数枚の渦巻き状パターンのシートを製造する工程、前記シートを積層し一体化する工程、および積層させたシートの電極の集電構造を形成する工程が必要であり、生産性が低いという問題がある。   The stacked spiral battery requires a high degree of positioning accuracy when stacking and integrating a plurality of the spiral patterns, and a high-accuracy positioning device is required to obtain a highly reliable battery. is necessary. Further, in the production of the laminated spiral battery, a step of producing a plurality of spiral pattern sheets, a step of laminating and integrating the sheets, and a current collecting structure of electrodes of the laminated sheets are formed. There is a problem that a process is required and productivity is low.

本発明は、位置決め等のための特別の装置がなくても高い信頼性を確保でき、かつ簡単な製造プロセスにより効率よく製造することができる電池およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a battery that can ensure high reliability without a special device for positioning or the like, and can be efficiently manufactured by a simple manufacturing process, and a manufacturing method thereof.

本発明の電池は、外装缶と、変形可能で長尺の長い電気絶縁フィルム(以下、「絶縁フィルム」と記す)と、絶縁フィルムの一方の面に位置し、正極層、電解質層および負極層を有する、電池パターンとを備える。そして、電解質層は、絶縁フィルムの長手方向に延在し、正極層と負極層とにそれぞれ異なる重なる部分で接触して、正電極層と負極層との間に介在し、絶縁フィルムが、長手方向に捲回されて外装缶に収納されていることを特徴とする。   The battery of the present invention includes an outer can, a deformable and long electric insulating film (hereinafter referred to as “insulating film”), a positive electrode layer, an electrolyte layer, and a negative electrode layer located on one surface of the insulating film. A battery pattern. The electrolyte layer extends in the longitudinal direction of the insulating film, contacts the positive electrode layer and the negative electrode layer at different overlapping portions, and is interposed between the positive electrode layer and the negative electrode layer. It is wound in a direction and stored in an outer can.

上記の構成によれば、電池パターンが予め形成された絶縁フィルムを捲回して外装缶に収納するので、1種類のフィルム原反、すなわち電池パターンが形成された絶縁フィルム原反を捲回すればよく、簡単な製造プロセスにより、効率よく高い生産性で、信頼性の高い渦巻き状の電池を製造することができる。この電池では、電解質層が正極層と負極層との間に介在して、セパレータを用いる必要がないので、その分、電池本体部の容積を小型化することができ、また部品点数を減らす利点も得ることができる。なお、電解質層は、当然、固体電解質層である。   According to said structure, since the insulating film in which the battery pattern was formed beforehand is wound and accommodated in an exterior can, if one type of film raw material, ie, the insulating film raw material in which the battery pattern was formed, is wound. A highly reliable spiral battery can be manufactured efficiently and with high productivity by a simple manufacturing process. In this battery, the electrolyte layer is interposed between the positive electrode layer and the negative electrode layer, so that it is not necessary to use a separator. Therefore, the volume of the battery body can be reduced, and the number of parts can be reduced. Can also be obtained. The electrolyte layer is naturally a solid electrolyte layer.

また、上記の絶縁フィルムの長尺方向に延在する、正極層に接続する正側集電層と、負極層に接続する負側集電層とを備え、正側集電層および負側集電層は、長尺方向に延在する電解質層を間にして相手側に向かって櫛状に延びる櫛状部分を有し、正極層と負極層とは、それぞれ同じ極性の集電層の櫛状部分に重なって櫛型構造を形成することができる。この構成によって、正側および負側集電層は、絶縁フィルムの長尺方向に連続して延在するので、充放電に伴う正および負極層の体積膨張等に起因して、集電層との電気接続が途切れることがない。この結果、一層高い信頼性を得ることができる。さらに、上記の櫛型構造によって、正負の電極層が、電解質層を間に介在させて、相互に対向する電極面の密度を高めて、電池の充放電における電流密度を高めることができる。また、櫛型構造により、渦巻き状態で、同じ極性の電極が絶縁フィルムを介して重なって、膨張する箇所が何層も集中して重なる配置を避けることができる。   A positive current collecting layer connected to the positive electrode layer; and a negative current collecting layer connected to the negative electrode layer, the positive current collecting layer and the negative current collecting layer extending in the longitudinal direction of the insulating film. The electric layer has a comb-like portion extending in a comb shape toward the other side with an electrolyte layer extending in the longitudinal direction, and the positive electrode layer and the negative electrode layer are each a current collecting layer comb having the same polarity. A comb-shaped structure can be formed overlying the shaped portion. With this configuration, the positive and negative current collecting layers continuously extend in the longitudinal direction of the insulating film, and therefore, due to the volume expansion of the positive and negative electrode layers accompanying charging and discharging, There is no interruption in the electrical connection. As a result, higher reliability can be obtained. Furthermore, the above-described comb structure allows the positive and negative electrode layers to interpose the electrolyte layer, increase the density of the electrode surfaces facing each other, and increase the current density in charge / discharge of the battery. In addition, the comb-shaped structure can avoid an arrangement in which electrodes having the same polarity overlap with each other through an insulating film in a spiral state, and the portions to be expanded are concentrated and overlapped.

上記の絶縁フィルムは、電池パターンを内側にして捲回することができる。これによって、正負極層に含まれる活物質に常に圧縮応力を作用させることができ、充放電に伴って生じやすくなる活物質の脱落を防止することができる。   The insulating film can be wound with the battery pattern inside. Accordingly, a compressive stress can always be applied to the active material contained in the positive and negative electrode layers, and the active material that easily occurs with charge / discharge can be prevented from falling off.

