JP2009009795A - Ceramic heater - Google Patents

Ceramic heater Download PDF

Info

Publication number
JP2009009795A
JP2009009795A JP2007169240A JP2007169240A JP2009009795A JP 2009009795 A JP2009009795 A JP 2009009795A JP 2007169240 A JP2007169240 A JP 2007169240A JP 2007169240 A JP2007169240 A JP 2007169240A JP 2009009795 A JP2009009795 A JP 2009009795A
Authority
JP
Japan
Prior art keywords
temperature
embedded
ceramic heater
thermocouple
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007169240A
Other languages
Japanese (ja)
Other versions
JP5009064B2 (en
Inventor
Tetsuo Kitabayashi
徹夫 北林
Toshiya Umeki
俊哉 梅木
Chikashi Saito
千可士 齋藤
Hironori Ishida
弘徳 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2007169240A priority Critical patent/JP5009064B2/en
Publication of JP2009009795A publication Critical patent/JP2009009795A/en
Application granted granted Critical
Publication of JP5009064B2 publication Critical patent/JP5009064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To greatly simplify and reduce cost of a ceramic heater by eliminating restraint on a place where its temperature can be measured or on a device structure, and raise accuracy of temperature measurement and precision of temperature control. <P>SOLUTION: The ceramic heater is provided with a flat-plate pedestal made of ceramics with a plurality of exoergic resistive elements buried, a plurality of exoergic resistive element regions formed at burial positions of the plurality of exoergic resistive elements, and at least one temperature-measuring element buried in each exoergic resistive element region. A volume resistivity of the ceramics at use temperature is to be 10E+08 Ω cm or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主に半導体プロセスに係り、半導体基板を所定のプロセス温度に加熱、保持するヒーターに関する発明である。 The present invention mainly relates to a semiconductor process, and relates to a heater that heats and holds a semiconductor substrate at a predetermined process temperature.

半導体プロセス用ヒーターとしてセラミックスヒーターが多くのプロセスに用いられてきた。近年、ウエハの処理精度は高度化しており、ウエハを加熱する際の温度制御の要求は非常に厳しくなっている。そこで、ウエハを載置する載置面の温度制御精度を高めるために、複数の発熱抵抗体を載置部に埋設し、各発熱抵抗体を独立して制御させるマルチゾーン加熱装置が提案されている(例えば特許文献1)。このマルチゾーン加熱装置では、少なくとも二つの別々の加熱ゾーンで、それぞれ独立した制御を可能にしており、従来技術のシングルゾーン加熱装置と比較して載置面の温度制御を精度良く行うことができるという効果がある。また、この装置では、パイロメータ等の温度センサをチャンバーの外面の窓内に配置することにより載置部の温度を測定しながら制御する方法が採用されている。
特許第3319593号公報
Ceramic heaters have been used in many processes as semiconductor process heaters. In recent years, the accuracy of wafer processing has become higher, and the requirement for temperature control when heating the wafer has become very strict. Therefore, in order to increase the temperature control accuracy of the mounting surface on which the wafer is mounted, a multi-zone heating device has been proposed in which a plurality of heating resistors are embedded in the mounting portion and each heating resistor is controlled independently. (For example, Patent Document 1). In this multi-zone heating device, independent control is possible in at least two separate heating zones, and the temperature control of the mounting surface can be performed more accurately than in the conventional single-zone heating device. There is an effect. Further, this apparatus employs a method in which a temperature sensor such as a pyrometer is arranged in a window on the outer surface of the chamber and is controlled while measuring the temperature of the mounting portion.
Japanese Patent No. 3319593

しかしながら、このようなパイロメータによる測定では、測温できる場所や装置構造に制約があり、また、放射率の設定など実温度の測定には較正が必要であり、非常に手間がかかった。さらに、特に半導体プロセスのなかでもエッチングや成膜装置の場合には、窓材の腐食や付着物が生じるため、頻繁に窓材の交換や洗浄が必要であり、測温環境を維持することが困難であった。したがって、半導体プロセスのような環境下では、パイロメータによる測温に基づいてマルチゾーン制御することは非常に難しかった。さらに装置のコストが高くなるという問題もあった。 However, in such a pyrometer measurement, there are restrictions on the place where the temperature can be measured and the structure of the apparatus, and calibration of the actual temperature measurement such as setting of emissivity is very troublesome. Furthermore, especially in the case of an etching or film forming apparatus in a semiconductor process, the window material is corroded and adhered, so that the window material must be frequently replaced and cleaned, and the temperature measurement environment can be maintained. It was difficult. Therefore, in an environment such as a semiconductor process, it is very difficult to perform multi-zone control based on temperature measurement by a pyrometer. There is also a problem that the cost of the apparatus becomes high.

本発明者らは、上述の問題を解決するために鋭意研究した結果、以下の発明をするに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have made the following invention.

すなわち、本発明は、複数の発熱抵抗体が埋設されたセラミックスからなる平板状の載置部と、前記複数の発熱抵抗体の埋設位置に形成された複数の発熱抵抗体領域と、
各発熱抵抗体領域に埋設された少なくとも一つの測温素子と、を備えることを特徴とするセラミックスヒーターを提供するものである。
That is, the present invention is a plate-like mounting portion made of ceramics embedded with a plurality of heating resistors, a plurality of heating resistor regions formed at the embedded position of the plurality of heating resistors,
A ceramic heater comprising: at least one temperature measuring element embedded in each heating resistor region.

本発明者らは、上述のように、複数の発熱抵抗体領域の各領域について、一つの領域に少なくとも一つの測温素子を埋設することにより、セラミックスヒーターの温度制御が精密に行い得ることを見出し、発明をするに至った。 As described above, the present inventors have found that the temperature control of the ceramic heater can be precisely performed by embedding at least one temperature measuring element in one region for each of the plurality of heating resistor regions. Heading and inventing.

