JP2009008839A - Image forming apparatus - Google Patents
Image forming apparatus Download PDFInfo
- Publication number
- JP2009008839A JP2009008839A JP2007169313A JP2007169313A JP2009008839A JP 2009008839 A JP2009008839 A JP 2009008839A JP 2007169313 A JP2007169313 A JP 2007169313A JP 2007169313 A JP2007169313 A JP 2007169313A JP 2009008839 A JP2009008839 A JP 2009008839A
- Authority
- JP
- Japan
- Prior art keywords
- image
- unit
- ambient temperature
- temperature
- image forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Or Security For Electrophotography (AREA)
Abstract
Description
本発明は,トナーにより静電潜像の現像を行って画像形成を行うプリンタ、複写機、複合機等の画像形成装置に関する。 The present invention relates to an image forming apparatus such as a printer, a copier, or a multifunction peripheral that forms an image by developing an electrostatic latent image with toner.
従来から、カラーの画像形成を行えるプリンタ、複写機、複合機等の画像形成装置にはトナー像の形成を行い、そのトナー像を中間転写ベルト等の中間転写体に1次転写し、中間転写体上のトナー像を用紙等のシートに2次転写し画像形成を行うものが存在する。例えば、フルカラーの画像形成装置は、各色(例えば、ブラック、イエロー、シアン、マゼンタの4色等)のトナー像を形成し、各色のトナー像を中間転写体に重畳させつつ1次転写し、中間転写体上に一旦、フルカラーのトナー像を形成した後、シートにそのトナー像を2次転写する。 Conventionally, a toner image is formed on an image forming apparatus such as a printer, a copier, or a multi-function printer capable of forming a color image, and the toner image is primarily transferred to an intermediate transfer member such as an intermediate transfer belt. Some toner images are formed by secondarily transferring a toner image on the body onto a sheet such as paper. For example, a full-color image forming apparatus forms a toner image of each color (for example, four colors such as black, yellow, cyan, and magenta), performs primary transfer while superimposing the toner images of each color on an intermediate transfer member, and performs intermediate transfer. Once a full color toner image is formed on the transfer body, the toner image is secondarily transferred to a sheet.
このような中間転写体を用いる画像形成装置では、中間転写体に1次転写されたトナー像の読み取りを行う画像読取部が設けられることがある。この画像読取部は、その読み取り結果から、1次転写における各色のトナー像の位置ずれ量の確認や、各色のトナー像の濃度の確認等を行う。このようにして、形成される画像の濃度を適切なものとし、又、重畳される各色のトナー像の位置ずれの発生を防止して、画像品質の向上・維持を図る。 In an image forming apparatus using such an intermediate transfer member, an image reading unit that reads a toner image primarily transferred to the intermediate transfer member may be provided. The image reading unit checks the amount of positional deviation of each color toner image in the primary transfer and the density of each color toner image from the read result. In this way, the density of the formed image is made appropriate, and the occurrence of positional deviation of the superimposed toner images of each color is prevented, thereby improving and maintaining the image quality.
具体的に、例えば、この画像読取部は、検知対象に向けて光を照射する光源や光センサを用いて構成され、中間転写体に照射された光を光センサが受光する。そして、光センサの受光状態の変化により、光センサの出力(例えば電流)が変化し、この変化によりトナー像の濃度が検出され、トナー像の中間転写体上での位置が検出される。しかし、一般に光センサは、温度により出力の特性が変化し得る。又、光源(例えば、LED)の発光量や光センサの出力を増幅するための増幅部の増幅率も温度により変動する場合もある。即ち、同じ対象について検知を行っても、温度により出力が変化する。 Specifically, for example, the image reading unit is configured using a light source or an optical sensor that irradiates light toward a detection target, and the optical sensor receives the light irradiated on the intermediate transfer member. Then, the output (for example, current) of the optical sensor changes due to the change in the light receiving state of the optical sensor, and the density of the toner image is detected by this change, and the position of the toner image on the intermediate transfer member is detected. However, in general, the output characteristics of an optical sensor can change depending on the temperature. In addition, the amount of light emitted from the light source (for example, LED) and the amplification factor of the amplification unit for amplifying the output of the optical sensor may vary depending on the temperature. That is, even if the same object is detected, the output changes depending on the temperature.
この温度による、光源の光量の変化や、増幅部の特性の変化等は、画像の読取精度を低下させる。この画像読取部の温度による特性変化の弊害を防ぐため、例えば、特許文献1記載の発明が提案されている。具体的に、特許文献1には、多くの熱を生ずる定着装置から実質的に最も離れた中間転写ベルト上においてトナー画像を読み取る位置に画像読取手段(検知手段)を配し、画像読取手段を冷却する冷却ファンを設け、画像読取手段の近傍と定着装置の近傍に温度センサを配置した画像形成装置が開示されている。この構成により、熱的要因による画像読取手段の読取精度の悪化を防止しようとしている(特許文献1:請求項7、要約、段落0118、図1等参照)。
しかし、特許文献1記載の発明では、画像読取手段を冷却するために冷却ファンを追加的に設ける必要があり、コストがかかるという問題がある。又、冷却ファンの設置スペースや画像読取手段への通風路を確保しなければならないという問題もある。又、特許文献1記載の発明では、温度センサにより画像読取手段の検知結果を補正するが、温度センサは複数設けられ(特許文献1:請求項41、請求項50等参照)、この点から見ても、画像形成装置の製造コストが高くなるという問題もある。
However, in the invention described in
又、画像読取部の精度向上のため、その他の構成としては、画像読取部の近傍に画像読取部における光源の現在の光量を検出するためだけの光センサを別途設け、この光センサの出力に基づいたり、画像読取部の近傍に画像読取部の光センサの温度を検知するための温度センサを別途設け、この温度センサの出力に基づいたりして、画像読取部の検知結果を補正することが行われる場合がある。しかし、いずれの場合であっても、別途、光センサや温度センサを設けなくてはならず、依然として、画像形成装置の製造コストが高くなるという問題が残る。 In order to improve the accuracy of the image reading unit, as another configuration, an optical sensor only for detecting the current light amount of the light source in the image reading unit is separately provided in the vicinity of the image reading unit. A temperature sensor for detecting the temperature of the optical sensor of the image reading unit may be separately provided near the image reading unit, and the detection result of the image reading unit may be corrected based on the output of the temperature sensor. It may be done. However, in either case, a separate optical sensor and temperature sensor must be provided, and there remains a problem that the manufacturing cost of the image forming apparatus increases.
本発明は、上記従来技術の問題点に鑑みてなされたものであり、センサを多数設けることなく、簡易かつ安価な構成で、画像読取部の周囲温度を高精度に求めることができ、この周囲温度に基づき画像読取部の出力の補正、更に、中間転写体上のトナー像の濃度や位置ずれの調整を精度良く行うことができる画像形成装置を提供することを課題とする。 The present invention has been made in view of the above-described problems of the prior art. The ambient temperature of the image reading unit can be obtained with high accuracy with a simple and inexpensive configuration without providing a large number of sensors. It is an object of the present invention to provide an image forming apparatus capable of correcting the output of an image reading unit based on temperature and adjusting the density and positional deviation of a toner image on an intermediate transfer member with high accuracy.
上記課題を解決するため請求項1に係る発明は、1色以上のトナー像を形成する画像形成部と、前記画像形成部により形成されたトナー像が1次転写され、そのトナー像をシートに2次転写する中間転写部と、2次転写されたトナー像を加圧・加熱してシートに定着させる定着部と、装置の設置環境における機外温度を検知するための環境温度検知部と、前記中間転写部に1次転写されたトナー像の読み取りを行う画像読取部と、前回の画像形成が終了してから経過した時間を計時する計時部と、前記環境温度検知部が検知した温度又は前回の画像形成開始時に演算により求められた前記画像読取部の周囲温度と、前回の画像形成における画像形成条件に基づき演算した前記画像読取部の周囲温度の上昇と、前回の画像形成終了から経過した時間に基づき、現在の前記画像読取部の周囲温度を演算により求める演算部と、前記演算部による前記画像読取部の周囲温度の演算結果に基づき、前記画像読取部の周囲温度による特性の変化を補正するために、前記画像読取部の出力の補正を行う制御部を有することとした。
In order to solve the above-mentioned problems, an invention according to
この構成によれば、環境温度若しくは前回の画像形成開始時の画像読取部の周囲温度を基準として、画像形成条件により画像読取部の周囲温度の上昇を演算し、前回の画像形成が終了してから経過した時間に基づき周囲温度の下降を演算することで、現在の画像読取部の周囲温度を演算することができる。即ち、画像読取部の周囲温度を検知するための温度センサを設けることなく簡易かつ安価な構成で、画像読取部の周囲温度を検出することができる。そして、この検出温度に基づき、画像読取部の出力を補正するので、画像読取部の読取精度を高めることができる。 According to this configuration, the increase in the ambient temperature of the image reading unit is calculated according to the image forming conditions based on the environmental temperature or the ambient temperature of the image reading unit at the start of the previous image formation, and the previous image formation is completed. The current ambient temperature of the image reading unit can be calculated by calculating the decrease in the ambient temperature based on the time elapsed since. That is, the ambient temperature of the image reading unit can be detected with a simple and inexpensive configuration without providing a temperature sensor for detecting the ambient temperature of the image reading unit. And since the output of an image reading part is correct | amended based on this detected temperature, the reading precision of an image reading part can be improved.