上記の正極層および負極層がそれぞれ、同じ極性の電極層同士、絶縁フィルムを介して重なって多重配置とならないように構成することができる。これにより、電池の充放電に伴って生じる電極層の膨張が同一部分で重ならないようにでき、この結果、外装缶や正負電極層に大きな応力が作用するのを防止することができる。   Each of the positive electrode layer and the negative electrode layer can be configured so as not to overlap each other through electrode layers having the same polarity via an insulating film. As a result, the expansion of the electrode layer caused by charging / discharging of the battery can be prevented from overlapping at the same portion, and as a result, it is possible to prevent a large stress from acting on the outer can and the positive / negative electrode layer.

また、少なくとも正極層および負極層が、屈曲されないように絶縁フィルムが捲回されるようにするのがよい。これにより、屈曲部において正負電極層に含まれるそれぞれの活物質が脱落しやすくなる状態を防止することができる。この結果、より小さい曲げ半径が得られ、電池の高密度化を実現することが可能となる。   The insulating film is preferably wound so that at least the positive electrode layer and the negative electrode layer are not bent. Thereby, it is possible to prevent a state in which each active material included in the positive and negative electrode layers easily falls off at the bent portion. As a result, a smaller bending radius can be obtained, and it becomes possible to realize a higher density of the battery.

本発明の電池の製造方法は、変形可能で長尺の絶縁フィルムの一方の面に、正極層、電解質層および負極層を有する電池パターンを形成する工程と、電池パターンが形成された絶縁フィルムを捲回する工程とを備えることを特徴とする。   The battery manufacturing method of the present invention includes a step of forming a battery pattern having a positive electrode layer, an electrolyte layer and a negative electrode layer on one surface of a deformable and long insulating film, and an insulating film on which the battery pattern is formed. And a step of winding.

上記の構成により、位置決めのための特別の装置等を必要とせず、簡単化された製造プロセスにより高い生産性で、信頼性の高い渦巻き状の電池を製造することができる。   With the above configuration, a special battery for positioning or the like is not required, and a highly reliable spiral battery can be manufactured with high productivity by a simplified manufacturing process.

本発明の電池およびその製造方法によれば、位置決め等のための特別の装置を用いなくても高い信頼性を確保でき、かつ簡単な製造プロセスにより効率よく製造することができる。   According to the battery and the manufacturing method thereof of the present invention, high reliability can be secured without using a special device for positioning or the like, and the battery can be efficiently manufactured by a simple manufacturing process.

(実施の形態1)
図1は、本発明の実施の形態1における電池本体部10を説明するための図である。絶縁フィルム1の上には、幅方向の端に相対向するように並行して位置し、絶縁フィルム1の長尺方向に沿って延在する正側集電層2および負側集電層6がある。正側集電層2および負側集電層6は、ともに相手側に向かって櫛歯状に延びる櫛状部分を有する。その櫛状部分に重なって複数個の正極層3が、負側集電層22に向かって櫛歯状に延びており、また複数個の負極層5も、同様に櫛状部分の負側集電層6に重なって、正側集電層2に向かって櫛歯状に延びている。正極層3の複数の櫛歯と、負極層5の複数の櫛歯とは、交互に入り組んでおり、間に電解質層4を介在させて、対向している。電解質層4は、絶縁フィルム1上に位置する正極層3および絶縁フィルム1を覆っており、また負極層5および負側集電層6は、その電解質層4の上に形成されている。なお、後の実施の形態3〜4に見るように、電極層は櫛歯構造でなくてもよい。
(Embodiment 1)
FIG. 1 is a diagram for explaining a battery main body 10 according to Embodiment 1 of the present invention. On the insulating film 1, a positive current collecting layer 2 and a negative current collecting layer 6 that are positioned in parallel so as to face each other in the width direction and extend along the longitudinal direction of the insulating film 1. There is. Both the positive-side current collecting layer 2 and the negative-side current collecting layer 6 have comb-like portions extending in a comb-tooth shape toward the other side. A plurality of positive electrode layers 3 are overlapped with the comb-shaped portion and extend in a comb-tooth shape toward the negative current collecting layer 22, and a plurality of negative electrode layers 5 are similarly formed on the negative-side current collector of the comb-shaped portion. It overlaps with the electric layer 6 and extends in a comb shape toward the positive current collecting layer 2. The plurality of comb teeth of the positive electrode layer 3 and the plurality of comb teeth of the negative electrode layer 5 are alternately arranged and face each other with the electrolyte layer 4 interposed therebetween. The electrolyte layer 4 covers the positive electrode layer 3 and the insulating film 1 located on the insulating film 1, and the negative electrode layer 5 and the negative current collecting layer 6 are formed on the electrolyte layer 4. In addition, as seen in the following third to fourth embodiments, the electrode layer may not have a comb-tooth structure.

図2は、図1のII−II線に沿う断面図であり、また図3は図1のIII−III線に沿う断面図である。図2および図3より、電解質層4を挟んで、正極層3および正側集電層2は電解質層4の下側に、また負極層5および負側集電層6は電解質層4の上側に、それぞれ形成されている。このため、正極と負極とが接触して短絡することを、電解質層4の配置によって、より確実に防止することができる。また、正極層3と負極層5とが、電解質層4を挟んで近接して高い面密度で対向することによって、電池反応の効率を向上させることができる。   2 is a cross-sectional view taken along line II-II in FIG. 1, and FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2 and 3, the positive electrode layer 3 and the positive current collecting layer 2 are located below the electrolyte layer 4 and the negative electrode layer 5 and the negative current collecting layer 6 are located above the electrolyte layer 4 with the electrolyte layer 4 interposed therebetween. Each is formed. For this reason, it can prevent more reliably by the arrangement | positioning of the electrolyte layer 4 that a positive electrode and a negative electrode contact and short-circuit. Further, the positive electrode layer 3 and the negative electrode layer 5 are close to each other with the electrolyte layer 4 interposed therebetween and face each other with a high surface density, whereby the efficiency of the battery reaction can be improved.

