JP2009008439A - Method and device for measuring temperature distribution - Google Patents

Method and device for measuring temperature distribution Download PDF

Info

Publication number
JP2009008439A
JP2009008439A JP2007167886A JP2007167886A JP2009008439A JP 2009008439 A JP2009008439 A JP 2009008439A JP 2007167886 A JP2007167886 A JP 2007167886A JP 2007167886 A JP2007167886 A JP 2007167886A JP 2009008439 A JP2009008439 A JP 2009008439A
Authority
JP
Japan
Prior art keywords
temperature
temperature distribution
exposure time
measured
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007167886A
Other languages
Japanese (ja)
Inventor
Yoichi Fujikake
洋一 藤懸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007167886A priority Critical patent/JP2009008439A/en
Publication of JP2009008439A publication Critical patent/JP2009008439A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure a temperature distribution of the surface of a measuring object having a wide temperature range with higher-temperature resolution and higher resolution than ever. <P>SOLUTION: This device is equipped with a two-dimensional camera 1 having a shutter having a changeable exposure time and a two-dimensional solid imaging element, for outputting a brightness image of the measuring object; an imaging condition setting part 6 for outputting a plurality of brightness images to which an exposure time is linked by imaging with a plurality of exposure times by controlling the two-dimensional camera 1; an A/D conversion part 9 for taking each brightness image to which the exposure time is linked as gradation data; a temperature conversion data recording part 11 for storing data of a calibration curve showing a relation between a temperature and a gradation set in each exposure time; and a temperature distribution operation part 12 for deriving a temperature distribution in an effective temperature range corresponding to each exposure time based on the calibration curve relative to gradation data acquired in each of the plurality of exposure times, and deriving the temperature distribution of the surface of the measuring object. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被測定物の2次元の輝度画像を撮像して当該被測定物の表面の温度分布を測定する技術に関する。   The present invention relates to a technique for capturing a two-dimensional luminance image of a measurement object and measuring the temperature distribution on the surface of the measurement object.

一般に被検査体(被測定物)の温度分布を非接触に測定する装置として、赤外線サーモグラフィがある。赤外線サーモグラフィの製造メーカの最新カタログ等によれば、赤外線検出器としてマイクロボロメータ(検出波長域8〜14μm)を使用したものは、非冷却型検出器のため室温で動作でき、比較的小型・軽量にできるので、工業用として普及している。検出温度範囲は、最大でも常温〜500℃程度であり、赤外線検出器の前にNDフィルタを入れて、入射光を減衰させて、2000℃程度の高温まで測れるようにしたものもある。   In general, there is an infrared thermography as a device for measuring the temperature distribution of an object to be inspected (object to be measured) in a non-contact manner. According to the latest catalogs of manufacturers of infrared thermography, those using a microbolometer (detection wavelength range 8-14 μm) as an infrared detector can operate at room temperature because it is an uncooled detector, and is relatively small and lightweight. It can be used for industrial purposes. The detection temperature range is from room temperature to about 500 ° C. at the maximum, and an ND filter is inserted in front of the infrared detector to attenuate incident light so that it can be measured to a high temperature of about 2000 ° C.

しかしながら、当該温度測定装置は、被検査体の温度変化量に対する赤外線検出器受光エネルギー変化が小さいため、温度分解能が悪いという問題がある。また、マイクロボロメータの2次元撮像素子の画素数が320×240程度と少なく、用途によっては空間分解能が不十分である場合がある。更に、画像センサ部の小型化には限界はあり、CCDカメラ等に比べると設置場所のスペース制約を受けることもある。   However, the temperature measuring device has a problem that the temperature resolution is poor because the change in the received light energy of the infrared detector with respect to the temperature change amount of the inspection object is small. Further, the number of pixels of the microbolometer two-dimensional image sensor is as small as about 320 × 240, and the spatial resolution may be insufficient depending on the application. Furthermore, there is a limit to the downsizing of the image sensor unit, and there are cases where it is subject to space restrictions on the installation location compared to a CCD camera or the like.

この問題を解決する手段の一つとして、可視光0.4〜0.8μmの波長帯に感度ピークがあるCCDやCMOS等の固体撮像素子を有する2次元カメラを用いることがある。特許文献1にはその一例が記載されているが、1450〜1600℃と高温で、測定温度範囲が狭いという問題がある。   One means for solving this problem is to use a two-dimensional camera having a solid-state imaging device such as a CCD or CMOS having a sensitivity peak in the visible light wavelength range of 0.4 to 0.8 μm. One example is described in Patent Document 1, but there is a problem that the measurement temperature range is narrow at a high temperature of 1450 to 1600 ° C.

また、特許文献2では、もっと広い温度範囲で精度良い温度測定を行う手法が提案されているが、入射光量について対数増幅機能を有する2次元撮像素子センサを検出部に用いるものであり、設置したい場所によるカメラサイズ制約、解像度不足、処理速度制約等から適用できない対象が多かった。   Further, Patent Document 2 proposes a method for accurately measuring temperature in a wider temperature range. However, a two-dimensional image sensor having a logarithmic amplification function with respect to the amount of incident light is used as a detection unit, and is desired to be installed. There were many targets that could not be applied due to camera size restrictions, lack of resolution, processing speed restrictions, etc.

特開2006−119110号公報JP 2006-119110 A 特開2006−3081号公報JP 2006-3081 A

そこで、CCDやCMOS等の固体撮像素子を有する一般的な2次元カメラを用いて、被検査体の温度分布を測定できる手法が望まれていた。   Therefore, there has been a demand for a technique that can measure the temperature distribution of an object to be inspected using a general two-dimensional camera having a solid-state imaging device such as a CCD or CMOS.

以上の状況に鑑みて、本発明は、広い温度範囲(例えば500℃程度以上で1500℃程度以下)を有する被測定物の表面の温度分布を、従来よりも高温度分解能(例えば1℃程度以下)かつ高解像度で測定する技術を提供することを目的とする。   In view of the above situation, the present invention provides a temperature distribution on the surface of an object to be measured having a wide temperature range (for example, about 500 ° C. or more and about 1500 ° C. or less) with a higher temperature resolution (for example, about 1 ° C. or less). ) And to provide a technique for measuring at high resolution.