又、請求項2に係る発明は、請求項1記載の発明において、前記計時部は、現在行われている画像形成が開始されてから経過した時間も計時し、所定枚数以上のシートに連続して画像形成を行う場合、画像形成開始時の前記画像読取部の周囲温度と、現在行っている画像形成の画像形成条件と、画像形成が開始されてからの時間に基づき、前記演算部は、画像形成中に前記画像読取部の周囲温度を求め、前記制御部は、前記所定枚数の画像形成が行われた時に、前記演算部が求めた現在の前記画像読取部の周囲温度に基づき、前記画像読取部の出力の補正を行うこととした。 According to a second aspect of the present invention, in the first aspect of the present invention, the timekeeping unit also counts the time that has elapsed since the start of the current image formation and continues to a predetermined number of sheets or more. When the image formation is performed, based on the ambient temperature of the image reading unit at the start of image formation, the image formation conditions of the current image formation, and the time from the start of the image formation, During the image formation, the ambient temperature of the image reading unit is obtained, and the control unit, based on the current ambient temperature of the image reading unit obtained by the arithmetic unit when the predetermined number of image formations are performed, The output of the image reading unit was corrected.
連続して画像形成を行うと、画像形成部、中間転写部の周囲温度も上昇し、画像の品質に影響が出る場合があり、画像形成部や中間転写部の動作の較正を行う場合がある。そして、その較正を行う場合には、温度上昇により画像読取部の読取精度も悪化している場合がある。しかし、この構成によれば、所定枚数の画像形成が行われた際に、画像読取部の周囲温度の演算を行い、画像形成中であっても画像読取部の出力の補正を行うことができる。従って、画像形成の途中で行われる較正が適切に行われるようにすることができる。 If image formation is performed continuously, the ambient temperature of the image forming unit and the intermediate transfer unit also rises, which may affect the image quality, and the operation of the image forming unit and the intermediate transfer unit may be calibrated. . When the calibration is performed, the reading accuracy of the image reading unit may be deteriorated due to the temperature rise. However, according to this configuration, when a predetermined number of images are formed, the ambient temperature of the image reading unit can be calculated, and the output of the image reading unit can be corrected even during image formation. . Therefore, calibration performed in the middle of image formation can be appropriately performed.
又、請求項3に係る発明は、請求項1又は2記載の発明において、前記定着部を通過して片面にトナー像が定着されたシートを再度前記中間転写部に向けて搬送して両面印刷を行うための両面印刷搬送路を備え、両面印刷の有無を画像形成条件の一部として、前記演算部は、前記画像読取部の周囲温度上昇を演算することとした。 According to a third aspect of the present invention, in the first or second aspect of the present invention, a sheet on which a toner image is fixed on one side after passing through the fixing unit is conveyed again to the intermediate transfer unit to perform duplex printing. The calculation unit calculates an increase in ambient temperature of the image reading unit, with the presence or absence of double-sided printing as part of the image forming conditions.
両面印刷を行うと、定着部を通過して加熱された片面印刷済みのシートが、装置内を搬送されることで、装置内部、更には、画像読取部の周辺温度も上昇する。しかし、この構成によれば、両面印刷による温度上昇も考慮して、画像読取部の周囲温度の演算を行うから、正確な画像読取部の周囲温度の演算を行うことができる。従って、この検出温度に基づき、画像読取部の出力を補正するので、画像読取部の読取精度を高めることができる。 When double-sided printing is performed, a single-side printed sheet heated through the fixing unit is conveyed through the apparatus, so that the internal temperature of the apparatus and the ambient temperature of the image reading unit also increase. However, according to this configuration, since the ambient temperature of the image reading unit is calculated in consideration of the temperature rise due to double-sided printing, the accurate ambient temperature of the image reading unit can be calculated. Therefore, since the output of the image reading unit is corrected based on the detected temperature, the reading accuracy of the image reading unit can be improved.
又、請求項4に係る発明は、請求項1乃至3のいずれか1項に記載の発明において、画像形成されるシートの枚数を画像形成条件の一部とし、前記演算部は、前記画像読取部の周囲温度上昇を演算することとした。 According to a fourth aspect of the present invention, in the first aspect of the present invention, the number of sheets on which an image is formed is a part of the image forming condition, and the calculation unit is configured to read the image. The increase in the ambient temperature of the part was calculated.
画像形成を連続して行う場合、枚数により(特に両面印刷の場合)、定着部の熱により画像読取部の周囲温度が上昇する場合がある。しかし、この構成によれば、画像形成を行った枚数による温度上昇も考慮しつつ、画像読取部の周囲温度の演算を行うから、正確な画像読取部の周囲温度の演算を行うことができる。従って、この検出温度に基づき、画像読取部の出力を補正するので、画像読取部の読取精度を高めることができる。 When image formation is performed continuously, the ambient temperature of the image reading unit may rise due to the heat of the fixing unit depending on the number of sheets (especially in the case of duplex printing). However, according to this configuration, the ambient temperature of the image reading unit is calculated while taking into account the temperature rise due to the number of images formed, so that the accurate ambient temperature of the image reading unit can be calculated. Therefore, since the output of the image reading unit is corrected based on the detected temperature, the reading accuracy of the image reading unit can be improved.
又、請求項5に係る発明は、請求項1乃至4いずれか1項に記載の発明において、前記演算部は、前回の画像形成が終了してから経過した時間と前記画像読取部の温度減衰曲線をもとに、現在の前記画像読取部の周囲温度の演算を行うこととした。 According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the arithmetic unit is configured to determine the time elapsed since the last image formation and the temperature attenuation of the image reading unit. Based on the curve, the current ambient temperature of the image reading unit is calculated.
この構成によれば、時間と、画像読取部の周囲温度の下降との関係を示す温度減衰曲線に基づき、現在の画像読取部の周囲温度の演算を行うことができる。言い換えると、温度減衰曲線を用いるから、容易に現在の画像読取部の周囲温度の演算を行うことができる。従って、この検出温度に基づき、画像読取部の出力を補正するので、画像読取部の読取精度を高めることができる。 According to this configuration, the current ambient temperature of the image reading unit can be calculated based on the temperature decay curve indicating the relationship between time and the decrease in ambient temperature of the image reading unit. In other words, since the temperature decay curve is used, the current ambient temperature of the image reading unit can be easily calculated. Therefore, since the output of the image reading unit is corrected based on the detected temperature, the reading accuracy of the image reading unit can be improved.
又、請求項6に係る発明は、請求項1乃至5いずれか1項に記載の発明において、前記画像読取部は、前記中間転写部及び前記中間転写部に転写されたトナー像に向けて光を出射する発光部と、前記中間転写部及びトナー像が、反射した光の光量に応じて電流を出力する受光部と、前記受光部が出力した電流を増幅する電流増幅部から構成されることとした。
The invention according to
この構成によれば、画像読取部をこれらの部材で安価に構成することができる。更に、これらの部材をユニット化すれば、更に画像読取部の小型化、低コスト化を図ることもできる。尚、画像読取部の好適な構成の一例を示すものである。 According to this configuration, the image reading unit can be configured with these members at low cost. Furthermore, if these members are unitized, the image reading unit can be further reduced in size and cost. An example of a preferable configuration of the image reading unit is shown.
又、請求項7に係る発明は、請求項1乃至6いずれか1項に記載の発明において、前記制御部は、温度による前記発光部の光量の変化と、温度による前記電流増幅部の電流増幅率の変化に基づき、前記発光部に供給する電圧又は電流を制御して、前記発光部の出射光の光量を調整し、前記画像読取部の出力の補正を行うこととした。
The invention according to
この構成によれば、制御部が、温度上昇等により画像読取部の各部材の特性が変化しても、同一の対象の検知を行った場合に、画像読取部の出力が同一となるように制御するから、従って、この検出温度に基づき、画像読取部の出力を補正するので、画像読取部の読取精度を高めることができる。 According to this configuration, even when the characteristics of each member of the image reading unit change due to a temperature rise or the like, when the same target is detected, the output of the image reading unit is the same. Therefore, since the output of the image reading unit is corrected based on the detected temperature, the reading accuracy of the image reading unit can be improved.