図2における正負側集電層2,6の幅は、たとえば0.2mm〜0.5mm程度であり、絶縁フィルム1の表面から正極層3の表面までの高さ(正側集電層2と正極層3とを加えた厚み)は、たとえば0.05mm〜0.1mm程度である。また、電池が用いられる電子機器の仕様に応じて様々であるが、これらを包括して、絶縁フィルム1の幅はたとえば0.5cm〜20cm程度であり、また長尺の長さはたとえば5cm〜10m程度である。上記の各部分の寸法範囲は例示であり、上記の寸法範囲より小さくても、また大きくてもよい。   The width of the positive and negative current collecting layers 2 and 6 in FIG. 2 is, for example, about 0.2 mm to 0.5 mm, and the height from the surface of the insulating film 1 to the surface of the positive electrode layer 3 (with the positive current collecting layer 2 and The thickness including the positive electrode layer 3 is, for example, about 0.05 mm to 0.1 mm. Moreover, although it is various according to the specification of the electronic device in which the battery is used, the width of the insulating film 1 is, for example, about 0.5 cm to 20 cm, and the long length is, for example, 5 cm to It is about 10m. The dimensional range of each of the above portions is an example, and may be smaller or larger than the above dimensional range.

絶縁フィルム1上に形成された電池パターンは、捲回されて渦巻き状の電池本体部10とされ、図示しない外装缶に収納される。電池パターン側を内側にして絶縁フィルム1を捲回することにより、正負電極層3,5におけるそれぞれの活物質に圧縮応力を作用させることができ、活物質の脱落を防止することができる。また、上記の櫛歯構造の電池パターンでは、捲回につれて渦巻きの半径は大きくなるので、正極層3または負極層5の櫛歯が、絶縁フィルム1を介して常に同じ位置に重なることがない。このため、電池の充放電で同じように膨張する部分が何層も重なり合うことが防止でき、外装缶や電極層に大きな応力が作用することを防止できる。   The battery pattern formed on the insulating film 1 is wound into a spiral battery main body 10 and is housed in an unshown outer can. By winding the insulating film 1 with the battery pattern side inward, a compressive stress can be applied to each active material in the positive and negative electrode layers 3 and 5, and the falling off of the active material can be prevented. Further, in the battery pattern having the above-described comb-tooth structure, the radius of the spiral increases with the winding, so that the comb-teeth of the positive electrode layer 3 or the negative electrode layer 5 do not always overlap at the same position via the insulating film 1. For this reason, it can prevent that the part which expand | swells similarly by charging / discharging of a battery overlaps many layers, and can prevent that a big stress acts on an exterior can or an electrode layer.

次に、図1〜図3に示す電池本体部10の製造方法について説明する。絶縁フィルム1には、ポリフェニレンサルファイド(PPS:Poly Phenylene Sulfide)フィルムを用いる。PPSフィルム1上に、蒸着法により、正側集電層2のアルミニウム(Al)層を櫛歯状に蒸着し、その櫛歯状のAl層2の上に、正極層3をスクリーン印刷法で櫛歯状に形成する。このスクリーン印刷法では、コバルト酸リチウムを含んだ正極ペーストを用いる。次に、硫化物固体電解質層4を気相プロセスにより、櫛歯状の正極層3およびPPSフィルム1を覆うように形成する。次に、櫛歯状の正極層3の間の範囲の電解質層4上に、櫛歯状にリチウム(Li)を蒸着して負極層5とする。その櫛歯状の負極層5の上に、やはり櫛歯状になるように、銅層を蒸着によって形成して、負側集電層6とする。上記の方法により、絶縁フィルム1上に形成された電池パターンを得ることができる。   Next, a method for manufacturing the battery main body 10 shown in FIGS. 1 to 3 will be described. For the insulating film 1, a polyphenylene sulfide (PPS) film is used. On the PPS film 1, the aluminum (Al) layer of the positive current collecting layer 2 is vapor-deposited in a comb shape by vapor deposition, and the positive electrode layer 3 is formed on the comb-shaped Al layer 2 by screen printing. It is formed in a comb-teeth shape. In this screen printing method, a positive electrode paste containing lithium cobalt oxide is used. Next, the sulfide solid electrolyte layer 4 is formed by a vapor phase process so as to cover the comb-like positive electrode layer 3 and the PPS film 1. Next, lithium (Li) is vapor-deposited in a comb shape on the electrolyte layer 4 in a range between the comb-like positive electrode layers 3 to form the negative electrode layer 5. On the comb-like negative electrode layer 5, a copper layer is formed by vapor deposition so as to have a comb-like shape as a negative current collecting layer 6. By the above method, a battery pattern formed on the insulating film 1 can be obtained.

電池パターンが形成されたPPSフィルム1に張力を加えながら、芯の回りに捲回し、渦巻き状の電池本体部10を得る。このとき、図1に示すように、電池パターンの側を内側(芯側)になるように巻き取ると、活物質に圧縮応力が加わり、充放電の繰り返しによって膨張することがあっても、正極層2または負極層5から剥離しにくくなる。PPSフィルム1の巻き端に露出した正負の集電層2,6と、図示しない電極取り出し用のタブとを抵抗溶接により接続し、プレスすることにより、扁平状に捲回された電池パターンを含む絶縁フィルム1の電池部本体10を作製する。この捲回された電池部本体10を外装缶に収納することにより、電池を形成する。捲回された巻き姿は、外装缶の形状に合わせて、円柱状または角柱状とすることができる。外装缶には、負側集電層6に接続された電極取り出し用タブが電気的に接続されて、外装缶自身を負極端子として用いるようにするのがよい。   While applying tension to the PPS film 1 on which the battery pattern is formed, the PPS film 1 is wound around the core to obtain a spiral battery body 10. At this time, as shown in FIG. 1, when the battery pattern side is wound inward (core side), a compressive stress is applied to the active material, and the positive electrode may expand due to repeated charge and discharge. It becomes difficult to peel from the layer 2 or the negative electrode layer 5. Including a battery pattern wound in a flat shape by connecting and pressing the positive and negative current collecting layers 2 and 6 exposed at the winding end of the PPS film 1 and a tab for taking out an electrode (not shown) by resistance welding. The battery part body 10 of the insulating film 1 is produced. A battery is formed by storing the wound battery unit body 10 in an outer can. The wound winding form can be a columnar shape or a prismatic shape according to the shape of the outer can. It is preferable that an electrode take-out tab connected to the negative current collecting layer 6 is electrically connected to the outer can so that the outer can itself is used as a negative electrode terminal.