前記測温素子は、熱電対であることを特徴とする。また、前記熱電対は、発熱抵抗体から0.5mm以上、さらに望ましくは2mm以上離れた位置に埋設されることを特徴とする。熱電対の起電力は発熱抵抗体に印加される電圧に比べて小さいため、干渉を受けて測温にズレが生じ易い。したがって、精度良く測温するためには、上記所定の位置に埋設することが望ましい。さらに干渉を受けにくくするには、使用温度における体積抵抗率が10E+08Ω・cm以上であるセラミックス材料で載置部を構成することが望ましい。このような物性を有するセラミックスヒーターの載置部の材質としては、窒化アルニウム、アルミナ、窒化ケイ素、窒化ホウ素、イットリアが好適である。使用温度としては、800℃以下が好ましい。温度が高すぎると上記のようなセラミックスを用いても体積抵抗率が低下するため測温のズレが大きくなるためである。なお、「10E+08」は「10」を示す。 The temperature measuring element is a thermocouple. The thermocouple is embedded in a position separated from the heating resistor by 0.5 mm or more, more preferably 2 mm or more. Since the electromotive force of the thermocouple is smaller than the voltage applied to the heating resistor, the temperature measurement is likely to be shifted due to interference. Therefore, it is desirable to embed in the predetermined position in order to measure the temperature with high accuracy. In order to make it less susceptible to interference, it is desirable that the mounting portion is made of a ceramic material having a volume resistivity of 10E + 08 Ω · cm or more at the operating temperature. As the material for the mounting portion of the ceramic heater having such physical properties, aluminum nitride, alumina, silicon nitride, boron nitride, and yttria are suitable. The operating temperature is preferably 800 ° C. or lower. This is because if the temperature is too high, the volume resistivity is lowered even when the ceramics as described above are used, so that the temperature measurement deviation increases. “10E + 08” indicates “10 8 ”.

熱電対の接点は、一つの発熱抵抗体領域に一つの熱電対を埋設する場合には、発熱抵抗体領域の略中心に埋設されることが望ましいが、この限りではない。また、前記熱電対は、一つの発熱抵抗体領域について複数埋設し、当該発熱抵抗体領域の平均温度を測定できるように配線される構成も採用可能である。このような構成とすることにより、精密な温度測定および温度制御が可能となる。 When one thermocouple is embedded in one heat generating resistor region, the contact of the thermocouple is preferably embedded substantially at the center of the heat generating resistor region, but this is not restrictive. In addition, it is possible to adopt a configuration in which a plurality of the thermocouples are embedded in one heating resistor region and wired so that the average temperature of the heating resistor region can be measured. With such a configuration, precise temperature measurement and temperature control are possible.

また、前記測温素子は、載置部内に隙間無く埋設されていることが、望ましい。このような構造により測温精度をいっそう高めることができる、また、埋設された測温素子の劣化を抑制することも可能となる。したがって、長期間に亘り所定の測温環境を維持できるので、パイロメータによる測温のような煩雑な作業を大幅に低減することができ、さらには装置にかかるコストも抑えることができる。 Further, it is desirable that the temperature measuring element is embedded in the mounting portion without any gap. With such a structure, the temperature measurement accuracy can be further increased, and deterioration of the embedded temperature measurement element can be suppressed. Therefore, since a predetermined temperature measurement environment can be maintained over a long period of time, troublesome work such as temperature measurement with a pyrometer can be greatly reduced, and the cost of the apparatus can be reduced.

本発明のセラミックスヒーターは、前記載置部を支持する中空の支持部と、前記発熱抵抗体領域に埋設された発熱抵抗体および前記測温素子に接続される端子と、前記端子に接続される配線部材と、を備え、前記端子および前記配線部材は、前記支持部の中空部に集約されていることを特徴とする。載置部を中空の支持部で支持することにより載置部の熱が支持部を介して逃げることを低減することができる。また、発熱抵抗体および測温素子と接続される配線を中空の支持部内に集約することにより、装置形状を簡略化することができる。なお、端子には、発熱抵抗体端子および測温素子端子が含まれ、配線部材には、給電線、測温素子導線、コネクタが含まれる。 The ceramic heater of the present invention is connected to the hollow support portion that supports the mounting portion, the heating resistor embedded in the heating resistor region and the terminal connected to the temperature measuring element, and the terminal. A wiring member, wherein the terminal and the wiring member are concentrated in a hollow portion of the support portion. By supporting the mounting portion with the hollow support portion, it is possible to reduce the escape of the heat of the mounting portion through the support portion. Further, by consolidating the wiring connected to the heating resistor and the temperature measuring element in the hollow support portion, the device shape can be simplified. The terminals include a heating resistor terminal and a temperature measuring element terminal, and the wiring member includes a power supply line, a temperature measuring element lead, and a connector.

また、本発明のセラミックスヒーターは、複数の抵抗発熱体および複数の測温素子を埋設し、セラミックスの焼結とともに一体化させる工程を含む製造方法を用いることができる。このような製法を用いることにより本発明のセラミックスヒーターの測温素子が隙間無く埋設された構成を達成することができる。 Moreover, the ceramic heater of this invention can use the manufacturing method including the process of embedding a several resistance heating element and several temperature measuring element, and integrating with sintering of ceramics. By using such a manufacturing method, it is possible to achieve a configuration in which the temperature measuring element of the ceramic heater of the present invention is embedded without a gap.

セラミックスヒーターの測温できる場所や装置構造の制約をなくし、装置の大幅な簡略化および低コスト化が可能となる。また、測温精度を高め、さらにはセラミックスヒーターの温度制御も高精度化することができる。 There is no restriction on the place where the temperature of the ceramic heater can be measured and the structure of the device, and the device can be greatly simplified and reduced in cost. In addition, the temperature measurement accuracy can be improved, and further the temperature control of the ceramic heater can be improved.