又、請求項8に係る発明は、請求項1乃至7いずれか1項に記載の発明において、前記制御部は、補正された前記画像読取部の出力に基づいて、前記画像形成部及び/又は前記中間転写部を制御し、形成されるトナー像の濃度を調整するとともに、トナー像の1次転写における位置ずれを調整することとした。 According to an eighth aspect of the invention, in the invention according to any one of the first to seventh aspects of the invention, the control unit is configured to control the image forming unit and / or the output unit based on the corrected output of the image reading unit. The intermediate transfer portion is controlled to adjust the density of the formed toner image and to adjust the positional deviation in the primary transfer of the toner image.
この構成によれば、画像読取部の出力に基づき、トナー像の濃度を補正して、形成される画像のトナー濃度を最適の状態に保つことができる。又、画像読取部の出力に基づきトナー像の1次転写の際の位置ずれの補正も行うことができる。従って、形成される画像の品質が高い画像形成装置を提供することができる。 According to this configuration, the density of the toner image can be corrected based on the output of the image reading unit, and the toner density of the formed image can be maintained in an optimum state. Further, based on the output of the image reading unit, it is possible to correct misalignment during the primary transfer of the toner image. Therefore, it is possible to provide an image forming apparatus with high quality of the formed image.
上述したように、本発明によれば、簡易かつ安価な構成で、画像読取部の周囲温度を検出することができ、検出された周囲温度に基づき、画像読取部の出力を補正することができる。即ち、特別な構成を付加することなく、画像読取部の読取精度を高めることができる。そして、画像読取部の読取精度を高めることにより、結果として、画像形成部でのトナー像形成や中間転写部の1次転写等の各種動作の調整も有効に行うことができる。 As described above, according to the present invention, the ambient temperature of the image reading unit can be detected with a simple and inexpensive configuration, and the output of the image reading unit can be corrected based on the detected ambient temperature. . That is, the reading accuracy of the image reading unit can be improved without adding a special configuration. By increasing the reading accuracy of the image reading unit, as a result, it is possible to effectively adjust various operations such as toner image formation in the image forming unit and primary transfer in the intermediate transfer unit.
以下、本発明の実施形態について図1〜12を参照しつつ説明する。但し、本実施の形態に記載されている構成、配置等の各要素は、発明の範囲を限定するものではなく単なる説明例にすぎない。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. However, each element such as configuration and arrangement described in this embodiment does not limit the scope of the invention and is merely an illustrative example.
まず、本発明は、各種画像形成装置に適用可能であるが、一例として画像形成装置のうちカラー対応のプリンタ1に適用した場合について、図1に基づき説明する。図1は、本発明の実施形態に係るプリンタ1の概略構造を示す模型的正面断面図である。
First, the present invention can be applied to various image forming apparatuses. As an example, a case where the present invention is applied to a color-
本実施形態におけるプリンタ1は、ネットワーク、ケーブル等により接続される外部コンピュータ100(図7参照)から形成すべき画像の画像データを受け取り、シートに画像形成を行う。そのための構成として、図1に示すように、プリンタ1は、装置内に中間転写部2、画像形成部3、定着部4、シート供給部5、シート搬送路6、両面印刷搬送路7、濃度センサ8等が設けられる(シートの搬送経路を破線で図示)。
The
前記中間転写部2と画像形成部3は、互いに接し本体内部の中央部に設けられる。そして、複数の色のトナー像を形成するため、画像形成部3は、4つの画像形成ユニット31(31K、31Y、31C、31M)を備える(詳細は後述)。
The
前記定着部4は、中間転写部2によりシートに2次転写されたトナー像を定着させる。定着部4は、内部に発熱体を備えた加熱ローラ41と、加熱ローラ41に圧接する加圧ローラ42とを備え、トナー像が2次転写されたシートは、シート搬送路6により加熱ローラ41と加圧ローラ42のニップに進入し、押圧・加熱され、トナー像が定着する。
The fixing
前記シート供給部5は、最下部に設けられ、カセット51、ピックアップローラ52等から構成される。カセット51は、上面が開口した箱形であり、プリンタ用紙、ラベル用紙、OHPシート、厚紙等、各種のシートの束を収納する。ピックアップローラ52は、最上位のシートに当接し、画像形成の際シート搬送路6にシートを1枚ずつ送り出す。
The
前記シート搬送路6は、シート供給部5から排出トレイ61までシートを搬送する通路である。シート搬送路6には、適宜、ガイドや搬送ローラ対62、更に、両面印刷を可能とするため、正逆回転駆動可能なスイッチバックローラ対63が、シート排出口64に設けられる。スイッチバックローラ対63は、片面印刷時、プリンタ1からシートを排出する方向(図1の矢印A方向)に回転し、搬送ローラ対として機能する。
The
前記両面印刷搬送路7は、両面印刷のため、片面印刷済みのシートを搬送する搬送路である。この両面印刷搬送路7は、定着部4を通過して片面にトナー像が定着されたシートを再度中間転写部2に向けて搬送する。そのため、両面印刷搬送路7の一端が、定着部4とシート排出部64の間の部分のシート搬送路6と接続(分岐)され、他端が、中間転写部2の駆動ローラ21、2次転写ローラ25よりもシート搬送方向上流側に接続(合流)される。そして、両面印刷搬送路7は、シート搬送路6と両面印刷搬送路7の分岐点71に設けられ回動可能に構成される切替ガイド72、両面印刷ローラ対73等を備える。
The double-sided
本実施形態のプリンタ1での両面印刷時のシート搬送は、以下のように行われる。定着部4を通過し、片面に画像形成がなされたシートは、一旦、排出トレイ61に向けて搬送される(スイッチバックローラ対63は、図1の矢印A方向に回転)。しかし、シートが完全に排出される前に、スイッチバックローラ対63の回転方向は反転する(図1の矢印B方向)。即ち、シートをプリンタ1内に送り込む。
Sheet conveyance during duplex printing in the
この時、切替ガイド72は、定着部4方向にスイッチバックされたシートが進入しないように、シート搬送路6を塞ぐ。即ち、スイッチバックされたシートを両面印刷搬送路7に導く。そして、搬送路上に設けられる両面印刷ローラ対73は、片面印刷済みのシートを搬送し、中間転写部2の手前で、シート搬送路6に再合流させる。
At this time, the switching
前記濃度センサは、本実施形態では、中間転写ベルト24の下方かつ2次転写ローラ25と画像形成ユニット31Kの間に設けられる。この濃度センサ8は、中間転写ベルト24に1次転写されたトナー像の読み取りを行い、この読み取りにより濃度センサ8は、1次転写されたトナー像の濃度や位置ずれを検知する(詳細は後述)。
In the present embodiment, the density sensor is provided below the
尚、本実施形態に係るプリンタ1には、例えば、従動ローラ22の下方に、プリンタ1の設置環境における機外温度を検知するための温度センサ81(環境温度検知部に相当)が設けられる。温度センサ81の検知結果は、例えば、定着部4のウォームアップ時に、環境温度によらず、加熱ローラ41をムラなく暖めるため、通常よりも時間をかけて加熱ローラ41を暖める等、設置環境の気温を考慮しつつ、適切に画像形成が行われるようにプリンタ1を制御するために用いられる。
In the
次に、図2に基づき、中間転写部2及び画像形成部3の詳細な説明を行う。図2は、本発明の実施形態に係るプリンタ1の中間転写部2及び画像形成部3の拡大正面模型的断面図である。
Next, the
前記画像形成部3は、4つの画像形成ユニット31K、31Y、31C、31Mを有する。ここで、画像形成ユニット31Kはブラックの、画像形成ユニット31Yはイエローの、画像形成ユニット31Cはシアンの、画像形成ユニット31Mはマゼンタのトナー像形成を行う。尚、各画像形成ユニット31K、31Y、31C、31Mは、使用するトナーの色が異なるが、ほぼ同一の構成であり、以後、特に説明する場合を除き、K、Y、C、Mの文字は省略する。
The
各画像形成ユニット31は、感光体ドラム32、帯電装置33、露光装置34、現像装置35、クリーニング装置36等を備える。感光体ドラム32は、モータ、ギア等からなる駆動機構(不図示)により反時計方向に回転する。トナー像形成の際、まず、感光体ドラム32の下方に設けられた帯電装置33が、感光体ドラム32の周面を所定の電位に帯電させる。次に、帯電装置33の更に下方の露光装置34が、入力された画像データに基づく各色に対応したレーザ光(破線で図示)を帯電後の各感光体ドラム32の周面に照射し、感光体ドラム32の表面の走査・露光を行い静電潜像を形成する。現像装置35は、静電潜像にトナーを供給し、静電潜像がトナーにより現像される。尚、各画像形成ユニット31は、現像装置35の供給するトナーの色が異なる。本実施形態ではブラック、イエロー、シアン、マゼンタの4色が用いられる。クリーニング装置36は、1次転写後の感光体ドラム32の周面に残ったトナー等を除去して、クリーニングを行う。