従来の渦巻き型電池では、セパレータを含む電解質フィルムの原反と、正極層フィルムの原反と、負極層フィルムの原反とを一つに巻いて、渦巻き状電池としていた。本発明においては、絶縁フィルム1上に、正極層3、負極層5、セパレータを含まない電解質層4などの電池パターンが形成されており、この電池パターンを含む絶縁フィルム1の原反1つを捲回すればよいので、捲回の製造プロセスは非常に簡単になる。また、上記のように、セパレータを用いる必要がなく、その分、渦巻き状とした電池本体部10の体積を小型化することができる。   In the conventional spiral battery, the raw material of the electrolyte film including the separator, the raw material of the positive electrode layer film, and the raw material of the negative electrode layer film are wound together to form a spiral battery. In the present invention, a battery pattern such as a positive electrode layer 3, a negative electrode layer 5, and an electrolyte layer 4 that does not include a separator is formed on the insulating film 1, and one original fabric of the insulating film 1 including this battery pattern is formed. The winding manufacturing process becomes very simple because it only has to be wound. In addition, as described above, it is not necessary to use a separator, and accordingly, the volume of the battery body portion 10 that is spiraled can be reduced in size.

次に、上記の電池本体部10を形成する部分の材料の一般的な説明を行う。これらの材料は、上記の実施の形態1だけでなく、このあと説明する実施の形態においても共通して適用できる。正極層3は、リチウムイオンの吸蔵および放出を行う活物質を含む層で構成すればよい。とくに酸化物、たとえばコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、オリビン型鉄リン酸リチウム(LiFePO)等を、単体または混合物で用いることができる。これら正極活物質は、平均径1μm〜数10μmの粉末状で用いるのがよい。導電粉末としては、平均径0.1μm〜1μmのグラファイト粉末が好ましい。結着剤(バインダー)には、ポリフッ化ビニリデンやテフロンを用いる。そのほか、正極層は、硫化物、たとえば硫黄(S)、硫化リチウム、硫化チタニウム(TiS)等を、単体または混合物で用いることができる。正極層3は、湿式法や乾式法を用いて形成するのがよい。湿式法には、ゾルゲル法、コロイド法、キャスティング法等があり、また乾式法には、気相堆積法である蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を挙げることができる。湿式法のいずれかの方法を用い、パターニングにはスクリーン印刷法を用いるとき、上記の正極粉末、導電粉末、バインダー等をN−メチル−2ピロリドン等の溶媒に分散し、所定のパターンに塗布した後、150℃程度に加熱して乾燥する。これにより多孔質の正極層3が形成される。 Next, a general description of the material of the part forming the battery body 10 will be given. These materials can be applied not only to the first embodiment described above but also to the embodiments described later. The positive electrode layer 3 may be composed of a layer containing an active material that occludes and releases lithium ions. In particular, oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), olivine-type lithium iron phosphate (LiFePO 4 ), etc. are used alone or in a mixture. Can do. These positive electrode active materials are preferably used in the form of powder having an average diameter of 1 μm to several tens of μm. As the conductive powder, graphite powder having an average diameter of 0.1 μm to 1 μm is preferable. Polyvinylidene fluoride or Teflon is used as the binder (binder). In addition, for the positive electrode layer, sulfides such as sulfur (S), lithium sulfide, titanium sulfide (TiS 2 ), and the like can be used alone or as a mixture. The positive electrode layer 3 is preferably formed using a wet method or a dry method. Examples of the wet method include a sol-gel method, a colloid method, and a casting method. Examples of the dry method include a vapor deposition method, an ion plating method, a sputtering method, and a laser ablation method, which are vapor deposition methods. When any one of the wet methods is used and the screen printing method is used for patterning, the above positive electrode powder, conductive powder, binder and the like are dispersed in a solvent such as N-methyl-2-pyrrolidone and applied in a predetermined pattern. Then, it is heated to about 150 ° C. and dried. Thereby, the porous positive electrode layer 3 is formed.

負極層5も、正極層3と同様に、リチウムイオンの吸蔵および放出を行う活物質を含む層で構成する。たとえば負極層5として、Li金属およびLiと合金を形成することができる金属等を、単体または混合物で形成するのがよい。Liと合金を形成できる金属(合金化金属)としては、アルミニウム(Al)、シリコン(Si)、錫(Sn)、ビスマス(Bi)、インジウム(In)等の単体または混合物を挙げることができる。上記のような元素を含む負極層5は、負極層5自体に集電体としての機能を持つことができ、かつリチウムイオンの吸蔵・放出能力が高く、好ましい。とくにシリコン(Si)はリチウムを吸蔵・放出する能力がグラファイト(黒鉛)よりも大きいためエネルギー密度を高くすることができる。   Similarly to the positive electrode layer 3, the negative electrode layer 5 is also composed of a layer containing an active material that occludes and releases lithium ions. For example, as the negative electrode layer 5, it is preferable to form a single metal or a mixture of Li metal and a metal capable of forming an alloy with Li. Examples of the metal (alloyed metal) that can form an alloy with Li include simple substances or mixtures of aluminum (Al), silicon (Si), tin (Sn), bismuth (Bi), indium (In), and the like. The negative electrode layer 5 containing the above elements is preferable because the negative electrode layer 5 itself can have a function as a current collector and has a high ability to occlude and release lithium ions. In particular, since silicon (Si) has a higher ability to occlude and release lithium than graphite, the energy density can be increased.