図1は本発明の代表例である。セラミックスヒーター1はウエハを載せる載置面2aを有する板状の載置部2と、円筒形状の支持部5とフランジ6からなり、真空チャンバー13とはフランジ6に設けた気密機構11(例えばOリング)で真空気密がとられている。載置部内部には、発熱抵抗体3a、3bおよび測温素子4が埋設されている。発熱抵抗体と接続される給電線7、および測温素子4から伸びる測温素子導線8は円筒形状の支持部5の中空部を通り、コネクタ9およびフランジ6に設けられたフィードスルー10を介して図示しない温度制御装置に接続される。 FIG. 1 is a representative example of the present invention. The ceramic heater 1 includes a plate-like placement portion 2 having a placement surface 2a on which a wafer is placed, a cylindrical support portion 5 and a flange 6. The vacuum chamber 13 is an airtight mechanism 11 (for example, O) provided on the flange 6. The ring is vacuum-tight. Heat generating resistors 3a and 3b and a temperature measuring element 4 are embedded in the mounting portion. A power supply line 7 connected to the heating resistor and a temperature measuring element lead 8 extending from the temperature measuring element 4 pass through a hollow portion of the cylindrical support portion 5 and through a connector 9 and a feedthrough 10 provided in the flange 6. To a temperature control device (not shown).

載置部2内部には図2に示したように複数の発熱抵抗体3a、3bおよび測温素子が配置されている。測温素子は熱電対である。中央部の熱電対接点4aは中央部の発熱抵抗体領域16aに埋設されており、外周部の熱電対接点4bは外周部の発熱体領域16bに埋設されている。ここで、図2(A)で示した面と図2(B)で示した面とは、少なくとも発熱抵抗体と熱電対との距離の分だけ離れている。したがって、熱電対が埋設される発熱抵抗体領域は、載置部内において発熱抵抗体の埋設位置から厚み方向に所定距離だけ離れた位置を含む領域であり、また、図2(C)に示した16aおよび16bのように、発熱抵抗体領域とは、一つの発熱抵抗体を取り囲む所定面積の領域である。 As shown in FIG. 2, a plurality of heating resistors 3 a and 3 b and a temperature measuring element are arranged inside the mounting portion 2. The temperature measuring element is a thermocouple. The central thermocouple contact 4a is embedded in the central heating resistor region 16a, and the outer peripheral thermocouple contact 4b is embedded in the outer peripheral heat generating region 16b. Here, the surface shown in FIG. 2A and the surface shown in FIG. 2B are separated by at least the distance between the heating resistor and the thermocouple. Therefore, the heat generating resistor region in which the thermocouple is embedded is a region including a position separated by a predetermined distance in the thickness direction from the position where the heat generating resistor is embedded in the mounting portion, and is shown in FIG. Like 16a and 16b, the heating resistor region is a region of a predetermined area surrounding one heating resistor.

熱電対の接点は、一つの発熱抵抗体領域に一つの熱電対を埋設する場合には、発熱抵抗体領域の略中心に埋設されることが望ましいが、この限りではない。また、前記熱電対は、一つの発熱抵抗体領域について複数埋設し、当該発熱抵抗体領域の平均温度を測定できるように配線される構成も採用可能である。発熱抵抗体領域の略中心に埋設することにより、当該領域の測温をより確実なものにすることができる。さらに、当該領域の平均温度を測定できるようにすれば、より測温を確実にすることができる。 When one thermocouple is embedded in one heat generating resistor region, the contact of the thermocouple is preferably embedded substantially at the center of the heat generating resistor region, but this is not restrictive. In addition, it is possible to adopt a configuration in which a plurality of the thermocouples are embedded in one heating resistor region and wired so that the average temperature of the heating resistor region can be measured. By embedding in the approximate center of the heating resistor region, temperature measurement in the region can be made more reliable. Furthermore, if the average temperature of the said area | region can be measured, temperature measurement can be ensured more.

熱電対は、載置部を構成するセラミックスの焼結と同時に埋設することが望ましい。そのためセラミックス焼成温度に耐えうる素材を選択する。例えば、セラミックスとして熱伝導性に優れる窒化アルミニウムを用いた場合、その焼成温度は1600〜2000℃であり、この焼成温度に耐える熱電対としてJIS規定のB熱電対(Pt−Rh合金、耐熱温度1820℃以上)、R熱電対、S熱電対(Pt−Rh合金/Pt、耐熱温度1760℃以上)W−Re系熱電対(2400度以上)、Ir−Rh系熱電対(Ir−40%Rh/Ir−50%Rh、耐熱温度2000℃以上)が使用できる。特に、B熱電対は耐熱温度が高いだけでなく、150℃から精度の高い測温ができる。W−Re系熱電対は、耐熱温度が最も高いが、高温酸化雰囲気では酸化されるため、真空、不活性、還元雰囲気での使用が好ましい。W−Re系熱電対の具体例としては、W/W−Re26%、W−Re5%/W−Re26%、W−Re3%/W−Re26%等が使用できる。 It is desirable to embed the thermocouple simultaneously with the sintering of the ceramics constituting the mounting portion. Therefore, a material that can withstand the ceramic firing temperature is selected. For example, when aluminum nitride having excellent thermal conductivity is used as the ceramic, the firing temperature is 1600 to 2000 ° C., and as a thermocouple that can withstand this firing temperature, a JIS-regulated B thermocouple (Pt—Rh alloy, heat resistant temperature 1820) ° C or higher), R thermocouple, S thermocouple (Pt-Rh alloy / Pt, heat resistant temperature of 1760 ° C or higher) W-Re thermocouple (2400 ° C or higher), Ir-Rh thermocouple (Ir-40% Rh / Ir-50% Rh, heat resistant temperature of 2000 ° C. or higher) can be used. In particular, the B thermocouple not only has a high heat-resistant temperature, but can also measure temperature with high accuracy from 150 ° C. W-Re thermocouples have the highest heat resistance, but are oxidized in a high-temperature oxidizing atmosphere, and are therefore preferably used in a vacuum, inert, or reducing atmosphere. Specific examples of W-Re thermocouples include W / W-Re 26%, W-Re 5% / W-Re 26%, W-Re 3% / W-Re 26%, and the like.