Each image forming unit 31 includes a
次に、中間転写部2について説明する。中間転写部2は、駆動ローラ21、従動ローラ22、1次転写ローラ23、中間転写ベルト24、2次転写ローラ25等で構成される。
Next, the
駆動ローラ21は、モータ、ギア等からなる駆動機構(不図示)に接続され、所定の速度で回転駆動する。そして、中間転写ベルト24は、駆動ローラ21、従動ローラ22、1次転写ローラ23に張架され、駆動ローラ21が回転することで、中間転写ベルト24も周回する(図2において時計方向に周回)。又、1次転写ローラ23は、計4本設けられ、中間転写ベルト24を介し各感光体ドラム32と当接する。又、感光体ドラム32上のトナー像を中間転写ベルト24に1次転写するため、所定のタイミングで1次転写ローラ23に所定の電圧が印加される。具体的な1次転写順序は、中間転写ベルト24上の1次転写の開始位置で、画像形成ユニット31Mの感光体ドラム32上のマゼンタのトナー像の転写が開始され、次に、マゼンタと同じ1次転写の開始位置で画像形成ユニット31Cによるシアンのトナー像が重ねられ、以下同様に画像形成ユニット31Yによるイエローのトナー像、画像形成ユニット31Kによるブラックのトナー像が重ねられる。このようにして、中間転写ベルト24の表面にフルカラーのトナー像が重畳して形成される。
The
2次転写ローラ25は、中間転写ベルト24を介し駆動ローラ21と当接し、そのニップにトナー像と搬送されてきたシートが重なるタイミングで所定の電圧を印加され、中間転写ベルト24上のトナー像は、シートに2次転写される。トナー像を転写されたシートは、定着部4に送られる。尚、2次転写後の中間転写ベルト24は、従動ローラ22と中間転写ベルト24を介し当接するベルトクリーニング装置36によって、残トナー等が除去され、清掃される。
The
次に、図3に基づき、本発明の実施形態に係る濃度センサ8の詳細を説明する。図3は、本発明の実施形態に係る濃度センサ8を説明するための説明図である。
Next, based on FIG. 3, the detail of the density |
上述したように、濃度センサ8は、中間転写ベルト24上に転写されたトナー像の読み取りを行う。そのため、濃度センサ8は、一定の隙間(例えば、20mm)が設けられつつ、中間転写ベルト24に対向して支持される。
As described above, the
濃度センサ8は、中間転写ベルト24及び中間転写ベルト24に転写されたトナー像に向けて光を出射する発光部82(例えば、LED)と、中間転写ベルト24及びトナー像が反射した光の光量に応じて電流を出力する光電変換素子としての受光部83(例えば、フォトダイオード)と、受光部83が出力した電流を増幅する電流増幅部84(例えば、トランジスタ)から構成される。
The
この濃度センサ8は、受光部83の受光状態により、出力電流が変化する。この出力電流の変化により、濃度センサ8は、トナー像の通過を検知することができる。例えば、トナーがブラックならば、他の色のトナーに比べ発光部82からの光を吸収し、又、ブラックのトナーの濃度が高いほど、光は吸収される(一方、中間転写ベルト24の表面は光沢面)。このように、トナーの色、濃度により、受光部83の受ける光の量や反射率が異なり、トナーの色と出力電流の大きさから、中間転写ベルト24上のトナー濃度も検知することができる。
In the
具体的に説明すると、図3に示すように、トナーは粉体であり、トナーが濃度センサ8の検知領域を通過すると、受光部83の受ける光量が変化する。従って、受光部83の出力電流が変化し、トナー像の通過を検出することができる。又、低下した出力電流の量により、トナーの濃度も検知することができる。
More specifically, as shown in FIG. 3, the toner is powder, and when the toner passes the detection area of the
次に、図4に基づき、本発明の実施形態に係る濃度センサ8によるトナー像の位置ずれ量及び濃度の検知について説明する。図4は、本発明の実施形態に係る濃度センサ8による位置ずれ量及び濃度の検知の一例の説明図であり(a)は、副走査方向における位置ずれ量検知の一例を示す説明図であり。(b)は、副走査方向における位置ずれ量検知の一例を示す説明図である。尚、図4は、中間転写ベルト24及び濃度センサ8を下方から見た図である。
Next, based on FIG. 4, detection of the toner image positional deviation amount and density by the
図4(a)に示すように、中間転写ベルト24の副走査方向におけるトナー像の位置ずれ量を検出する場合、画像形成部3は、副走査方向と垂直な方向(主走査方向と平行)に4色のラインからなるパターン画像P1を形成し、このパターン画像P1が、中間転写ベルト24に転写される。尚、ここでは、図4の右方から順にブラックのラインK1、イエローのラインY1、シアンのラインC1、マゼンタのラインM1とする。
As shown in FIG. 4A, when detecting the positional deviation amount of the toner image in the sub-scanning direction of the
そして、濃度センサ8は、各ラインの通過を検出するが、中間転写ベルト24の周回速度と各ラインの通過に要した時間(例えば、後述する制御部9の計時部95が、濃度センサ8の出力の変化から測定)から、各ラインの間隔を算出することができる。この実際に求められた各ラインの間隔と、画像形成部3が形成しようとした各ラインの間隔(理想的間隔)との差から、副走査方向におけるトナー像の位置ずれ量を求めることができる。又、画像形成部3が形成しようとしたトナー像の理想的濃度と、実際に検知された濃度を比較し、理想的濃度と実際の画像の濃度の差を求めることができる。即ち、パターン画像P1の読み取りの際の濃度センサ8の出力から、トナー像の濃度も検知することができる。
The
一方、主走査方向におけるトナー像の位置ずれ量は、例えば、図4(b)に示すように、副走査方向(主走査方向)に対し、斜め45°の斜線で形成されるパターン画像P2を読み取ることで求めることができる。尚、ここでは、パターン画像P2は、図4の右方から順にブラックのラインK2、イエローのラインY2、シアンのラインC2、マゼンタのラインM2から形成されているとする。 On the other hand, the amount of misalignment of the toner image in the main scanning direction is, for example, as shown in FIG. 4B with respect to a pattern image P2 formed with a diagonal line of 45 ° with respect to the sub-scanning direction (main scanning direction). It can be obtained by reading. Here, it is assumed that the pattern image P2 is formed from a black line K2, a yellow line Y2, a cyan line C2, and a magenta line M2 in order from the right in FIG.
そして、中間転写ベルト24が周回して、パターン画像P1を濃度センサ8が読み取ると、中間転写ベルト24の周回速度と、次のラインを検出するまでの時間から、各ラインの間隔を求めることができる。ここで、各ラインは斜め45°となるように形成されているから、各ラインにおける副走査方向の間隔と主走査方向の間隔は等しく、求められた間隔は、主走査方向における各ラインの間隔でもある。この求められた間隔と画像形成部3が形成しようとした各ラインの間隔(理想的間隔)との差から、主走査方向におけるトナー像の位置ずれ量を求めることができる。
When the
この求められた位置ずれ量やトナー濃度から、中間転写ベルト24に転写されるトナー像の位置やトナー像の濃度の調整(較正、キャリブレーション)を行うことができる。例えば、位置ずれの調整を行う場合は露光装置34の走査・露光を行うタイミングや走査時間を調整し、トナー濃度の調整を行う場合は、帯電装置33による感光体ドラム32の帯電電位の調整や、1次転写ローラ23に印加する電圧の調整等を行う。尚、この較正は、プリンタ1の電源投入時や、所定枚数連続して画像形成を行った場合、所定時間経過した場合等の任意の時点で行い、画像の品質を維持する。
From the obtained positional deviation amount and toner density, it is possible to adjust (calibrate, calibrate) the position of the toner image transferred to the
このように、濃度センサ8の出力値に基づき、トナー像の濃度や位置ずれ量の調整を行うが、濃度センサ8の出力特性は、濃度センサ8の周囲温度Tにより、変化するという問題がある。この点に付き、図5及び図6に基づき説明する。図5は、濃度センサ8を構成する部材の温度による特性の変化の一例を示す図であり、(a)は、発光部82としてのLEDの光量の温度特性の一例を示すグラフであり、(b)は、電流増幅部84の増幅率の温度特性の一例を示すグラフである。図6は、本発明の実施形態に係る濃度センサ8の温度による特性変化の補正を説明するため説明図である。
As described above, the density and positional deviation amount of the toner image are adjusted based on the output value of the
本実施形態の濃度センサ8は、発光部82にLEDを用いることができるが、図5(a)に示すように、LEDに流れる電流を一定にした場合、温度が上昇すると、光量が一般に低下する。言い換えると、LEDの光量を一定にするには、温度によりLEDに流す電流を増減する必要がある。
In the
一方、本実施形態の濃度センサ8は、電流増幅部84にトランジスタを用いることができるが、図5(b)示すように、半導体は一般に温度変化の影響を受け、例えば、温度が上昇すると、電流の増幅率が大きくなる。
On the other hand, the
これらの濃度センサ8の特性変化を考慮して、図6に基づき、濃度センサ8の出力の補正方法について説明する。図6では、濃度センサ8の周囲温度Tが20°Cの環境下における濃度センサ8の出力値を100として説明する。
Considering these characteristic changes of the