また、負極層にLi金属との合金相を用いることで、Li金属と合金化した負極層5と、Liイオンの電解質層4との界面におけるLiイオンの移動抵抗が抑制される効果を得ることができ、第1サイクル目の充電初期における合金化金属の高抵抗化が緩和される。さらに、合金化金属の金属単体を負極層とした場合には、第1サイクル目の充放電サイクルにおいて、充電容量に対して放電容量が大幅に小さくなる問題があるが、予めLi金属と合金化金属とを合金化したものを負極層5に用いることにより、上記の不可逆容量はほとんどなくなる。これより、正極活物質を不可逆容量分だけ余分に装備する必要がなくなり、薄膜電池の容量密度を向上させることができる。負極層5には集電層を設けずに、負極層(負極活物質)自体に集電層の機能を持たせることもでき、負極層の集電層を省略することができて好ましい。   Also, by using an alloy phase with Li metal for the negative electrode layer, an effect of suppressing the movement resistance of Li ions at the interface between the negative electrode layer 5 alloyed with Li metal and the electrolyte layer 4 of Li ions can be obtained. And the increase in resistance of the alloyed metal at the initial stage of charging in the first cycle is alleviated. Furthermore, in the case where the alloyed metal simple substance is used as the negative electrode layer, there is a problem that the discharge capacity becomes significantly smaller than the charge capacity in the charge / discharge cycle of the first cycle. By using the alloyed metal as the negative electrode layer 5, the above irreversible capacity is almost eliminated. As a result, it is not necessary to equip the cathode active material with an irreversible capacity, and the capacity density of the thin film battery can be improved. The negative electrode layer 5 is preferably provided with no current collecting layer, and the negative electrode layer (negative electrode active material) itself can have the function of the current collecting layer, and the current collecting layer of the negative electrode layer can be omitted.

電解質層4はLiイオン導電体であり、電解質層4のLiイオン伝導度(20℃)が10−5S/cm以上あり、かつLiイオン輸率が0.999以上であることが望ましい。とくにLiイオン伝導度が10−4S/cm以上あり、かつLiイオン輸率が0.9999以上であればより好ましい。電解質層4の材料は硫化物系がよく、Li、P、Sを含む固体電解質層が好ましく、さらに酸素を含有していてもよい。 It is desirable that the electrolyte layer 4 is a Li ion conductor, the Li ion conductivity (20 ° C.) of the electrolyte layer 4 is 10 −5 S / cm or more, and the Li ion transport number is 0.999 or more. In particular, it is more preferable that the Li ion conductivity is 10 −4 S / cm or more and the Li ion transport number is 0.9999 or more. The material of the electrolyte layer 4 is preferably a sulfide-based material, preferably a solid electrolyte layer containing Li, P, and S, and may further contain oxygen.

負極層5および電解質層4は、気相堆積法で形成されるのがよい。気相堆積法としては、PVD(物理的気相合成法:Physical Vapor Deposition)、CVD(化学気相合成法:Chemical Vapor Deposition)を挙げることができる。具体的には、PVD法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザーアブレーション法を、またCVD法としては、熱CVD法、プラズマCVD法を挙げることができる。   The negative electrode layer 5 and the electrolyte layer 4 are preferably formed by a vapor deposition method. Examples of the vapor deposition method include PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition). Specifically, examples of the PVD method include a vacuum deposition method, a sputtering method, an ion plating method, and a laser ablation method, and examples of the CVD method include a thermal CVD method and a plasma CVD method.

正側集電層2には金属箔を用いることもできる。このほか、正側集電層2の具体例としては、アルミニウム(Al)、ニッケル(Ni)、これらの合金、ステンレス等を挙げることができる。また、負側集電層6には、たとえば銅(Cu)、ニッケル(Ni)、鉄(Fe)、クロム(Cr)の単体またはこれら合金を用いるのがよい。上記の金属は、リチウム(Li)と金属間化合物を形成しないため、リチウムとの金属間化合物による不具合、具体的には、充放電による膨張・収縮によって、負極層が構造破壊を起こし、集電性能が低下したり、負極層の接合性が低下して負極層が集電層から脱落し易くなるという不具合を防止できる。上記の正側集電層2および負側集電層6は、PVD法やCVD法で形成することができる。とくに所定のパターンに集電層を形成する場合、適宜なマスクを用いることで、容易に所定のパターンのマスクを形成することができる。   A metal foil can also be used for the positive current collecting layer 2. In addition, specific examples of the positive current collecting layer 2 include aluminum (Al), nickel (Ni), alloys thereof, and stainless steel. For the negative current collecting layer 6, for example, a simple substance of copper (Cu), nickel (Ni), iron (Fe), chromium (Cr) or an alloy thereof may be used. Since the above metal does not form an intermetallic compound with lithium (Li), the negative electrode layer undergoes structural destruction due to defects due to an intermetallic compound with lithium, specifically, expansion / contraction due to charge / discharge, and current collection It is possible to prevent a problem that the performance is deteriorated or the bondability of the negative electrode layer is lowered and the negative electrode layer is easily dropped from the current collecting layer. The positive current collecting layer 2 and the negative current collecting layer 6 can be formed by a PVD method or a CVD method. In particular, when the current collecting layer is formed in a predetermined pattern, the mask having the predetermined pattern can be easily formed by using an appropriate mask.