本発明の温度分布測定方法は、2次元カメラで被測定物の輝度画像を撮像して当該被測定物の表面の温度分布を測定する温度分布測定方法であって、前記2次元カメラを用いて被測定物を複数の露光時間ごとに撮像し、当該撮像により得られた輝度画像を変換して階調データを得る手順と、前記複数の露光時間ごとに得られた階調データについて、予め露光時間ごとに設定した温度と階調との関係を示す校正曲線に基づき、各露光時間に対応する有効温度範囲の温度分布を導出する手順と、前記複数の露光時間に対応する有効温度範囲の温度分布を用いて、当該被測定物の表面の温度分布を導出する手順とを有することを特徴とする。
また、本発明の温度分布測定方法の他の特徴とするところは、前記2次元カメラによる撮像に先立ち、前記被測定物に関する、測温のための測温情報を入力する手順と、前記入力された測温情報に基づき、所定の処理により被測定物の温度範囲を推定して、前記複数の露光時間を決定する手順とを有する点にある。
本発明の温度分布測定装置は、被測定物の2次元の輝度画像を撮像して当該被測定物の表面の温度分布を測定する温度分布測定装置であって、露光時間を可変としたシャッター及び2次元固体撮像素子を有し、被測定物の輝度画像を出力する撮像手段と、前記撮像手段を制御して複数の露光時間で撮像させて、当該露光時間が紐ついた輝度画像を複数出力させる撮像条件設定手段と、前記露光時間が紐ついた輝度画像それぞれを階調データとして取り込む取り込み手段と、露光時間ごとに設定した温度と階調との関係を示す校正曲線のデータを格納した温度変換データ記録手段と、前記複数の露光時間ごとに得られた階調データについて、前記校正曲線に基づき、各露光時間に対応する有効温度範囲の温度分布を導出して、当該被測定物の表面の温度分布を導出する温度分布演算手段とを備えることを特徴とする。
また、本発明の温度分布測定装置の他の特徴とするところは、前記被測定物に関する、測温のための測温情報を入力する入力手段と、前記入力手段により入力された測温情報に基づき、被測定物の温度範囲を推定して、前記複数の露光時間を決定する露光時間設定手段とを備え、前記撮像条件設定手段は、前記露光時間設定手段により決定された複数の露光時間に基づき前記撮像手段を制御する点にある。
The temperature distribution measuring method of the present invention is a temperature distribution measuring method for measuring the temperature distribution of the surface of a measured object by taking a luminance image of the measured object with a two-dimensional camera, and using the two-dimensional camera. A procedure for capturing an object to be measured for each of a plurality of exposure times, converting a luminance image obtained by the imaging to obtain gradation data, and exposing the gradation data obtained for each of the plurality of exposure times in advance. A procedure for deriving a temperature distribution of an effective temperature range corresponding to each exposure time based on a calibration curve indicating a relationship between temperature and gradation set for each time, and a temperature of the effective temperature range corresponding to the plurality of exposure times And a procedure for deriving a temperature distribution of the surface of the object to be measured using the distribution.
Another feature of the temperature distribution measuring method according to the present invention is that, prior to imaging by the two-dimensional camera, a procedure for inputting temperature measurement information for temperature measurement related to the object to be measured, and the input. And determining a plurality of exposure times by estimating a temperature range of the object to be measured by a predetermined process based on the measured temperature information.
A temperature distribution measuring apparatus according to the present invention is a temperature distribution measuring apparatus that measures a temperature distribution of a surface of a measurement object by taking a two-dimensional luminance image of the measurement object, and includes a shutter having a variable exposure time and An imaging unit having a two-dimensional solid-state imaging device and outputting a luminance image of the object to be measured; and controlling the imaging unit to capture images with a plurality of exposure times, and outputting a plurality of luminance images associated with the exposure times Imaging condition setting means to be performed, fetching means for capturing each luminance image associated with the exposure time as gradation data, and temperature storing calibration curve data indicating the relationship between the temperature and gradation set for each exposure time For the gradation data obtained for each of the plurality of exposure times with the conversion data recording means, a temperature distribution in an effective temperature range corresponding to each exposure time is derived based on the calibration curve, and a table of the object to be measured is obtained. Characterized in that it comprises a temperature distribution computing means for deriving a temperature distribution.
Further, another feature of the temperature distribution measuring apparatus according to the present invention is that the temperature measurement information input by the input means is input to temperature measuring information for temperature measurement related to the object to be measured. An exposure time setting unit that estimates the temperature range of the object to be measured and determines the plurality of exposure times, and the imaging condition setting unit sets the plurality of exposure times determined by the exposure time setting unit. Based on this, the imaging means is controlled.

本発明によれば、2次元カメラを用いて複数の露光時間ごとに被測定物の輝度画像を撮像し、当該輝度画像それぞれについて温度分布を導出するようにしたので、広い温度範囲を有する被測定物の表面の温度分布を、高温度分解能かつ高解像度で測定することが可能となる。   According to the present invention, since a luminance image of the object to be measured is captured for each of a plurality of exposure times using a two-dimensional camera and a temperature distribution is derived for each of the luminance images, the object to be measured having a wide temperature range. It becomes possible to measure the temperature distribution of the surface of the object with high temperature resolution and high resolution.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。図1は、本発明の実施の形態に係る温度分布測定装置の概要構成を示す図である。また、図2は、本発明の実施の形態に係る温度分布測定装置の処理動作を説明するためのフローチャートである。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of a temperature distribution measuring apparatus according to an embodiment of the present invention. FIG. 2 is a flowchart for explaining the processing operation of the temperature distribution measuring apparatus according to the embodiment of the present invention.

本実施の形態に係る温度分布測定装置の主要な構成要素は、固体撮像素子を有する2次元カメラ1、及び、信号処理部2である。この場合に、2次元カメラ1及び信号処理部2を一体に構成してもよいし、例えば2次元カメラ1及び信号処理部2を別体に構成してもよい。   The main components of the temperature distribution measuring apparatus according to the present embodiment are a two-dimensional camera 1 having a solid-state image sensor and a signal processing unit 2. In this case, the two-dimensional camera 1 and the signal processing unit 2 may be configured integrally, or for example, the two-dimensional camera 1 and the signal processing unit 2 may be configured separately.