種々の要因を勘案すると、図6における上方のグラフに示すように、本実施形態の濃度センサ8の出力電流は、周囲温度Tが20°Cを超えると、徐々に低下する。一方、20°Cから周囲温度Tが低下しても若干出力電流が低下する(図3参照)。従って、20°Cを基準とすると、例えば、濃度センサ8の周囲温度Tが60°Cになった場合、濃度センサ8の出力を補正しなければ、特に、トナー像の濃度検知に影響が出て、検知精度が下がる。又、トナー像の通過を濃度センサ8が検知できない場合も生じ得るから、位置ずれ検知においても支障が生じ得る。
Considering various factors, the output current of the
そこで、本実施形態では、図6の下方のグラフに示すように、濃度センサ8の出力電流の温度変化に対応して、補正曲線に基づき濃度センサ8の周囲温度Tによって、LEDに流す電流を増減させる。言い換えると、20°Cの時にLEDに流す電流を基準として、温度によるLEDの光量及び電流増幅部84の電流増幅率の変化に基づき、LEDに供給する電圧又は電流を制御し、LEDの光量を調整して濃度センサ8の出力の補正を行う。
Therefore, in the present embodiment, as shown in the lower graph of FIG. 6, the current flowing through the LED is changed according to the ambient temperature T of the
これにより、同一の対象について濃度センサ8が読み取りを行った場合、濃度センサ8の周囲温度Tによらず、濃度センサ8の出力は、一致する。尚、図5及び6に示した特性は、全ての濃度センサ8に共通するものではなく、使用する光源や電流増幅部84によって異なる。従って、実際には、濃度センサ8を構成する部材の有する特性により、発光部82に供給する電圧、電流等を調整すればよい。
As a result, when the
次に、図7に基づき、本発明の実施形態に係るプリンタ1の濃度やトナー像の位置ずれの補正制御の一例について説明する。図7は、本発明の実施形態に係るプリンタ1のブロック図である。
Next, an example of correction control for the density of the
まず、本実施形態に係るプリンタ1には、プリンタ1を構成する各部の制御を行うための制御部9が設けられる。制御部9は、プリンタ1内に適宜設けられる基板上に設けられ、又、制御信号を伝達するためにプリンタ1を構成する各部と信号線で接続される。
First, the
具体的に、制御部9は、CPU91、RAM92、ROM93、HDD94、計時部95、電流制御部96等を有する。前記CPU91(演算部に相当)は、中央処理演算装置であり、プリンタ1の制御や画像形成に必要となる演算処理を行う。又、濃度センサ8の周囲温度Tの求める演算や、求められた周囲温度Tの出力に基づき濃度センサ8の出力を補正するための演算や、実際の濃度センサ8の出力の補正制御も行う。
Specifically, the
記憶装置としては、RAM92、ROM93、HDD94が用いられ、例えば、RAM92は、CPU91がプリンタ1を制御するために、制御用のプログラム、データを一時的に展開したり、外部コンピュータ100から送信される画像データを記憶したりするために利用される。又、ROM93やHDD94にはプリンタ1を制御するためのプログラムや制御用データや濃度センサ8の現在の周囲温度Tを演算するためのデータやプログラム、及び、演算された現在の周囲温度Tに基づいて濃度センサ8の出力の補正を行うためのデータやプログラム等が記憶される。
As the storage device, a RAM 92, a ROM 93, and an
前記計時部95は、いわゆるタイマであり、プリンタ1の制御に必要な各種の時間を計時する。例えば、前回に行われた画像形成が終了してから現在までの時間の計時を行う(この点の詳細は後述)。又、前記電流制御部96は、現在の濃度センサ8の周囲温度Tに基づき、画像読取部のLED(発光部82)を流れる電流の実際の制御を担う。
The
次に、図8〜11に基づき、本発明の実施形態に係る濃度センサ8の周囲温度Tの演算について説明する。図8は、前回の画像形成で両面印刷を行った場合について、濃度センサ8の周囲温度Tの演算を説明するためのグラフである。図9は、前回の画像形成で片面印刷を行った場合について、濃度センサ8の周囲温度Tの演算を説明するためのグラフである。図10は、両面印刷の画像形成中において、濃度センサ8の周囲温度Tの演算を説明するためのグラフである。図11は、片面印刷の画像形成中において、濃度センサ8の周囲温度Tの演算を説明するためのグラフである。
Next, the calculation of the ambient temperature T of the
まず、上述したように、本実施形態の濃度センサ8の出力は、温度により補正される。しかし、適切な補正を行うには濃度センサ8の周囲温度Tを正確に知る必要がある。
First, as described above, the output of the
ここで、濃度センサ8の周囲温度Tを検出するためにだけの温度センサ、LEDの光量を検知するためだけの光センサ、濃度センサを冷却するための冷却ファン、等何らかの部材を設けると、製造コストが上昇する。又、これらの構成を設置するためのスペースや動作を制御するためのインターフェイスも必要になり、これらの点でもコスト、スペースの点で問題がある。しかしながら、本発明は、これらの部材を別途設けることなく、演算により濃度センサ8の周囲温度Tを求めるから、製造コストを低下させることができ、プリンタ1の小型化を図ることができる。
Here, if any member such as a temperature sensor only for detecting the ambient temperature T of the
この演算による濃度センサ8の周囲温度Tの演算は、現在、画像形成が行われていないのであれば、温度センサ81が検出した環境温度又は前回の画像形成開始時の演算により求められた濃度センサ8の周囲温度Tと、前回の画像形成における画像形成条件に基づき演算した濃度センサ8の温度上昇と、前回の画像形成終了からの経過時間t1に基づいて行われる。尚、この演算は、例えば、制御部9のCPU91が行うことができる。
The calculation of the ambient temperature T of the
一方、所定枚数以上のシートに連続して画像形成を行っているのであれば、画像形成開始時の画像読取部の周囲温度Tと、現在行っている画像形成の画像形成条件と、画像形成が開始されてからの時間に基づき、CPU91は、画像形成中に画像読取部の周囲温度Tを求め、制御部9は、所定枚数の画像形成が行われた時に、求めた現在の前記画像読取部の周囲温度Tに基づき、濃度センサ8の出力の補正を行う。即ち、連続して画像形成を行った場合に行われる画像形成部3や中間転写部の調整(較正、キャリブレーション)にあわせ、濃度センサ8の出力の補正を行う。
On the other hand, if image formation is continuously performed on a predetermined number of sheets or more, the ambient temperature T of the image reading unit at the start of image formation, the image formation conditions for image formation currently being performed, and image formation Based on the time from the start, the
ここで所定枚数とは、例えば10枚、20枚と一定の枚数と設定することができるが、画像形成装置の排熱能力や、画像形成を行うシートの大きさ(例えば、A4、A3等)に応じて適宜設定することができる。尚、所定枚数ごとではなく、一定時間ごとに定期的に濃度センサ8の周囲温度が求められても良い。
Here, the predetermined number of sheets can be set to a certain number of sheets, for example, 10 sheets or 20 sheets. However, the heat discharge capability of the image forming apparatus and the size of the sheet on which the image is formed (for example, A4, A3, etc.) It can be set appropriately depending on the situation. It should be noted that the ambient temperature of the
更に、本実施形態では、前回の画像形成時、又は、現在行っている画像形成が両面印刷であるか否かに着目する点に特徴を有する。従って、周囲温度Tの演算は、大別して4つのパターンに場合分けされる。具体的には、以下の通りとなり、以下、各パターンについて説明する。
(パターン1)現在画像形成中でなく、前回の画像形成が両面印刷である場合(図8)。
(パターン2)現在画像形成中でなく、前回の画像形成が両面印刷でない場合(図9)。
(パターン3)現在画像形成中であり、その画像形成が両面印刷である場合(図10)。
(パターン4)現在画像形成中であり、その画像形成が両面印刷でない場合(図11)。
尚、プリンタ1の電源投入後、最初に画像形成を行う場合には、前回に行われた画像形成自体が存在しないので、現在の周囲温度Tを求める場合は、温度センサ81の温度検出結果を、現在の濃度センサ8の周囲温度Tと設定すればよい。
Furthermore, the present embodiment is characterized in that attention is paid to whether or not the image formation performed at the previous time or the current image formation is duplex printing. Therefore, the calculation of the ambient temperature T is roughly divided into four patterns. Specifically, it is as follows, and each pattern will be described below.
(Pattern 1) When the current image formation is not being performed and the previous image formation is duplex printing (FIG. 8).
(Pattern 2) The current image is not being formed and the previous image formation is not duplex printing (FIG. 9).
(Pattern 3) When an image is currently being formed and the image formation is duplex printing (FIG. 10).
(Pattern 4) When an image is currently being formed and the image formation is not duplex printing (FIG. 11).