(実施の形態2)
図4は、本発明の実施の形態2における電池本体部10を説明する図である。この電池本体部10では、電気絶縁性のPPSフィルム1の上に、正側集電層2と負側集電層6とが、櫛歯状に複数の櫛歯を相手側の集電層に延ばしており、その上に重ねて、極性を同じくする電極層3,5が、櫛型構造を形成している。これら、正側集電層2および正極層3と、負側集電層6および負極層5との間のスペースを充填するように、電解質層4が、PPSフィルム1と、上記の集電層2,6および正負極層3,5とを被覆している。
(Embodiment 2)
FIG. 4 is a diagram for explaining the battery main body 10 according to Embodiment 2 of the present invention. In this battery body 10, a positive current collecting layer 2 and a negative current collecting layer 6 are arranged on an electrically insulating PPS film 1, and a plurality of comb teeth are formed as a mating current collecting layer. The electrode layers 3 and 5 having the same polarity are formed so as to overlap with each other and form a comb structure. The electrolyte layer 4 includes the PPS film 1 and the current collecting layer so as to fill the space between the positive current collecting layer 2 and the positive electrode layer 3 and the negative side current collecting layer 6 and the negative electrode layer 5. 2 and 6 and positive and negative electrode layers 3 and 5 are covered.

図5は、図4のV−V線に沿う断面図であり、また図6は図4のVI−VI線に沿う断面図である。図5および図6に示すように、正極層3および負極層5は、ともに電解質層4の下面側に位置しており、正負極間のスペースを充填する電解質層4が、正負極間の短絡を防止している。この点が、実施の形態1の電池本体部と相違するだけで、その他の構成は同じである。この構成の相違によれば、電池パターンの形成が、実施の形態1よりも簡単化される。ただし、正負極間の短絡防止のために、正負極間のスペースを電解質層4によって、確実に充填しなければならない。   5 is a cross-sectional view taken along line VV in FIG. 4, and FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. As shown in FIGS. 5 and 6, the positive electrode layer 3 and the negative electrode layer 5 are both located on the lower surface side of the electrolyte layer 4, and the electrolyte layer 4 filling the space between the positive and negative electrodes is short-circuited between the positive and negative electrodes. Is preventing. This point is different from the battery main body of the first embodiment, and the other configurations are the same. According to this difference in configuration, the formation of the battery pattern is simplified as compared with the first embodiment. However, in order to prevent a short circuit between the positive and negative electrodes, the space between the positive and negative electrodes must be reliably filled with the electrolyte layer 4.

(実施の形態3)
図7は、本発明の実施の形態3における電池本体部10を示す図である。また、図8は、図7のIIIV−IIIV線に沿う断面図である。この電池本体部10の電池パターンは、櫛型構造ではなく、図8に示すように、絶縁フィルム1の長尺方向に並行して延在する正極層3および負極層5によって形成される。絶縁フィルム1、正負極層3,5および正負側集電僧2,6を形成する材料は、実施の形態1で説明した材料と同じであり、製造方法も負極層5と負側集電層6の形成時期の前後が逆転するが、その他は同じである。
(Embodiment 3)
FIG. 7 is a diagram showing battery main body 10 according to Embodiment 3 of the present invention. 8 is a cross-sectional view taken along line IIIV-IIIV in FIG. The battery pattern of the battery body 10 is not a comb structure, but is formed by the positive electrode layer 3 and the negative electrode layer 5 extending in parallel with the longitudinal direction of the insulating film 1 as shown in FIG. The materials for forming the insulating film 1, the positive and negative electrode layers 3 and 5, and the positive and negative current collectors 2 and 6 are the same as those described in the first embodiment, and the manufacturing method is also the negative electrode layer 5 and the negative current collector layer. Before and after the formation time of 6 is reversed, the others are the same.

図8によれば、正負極層3,5は、電解質層4を挟んで、近接して相対向しているので、電池反応に関与する電極の面密度を大きくとることができる。また、電池パターンを内側にして、絶縁フィルム1を捲回することによって、正負活物質に圧縮応力を作用することができ、上記活物質の脱落を効果的に防止することができる。また、電池パターンが、櫛型構造と異なり簡単であるので、電池パターンの形成も容易である。   According to FIG. 8, since the positive and negative electrode layers 3 and 5 are close to each other with the electrolyte layer 4 interposed therebetween, the surface density of the electrodes involved in the battery reaction can be increased. Moreover, by winding the insulating film 1 with the battery pattern on the inside, a compressive stress can be applied to the positive and negative active materials, and the active material can be effectively prevented from falling off. In addition, since the battery pattern is simple unlike the comb structure, it is easy to form the battery pattern.

(実施の形態4)
図9は、本発明の実施の形態4における電池本体部10を説明する図である、また、図10は、図9のX−X線に沿う断面図である。本実施の形態では、絶縁フィルム1の、幅中央に負極層5および負側集電層6を配置して、長尺方向に延在させ、また幅の両端に正極層3および正側集電層2を配置して、やはり長尺方向に延在させている。正極層3と、負極層との間のスペースを、電解質層4が充填している。
(Embodiment 4)
FIG. 9 is a diagram illustrating battery main body 10 according to Embodiment 4 of the present invention, and FIG. 10 is a cross-sectional view taken along line XX of FIG. In the present embodiment, the negative electrode layer 5 and the negative current collector layer 6 are disposed in the center of the width of the insulating film 1 and extend in the longitudinal direction, and the positive electrode layer 3 and the positive current collector are disposed at both ends of the width. The layer 2 is arranged and also extends in the longitudinal direction. The electrolyte layer 4 fills the space between the positive electrode layer 3 and the negative electrode layer.