2次元カメラ1は、本発明でいう撮像手段に相当するものであり、CCD又はCMOS型の2次元固体撮像素子8と、シャッター速度を低速から高速まで柔軟に可変とした電子シャッター7とを備え、設定されたシャッター速度で撮像した画像データを出力する。   The two-dimensional camera 1 corresponds to the imaging means in the present invention, and includes a CCD or CMOS type two-dimensional solid-state imaging device 8 and an electronic shutter 7 whose shutter speed can be flexibly changed from a low speed to a high speed. The image data captured at the set shutter speed is output.

信号処理部2は、2次元カメラ1から出力される画像データをディジタル・データである階調データとして取り込むA/D変換部9(本発明でいう取り込み手段に相当)、階調データ格納部10、温度分布演算部12、及び温度変換データ記録部11を備え、データ処理を行う。また、信号処理部2は、入力部4、露光時間設定部5、及び撮像条件設定部6を備え、2次元カメラ1により所望の適切な条件で撮像できるようにする。また、信号処理部2は、出力部13を備え、温度分布測定結果を表示又は記録する。   The signal processing unit 2 includes an A / D conversion unit 9 (corresponding to a capturing unit in the present invention) that captures image data output from the two-dimensional camera 1 as gradation data that is digital data, and a gradation data storage unit 10. And a temperature distribution calculation unit 12 and a temperature conversion data recording unit 11 to perform data processing. In addition, the signal processing unit 2 includes an input unit 4, an exposure time setting unit 5, and an imaging condition setting unit 6 so that the two-dimensional camera 1 can capture an image under a desired appropriate condition. The signal processing unit 2 includes an output unit 13 and displays or records the temperature distribution measurement result.

撮像条件設定部6は、2次元カメラ1を制御して複数の露光時間で撮像させて、当該露光時間が紐ついた輝度画像を複数出力させる。A/D変換部9は、本発明でいう取り込み手段に相当するものであり、露光時間が紐ついた輝度画像それぞれを階調データとして取り込む。温度変換データ記録部11は、露光時間ごとに設定した温度と階調との関係を示す校正曲線のデータを格納する。温度分布演算部12は、複数の露光時間ごとに得られた階調データについて、前記校正曲線に基づき、各露光時間に対応する有効温度範囲の温度分布を導出して、当該被測定物の表面の温度分布を導出する。入力部4は、被測定物に関する、測温のための測温情報や測定開始指令を入力する。露光時間設定部5は、入力部4により入力された測温情報に基づき、被測定物の温度範囲を推定して、複数の露光時間を決定する。   The imaging condition setting unit 6 controls the two-dimensional camera 1 to capture images with a plurality of exposure times, and outputs a plurality of luminance images associated with the exposure times. The A / D conversion unit 9 corresponds to the capturing means referred to in the present invention, and captures each luminance image associated with the exposure time as gradation data. The temperature conversion data recording unit 11 stores calibration curve data indicating the relationship between temperature and gradation set for each exposure time. The temperature distribution calculation unit 12 derives the temperature distribution of the effective temperature range corresponding to each exposure time based on the calibration curve for the gradation data obtained for each of a plurality of exposure times, and the surface of the object to be measured The temperature distribution of is derived. The input unit 4 inputs temperature measurement information for temperature measurement and a measurement start command regarding the object to be measured. The exposure time setting unit 5 estimates a temperature range of the object to be measured based on the temperature measurement information input by the input unit 4 and determines a plurality of exposure times.

信号処理部2の温度変換データ記録部11には、2次元カメラ1の校正曲線のデータ(図3を参照)が格納されている。校正曲線は、予め、2次元カメラ1により黒体炉を被測定物として用いて温度を変化させながら測定を実施し、2次元カメラ1の露光時間(シャッター速度の逆数:ti(ここでi=1、2、・・・))をパラメータとして黒体炉内を撮像し、被測定物の放射率を用いて、撮像画像の輝度レベルと被測定物の表面の温度との関係を得たものである。画像の輝度レベルを、A/D変換後の出力レベルを本実施の形態では一例として8ビット、すなわち0〜255段階(以後"階調"という)で表す。   The temperature conversion data recording unit 11 of the signal processing unit 2 stores calibration curve data of the two-dimensional camera 1 (see FIG. 3). The calibration curve is measured in advance using the black body furnace as the object to be measured by the two-dimensional camera 1 while changing the temperature, and the exposure time of the two-dimensional camera 1 (reciprocal of shutter speed: ti (where i = 1, 2, ...)) is used as a parameter to image the inside of the black body furnace, and the relationship between the brightness level of the captured image and the temperature of the surface of the object to be measured is obtained using the emissivity of the object to be measured. It is. In the present embodiment, the output level after A / D conversion is represented by 8 bits, that is, 0 to 255 levels (hereinafter referred to as “gradation”).

輝度信号の飽和等がなく、温度との1対1の対応精度がよい階調は、40〜210の範囲である。従って、1000℃≧T>T1の範囲では、露光時間t1で校正した曲線l1により階調Pを温度に一意的に変換することができる。同様に、T1≧T>T2の範囲では曲線l2、T2≧T>T3の範囲では曲線l3、T3≧T>T4の範囲では曲線l4、T4≧T>500℃の範囲では曲線l5により階調Pを温度に一意的に変換することができる。 The gradation that has no saturation of the luminance signal or the like and has a good one-to-one correspondence accuracy with the temperature is in the range of 40 to 210. Therefore, in the range of 1000 ° C. ≧ T> T 1 , the gradation P can be uniquely converted into temperature by the curve l 1 calibrated at the exposure time t 1 . Similarly, T 1 ≧ T> T curve l 2 in 2 ranges, T 2 ≧ T> T 3 in the range curve l 3, T 3 ≧ T> T curve l 4 in the range of 4, T 4 ≧ T> In the range of 500 ° C., the gradation P can be uniquely converted into temperature by the curve l 5 .

以上のように、入力光量(入射光量)に応じて2次元カメラ1のシャッター速度を高速にして露光時間を短く(t1<t2<t3<t4)することにより、被測定物がさらに高温であっても、実験で温度測定ができる限り、校正曲線を導出することができる。   As described above, by increasing the shutter speed of the two-dimensional camera 1 in accordance with the input light amount (incident light amount) and shortening the exposure time (t1 <t2 <t3 <t4), the object to be measured has a higher temperature. However, the calibration curve can be derived as long as the temperature can be measured in the experiment.

2次元カメラ1により撮像される被測定物に関する、測温のための測温情報が、信号処理部2の入力部4に入力される。入力部4は、キーボード等でマニュアル入力するようにしても良く、又、例えば工場内のネットワークのI/O装置で構成しても良い。測温情報とは、測定対象の材質(測温のための放射光の放射率が依存する)や操業条件(炉内の加熱情報、溶接情報、加熱切断情報等)である。例えば加熱炉内の金属帯の表面温度測定であれば、金属帯の材質や加熱炉の操業条件等が該当し、鋼板の溶接部の表面温度測定であれば、鋼板の鋼種や溶接条件等が該当する。   Temperature measurement information for temperature measurement related to the object to be measured imaged by the two-dimensional camera 1 is input to the input unit 4 of the signal processing unit 2. The input unit 4 may be manually input with a keyboard or the like, or may be configured with, for example, a network I / O device in a factory. The temperature measurement information is a material to be measured (depending on the emissivity of synchrotron radiation for temperature measurement) and operation conditions (heating information in the furnace, welding information, heating cutting information, etc.). For example, when measuring the surface temperature of the metal strip in the heating furnace, the material of the metal strip and the operating conditions of the heating furnace are applicable, and when measuring the surface temperature of the welded portion of the steel plate, the steel type and welding conditions of the steel plate are Applicable.

露光時間設定部5には、既に数多くの被測定物を測定した結果に基づき蓄積した知見や各材質の放射率等から、被測定物の温度領域及び放射光強度を概略推定する参照テーブル又は推定式を、推定データベースとして予め保持させておく。そして、当該推定データベースに基づき、前記測温情報について被測定物の有効温度範囲(最高温度〜最低温度)が露光時間設定部5により推定されるが、その有効温度範囲から、上述した校正曲線(図3を参照)により、2次元カメラ1で使用する露光時間を求める。図3の例では、温度範囲が800〜950℃と決定されると、露光時間t1とt2が選択される。温度範囲が600〜850℃と決定されると、露光時間t2とt3とt4が選択される。 In the exposure time setting unit 5, a reference table or an estimation that roughly estimates the temperature region and the emitted light intensity of the object to be measured from the knowledge accumulated based on the results of measuring many objects to be measured and the emissivity of each material. The formula is held in advance as an estimation database. And based on the said estimation database, although the effective temperature range (maximum temperature-minimum temperature) of a to-be-measured object is estimated by the exposure time setting part 5 about the said temperature measurement information, from the effective temperature range, the above-mentioned calibration curve ( The exposure time used in the two-dimensional camera 1 is obtained by referring to FIG. In the example of FIG. 3, when the temperature range is determined to be 800 to 950 ° C., the exposure times t 1 and t 2 are selected. When the temperature range is determined to be 600 to 850 ° C., the exposure times t 2 , t 3 and t 4 are selected.

なお、図3では、隣接する曲線liの温度範囲が互いにオーバーラップしないように設定してあるが、例えば1/5程度ずつオーバーラップさせても良い。そして、曲線liの温度範囲の端から、例えば1/10以内になる露光時間は採用しないようにする。こうすることにより、有効温度範囲が2つの曲線liの温度範囲の境界領域のときも、測定誤差を少なく適切な露光時間で測定することができる。 In FIG. 3, the temperature ranges of adjacent curves l i are set so as not to overlap each other, but may be overlapped by about 1/5, for example. Then, an exposure time that is, for example, within 1/10 from the end of the temperature range of the curve l i is not adopted. In this way, even when the effective temperature range is the boundary region between the temperature ranges of the two curves l i , measurement can be performed with an appropriate exposure time with little measurement error.

以上のようにして選択された1組(1つ又は複数)の露光時間は、画像処理部3の撮像条件設定部6により読み出され、ウィンドウ設定パラメータ(取り出す画像の範囲を指定するパラメータ)やシャッターモード等の他の設定値とともに2次元カメラ1に送られる(図2のステップS101)。露光時間以外の設定値は予め2次元カメラ1に送って設定を済ませておく。   The exposure time of one set (one or more) selected as described above is read out by the imaging condition setting unit 6 of the image processing unit 3, and window setting parameters (parameters for specifying the range of images to be extracted) or It is sent to the two-dimensional camera 1 together with other set values such as a shutter mode (step S101 in FIG. 2). Setting values other than the exposure time are sent to the two-dimensional camera 1 in advance.

入力部4に測定開始指令が入力されると、撮像条件設定部6は、2次元カメラ1に最初の露光時間を送って、電子シャッター7で設定した露光時間分だけ露光させて撮像させる。2次元カメラ1の2次元固体撮像素子8の各画素に蓄積された光エネルギーが信号に変換されて輝度画像データとして出力される。この輝度画像データが信号処理部2の画像処理部3のA/D変換部9に送られ、そこで所定のビット数のディジタル・データである階調データに変換されて、階調データ格納部10に格納される(図2のステップS102)。   When a measurement start command is input to the input unit 4, the imaging condition setting unit 6 sends an initial exposure time to the two-dimensional camera 1 and exposes and captures an image for the exposure time set by the electronic shutter 7. Light energy accumulated in each pixel of the two-dimensional solid-state imaging device 8 of the two-dimensional camera 1 is converted into a signal and output as luminance image data. This luminance image data is sent to the A / D conversion unit 9 of the image processing unit 3 of the signal processing unit 2, where it is converted into gradation data which is digital data of a predetermined number of bits, and the gradation data storage unit 10 (Step S102 in FIG. 2).

更に、露光時間設定部5で設定された複数の露光時間全てについて、撮像条件設定部6の指令下に同様の撮像が行われ、階調データ格納部10には各階調データがそれぞれの露光時間と紐つけて格納される。例えば露光時間t2とt3とt4が選択されていた場合は、3回の測定を連続的に実施することになる。ここで重要なのは、複数の測定、すなわち複数の撮像と階調データの格納を間をおかずに実施し、測定中は一切他の処理は実施せず、撮像処理を高速に実施することである。これにより、複数の測定が短時間に完了することになり、時間経過に伴う温度変化がほとんどない間に露光時間の異なる複数の階調データをデータ格納部10に蓄積することになる。 Further, similar imaging is performed for all the plurality of exposure times set by the exposure time setting unit 5 under the instruction of the imaging condition setting unit 6, and each gradation data is stored in the gradation data storage unit 10 according to the exposure time. Are stored in association with each other. For example, when the exposure time t 2 and t 3 and t 4 have been selected will be carried out continuously three measurements. What is important here is that a plurality of measurements, that is, a plurality of imaging operations and storage of gradation data are performed without any delay, and no other processing is performed during the measurement, and the imaging processing is performed at high speed. Thus, a plurality of measurements are completed in a short time, and a plurality of gradation data having different exposure times are accumulated in the data storage unit 10 while there is almost no temperature change with the passage of time.

なお、測定開始指令は、入力部4をキーボードやスイッチで構成してマニュアル、又は連続的に測定するようにしたり、外部機器とのI/Oポートやネットワーク・ポートで構成して他の装置や現象に同期させたりして、温度測定の目的に応じて出されるようにすると良い。   Note that the measurement start command may be configured by manually or continuously measuring the input unit 4 with a keyboard or switch, or configured with an I / O port or network port with an external device, It may be synchronized with the phenomenon so that it is output according to the purpose of temperature measurement.

次に、温度分布演算部12では、階調データ格納部10に蓄積された階調データについて、温度変換データ記録部11に格納されている校正曲線を用いて画素ごとに温度変換を行う。例えば、露光時間t2とt3とt4が選択されていた場合は、まず、露光時間t2で撮像して得られた階調を曲線l2に当てはめて温度Tを求め、T1≧T>T2の範囲であれば、その温度を採用する。この場合に、T2≧Tであれば、露光時間t3で撮像して得られた階調を曲線l3に当てはめて温度Tを求め、T2≧T>T3の範囲であれば、その温度を採用する。この場合に、T3≧Tであれば、露光時間t4で撮像して得られた階調を曲線l4に当てはめて温度Tを求め、T3≧T>T4の範囲であれば、その温度を採用し、T4≧Tであれば、温度はT4以下となる。このような処理を、各画素で行うことにより、温度分布を出力することができる(図2のステップS103)。ここで、T4≧Tと有効温度範囲から外れる部分は、例えば被測定対象の周囲の物体を測定した部分等が考えられ、そこは測定したい部分ではないので、T4以下という結果で構わない。なお、画素ごとに温度変換すると説明したが、隣接する複数の画素について平均化してから温度変換してもよい。 Next, the temperature distribution calculation unit 12 performs temperature conversion for each pixel using the calibration curve stored in the temperature conversion data recording unit 11 for the gradation data stored in the gradation data storage unit 10. For example, when exposure times t 2 , t 3 and t 4 are selected, first, the temperature T is obtained by applying the gradation obtained by imaging at the exposure time t 2 to the curve l 2 , and T 1 ≧ If T> T 2 , the temperature is adopted. In this case, if T 2 ≧ T, the temperature T is obtained by applying the gradation obtained by imaging at the exposure time t 3 to the curve l 3 , and if T 2 ≧ T> T 3 , Adopt that temperature. In this case, if T 3 ≧ T, the temperature T is obtained by applying the gradation obtained by imaging at the exposure time t 4 to the curve l 4 , and if T 3 ≧ T> T 4 , If that temperature is adopted and T 4 ≧ T, the temperature is T 4 or less. By performing such processing in each pixel, the temperature distribution can be output (step S103 in FIG. 2). Here, the portion outside T 4 ≧ T and the effective temperature range may be, for example, a portion where an object around the object to be measured is measured, which is not a portion to be measured, and may be a result of T 4 or less. . Although it has been described that the temperature conversion is performed for each pixel, the temperature conversion may be performed after averaging a plurality of adjacent pixels.

その後、温度分布演算部12で階調データの画素ごと(又は複数の画素ごとの)温度変換結果を、コンピュータ・ディスプレイで構成される出力部13に、温度によって色分けして表示したり、等高線表示したりする(ステップS104)。また、温度変換結果やコンピュータ・ディスプレイの表示画像を内蔵するハード・ディスク・ドライブ等で構成する記録装置に記録するようにしても良い。   Thereafter, the temperature distribution calculation unit 12 displays the gradation conversion result for each pixel of the gradation data (or for each of a plurality of pixels) on the output unit 13 constituted by a computer display, color-coded according to the temperature, or displays the contour lines. (Step S104). Further, the temperature conversion result and the display image on the computer display may be recorded in a recording device constituted by a hard disk drive or the like having a built-in function.

以上述べた温度分布測定手法により、CCDやCMOS型の2次元固体撮像素子を有する一般的な2次元カメラを用いて、500℃〜1000℃程度という広範囲の温度分布を1℃程度以下の高分解能で測定することが可能になる。   With the temperature distribution measurement method described above, a wide temperature distribution of about 500 ° C. to 1000 ° C. can be obtained with a high resolution of about 1 ° C. or less using a general two-dimensional camera having a CCD or CMOS type two-dimensional solid-state imaging device. It becomes possible to measure with.

以上の処理において、一例として図3に示す500〜1000℃という範囲の校正曲線を用いて測定する方法について説明してきたが、この範囲は目的に応じて変更可能である。光エネルギーが弱くなることから、500℃以下の対象に対する測定は、可視光域での放射強度が著しく小さく難しいが、500℃程度以上の対象には、十分適用可能である。測定目的に応じて校正曲線の範囲を決め、測定条件も考慮しながらカメラを選定し、露光時間を適切に選択することによって、所望の範囲の校正曲線ができれば、より広い範囲での測定が可能である。   In the above processing, as an example, the method of measuring using the calibration curve in the range of 500 to 1000 ° C. shown in FIG. 3 has been described, but this range can be changed according to the purpose. Since the light energy becomes weak, the measurement for an object of 500 ° C. or lower is difficult because the radiation intensity in the visible light region is extremely small and difficult, but it can be sufficiently applied to an object of about 500 ° C. or higher. By determining the calibration curve range according to the measurement purpose, selecting the camera while considering the measurement conditions, and selecting the exposure time appropriately, if a calibration curve in the desired range is created, measurement in a wider range is possible It is.

また、ここまで説明した処理においては、入力部4にて、測温情報を受け、露光時間設定部5にて露光時間を選択し、選択した露光時間に限って、その後の処理を行っていたが、全ての露光時間に対して、その後の処理を行う方法もある。具体的には、図3に示すような2次元カメラ1の校正曲線データを使用する場合であれば、t1〜t5の全ての露光時間を選択して、その後の処理を行う方法である。この方法では、有効温度範囲を決めるため、予め数多くの対象を測定して知見を得ておく必要がなく、手間が省けるが、1回の温度分布測定のための処理時間がかかるため、時間経過に伴う温度変化の大きい被測定対象に対しては不向きである。従って、被測定対象や測定目的に応じて、最適な方法を選択することが必要である。 In the processing described so far, the temperature measurement information is received by the input unit 4, the exposure time is selected by the exposure time setting unit 5, and the subsequent processing is performed only for the selected exposure time. However, there is also a method of performing subsequent processing for all exposure times. Specifically, if calibration curve data of the two-dimensional camera 1 as shown in FIG. 3 is used, all exposure times from t 1 to t 5 are selected and the subsequent processing is performed. . In this method, in order to determine the effective temperature range, it is not necessary to measure a large number of objects in advance and obtain knowledge, and this saves time, but it takes time to measure one temperature distribution, so time elapses. It is unsuitable for a measurement object having a large temperature change due to. Therefore, it is necessary to select an optimum method according to the object to be measured and the measurement purpose.

また、2次元カメラ1への入射光量を調節するために露光時間のみをパラメータtiとした。高速に輝度画像を撮像する点からは、2次元カメラ1の絞りを全開にして高速撮像するのが好ましいが、温度の時間変化が余り速くないときには、入射光量を調節するのみ、露光時間と視野絞りを併用して露光のパラメータとしても良い。このときには、上記の説明における露光時間を、露光時間及び視野絞りと読み換えればよい。 Further, only the exposure time as a parameter t i in order to adjust the amount of light incident on the two-dimensional camera 1. From the viewpoint of capturing a luminance image at high speed, it is preferable to perform high-speed imaging with the aperture of the two-dimensional camera 1 fully opened. However, when the temperature change with time is not so fast, the exposure time and field of view are only adjusted by adjusting the amount of incident light. An aperture may be used together as an exposure parameter. At this time, the exposure time in the above description may be read as the exposure time and the field stop.

本発明の温度分布測定装置において、信号処理部2は、入力部4としてキーボード、マウス、I/Oボード、又はネットワーク・カード、各データ及びデータベースを保持・記録するメモリ、HDD、又はDVD−RAM等の記録装置、さらに、測定結果を表示するコンピュータ・ディスプレイを具備するコンピュータで構成することができる。上記した2次元カメラ1の撮影の制御、及び撮像データからの温度変換にわたる信号処理の各手順を実行するためのコンピュータプログラムを作成して、内蔵のメモリにロードして実行させれば良い。   In the temperature distribution measuring apparatus of the present invention, the signal processing unit 2 includes a keyboard, a mouse, an I / O board, or a network card as the input unit 4, a memory for storing and recording each data and database, an HDD, or a DVD-RAM. Further, it can be constituted by a recording device such as a computer and a computer having a computer display for displaying the measurement result. What is necessary is just to create a computer program for executing each procedure of the above-described imaging control of the two-dimensional camera 1 and signal processing over temperature conversion from imaging data, and load and execute it in a built-in memory.

(実施例)
鋼板を接合するフラッシュバット溶接における溶接部の温度分布を測定する目的で、本発明を適用した温度分布測定装置を、画像処理部3と信号処理部2にはA/D変換部9として画像入力ボードを備えたパソコンを用いて構成して適用した。図4にその結果の階調データ、及び、温度変換結果の温度分布の一例を示す。
(Example)
For the purpose of measuring the temperature distribution of the welded portion in flash butt welding for joining steel plates, the temperature distribution measuring device to which the present invention is applied is input to the image processing unit 3 and the signal processing unit 2 as an A / D conversion unit 9. It was constructed and applied using a personal computer with a board. FIG. 4 shows an example of the resulting gradation data and the temperature distribution of the temperature conversion result.

溶接機を含むラインのプロセスコンピュータから、溶接開始前に、先行鋼板及び後行鋼板の材料情報及び溶接条件が、ネットワーク経由で入力部4に送信され、その情報から露光時間設定部5により選択された露光時間は、(1)0.72ms、(2)3.0ms、(3)15.0msの3つである。   From the process computer of the line including the welder, the material information and welding conditions of the preceding steel plate and the succeeding steel plate are transmitted to the input unit 4 via the network before the start of welding, and are selected by the exposure time setting unit 5 from the information. The three exposure times are (1) 0.72 ms, (2) 3.0 ms, and (3) 15.0 ms.

溶接直後、前記プロセスコンピュータから入力部4に測定開始指令が出され、2次元カメラ1(2000×2000画素のCMOSカメラを使用)の電子シャッター7で露光時間を変え、前記3つの露光時間による撮像を行った。2次元撮像素子8からは、溶接部が含まれる2000×500画素の信号が読み出され、A/D変換部9で8ビットの階調データに変換され、階調データ格納部10に保存される。露光時間0.72ms、3.0ms、15.0msに対応する画像の例が、図4のP1、P2、P3である。3つの画像の階調データを用い、上述した方法で各画素の温度変換を行い、温度分布を求めた。   Immediately after welding, a measurement start command is issued from the process computer to the input unit 4 and the exposure time is changed by the electronic shutter 7 of the two-dimensional camera 1 (using a 2000 × 2000 pixel CMOS camera). Went. A signal of 2000 × 500 pixels including a welded portion is read from the two-dimensional imaging device 8, converted into 8-bit gradation data by the A / D conversion unit 9, and stored in the gradation data storage unit 10. The Examples of images corresponding to exposure times of 0.72 ms, 3.0 ms, and 15.0 ms are P1, P2, and P3 in FIG. Using the gradation data of the three images, the temperature of each pixel was converted by the method described above to obtain the temperature distribution.

得られた結果は、1℃程度以下の分解能を有する温度値の集合(分布)であり、溶接状態の健全性の判定を行うロジックに当てはめる等、様々な用途に有効に使われるが、この段階での結果である数値データを羅列したり、再度画像化したりしても評価できない。そこで、結果の妥当性をわかり易く示すために、グラフで表してみた。P1〜P3の画像に関し、同一位置である溶接線に相当する部分の温度を、それぞれ単独でグラフに表したのがG1〜G3であり、本方法による温度分布測定結果から出力したグラフがG4である。単独の露光時間設定での測定では、充分な温度範囲が得られない測定結果(G1〜G3)となるのが、本発明の方法によれは、広範囲の温度分布を測定できた結果(G4)が得られることがわかる。   The obtained result is a set (distribution) of temperature values with a resolution of about 1 ° C. or less, and it is effectively used for various applications such as applying to the logic for judging the soundness of the welding state. Even if the numerical data that is the result of is enumerated or re-imaged, it cannot be evaluated. Therefore, in order to show the validity of the results in an easy-to-understand manner, I used a graph. Regarding the images of P1 to P3, G1 to G3 represent the temperatures of the portions corresponding to the weld lines at the same position, respectively, and the graph output from the temperature distribution measurement result by this method is G4. is there. In the measurement with a single exposure time setting, a measurement result (G1 to G3) in which a sufficient temperature range cannot be obtained is obtained. According to the method of the present invention, a wide temperature distribution can be measured (G4). It can be seen that

本発明の実施の形態に係る温度分布測定装置の概略構成を示す図である。It is a figure which shows schematic structure of the temperature distribution measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る温度分布測定装置の処理動作を説明するためのフローチャートである。It is a flowchart for demonstrating the processing operation of the temperature distribution measuring apparatus which concerns on embodiment of this invention. 温度変換に用いるカメラの校正曲線の一例を示す図である。It is a figure which shows an example of the calibration curve of the camera used for temperature conversion. 本発明をフラッシュバット溶接における溶接部の温度分布測定に適用した結果を示す図である。It is a figure which shows the result of applying this invention to the temperature distribution measurement of the welding part in flash butt welding.

符号の説明Explanation of symbols

1:2次元カメラ
2:信号処理部
3:画像処理部
4:入力部
5:露光時間設定部
6:撮像条件設定部
7:電子シャッター
8:2次元固体撮像素子
9:A/D変換部
10:階調データ格納部
11:温度変換データ記録部
12:温度分布演算部
13:出力部
1: two-dimensional camera 2: signal processing unit 3: image processing unit 4: input unit 5: exposure time setting unit 6: imaging condition setting unit 7: electronic shutter 8: two-dimensional solid-state imaging device 9: A / D conversion unit 10 : Gradation data storage unit 11: temperature conversion data recording unit 12: temperature distribution calculation unit 13: output unit

Claims (4)

2次元カメラで被測定物の輝度画像を撮像して当該被測定物の表面の温度分布を測定する温度分布測定方法であって、
前記2次元カメラを用いて被測定物を複数の露光時間ごとに撮像し、当該撮像により得られた輝度画像を変換して階調データを得る手順と、
前記複数の露光時間ごとに得られた階調データについて、予め露光時間ごとに設定した温度と階調との関係を示す校正曲線に基づき、各露光時間に対応する有効温度範囲の温度分布を導出する手順と、
前記複数の露光時間に対応する有効温度範囲の温度分布を用いて、当該被測定物の表面の温度分布を導出する手順とを有することを特徴とする温度分布測定方法。
A temperature distribution measuring method for measuring a temperature distribution of a surface of a measurement object by taking a luminance image of the measurement object with a two-dimensional camera,
A procedure for capturing an object to be measured for each of a plurality of exposure times using the two-dimensional camera, converting a luminance image obtained by the imaging, and obtaining gradation data;
With respect to the gradation data obtained for each of the plurality of exposure times, a temperature distribution of an effective temperature range corresponding to each exposure time is derived based on a calibration curve indicating a relationship between a temperature and a gradation set for each exposure time in advance. And the steps to
And a procedure for deriving the temperature distribution of the surface of the object to be measured using the temperature distribution in the effective temperature range corresponding to the plurality of exposure times.
前記2次元カメラによる撮像に先立ち、前記被測定物に関する、測温のための測温情報を入力する手順と、
前記入力された測温情報に基づき、所定の処理により被測定物の温度範囲を推定して、前記複数の露光時間を決定する手順とを有することを特徴とする請求項1に記載の温度分布測定方法。
Prior to imaging by the two-dimensional camera, a procedure for inputting temperature measurement information for temperature measurement related to the object to be measured;
2. The temperature distribution according to claim 1, further comprising: a step of estimating a temperature range of an object to be measured by a predetermined process based on the input temperature measurement information and determining the plurality of exposure times. Measuring method.
被測定物の2次元の輝度画像を撮像して当該被測定物の表面の温度分布を測定する温度分布測定装置であって、
露光時間を可変としたシャッター及び2次元固体撮像素子を有し、被測定物の輝度画像を出力する撮像手段と、
前記撮像手段を制御して複数の露光時間で撮像させて、当該露光時間が紐ついた輝度画像を複数出力させる撮像条件設定手段と、
前記露光時間が紐ついた輝度画像それぞれを階調データとして取り込む取り込み手段と、
露光時間ごとに設定した温度と階調との関係を示す校正曲線のデータを格納した温度変換データ記録手段と、
前記複数の露光時間ごとに得られた階調データについて、前記校正曲線に基づき、各露光時間に対応する有効温度範囲の温度分布を導出して、当該被測定物の表面の温度分布を導出する温度分布演算手段とを備えることを特徴とする温度分布測定装置。
A temperature distribution measuring device that takes a two-dimensional luminance image of a measurement object and measures the temperature distribution of the surface of the measurement object,
An imaging means having a shutter and a two-dimensional solid-state imaging device with variable exposure time, and outputting a luminance image of the object to be measured;
Imaging condition setting means for controlling the imaging means to take images at a plurality of exposure times and outputting a plurality of luminance images associated with the exposure times;
Capture means for capturing each luminance image associated with the exposure time as gradation data;
Temperature conversion data recording means storing calibration curve data indicating the relationship between temperature and gradation set for each exposure time;
For the gradation data obtained for each of the plurality of exposure times, a temperature distribution in the effective temperature range corresponding to each exposure time is derived based on the calibration curve, and a temperature distribution on the surface of the object to be measured is derived. A temperature distribution measuring device comprising temperature distribution calculating means.
前記被測定物に関する、測温のための測温情報を入力する入力手段と、
前記入力手段により入力された測温情報に基づき、被測定物の温度範囲を推定して、前記複数の露光時間を決定する露光時間設定手段とを備え、
前記撮像条件設定手段は、前記露光時間設定手段により決定された複数の露光時間に基づき前記撮像手段を制御することを特徴とする請求項3に記載の温度分布測定装置。
Input means for inputting temperature measurement information for temperature measurement related to the object to be measured;
An exposure time setting means for estimating the temperature range of the object to be measured based on the temperature measurement information input by the input means and determining the plurality of exposure times;
The temperature distribution measuring apparatus according to claim 3, wherein the imaging condition setting unit controls the imaging unit based on a plurality of exposure times determined by the exposure time setting unit.
JP2007167886A 2007-06-26 2007-06-26 Method and device for measuring temperature distribution Pending JP2009008439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167886A JP2009008439A (en) 2007-06-26 2007-06-26 Method and device for measuring temperature distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167886A JP2009008439A (en) 2007-06-26 2007-06-26 Method and device for measuring temperature distribution

Publications (1)

Publication Number Publication Date
JP2009008439A true JP2009008439A (en) 2009-01-15

Family

ID=40323675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167886A Pending JP2009008439A (en) 2007-06-26 2007-06-26 Method and device for measuring temperature distribution

Country Status (1)

Country Link
JP (1) JP2009008439A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106885A (en) * 2009-11-13 2011-06-02 NEC Avio赤外線テクノロジー株式会社 Thermography apparatus, image processing method, and program
JP2013250183A (en) * 2012-06-01 2013-12-12 Jfe Steel Corp Temperature measurement system and temperature measurement method
JP2014202528A (en) * 2013-04-02 2014-10-27 Jfeスチール株式会社 Temperature measuring device and temperature measuring method
JP2016145846A (en) * 2016-05-19 2016-08-12 Jfeスチール株式会社 Temperature measuring device and temperature measuring method
JP2016194489A (en) * 2015-04-01 2016-11-17 東芝三菱電機産業システム株式会社 Planar shape measurement device
CN111337132A (en) * 2020-02-28 2020-06-26 创新奇智(北京)科技有限公司 Temperature measuring method and device and digital image acquisition equipment
JP2021047195A (en) * 2020-11-27 2021-03-25 日本アビオニクス株式会社 Infrared imaging device, infrared imaging system and infrared imaging method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163127A (en) * 1986-12-25 1988-07-06 Chino Corp Radiation thermometer
JPH1073483A (en) * 1996-08-30 1998-03-17 Nikon Corp Infrared-photographing apparatus
JP2005342788A (en) * 2004-05-06 2005-12-15 Nippon Steel Corp Method and apparatus for diagnosing flash-butt weld zone of steel sheet
JP2006038553A (en) * 2004-07-26 2006-02-09 Olympus Corp Imaging apparatus and imaging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163127A (en) * 1986-12-25 1988-07-06 Chino Corp Radiation thermometer
JPH1073483A (en) * 1996-08-30 1998-03-17 Nikon Corp Infrared-photographing apparatus
JP2005342788A (en) * 2004-05-06 2005-12-15 Nippon Steel Corp Method and apparatus for diagnosing flash-butt weld zone of steel sheet
JP2006038553A (en) * 2004-07-26 2006-02-09 Olympus Corp Imaging apparatus and imaging method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106885A (en) * 2009-11-13 2011-06-02 NEC Avio赤外線テクノロジー株式会社 Thermography apparatus, image processing method, and program
JP2013250183A (en) * 2012-06-01 2013-12-12 Jfe Steel Corp Temperature measurement system and temperature measurement method
JP2014202528A (en) * 2013-04-02 2014-10-27 Jfeスチール株式会社 Temperature measuring device and temperature measuring method
JP2016194489A (en) * 2015-04-01 2016-11-17 東芝三菱電機産業システム株式会社 Planar shape measurement device
JP2016145846A (en) * 2016-05-19 2016-08-12 Jfeスチール株式会社 Temperature measuring device and temperature measuring method
CN111337132A (en) * 2020-02-28 2020-06-26 创新奇智(北京)科技有限公司 Temperature measuring method and device and digital image acquisition equipment
CN111337132B (en) * 2020-02-28 2021-08-27 创新奇智(北京)科技有限公司 Temperature measuring method and device and digital image acquisition equipment
JP2021047195A (en) * 2020-11-27 2021-03-25 日本アビオニクス株式会社 Infrared imaging device, infrared imaging system and infrared imaging method
JP7073472B2 (en) 2020-11-27 2022-05-23 日本アビオニクス株式会社 Infrared photography device, infrared photography system and infrared photography method

Similar Documents

Publication Publication Date Title
JP2009008439A (en) Method and device for measuring temperature distribution
US10989672B2 (en) Defect inspection device, defect inspection method, and program
EP2938061A1 (en) Methods for end-user parallax adjustment
JP6992035B2 (en) How to determine misalignment of the measurement range of an imager and a non-temporary computer-readable medium
US9696210B2 (en) Extended temperature range mapping process of a furnace enclosure using various device settings
US20140184805A1 (en) Thermal camera and method for eliminating ghosting effects of hot-target thermal images
JP2008271049A (en) Imaging apparatus and its gain adjusting method
JP6337131B2 (en) Infrared imaging device, fixed pattern noise calculation method, and fixed pattern noise calculation program
US10362243B2 (en) Infrared imaging device, diaphragm control method, and diaphragm control program
JP2014211371A (en) Degradation determination method and device of exterior material
CN111337132B (en) Temperature measuring method and device and digital image acquisition equipment
TWI468658B (en) Lens test device and method
JP6434227B2 (en) Infrared camera
US7880780B2 (en) Sensor apparatus and method for noise reduction
CN103123281A (en) Non-contact temperature measuring method
JP2011038838A (en) Thermal device and method for measuring infrared output
KR20180126071A (en) Inspection device and inspection method
JP2017020876A (en) Shape measurement device and shape measurement method
JP4921058B2 (en) Imaging apparatus and control method thereof
CN115225820B (en) Shooting parameter automatic adjustment method and device, storage medium and industrial camera
Whitenton An introduction for machining researchers to measurement uncertainty sources in thermal images of metal cutting
JPWO2016051849A1 (en) Infrared imaging device, image processing method, and image processing program
Schramm et al. Compensation of the size-of-source effect of infrared cameras using image processing methods
JP2009258846A (en) Image processing method, image processing system, image processor, and image processing program
JP2007221624A (en) Illuminance acquisition apparatus, illuminance acquisition method and illuminance acquisition program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128