Note that when image formation is performed for the first time after the
(パターン1)現在画像形成中でなく、前回の画像形成が両面印刷である場合。
まず、パターン1においては、図8に示すように、周囲温度Tの演算の基準は、温度センサ81が検知した前回の画像形成開始時に演算された濃度センサ8の周囲温度T1である。そして、例えば、周囲温度T1は、画像形成が行われるたびに演算され、RAM92等に保存される。そして、周囲温度T1に基づき、両面印刷終了時の濃度センサ8の周囲温度T2を求める。
(Pattern 1) When image formation is not currently being performed and the previous image formation is duplex printing.
First, in the
ここで、本発明で両面印刷と片面印刷の差について着目する理由は、両面印刷では、片面印刷の際に定着部4(定着部4自体は200°C程度にまで暖められる)により暖められたシートが、中間転写部2に向けて巡回して搬送されるので、片面印刷の場合に比べプリンタ1内の温度、ひいては、濃度センサ8の周囲温度Tが上昇してしまうためである。
Here, the reason for paying attention to the difference between the double-sided printing and the single-sided printing in the present invention is that the double-sided printing is heated by the fixing unit 4 (the fixing
具体的に、周囲温度T2を演算する場合、CPU91は、図8の右側のグラフで示す温度上昇曲線CL1(横軸は画像形成を行った枚数(印字枚数)、縦軸は濃度センサ8の周囲温度)に基づき演算を行う。尚、温度上昇曲線CL1のデータは、ROM93等に保存され、CPU91はこのデータをRAM92に適宜読み出す。そして、曲線の周囲温度T1の点から、前回の画像形成時の印字枚数に対応して、周囲温度T2が演算される。
Specifically, when calculating the ambient temperature T2, the
次に、CPU91は、前回の画像形成終了時から、例えば、計時部95によりカウントされる現在までの経過時間t1と、適宜ROM93、HDD94に保存され読み出される図8の左側のグラフで示す温度減衰曲線CL2(横軸は、前回の画像形成終了からの経過時間t、縦軸は濃度センサ8の周囲温度T)に基づき、現在の濃度センサ8の周囲温度T3を演算する。
Next, the
この温度減衰曲線CL2は、環境温度により、濃度センサ8の周囲温度Tの下がり方が異なるため例えば、3種類程度用いることができる(以下同様)。具体的に例えると、環境温度が10°C未満である場合の温度減衰曲線CL2A(2点鎖線で図示)、10°C以上25°C未満である場合の温度減衰曲線CL2B(実線で図示)、25°C以上である場合の温度減衰曲線CL2Cというように環境温度に対応した温度減衰曲線CL2を用意することができる。又、温度減衰曲線CL2は、例えば、最も下がった温度を環境温度に合わせ変形させるなど、CPU91は、演算により温度減衰曲線Cを適宜変形させてもよい。尚、温度減衰曲線CL2の数は、3つに限られず3つ以上の温度減衰曲線CL2を用いるようにしてもよい。
This temperature decay curve CL2 can be used in, for example, about three types (hereinafter the same) because the ambient temperature T of the
このように、パターン1では、両面印刷による温度上昇を考慮して、前回の画像形成の際に演算された周囲温度T1を基準とし、温度上昇曲線CL1に基づき、画像形成を行った枚数から前回の画像形成終了時の周囲温度T2を演算し、温度減衰曲線CL2に基づき前回の画像形成終了から経過時間t1から現在の周囲温度T3を演算する。
As described above, in
(パターン2)現在画像形成中でなく、前回の画像形成が両面印刷でない場合。
パターン2では、前回の画像形成が片面印刷の場合であり、両面印刷の場合ほど濃度センサ8の周囲温度Tの上昇はなく、通常、プリンタ1等の画像形成装置では、送風機構等の何らかの排熱機構(不図示)を有しているので周囲温度Tの上昇はないと同視できる。そのため、図9に示すように、パターン2では、基本的に温度減衰曲線CL2のみに基づき、前回の画像形成開始時の周囲温度T4と、前回の画像形成終了からの経過時間t1に基づき、現在の濃度センサ8の周囲温度T5を求める。尚、適宜ROM93等からCPU91が温度減衰曲線CL2のデータを読み出す点、温度減衰曲線CL2が環境温度に合わせて複数用意される点等、周囲温度T5の演算の方法自体はパターン1と同様である。
(Pattern 2) The current image is not being formed and the previous image formation is not duplex printing.
In
尚、パターン2においても、濃度センサ8と定着部4との距離等の要因により、場合によって片面印刷であっても連続して大量に画像形成を行うと、濃度センサ8の周囲温度Tが上昇する場合もあるので、別途、パターン1と同様に片面印刷用の温度上昇曲線CL1をメモリ等に記憶させておき、パターン1と同様に現在の周囲温度Tを演算するようにすれば、より周囲温度Tの検知精度を高めることができる。
In the
(パターン3)現在画像形成中であり、その画像形成が両面印刷である場合。
連続して大量に両面印刷の画像形成を行うと、画像形成中における装置内部の温度上昇を無視できない場合がある。例えば、温度上昇が画像形成部3や中間転写部2に影響を与え、トナー像の濃度変化や1次転写に位置ずれが生ずる場合がある。そして、画質の維持向上を図るため、画像形成中に画像形成部3や中間転写部2の動作等の調整を行うことが望ましい。例えば、この調整は、一旦、画像形成動作を中断し、濃度センサ8により、図4の説明で述べたように、位置ずれ量やトナー像の濃度の検出情報に基づき行われる。
(Pattern 3) When an image is currently being formed and the image formation is duplex printing.
When a large amount of double-sided printing is continuously performed, a temperature increase inside the apparatus during image formation may not be ignored. For example, an increase in temperature may affect the
そこで、この画像形成中の本実施形態では、図10に示すように、温度上昇曲線CL1に基づき、濃度センサ8の周囲温度Tについて演算を行い、濃度センサ8の出力の補正を行う。具体的には、画像形成開始時の周囲温度T6を基準とし(周囲温度T6自体は、パターン1又は2により求められる。)、形成した画像の枚数(印字枚数)に基づき現在の周囲温度T7を求める。この演算された周囲温度T7に基づき、濃度センサ8の出力を制御部9が補正し、その補正された濃度センサ8出力に基づいて、画像形成部3や中間転写部2の動作の調整を制御部9が行う。
Therefore, in the present embodiment during image formation, as shown in FIG. 10, calculation is performed for the ambient temperature T of the
(パターン4)現在画像形成中であり、その画像形成が両面印刷でない場合。
片面印刷の場合は、両面印刷の場合に比べ、連続して画像形成を行っても温度上昇がほとんどなく、むしろ、濃度センサ8の周囲温度Tが下がる場合もある。そうすると、両面印刷の場合とは反対に、装置内部の温度下降により、画像濃度や位置ずれが生ずる場合がある。そのため、画像形成中に画像形成部3の動作や中間転写部2の動作等において較正を行うことが望ましい場合がある。
(Pattern 4) When an image is currently being formed and the image formation is not duplex printing.