図10によれば、電池パターンを内側にして、絶縁フィルム1を捲回することによって、正負活物質に圧縮応力を作用することができ、上記活物質の脱落を効果的に防止することができる。また、電池パターンが、櫛型構造と異なり簡単であるので、電池パターンの形成も容易である。また、正極層3、正側集電層2、負極層5および負側集電層6は、すべて電解質層4に被覆されており、露出する部分がない。このため、短絡等が確実に防止される。   According to FIG. 10, by winding the insulating film 1 with the battery pattern on the inside, a compressive stress can be applied to the positive and negative active materials, and the active material can be effectively prevented from falling off. . In addition, since the battery pattern is simple unlike the comb structure, it is easy to form the battery pattern. Moreover, the positive electrode layer 3, the positive current collecting layer 2, the negative electrode layer 5, and the negative current collecting layer 6 are all covered with the electrolyte layer 4, and there is no exposed portion. For this reason, a short circuit etc. are prevented reliably.

しかし、捲回した渦巻き状態において、絶縁フィルム1を介して同じ電極層が重なって配置されるため、同じように膨張する部分が幾重にも重ねられることになるので、この点について配慮が必要である。   However, since the same electrode layer is disposed over the insulating film 1 in the wound spiral state, the same expanding portions are overlapped, and thus this point needs to be taken into consideration. is there.

図11は、本実施の形態における電池パターンの変形例を示す図である。この電池パターンによれば、正極層3と負極層5とは、電解質層4の逆の側に位置するので、短絡等は、負極層5や負側集電層6が露出していても、確実に防止される。   FIG. 11 is a diagram showing a modification of the battery pattern in the present embodiment. According to this battery pattern, since the positive electrode layer 3 and the negative electrode layer 5 are located on the opposite sides of the electrolyte layer 4, even if the negative electrode layer 5 or the negative current collecting layer 6 is exposed, It is surely prevented.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明の電池およびその製造方法によれば、簡単な製造工程により信頼性の高い携帯機器用の電池を生産性よく製造することができる。   According to the battery and the manufacturing method thereof of the present invention, a highly reliable battery for portable equipment can be manufactured with high productivity by a simple manufacturing process.

本発明の実施の形態1における電池本体部を示す図である。It is a figure which shows the battery main-body part in Embodiment 1 of this invention. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of FIG. 図1のIII−III線に沿う断面図である。It is sectional drawing which follows the III-III line of FIG. 本発明の実施の形態2における電池本体部を示す図である。It is a figure which shows the battery main-body part in Embodiment 2 of this invention. 図4のV−V線に沿う断面図である。It is sectional drawing which follows the VV line of FIG. 図4のVI−VI線に沿う断面図である。It is sectional drawing which follows the VI-VI line of FIG. 本発明の実施の形態3における電池本体部を示す図である。It is a figure which shows the battery main-body part in Embodiment 3 of this invention. 図7のIIIV−IIIV線に沿う断面図である。It is sectional drawing which follows the IIIV-IIIV line | wire of FIG. 本発明の実施の形態4における電池本体部を示す図である。It is a figure which shows the battery main-body part in Embodiment 4 of this invention. 図9のX−X線に沿う断面図である。It is sectional drawing which follows the XX line of FIG. 実施の形態4の電池パターンの変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a modification of the battery pattern of the fourth embodiment.

符号の説明Explanation of symbols

1 絶縁フィルム(PPSフィルム)、2 正側集電層、3 正極層、4 電解質層、5 負極層、6 負側集電層、10 電池本体部。
DESCRIPTION OF SYMBOLS 1 Insulating film (PPS film), 2 Positive side current collection layer, 3 Positive electrode layer, 4 Electrolyte layer, 5 Negative electrode layer, 6 Negative side current collection layer, 10 Battery main-body part.

Claims (6)

外装缶と、
変形可能で長尺の電気絶縁フィルムと、
前記電気絶縁フィルムの一方の面に位置し、正極層、電解質層および負極層を有する、電池パターンとを備え、
前記電解質層は、前記電気絶縁フィルムの長尺方向に延在し、前記正極層と負極層とにそれぞれ異なる重なる部分で接触して、正極層と負極層との間に介在し、
前記電気絶縁フィルムが、前記長尺方向に捲回されて前記外装缶に収納されていることを特徴とする、電池。
An outer can,
Deformable and long electrical insulation film,
Located on one surface of the electrical insulating film, and having a positive electrode layer, an electrolyte layer, and a negative electrode layer, and a battery pattern,
The electrolyte layer extends in the longitudinal direction of the electrical insulating film, contacts the positive electrode layer and the negative electrode layer at different overlapping portions, and is interposed between the positive electrode layer and the negative electrode layer,
The battery, wherein the electrical insulating film is wound in the longitudinal direction and stored in the outer can.
前記電気絶縁フィルムの長尺方向に延在する、前記正極層に接続する正側集電層と前記負極層に接続する負側集電層とを備え、前記正側集電層および負側集電層は、前記長尺方向に延在する電解質層を間にして相手側に向かって櫛状に延びる櫛状部分を有し、前記正極層と前記負極層とは、それぞれ同じ極性の前記集電層の櫛状部分に重なって櫛型構造を形成していることを特徴とする、請求項1に記載の電池。   A positive current collecting layer connected to the positive electrode layer and a negative current collecting layer connected to the negative electrode layer, the positive current collecting layer and the negative current collecting layer extending in the longitudinal direction of the electrical insulating film; The electric layer has a comb-like portion extending in a comb shape toward the other side with the electrolyte layer extending in the longitudinal direction in between, and the positive electrode layer and the negative electrode layer have the same polarity, respectively. The battery according to claim 1, wherein a comb-shaped structure is formed so as to overlap with a comb-shaped portion of the electric layer. 前記電気絶縁フィルムは、前記電池パターンを内側にして捲回されていることを特徴とする、請求項1または2に記載の電池。   The battery according to claim 1, wherein the electrical insulating film is wound with the battery pattern inside. 前記正極層および負極層がそれぞれ、同じ極性の電極層同士、前記電気絶縁フィルムを介して重なって多重配置とならないように構成されていることを特徴とする、請求項1〜3のいずれかに記載の電池。   The positive electrode layer and the negative electrode layer are configured so that electrode layers having the same polarity do not overlap with each other via the electrical insulating film, and are not arranged in multiples. The battery described. 少なくとも前記正極層および前記負極層が、屈曲されないように前記電気絶縁フィルムが捲回されていることを特徴とする、請求項1〜4のいずれかに記載の電池。   The battery according to any one of claims 1 to 4, wherein the electrically insulating film is wound so that at least the positive electrode layer and the negative electrode layer are not bent. 変形可能で長尺の電気絶縁フィルムの一方の面に、正極層、電解質層および負極層を有する電池パターンを形成する工程と、
前記電池パターンが形成された電気絶縁フィルムを捲回する工程とを備えることを特徴とする、電池の製造方法。
Forming a battery pattern having a positive electrode layer, an electrolyte layer, and a negative electrode layer on one surface of a deformable and long electrical insulating film; and
And a step of winding the electrically insulating film on which the battery pattern is formed.
JP2007171502A 2007-06-29 2007-06-29 battery Expired - Fee Related JP5104066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171502A JP5104066B2 (en) 2007-06-29 2007-06-29 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171502A JP5104066B2 (en) 2007-06-29 2007-06-29 battery