発熱抵抗体としては、箔、板、線、メッシュまたは繊維状のモリブデンやタングステン等の耐熱金属を用いることができる。 As the heating resistor, a heat-resistant metal such as foil, plate, wire, mesh, or fibrous molybdenum or tungsten can be used.

図1に示すようにすべての端子が載置部の中央付近に配置されている場合は円筒形状の支持部の中空部の配線はすべての端子から中空部を通してフランジのフィードスルー10に接続される。 As shown in FIG. 1, when all the terminals are arranged near the center of the mounting portion, the wiring in the hollow portion of the cylindrical support portion is connected from all the terminals to the feedthrough 10 of the flange through the hollow portion. .

独立した発熱抵抗体の数が多いときは載置部内での発熱抵抗体への配線の干渉をさけるため3次元的な内部配線が必要となる。測温素子4は載置部に複数配置しても線径自体が非常に細く、おおむね直線状に配線できるため接触することなく配線することができる。また、測温素子である熱電対を載置部に埋設することにより、熱電対の接点を円筒形状の支持部の径よりも外側に配し、熱電対素線を支持部の中空部内に引き出すことが可能となる。また発熱抵抗体と熱電対との距離を0.5mm以上、さらに望ましくは2mm以上物理的にあけたほうがよい。必要に応じて発熱抵抗体に入力される電気信号の熱電対への干渉を避けるためにローパスフィルタを設置しても良い。 When the number of independent heating resistors is large, three-dimensional internal wiring is necessary to avoid wiring interference with the heating resistors in the mounting portion. Even if a plurality of temperature measuring elements 4 are arranged on the mounting portion, the wire diameter itself is very thin and can be wired almost linearly so that it can be wired without contact. Also, by embedding a thermocouple as a temperature measuring element in the mounting portion, the contact point of the thermocouple is arranged outside the diameter of the cylindrical support portion, and the thermocouple wire is drawn into the hollow portion of the support portion. It becomes possible. The distance between the heating resistor and the thermocouple should be physically increased by 0.5 mm or more, more preferably 2 mm or more. If necessary, a low-pass filter may be installed in order to avoid interference of the electric signal input to the heating resistor with the thermocouple.

図3(A)のように測温素子4を載置部2内で曲げておくことにより載置部の支持部側での導線との接続を容易にすることができ、3次元的な内部配線が可能となる。また図3(B)のように載置部の中心付近に測温素子端子14を設け、そこから測温素子導線8aを接続する方法を用いることも可能である。また図3(C)のように載置部を焼成後に機械加工でセラミックス内細穴18を設け、シース熱電対17を挿入する方法を採用することもできる。その他、ビアホールを介した配線などを適用することができる。 As shown in FIG. 3A, the temperature measuring element 4 is bent in the mounting portion 2 to facilitate the connection with the conductive wire on the support portion side of the mounting portion, and the three-dimensional interior. Wiring becomes possible. It is also possible to use a method in which the temperature measuring element terminal 14 is provided near the center of the mounting portion and the temperature measuring element conducting wire 8a is connected therefrom as shown in FIG. Further, as shown in FIG. 3C, a method in which the ceramic inner fine hole 18 is provided by machining after the mounting portion is fired and the sheath thermocouple 17 is inserted may be employed. In addition, wiring via via holes can be applied.

発熱抵抗体端子としては、箔、板、塊状のモリブデンやタングステン等を用いることができる。測温素子端子としては、熱電対素線と同組成の金属、または熱電対と熱起電力特性の近似した金属の箔、板、塊状のものを用いることが好ましいが、測温素子端子の接続部に温度差が生じない場合は、中間金属の法則より、例えばモリブデンやタングステン等の耐熱金属を用いることが可能である。測温素子導線としては、熱電対素線または補償導線を用いることが望ましいが、目的の測定精度、温度制御が可能な範囲で、ニッケル線、銅線等の他の金属線を用いることも可能である。 As the heating resistor terminal, foil, plate, massive molybdenum, tungsten, or the like can be used. As the temperature measuring element terminal, it is preferable to use a metal having the same composition as that of the thermocouple wire, or a metal foil, plate, or block having a similar thermoelectromotive force characteristic to that of the thermocouple. When there is no temperature difference in the part, it is possible to use a refractory metal such as molybdenum or tungsten according to the law of intermediate metal. It is desirable to use a thermocouple wire or a compensating lead wire as the temperature measuring element lead wire, but it is also possible to use other metal wires such as a nickel wire and a copper wire as long as the desired measurement accuracy and temperature control are possible. It is.

載置部のセラミックスとしては、使用温度における体積抵抗率が10E+08Ω・cm以上であるセラミックスを用いることができる。このような物性を有する載置部の材質としては、窒化アルニウム、アルミナ、窒化ケイ素、窒化ホウ素、イットリアが好適である。なかでも窒化アルミニウムは熱伝導性に優れることから、加熱応答性や均熱性が求められるセラミックスヒーターに好適である。また、酸化アルミニウムを主成分とした場合は、窒化アルミニウムに比べ熱伝導率が低いため、載置面に傾斜状に温度勾配を持たせることが容易になる。また窒化アルミニウムに比べ焼結温度が低いため、測温素子の選択の範囲が広がる。 As the ceramic of the mounting portion, a ceramic having a volume resistivity of 10E + 08 Ω · cm or more at a use temperature can be used. As the material of the mounting portion having such physical properties, aluminum nitride, alumina, silicon nitride, boron nitride, and yttria are suitable. Of these, aluminum nitride is excellent in thermal conductivity, and is therefore suitable for ceramic heaters that require heat responsiveness and soaking. Further, when aluminum oxide is the main component, since the thermal conductivity is lower than that of aluminum nitride, it is easy to provide a temperature gradient in an inclined manner on the mounting surface. Further, since the sintering temperature is lower than that of aluminum nitride, the range of selection of the temperature measuring element is expanded.

載置部2と支持部5との固定は、セラミックス、金属、ガラス等の接合材による接合により固定できる。また固定用ボルトによって固定されても良い。支持部5とフランジ6との固定も同様である。フランジで真空気密をとっている場合、支持部5の中空部を真空チャンバーと同じ雰囲気にすることができる。そのため酸化に弱いW−Re合金系の熱電対が使用できる環境にすることができる。一方、フランジ6を用いずに、載置部2と支持部5を気密接合し支持部の真空チャンバー側の端面で真空チャンバーと気密をとる場合は、支持部5の中空部は大気に曝されるため、発熱抵抗体端子15や測温素子端子14は載置部に埋設し、例えば耐酸化性のニッケル製の給電線、導線を溶接、ロー付け等の方法により接続した構成とすることができる。 The mounting portion 2 and the support portion 5 can be fixed by bonding with a bonding material such as ceramics, metal, or glass. Moreover, you may fix with the volt | bolt for fixing. The same holds for the support 5 and the flange 6. When vacuum-tightness is taken with the flange, the hollow part of the support part 5 can be made into the same atmosphere as a vacuum chamber. Therefore, it is possible to create an environment in which a W-Re alloy thermocouple that is vulnerable to oxidation can be used. On the other hand, when the mounting part 2 and the support part 5 are hermetically joined without using the flange 6 and the vacuum chamber side end face of the support part is hermetically sealed, the hollow part of the support part 5 is exposed to the atmosphere. For this reason, the heating resistor terminal 15 and the temperature measuring element terminal 14 are embedded in the mounting portion, and for example, an oxidation-resistant nickel feeding wire and a conductive wire are connected by a method such as welding or brazing. it can.

コネクタ9はアセンブリするときに容易ならしめるために設けたものでありソケット状のものが適当である。またアセンブリ時に困難さがなければコネクタ9は省略してもかまわない。フィードスルー10はウルトラ・トール(スエジロック社製)のようなものでもよい。とくに後述する測温素子がシース熱電対の場合には最適である。 The connector 9 is provided in order to facilitate the assembly, and a socket-like one is appropriate. If there is no difficulty during assembly, the connector 9 may be omitted. The feedthrough 10 may be something like Ultra Toll (manufactured by Swagelok). In particular, it is optimal when the temperature measuring element described later is a sheath thermocouple.

次に実施例を示して、本発明をさらに詳細に説明する。
(実施例1)
載置部のセラミックスとして主原料に窒化アルミニウム、添加物として酸化イットリウムを加え、公知の製造方法で原料粉末を調整したものを用いた。発熱抵抗体はモリブデンとし、測温素子はB熱電対とした。これらの具体的な埋設方法は、原料粉末のプレス成形体に発熱抵抗体を設置して、その上に原料粉末を投入してプレスし、こうして得られた成形体に熱電対の素線を設置して、さらに原料粉末を投入してプレスすることにより、セラミックス粉末に、発熱抵抗体及び熱電対が埋設された成形体を得た。発熱抵抗体および測温素子の配置は各々図2(A)〜(C)、図3(A)のように配置し、原料粉末の投入量を調整して、発熱抵抗体と熱電対の素線間の距離は2mmとした。
Next, the present invention will be described in more detail with reference to examples.
Example 1
As the ceramic of the mounting part, aluminum nitride was added to the main raw material, yttrium oxide was added as an additive, and the raw material powder was prepared by a known manufacturing method. The heating resistor was molybdenum and the temperature measuring element was a B thermocouple. These specific embedment methods are as follows: a heating resistor is placed on the raw powder press-molded body, and then the raw material powder is placed on the pressed body and pressed, and a thermocouple element is placed on the molded body thus obtained. The raw material powder was further charged and pressed to obtain a molded body in which the heating resistor and the thermocouple were embedded in the ceramic powder. The heating resistor and the temperature measuring element are arranged as shown in FIGS. 2 (A) to 2 (C) and FIG. 3 (A), respectively, and the amount of raw material powder is adjusted so that the heating resistor and the thermocouple are arranged. The distance between the lines was 2 mm.

焼成は還元雰囲気のホットプレスで焼成温度は1800℃とした。得られた焼結体を加工し、φ210×10mmの円形平板状の載置部とした。この載置部の一面を載置面とし、載置面と反対の面に支持部とボルト固定するためのネジ孔加工を行った。B熱電対の素線は図3(A)のように載置部の支持部側より取り出され、測温素子導線とはNi製のコネクタで接続した。フランジには電流導入端子を設け、測温素子導線およびヒーター給電線と接続した。これらの配線部材は円筒形状の支持部(内径50mm、外径60mm、高さ200mm)の中空部に集約した。支持部の材質としては、窒化アルミニウム、フランジの材質としてSUS304を用い、載置部、支持部およびフランジの固定は、いずれもボルトを用いた。このようにして平板状の載置部と中空の支持部とを備えるセラミックスヒーターを得た。なお、載置部を構成する窒化アルミニウムの体積抵抗率を測定したところ、セラミックスヒーターの使用温度範囲100〜800℃において、10E+08Ω・cm以上であった。 Firing was performed by hot pressing in a reducing atmosphere, and the firing temperature was 1800 ° C. The obtained sintered body was processed to form a circular flat plate-like mounting portion having a diameter of 210 mm × 10 mm. One surface of the mounting portion was used as a mounting surface, and a screw hole was processed to fix the support portion and the bolt to the surface opposite to the mounting surface. The element wire of the B thermocouple was taken out from the support part side of the mounting part as shown in FIG. 3A, and connected to the temperature measuring element lead with a Ni connector. The flange was provided with a current introduction terminal and connected to the temperature measuring element lead and the heater power supply line. These wiring members were collected in a hollow portion of a cylindrical support portion (inner diameter 50 mm, outer diameter 60 mm, height 200 mm). Aluminum nitride was used as the material of the support part, SUS304 was used as the material of the flange, and bolts were used for fixing the mounting part, the support part, and the flange. Thus, the ceramic heater provided with a flat mounting part and a hollow support part was obtained. In addition, when the volume resistivity of the aluminum nitride which comprises a mounting part was measured, it was 10E + 08 ohm * cm or more in the use temperature range of 100-800 degreeC of a ceramic heater.

真空チャンバーにセラミックスヒーターを設置し、はじめに、中心部の設定温度を400℃、外周部の設定温度を500℃として加熱を試みた。中心部および外周部に埋設された熱電対により測温し、得られた温度を基に出力調整を行って外部電源より電力を供給した。サーモグラフにより載置面の温度を測定したところ、中心部が400℃、外周部が500℃となり、中心部から外周部にかけて傾斜状の温度分布が得られた。次に、中心部および外周部の設定温度を共に500℃として加熱したところ、載置面の温度分布は設定温度からの差が1%以下となった。 A ceramic heater was installed in the vacuum chamber. First, heating was attempted with a set temperature at the center of 400 ° C. and a set temperature at the outer periphery of 500 ° C. The temperature was measured by thermocouples embedded in the center and the outer periphery, and the output was adjusted based on the obtained temperature to supply power from an external power source. When the temperature of the mounting surface was measured by a thermograph, the central portion was 400 ° C. and the outer peripheral portion was 500 ° C., and an inclined temperature distribution was obtained from the central portion to the outer peripheral portion. Next, when the set temperature of the center part and the outer peripheral part was both set to 500 ° C., the temperature distribution on the mounting surface had a difference from the set temperature of 1% or less.

(実施例2)
測温素子としてW−Re熱電対の素線を図3(B)のように窒化アルミニウム焼結体内に埋め込んだ。熱電対の端部は測温素子端子として、熱電対組成と同じ組成のバルク体(φ8mm、厚み0.5mm)を熱電対と溶接後に窒化アルミニウムに埋め込んだ。焼成後、載置面と反対の面に熱電対取り出し用のため測温素子端子までの有底孔を加工して端子を露出させ、測温素子導線と接続した。接続方法はロー付けによりおこなった。実施例1と同様の設定温度として、加熱を試みたところ、同様の結果が得られた。
(Example 2)
As a temperature measuring element, a wire of a W-Re thermocouple was embedded in an aluminum nitride sintered body as shown in FIG. The end of the thermocouple was used as a temperature measuring element terminal, and a bulk body (φ8 mm, thickness 0.5 mm) having the same composition as the thermocouple composition was embedded in aluminum nitride after welding with the thermocouple. After firing, a bottomed hole to the temperature measuring element terminal was processed on the surface opposite to the mounting surface for taking out the thermocouple to expose the terminal and connected to the temperature measuring element conducting wire. The connection method was performed by brazing. When heating was attempted at a set temperature similar to that in Example 1, similar results were obtained.

(実施例3)
発熱抵抗体のみ窒化アルミニウム焼結体内に埋め込み、図3(C)のように測温素子用細穴を設け、その中にシース熱電対(φ2.2mmインコネルシース、K熱電対)を挿入した。インコネルシースはフランジに設けられたウルトラ・トール(スエジロック社製)で真空気密がとられシースの端部は真空チャンバーの大気側に位置する。実施例1と同様の設定温度として、加熱を試みたところ、同様の結果が得られた。
(Example 3)
Only the heating resistor was embedded in the aluminum nitride sintered body, and a temperature sensor thin hole was provided as shown in FIG. 3C, and a sheath thermocouple (φ2.2 mm Inconel sheath, K thermocouple) was inserted therein. The Inconel sheath is vacuum-tight with Ultra Toll (manufactured by Swagelok) provided on the flange, and the end of the sheath is located on the atmosphere side of the vacuum chamber. When heating was attempted at a set temperature similar to that in Example 1, similar results were obtained.

上記の実施例で示したように、複数の発熱抵抗体が埋設されたセラミックスヒーターであって、一つの発熱抵抗体が埋設された発熱抵抗体領域に少なくとも一つの測温素子を備えるセラミックスヒーターを用いることにより、載置部内の温度分布を均一化または傾斜化させられることが確認された。また、セラミックスヒーターの測温できる場所や装置構造の制約をなくし、装置を大幅に簡略化することができた。 As shown in the above embodiment, a ceramic heater having a plurality of heating resistors embedded therein, the ceramic heater having at least one temperature measuring element in a heating resistor region in which one heating resistor is embedded By using it, it was confirmed that the temperature distribution in the mounting portion could be made uniform or inclined. In addition, the place where the temperature of the ceramic heater can be measured and the restrictions on the structure of the apparatus were eliminated, and the apparatus could be greatly simplified.

セラミックスヒーターの模式断面図である。It is a schematic cross section of a ceramic heater. 載置部内の発熱抵抗体および測温素子の配置を示す模式平面図である。It is a schematic plan view which shows arrangement | positioning of the heating resistor in a mounting part, and a temperature measuring element. 測温素子設置位置の模式拡大断面図である。It is a model expanded sectional view of a temperature sensing element installation position.

符号の説明Explanation of symbols

1;セラミックスヒーター
2;載置部
2a;載置面
3a,3b;発熱抵抗体
4;測温素子(熱電対)
4a,4b;熱電対接点
5;支持部
6;フランジ
7;給電線
8,8a;測温素子導線
9;コネクタ
10;フィードスルー
11;真空気密機構
12a,12b,12c;固定用ボルト
13;真空チャンバー
14;測温素子端子
15;発熱抵抗体端子
16a,16b;発熱抵抗体領域
17;シース熱電対
18;セラミックス内細穴
DESCRIPTION OF SYMBOLS 1; Ceramics heater 2; Mounting part 2a; Mounting surface 3a, 3b; Heating resistor 4; Temperature measuring element (thermocouple)
4a, 4b; thermocouple contact 5; support portion 6; flange 7; feeders 8 and 8a; temperature measuring element conductor 9; connector 10; feedthrough 11; vacuum airtight mechanisms 12a, 12b and 12c; Chamber 14; temperature measuring element terminal 15; heating resistor terminals 16a and 16b; heating resistor region 17; sheath thermocouple 18;

Claims (9)

複数の発熱抵抗体が埋設されたセラミックスからなる平板状の載置部と、
前記複数の発熱抵抗体の埋設位置に形成された複数の発熱抵抗体領域と、
各発熱抵抗体領域に埋設された少なくとも一つの測温素子と、
を備えることを特徴とするセラミックスヒーター。
A plate-like mounting portion made of ceramics in which a plurality of heating resistors are embedded;
A plurality of heating resistor regions formed at the embedded positions of the plurality of heating resistors;
At least one temperature measuring element embedded in each heating resistor region;
A ceramic heater comprising:
使用温度における前記セラミックスの体積抵抗率が10E+08Ω・cm以上であることを特徴とする請求項1記載のセラミックスヒーター。 2. The ceramic heater according to claim 1, wherein the ceramic has a volume resistivity of 10E + 08 Ω · cm or more at an operating temperature. 前記測温素子は、熱電対であることを特徴とする請求項1または2記載のセラミックスヒーター。 The ceramic heater according to claim 1, wherein the temperature measuring element is a thermocouple. 前記熱電対は、発熱抵抗体から0.5mm以上離れた位置に埋設されることを特徴とする請求項1〜3記載のセラミックスヒーター。 The ceramic heater according to claim 1, wherein the thermocouple is embedded at a position separated from the heat generating resistor by 0.5 mm or more. 前記測温素子は、載置部内に隙間無く埋設されていることを特徴とする請求項1〜4記載のセラミックスヒーター。 The ceramic heater according to claim 1, wherein the temperature measuring element is embedded in the mounting portion without any gap. 前記熱電対の接点は、前記発熱抵抗体領域の略中心に埋設されることを特徴とする請求項1〜5記載のセラミックスヒーター。 The ceramic heater according to claim 1, wherein a contact of the thermocouple is embedded in a substantial center of the heating resistor region. 前記熱電対は、一つの発熱抵抗体領域について複数埋設され、当該発熱抵抗体領域の平均温度を測定できるように配線されていることを特徴とする請求項1〜5記載のセラミックスヒーター。 The ceramic heater according to claim 1, wherein a plurality of the thermocouples are embedded in one heating resistor region, and are wired so that an average temperature of the heating resistor region can be measured. 前記載置部を支持する中空の支持部と、
前記発熱抵抗体領域に埋設された発熱抵抗体および前記測温素子に接続される端子と、前記端子に接続される配線部材と、
を備え、前記端子および前記配線部材は、前記支持部の中空部に集約されていることを特徴とする請求項1〜7記載のセラミックスヒーター。
A hollow support part for supporting the mounting part,
A heating resistor embedded in the heating resistor region and a terminal connected to the temperature measuring element; a wiring member connected to the terminal;
The ceramic heater according to claim 1, wherein the terminal and the wiring member are concentrated in a hollow portion of the support portion.
複数の発熱抵抗体および複数の測温素子を埋設し、セラミックスの焼結とともに一体化させる工程を含むことを特徴とする請求項1〜8記載のセラミックスヒーターの製造方法。 9. The method for manufacturing a ceramic heater according to claim 1, further comprising a step of embedding a plurality of heating resistors and a plurality of temperature measuring elements and integrating them together with sintering of the ceramic.
JP2007169240A 2007-06-27 2007-06-27 Ceramic heater Active JP5009064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169240A JP5009064B2 (en) 2007-06-27 2007-06-27 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169240A JP5009064B2 (en) 2007-06-27 2007-06-27 Ceramic heater

Publications (2)

Publication Number Publication Date
JP2009009795A true JP2009009795A (en) 2009-01-15
JP5009064B2 JP5009064B2 (en) 2012-08-22

Family

ID=40324686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169240A Active JP5009064B2 (en) 2007-06-27 2007-06-27 Ceramic heater

Country Status (1)

Country Link
JP (1) JP5009064B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069947A (en) * 2010-09-24 2012-04-05 Ngk Insulators Ltd Susceptor and manufacturing method therefor
JP2012080103A (en) * 2010-10-01 2012-04-19 Ngk Insulators Ltd Susceptor and manufacturing method therefor
JP2013182745A (en) * 2012-02-29 2013-09-12 Taiheiyo Cement Corp Ceramics heater
JP2014511572A (en) * 2011-02-23 2014-05-15 アプライド マテリアルズ インコーポレイテッド Method and apparatus for a multi-zone pedestal heater
CN108307551A (en) * 2018-03-09 2018-07-20 深圳市子午线信息科技有限公司 A kind of plug-in ceramic heating plate and the heat generating device based on the ceramic heating plate
JP2018181993A (en) * 2017-04-10 2018-11-15 日本特殊陶業株式会社 Holding apparatus
WO2020153071A1 (en) * 2019-01-25 2020-07-30 日本碍子株式会社 Ceramic heater
JP2021174586A (en) * 2020-04-20 2021-11-01 日本碍子株式会社 Ceramic heater and manufacturing method thereof
US11562913B2 (en) 2019-04-25 2023-01-24 Watlow Electric Manufacturing Company Multi-zone azimuthal heater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137141A (en) * 1978-04-17 1979-10-24 Kyoto Ceramic Ceramic heater with temperature sensor
JP2003226580A (en) * 2001-11-26 2003-08-12 Ngk Insulators Ltd Aluminum nitride-based ceramic and member for producing semiconductor
JP2003303662A (en) * 1999-08-11 2003-10-24 Ibiden Co Ltd Ceramic heater
JP2004312026A (en) * 2004-04-26 2004-11-04 Kyocera Corp Wafer support member
JP2006049844A (en) * 2004-06-28 2006-02-16 Ngk Insulators Ltd Substrate heating device
JP2006302888A (en) * 2005-04-19 2006-11-02 Ngk Insulators Ltd Power supply member and heating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137141A (en) * 1978-04-17 1979-10-24 Kyoto Ceramic Ceramic heater with temperature sensor
JP2003303662A (en) * 1999-08-11 2003-10-24 Ibiden Co Ltd Ceramic heater
JP2003226580A (en) * 2001-11-26 2003-08-12 Ngk Insulators Ltd Aluminum nitride-based ceramic and member for producing semiconductor
JP2004312026A (en) * 2004-04-26 2004-11-04 Kyocera Corp Wafer support member
JP2006049844A (en) * 2004-06-28 2006-02-16 Ngk Insulators Ltd Substrate heating device
JP2006302888A (en) * 2005-04-19 2006-11-02 Ngk Insulators Ltd Power supply member and heating device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069947A (en) * 2010-09-24 2012-04-05 Ngk Insulators Ltd Susceptor and manufacturing method therefor
JP2012080103A (en) * 2010-10-01 2012-04-19 Ngk Insulators Ltd Susceptor and manufacturing method therefor
JP2014511572A (en) * 2011-02-23 2014-05-15 アプライド マテリアルズ インコーポレイテッド Method and apparatus for a multi-zone pedestal heater
JP2013182745A (en) * 2012-02-29 2013-09-12 Taiheiyo Cement Corp Ceramics heater
JP2018181993A (en) * 2017-04-10 2018-11-15 日本特殊陶業株式会社 Holding apparatus
CN108307551A (en) * 2018-03-09 2018-07-20 深圳市子午线信息科技有限公司 A kind of plug-in ceramic heating plate and the heat generating device based on the ceramic heating plate
CN113170535A (en) * 2019-01-25 2021-07-23 日本碍子株式会社 Ceramic heater
KR20210066918A (en) * 2019-01-25 2021-06-07 엔지케이 인슐레이터 엘티디 ceramic heater
WO2020153071A1 (en) * 2019-01-25 2020-07-30 日本碍子株式会社 Ceramic heater
JPWO2020153071A1 (en) * 2019-01-25 2021-09-30 日本碍子株式会社 Ceramic heater
JP7212070B2 (en) 2019-01-25 2023-01-24 日本碍子株式会社 ceramic heater
CN113170535B (en) * 2019-01-25 2023-07-07 日本碍子株式会社 Ceramic heater
KR102581102B1 (en) * 2019-01-25 2023-09-20 엔지케이 인슐레이터 엘티디 ceramic heater
US11562913B2 (en) 2019-04-25 2023-01-24 Watlow Electric Manufacturing Company Multi-zone azimuthal heater
JP2021174586A (en) * 2020-04-20 2021-11-01 日本碍子株式会社 Ceramic heater and manufacturing method thereof
JP7348877B2 (en) 2020-04-20 2023-09-21 日本碍子株式会社 Ceramic heater and its manufacturing method

Also Published As

Publication number Publication date
JP5009064B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5009064B2 (en) Ceramic heater
US11004715B2 (en) Substrate supporting device
JP2012160368A (en) Ceramic heater and method for manufacturing the same
JP4879060B2 (en) Substrate heating device
JP4761723B2 (en) Substrate heating device
JP3897563B2 (en) Heating device
JP5855402B2 (en) Susceptor and its manufacturing method
JP4931376B2 (en) Substrate heating device
JP2001253777A (en) Ceramic substrate
JP2007088484A (en) Heater
JP2012080103A (en) Susceptor and manufacturing method therefor
JP2004171834A (en) Heating device
JP2004200619A (en) Wafer supporting member
JP2014512528A (en) Gas pressure measuring cell device
CN105509921B (en) Using metal or alloy as the temperature sensor of temperature-sensing probe and production and school temperature method
JPH11312570A (en) Ceramic heater
JP6973995B2 (en) Ceramic heater
JP2003300785A (en) Ceramic jointed body and method for producing the same
JP2011011931A (en) Ceramic joined body, ceramic heater, electrostatic chuck and susceptor
JP2007157552A (en) Heating device made of quartz
US20230380017A1 (en) Ceramic heater
CA2501260A1 (en) Extended temperature range emf device
JP3872260B2 (en) Wafer heating device
JP4009138B2 (en) Wafer support member
Werner et al. Gauge to simultaneously determine the electrical conductivity, the Hall constant, and the Seebeck coefficient up to 800∘ C

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5009064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250