In the case of single-sided printing, as compared with the case of double-sided printing, there is almost no increase in temperature even when image formation is continuously performed. Rather, the ambient temperature T of the
そこで、この画像形成中の本実施形態では、図11に示すように、温度減衰曲線CL2A〜Cに基づき、濃度センサ8の周囲温度Tの演算、出力の補正を行う。具体的には、画像形成開始時の周囲温度T8を基準とし(周囲温度T8自体は、パターン1又は2により求められる。)、画像形成開始からの経過時間t1に基づき現在の周囲温度T9を求める。尚、温度減衰曲線CL2が環境温度に合わせて複数用意される点、この演算された周囲温度T9に基づき、濃度センサ8の出力を制御部9が補正し、その補正された濃度センサ8出力に基づいて、画像形成部3や中間転写部2の動作の調整を制御部9が行う点等は、パターン1と同様である。又、パターン4では、連続の画像形成による温度上昇の有無を考慮し、温度減衰曲線CL2の勾配を緩やかにしてもよい。
Therefore, in this embodiment during image formation, as shown in FIG. 11, the calculation of the ambient temperature T of the
次に、図12に基づき、本発明の実施形態に係るプリンタ1の濃度センサ8の周囲温度Tの演算の流れを説明する。図12は、本発明の実施形態に係るプリンタ1の濃度センサ8の周囲温度T演算の流れを説明するためのフローチャートである。
Next, based on FIG. 12, the flow of calculation of the ambient temperature T of the
ます、現在の濃度センサ8の周囲温度Tを演算する場合、制御部9は、画像形成中であるか否かを確認する(ステップ♯1)。現在、画像形成中でなければ(ステップ♯1のYes)、次に制御部9は、電源投入後、最初の画像形成であるか否かの確認を行う(ステップ♯2)。最初の画像形成であれば(ステップ♯2のYes)、プリンタ1内部温度は、環境温度と同一と考えられるから、CPU91は、温度センサ81により検知された環境温度を取り込み、RAM92等に保存し(ステップ♯3)、環境温度を濃度センサ8の現在の周囲温度Tと設定し、現在の周囲温度TとしてRAM92等に書き込む(ステップ♯4、5)。そして、濃度センサ8の出力の補正を行う場合、この書き込まれた周囲温度Tに基づき、制御部9は、濃度センサ8の出力を補正し(ステップ♯6)、一連の濃度センサ8の出力補正制御は終了する(エンド)。
First, when calculating the ambient temperature T of the
一方、電源投入後、最初の画像形成でなければ(ステップ♯2のNo)、まず、前回の画像形成開始時の濃度センサ8の周囲温度TをCPU91は、RAM92等に読み込む(ステップ♯7)。そして、制御部9は、更に、RAM92、HDD94等に記憶されている前回の画像形成の画像形成条件(例えば、両面印刷か否か、印字枚数等)をRAM92等に読み込む(ステップ♯8)。更に、CPU91は、前回の画像形成終了から経過した時間を計時部95から読み込む(ステップ♯9)。
On the other hand, if the first image formation is not performed after power-on (No in step # 2), the
次に、CPU91は、読み込んだ画像形成条件から、前回の画像形成は両面印刷であったか否かを確認する(ステップ♯10)。両面印刷であった場合は(ステップ♯10のYes、上記パターン1に相当)、CPU91は、温度上昇曲線CL1と温度減衰曲線CL2をROM93、HDD94から読み出し(ステップ♯11)、現在の濃度センサ8の周囲温度Tを演算する(ステップ♯12)。そして、濃度センサ8の周囲温度Tの演算完了後は、ステップ♯5及び6に移行する。
Next, the
一方、前回の画像形成は片面印刷であった場合は(ステップ♯10のNo、上記パターン2に相当)、CPU91は、温度減衰曲線CをROM93等から読み出し(ステップ♯13)、現在の濃度センサ8の周囲温度Tを演算する(ステップ♯14)。
On the other hand, if the previous image formation was single-sided printing (No in
現在の濃度センサ8の周囲温度Tを演算する際に、画像形成中であった場合は(ステップ♯1のNo、上記パターン3に相当)、まず、CPU91は、画像形成開始時の濃度センサ8の周囲温度T及び、現在行っている画像形成の画像形成条件を読み込む(ステップ♯15及び16)。その後、制御部9は、現在行っている画像形成が両面印刷であるか否かを確認し(ステップ♯17)、現在行っている画像形成が両面印刷であれば、CPU91はROM93等から温度上昇曲線CL1を読み出し(ステップ♯18)、温度上昇曲線CL1をもとに現在の濃度センサ8の周囲温度Tの演算を行う(ステップ♯19)。濃度センサ8の周囲温度Tの演算完了後は、ステップ♯5及び6に移行する。
When the current ambient temperature T of the
一方、現在行っている画像形成が片面印刷であれば(ステップ♯17のNo、パターン4に相当)、CPU91はROM93等から温度減衰曲線Cを読み出し(ステップ♯20)、温度減衰曲線Cをもとに現在の濃度センサ8の周囲温度Tの演算を行う(ステップ♯21)。そして、この場合も同様に、濃度センサ8の周囲温度Tの演算完了後は、ステップ♯5及び6に移行する。
On the other hand, if the current image formation is single-sided printing (No in
このようにして、本発明によれば、環境温度若しくは前回の画像形成開始時の画像読取部(濃度センサ8)の周囲温度Tを基準として、画像形成条件により画像読取部の周囲温度Tの上昇を演算し、前回の画像形成が終了してから経過した時間に基づき周囲温度Tの下降を演算することで、現在の画像読取部の周囲温度Tを演算することができる。即ち、画像読取部の周囲温度Tを検知するため、別途温度センサを設けることなく簡易かつ安価な構成で、画像読取部の周囲温度Tを検出することができる。そして、この検出温度に基づき、画像読取部の出力を補正するので、画像読取部の読取精度を高めることができる。 As described above, according to the present invention, the ambient temperature T of the image reading unit is increased depending on the image forming condition with reference to the environmental temperature or the ambient temperature T of the image reading unit (density sensor 8) at the start of the previous image formation. , And the decrease in the ambient temperature T is calculated based on the time elapsed since the previous image formation was completed, whereby the current ambient temperature T of the image reading unit can be calculated. That is, since the ambient temperature T of the image reading unit is detected, the ambient temperature T of the image reading unit can be detected with a simple and inexpensive configuration without providing a separate temperature sensor. And since the output of an image reading part is correct | amended based on this detected temperature, the reading precision of an image reading part can be improved.
又、連続して画像形成を行うと、画像形成部3、中間転写部2の周囲温度Tも上昇し、画像の品質に影響が出る場合があり、画像形成部3や中間転写部2の動作の較正を行う場合がある。そして、その較正を行う場合に、温度上昇により画像読取部の読取精度も悪化している場合がある。しかし、所定枚数の画像形成が行われた際に、画像読取部の周囲温度Tの演算を行い、画像形成中であっても画像読取部の出力の補正を行うことができる。従って、画像形成の途中で行われる較正が適切に行われるようにすることができる。
Further, when image formation is continuously performed, the ambient temperature T of the
又、両面印刷を行うと、定着部4を通過して加熱された片面印刷済みのシートが、装置内を搬送されることで、装置内部、更には、画像読取部の周辺温度も上昇する。しかし、この構成によれば、両面印刷による温度上昇も考慮して、画像読取部の周囲温度Tの演算を行うから、正確な画像読取部の周囲温度Tの演算を行うことができる。従って、この検出温度に基づき、画像読取部の出力を補正するので、画像読取部の読取精度を高めることができる。
When double-sided printing is performed, the single-side printed sheet that has been heated and passed through the fixing
又、画像形成を連続して行う場合、枚数により(特に両面印刷の場合)、定着部4の熱により画像読取部の周囲温度Tが上昇する場合がある。しかし、画像形成を行った枚数による温度上昇も考慮しつつ、画像読取部の周囲温度Tの演算を行うから、正確な画像読取部の周囲温度Tの演算を行うことができる。従って、この検出温度に基づき、画像読取部の出力を補正するので、画像読取部の読取精度を高めることができる。
When image formation is performed continuously, the ambient temperature T of the image reading unit may increase due to the heat of the fixing
又、時間と、画像読取部の周囲温度Tの下降との関係を示す温度減衰曲線CL2により、現在の画像読取部の周囲温度Tの演算を行うことができる。言い換えると、温度減衰曲線CL2を用いるから、容易に現在の画像読取部の周囲温度Tの演算を行うことができる。従って、この検出温度に基づき、画像読取部の出力を補正するので、画像読取部の読取精度を高めることができる。 Further, the current ambient temperature T of the image reading unit can be calculated based on the temperature decay curve CL2 indicating the relationship between the time and the decrease in the ambient temperature T of the image reading unit. In other words, since the temperature decay curve CL2 is used, the current ambient temperature T of the image reading unit can be easily calculated. Therefore, since the output of the image reading unit is corrected based on the detected temperature, the reading accuracy of the image reading unit can be improved.
又、画像読取部を発光部82、受光部83、電流増幅部84といった部材で安価に構成することができる。更に、これらの部材をユニット化すれば、更に画像読取部の小型化、低コスト化を図ることもできる。
In addition, the image reading unit can be configured with members such as the
又、制御部9が、温度上昇等により画像読取部の各部材の特性が変化しても、同一の対象の検知を行った場合に、画像読取部の出力が同一となるように制御するから、従って、この検出温度に基づき、画像読取部の出力を補正するので、画像読取部の読取精度を高めることができる。
Further, the
又、画像読取部の出力に基づき、トナー像の濃度を補正して、形成される画像のトナー濃度を最適の状態に保つことができる。又、画像読取部の出力に基づきトナー像の1次転写の際の位置ずれの補正も行うことができる。従って、形成される画像の品質が高い画像形成装置(プリンタ1)を提供することができる。 Further, it is possible to correct the density of the toner image based on the output of the image reading unit and maintain the toner density of the formed image at an optimum state. Further, based on the output of the image reading unit, it is possible to correct misalignment during the primary transfer of the toner image. Therefore, it is possible to provide an image forming apparatus (printer 1) with high quality of the formed image.
以下、別実施形態について説明する。上述の実施形態では、タンデム式のカラーのプリンタ1について示したが、ロータリー式のカラーのプリンタ等の画像形成装置にも適用可能であり、更には、モノクロのプリンタ等の画像形成装置にも適用可能である。
Hereinafter, another embodiment will be described. In the above-described embodiment, the
又、本発明の実施形態を説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。 Moreover, although the embodiment of the present invention has been described, the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention.
本発明は、中間転写部に1次転写されたトナー像を読み取って、トナー像の濃度や位置ずれ量を検出するプリンタ、複写機、複合機等の画像形成装置等に利用可能である。 The present invention is applicable to an image forming apparatus such as a printer, a copying machine, or a multifunction machine that reads a toner image that has been primarily transferred to an intermediate transfer unit and detects the density or positional deviation amount of the toner image.
1 プリンタ(画像形成装置)
2 中間転写部
3 画像形成部
4 定着部
7 両面印刷搬送路
81 温度センサ(環境温度検知部)
8 濃度センサ(画像読取部)、
82 発光部(LED)
83 受光部(フォトダイオード)
84 電流増幅部(トランジスタ)
9 制御部
91 CPU(演算部)
95 計時部
C1 温度上昇曲線
C2 温度減衰曲線
1 Printer (image forming device)
2
8 Density sensor (image reading unit),
82 Light Emitting Unit (LED)
83 Light-receiving part (photodiode)
84 Current amplifier (transistor)
9
95 Timekeeping section C1 Temperature rise curve C2 Temperature decay curve
Claims (8)
前記画像形成部により形成されたトナー像が1次転写され、そのトナー像をシートに2次転写する中間転写部と、
2次転写されたトナー像を加圧・加熱してシートに定着させる定着部と、
装置の設置環境における機外温度を検知するための環境温度検知部と、
前記中間転写部に1次転写されたトナー像の読み取りを行う画像読取部と、
前回の画像形成が終了してから経過した時間を計時する計時部と、
前記環境温度検知部が検知した温度又は前回の画像形成開始時に演算により求められた前記画像読取部の周囲温度と、前回の画像形成における画像形成条件に基づき演算した前記画像読取部の周囲温度の上昇と、前回の画像形成終了から経過した時間に基づき、現在の前記画像読取部の周囲温度を演算により求める演算部と、
前記演算部による前記画像読取部の周囲温度の演算結果に基づき、前記画像読取部の周囲温度による特性の変化を補正するために、前記画像読取部の出力の補正を行う制御部を有することを特徴とする画像形成装置。 An image forming unit that forms a toner image of one or more colors;
An intermediate transfer unit for primary transfer of the toner image formed by the image forming unit and secondary transfer of the toner image to a sheet;
A fixing unit that pressurizes and heats the secondary transferred toner image and fixes the toner image on the sheet;
An environmental temperature detector for detecting the outside temperature in the installation environment of the device;
An image reading unit for reading the toner image primarily transferred to the intermediate transfer unit;
A timing unit that counts the time that has elapsed since the last image formation;
The temperature detected by the environmental temperature detection unit or the ambient temperature of the image reading unit obtained by calculation at the start of the previous image formation and the ambient temperature of the image reading unit calculated based on the image forming conditions in the previous image formation. A calculation unit that calculates the current ambient temperature of the image reading unit based on the rise and the time elapsed since the end of the previous image formation;
In order to correct a change in characteristics due to the ambient temperature of the image reading unit based on the calculation result of the ambient temperature of the image reading unit by the calculation unit, a control unit that corrects the output of the image reading unit is provided. An image forming apparatus.
所定枚数以上のシートに連続して画像形成を行う場合、画像形成開始時の前記画像読取部の周囲温度と、現在行っている画像形成の画像形成条件と、画像形成が開始されてからの時間に基づき、前記演算部は、画像形成中に前記画像読取部の周囲温度を求め、
前記制御部は、前記所定枚数の画像形成が行われた時に、前記演算部が求めた現在の前記画像読取部の周囲温度に基づき、前記画像読取部の出力の補正を行うことを特徴とする請求項1に記載の画像形成装置。 The timekeeping unit also counts the time that has elapsed since the start of the current image formation,
When image formation is continuously performed on a predetermined number of sheets or more, the ambient temperature of the image reading unit at the start of image formation, the image formation conditions for the current image formation, and the time from the start of image formation The calculation unit obtains the ambient temperature of the image reading unit during image formation,
The control unit corrects the output of the image reading unit based on the current ambient temperature of the image reading unit obtained by the calculation unit when the predetermined number of images are formed. The image forming apparatus according to claim 1.
両面印刷の有無を画像形成条件の一部として、前記演算部は、前記画像読取部の周囲温度上昇を演算することを特徴とする請求項1又は2記載の画像形成装置。 A double-sided printing conveyance path for carrying out double-sided printing by conveying the sheet having the toner image fixed on one side through the fixing unit to the intermediate transfer unit again;
The image forming apparatus according to claim 1, wherein the calculation unit calculates an increase in ambient temperature of the image reading unit, with the presence / absence of double-sided printing as a part of image forming conditions.
前記中間転写部及び前記中間転写部に転写されたトナー像に向けて光を出射する発光部と、前記中間転写部及びトナー像が、反射した光の光量に応じて電流を出力する受光部と、前記受光部が出力した電流を増幅する電流増幅部から構成されることを特徴とする請求項1乃至5のいずれか1項に記載の画像形成装置。 The image reading unit
A light emitting unit that emits light toward the toner image transferred to the intermediate transfer unit and the intermediate transfer unit; and a light receiving unit that outputs an electric current according to the amount of light reflected by the intermediate transfer unit and the toner image. The image forming apparatus according to claim 1, further comprising a current amplifying unit that amplifies the current output from the light receiving unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007169313A JP2009008839A (en) | 2007-06-27 | 2007-06-27 | Image forming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007169313A JP2009008839A (en) | 2007-06-27 | 2007-06-27 | Image forming apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009008839A true JP2009008839A (en) | 2009-01-15 |
Family
ID=40323992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007169313A Pending JP2009008839A (en) | 2007-06-27 | 2007-06-27 | Image forming apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009008839A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011033893A (en) * | 2009-08-03 | 2011-02-17 | Sharp Corp | Image forming apparatus and method for calibrating toner image detection sensor |
JP2011064803A (en) * | 2009-09-15 | 2011-03-31 | Ricoh Co Ltd | Optical writing device and positional deviation correcting method thereof |
JP2012093633A (en) * | 2010-10-28 | 2012-05-17 | Kyocera Mita Corp | Lighting system and image forming apparatus |
JP2013190701A (en) * | 2012-03-14 | 2013-09-26 | Konica Minolta Inc | Image processing apparatus, power control method, and power control program |
JP2015052766A (en) * | 2013-09-09 | 2015-03-19 | 株式会社リコー | Fixing device, image forming apparatus, fixing method, and program |
JP2018066904A (en) * | 2016-10-20 | 2018-04-26 | キヤノン株式会社 | Image forming apparatus and image density detection method |
-
2007
- 2007-06-27 JP JP2007169313A patent/JP2009008839A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011033893A (en) * | 2009-08-03 | 2011-02-17 | Sharp Corp | Image forming apparatus and method for calibrating toner image detection sensor |
US8380094B2 (en) | 2009-08-03 | 2013-02-19 | Sharp Kabushiki Kaisha | Image forming apparatus and method for calibrating toner image detection sensor |
JP2011064803A (en) * | 2009-09-15 | 2011-03-31 | Ricoh Co Ltd | Optical writing device and positional deviation correcting method thereof |
JP2012093633A (en) * | 2010-10-28 | 2012-05-17 | Kyocera Mita Corp | Lighting system and image forming apparatus |
JP2013190701A (en) * | 2012-03-14 | 2013-09-26 | Konica Minolta Inc | Image processing apparatus, power control method, and power control program |
JP2015052766A (en) * | 2013-09-09 | 2015-03-19 | 株式会社リコー | Fixing device, image forming apparatus, fixing method, and program |
JP2018066904A (en) * | 2016-10-20 | 2018-04-26 | キヤノン株式会社 | Image forming apparatus and image density detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7817947B2 (en) | Image forming apparatus and correction method of color-misregistration in an image | |
JP5258850B2 (en) | Image forming apparatus | |
JP2009008839A (en) | Image forming apparatus | |
JP2010204547A (en) | Image forming apparatus | |
US7865095B2 (en) | Image forming apparatus including distance detection unit | |
JP2011145350A (en) | Image forming apparatus and image forming method | |
JP4873270B2 (en) | Image forming apparatus | |
JP4770624B2 (en) | Color image forming apparatus | |
JP2006201624A (en) | Image forming apparatus | |
JP5987642B2 (en) | Image forming system and calibration method | |
JP2006251634A (en) | Image forming apparatus, image output device | |
JP5198319B2 (en) | Image forming apparatus | |
JP2008209659A (en) | Image forming device and control method | |
WO2017026221A1 (en) | Image forming device | |
JP2018180486A (en) | Image forming apparatus | |
JP2005208406A (en) | Color image forming apparatus and color image forming method | |
JP5636780B2 (en) | Image forming apparatus | |
JP2010079125A (en) | Image forming apparatus | |
JP5854820B2 (en) | Image forming apparatus | |
JP6127478B2 (en) | Image forming apparatus and conveyance control method | |
JP2008275811A (en) | Image forming apparatus and speed control device | |
JP2016175718A (en) | Medium conveyance device and image formation apparatus | |
JP2004325608A (en) | Image forming apparatus | |
JP2008298971A (en) | Image forming apparatus | |
JP2009137710A (en) | Sheet conveying device, sheet conveying method and image forming device |