Publications (2)

Publication Number Publication Date
JP2009009871A true JP2009009871A (en) 2009-01-15
JP5104066B2 JP5104066B2 (en) 2012-12-19

Family

ID=40324743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171502A Expired - Fee Related JP5104066B2 (en) 2007-06-29 2007-06-29 battery

Country Status (1)

Country Link
JP (1) JP5104066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018785A (en) * 2010-07-07 2012-01-26 Dainippon Screen Mfg Co Ltd Battery electrode manufacturing method, battery manufacturing method, battery, vehicle and electronic equipment
JP2013165267A (en) * 2012-01-20 2013-08-22 Korea Advanced Inst Of Sci Technol Film-type supercapacitor and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132064A (en) * 1987-08-07 1989-05-24 Nippon Telegr & Teleph Corp <Ntt> Secondary battery and its manufacture
JPH0260071A (en) * 1988-08-25 1990-02-28 Shin Kobe Electric Mach Co Ltd Manufacture of thin secondary battery
JPH03116661A (en) * 1989-09-29 1991-05-17 Shin Kobe Electric Mach Co Ltd Solid electrolyte assembled-type battery
JPH04104479A (en) * 1990-08-21 1992-04-06 Toyo Takasago Kandenchi Kk Nonaqueous electrolyte secondary battery
JPH10270068A (en) * 1997-03-27 1998-10-09 Mitsubishi Cable Ind Ltd Rectangular battery and its manufacture
JP2001155775A (en) * 1999-11-30 2001-06-08 Mitsubishi Chemicals Corp Flat wound type cell and its fabrication method
JP2006147210A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Secondary battery and production method therefor
JP2006261008A (en) * 2005-03-18 2006-09-28 Toshiba Corp Inorganic solid electrolyte battery and manufacturing method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132064A (en) * 1987-08-07 1989-05-24 Nippon Telegr & Teleph Corp <Ntt> Secondary battery and its manufacture
JPH0260071A (en) * 1988-08-25 1990-02-28 Shin Kobe Electric Mach Co Ltd Manufacture of thin secondary battery
JPH03116661A (en) * 1989-09-29 1991-05-17 Shin Kobe Electric Mach Co Ltd Solid electrolyte assembled-type battery
JPH04104479A (en) * 1990-08-21 1992-04-06 Toyo Takasago Kandenchi Kk Nonaqueous electrolyte secondary battery
JPH10270068A (en) * 1997-03-27 1998-10-09 Mitsubishi Cable Ind Ltd Rectangular battery and its manufacture
JP2001155775A (en) * 1999-11-30 2001-06-08 Mitsubishi Chemicals Corp Flat wound type cell and its fabrication method
JP2006147210A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Secondary battery and production method therefor
JP2006261008A (en) * 2005-03-18 2006-09-28 Toshiba Corp Inorganic solid electrolyte battery and manufacturing method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018785A (en) * 2010-07-07 2012-01-26 Dainippon Screen Mfg Co Ltd Battery electrode manufacturing method, battery manufacturing method, battery, vehicle and electronic equipment
JP2013165267A (en) * 2012-01-20 2013-08-22 Korea Advanced Inst Of Sci Technol Film-type supercapacitor and manufacturing method thereof
US8951306B2 (en) 2012-01-20 2015-02-10 Korea Advanced Institute Of Science And Technology Film-type supercapacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP5104066B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP6027136B2 (en) Electrode assembly manufacturing method and electrode assembly manufactured using the same
KR20210082455A (en) Battery with tapless electrode
JP3993223B2 (en) battery
JP4038699B2 (en) Lithium ion battery
US20210135276A1 (en) Coin-shaped battery and method for producing same
JP5955721B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2013120717A (en) All-solid-state battery
JP2013004421A (en) Lithium ion secondary battery
JP6362440B2 (en) Secondary battery
JP5190762B2 (en) Lithium battery
CN109891640B (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5104066B2 (en) battery
US20210384549A1 (en) All-solid-state battery
JP2009032597A (en) Lithium battery
JP7225287B2 (en) SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
JP5505800B2 (en) Secondary battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JP2018060699A (en) Manufacturing method for laminated secondary battery
CN115428187A (en) Secondary electrochemical lithium ion cell
JP2013120718A (en) All-solid-state battery
JP5829564B2 (en) Electrode structure and power storage device using the same
JP5093666B2 (en) Lithium battery
WO2018154987A1 (en) Secondary battery and method for producing same
JP6323166B2 (en) All solid state secondary battery
JP7326067B2 (en) unit battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees