JP2009008401A - Blood separation and recovery device - Google Patents

Blood separation and recovery device Download PDF

Info

Publication number
JP2009008401A
JP2009008401A JP2007167167A JP2007167167A JP2009008401A JP 2009008401 A JP2009008401 A JP 2009008401A JP 2007167167 A JP2007167167 A JP 2007167167A JP 2007167167 A JP2007167167 A JP 2007167167A JP 2009008401 A JP2009008401 A JP 2009008401A
Authority
JP
Japan
Prior art keywords
blood
plasma
separation
whole blood
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007167167A
Other languages
Japanese (ja)
Other versions
JP4752815B2 (en
Inventor
Susumu Arai
進 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2007167167A priority Critical patent/JP4752815B2/en
Publication of JP2009008401A publication Critical patent/JP2009008401A/en
Application granted granted Critical
Publication of JP4752815B2 publication Critical patent/JP4752815B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blood separation and recovery device which separates blood corpuscles from a very small amount of the whole blood sample by inexpensive and simple operation to quantitatively recover blood plasma. <P>SOLUTION: The blood separation and recovery device, used when whole blood is centrifugally separated by centrifugal separation operation and blood plasma is recovered, is constituted of a first matrix and a second matrix and a whole blood sampling part and a blood corpuscle component separation part are formed so as to be allowed to communicate with the first matrix with a blood plasma recovery part demarcated in the second matrix. The whole blood is sampled by a capillary phenomenon in the whole blood sampling part and the blood plasma of the blood corpuscle component separation part is recovered by the capillary phenomenon in the blood plasma recovery part. The first and second matrices are made detachable. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、全血から血球成分を分離し血漿を回収するデバイスに関する。   The present invention relates to a device for separating blood cell components from whole blood and collecting plasma.

血液中の成分を測定する生化学検査は各種の診断、観察に広く利用され、臨床検査として重要な検査法となっている。各種の生化学検査装置が開発され多数の検体や多数の検査項目が分析されている。従来の健康診断や疾病状態の診断は、患者から数ccの多量の血液を採取し、その分析に大規模な自動血液分析装置で得た測定値より行われてきた。通常、このような自動分析装置は、病院などの医療機関に設置されており、規模が大きく、また、その操作は専門を有するものに限られるものであった。   Biochemical tests that measure components in blood are widely used for various diagnoses and observations, and are important tests as clinical tests. Various biochemical testing devices have been developed, and many samples and many test items are analyzed. Conventional health examinations and diagnosis of disease states have been carried out by taking a large amount of blood of several cc from a patient and analyzing it from measurements obtained with a large-scale automatic blood analyzer. Usually, such an automatic analyzer is installed in a medical institution such as a hospital, has a large scale, and its operation is limited to a specialized one.

しかし、近年、極度に進歩した半導体装置作製に用いられる微細加工技術を応用し、数mmから数cm四方の基板上に種々のセンサなどの分析装置を配置して、そこに被験者の血液などの体液を導き、被験者の健康状態を瞬時に把握することができる新しいデバイスの開発とその実用化の気運高まってきている。このような安価なデバイスの出現により、将来の高齢化社会において高齢者の日々の健康管理を在宅で可能にすることなどで増加の一途を辿る健康保険給付金の圧縮を図れる。また救急医療の現場においては被験者の感染症(肝炎、後天性免疫不全症など)の有無などを、本デバイスを用いて迅速に判断できれば適切な対応ができるなど、種々の社会的な効果が期待されるために非常に注目されつつある技術分野である。このように従来の自動分析装置に代わって、血液分析を各家庭で自らの手で実施することを目指した小型で簡便な血液分析方法ならびに血液分析装置が開発されている。このような検査において、血液中の特定の成分、特に血球成分は、測定値に高いバックグランドを生じるか、または測定装置の性能を妨害するためサンプル中の血球成分の除去が望まれる。また、検査装置は多くの場合少量サンプル量での測定が可能であることが望ましい。   However, in recent years, by applying the microfabrication technology used for the production of semiconductor devices that have advanced extremely recently, analyzers such as various sensors are arranged on a substrate of several millimeters to several centimeters square, and the blood of the subject or the like is placed there. The development and practical application of new devices that can guide body fluids and instantly grasp the health status of subjects are increasing. With the advent of such inexpensive devices, it is possible to reduce health insurance benefits that continue to increase by enabling daily health management of elderly people at home in the future aging society. Also, in the field of emergency medicine, various social effects are expected, such as being able to respond appropriately if the subject can quickly determine the presence or absence of infection (such as hepatitis, acquired immune deficiency) using this device. This is a technical field that is attracting a great deal of attention. As described above, instead of the conventional automatic analyzer, a small and simple blood analysis method and a blood analyzer aiming to carry out blood analysis by one's own hands in each home have been developed. In such a test, it is desired to remove a blood cell component in a sample because a specific component in blood, particularly a blood cell component, causes a high background in the measured value or interferes with the performance of the measuring device. Further, in many cases, it is desirable that the inspection apparatus can measure with a small amount of sample.

従来の健康診断や疾病状態の診断においては、サンプル中の血液成分の除去をするために遠心分離による方法が用いられてきたが血液が数cc必要であること、遠心分離した後に上澄みを作業者が吸い取るといった熟練を要する作業が必要であった。   In conventional health examinations and diagnosis of disease states, a method using centrifugation has been used to remove blood components in the sample. However, several cc of blood is required, and the supernatant is removed after centrifugation. However, skillful work such as sucking out was necessary.

特許文献1には、血球成分分離構造物では、遠心力で血液を分離するチップが開示されているが、検体である血液を導入し遠心力により分離したのち、チップを90°回転させ分離した血液を秤量送液し、さらに90°回転させ試薬と混合するといった複雑な手順を踏むものであり、マイクロチップを取り外しすることで作業に時間を要し、人為的ミスによりマイクロチップを落下させたり、ぶつけたりするおそれがあった。   Patent Document 1 discloses a chip that separates blood by centrifugal force in the blood cell component separation structure, but after introducing blood as a sample and separating it by centrifugal force, the chip is rotated by 90 ° and separated. It is a complicated procedure that weighs and feeds blood, and further rotates 90 ° to mix with the reagent. Removing the microchip takes time, and the microchip is dropped due to human error. There was a risk of bumping.

特許文献2に開示されている血球成分分離構造物では、遠心力で血液を分離し回転の中心を機械側で操作することにより分離と送液を可能にしているが、装置が煩雑となり高価になってしまう問題がある。   In the blood cell component separation structure disclosed in Patent Document 2, blood is separated by centrifugal force and separation and liquid feeding are possible by operating the center of rotation on the machine side. However, the apparatus becomes complicated and expensive. There is a problem that becomes.

特許文献3に開示されている血球成分分離構造物では、毛細管現象によりサンプルを経路内に導入し、経路内部に配置した多数の欠けた月または弾丸の形をした障害物を利用して血球成分を分離している。しかしながら、このような毛細管現象と経路内部の障害物とを利用した血球成分分離構造物でも、必要な血液量に関しては未だ改善の余地がある。現在チップタイプの血糖値センサに使用されるサンプル容量は約0.3〜4μLであるが上記の血液成分分離構造物は血液の濾過を行うために、20〜50μLのサンプル容量を必要とする。したがって、血球を分離せずに血糖値センサでの検査を行う場合に比べていまだに多量のサンプルが必要とされる。   In the blood cell component separation structure disclosed in Patent Document 3, a sample is introduced into the path by capillary action, and blood cell components are utilized by using a number of missing moon or bullet-shaped obstacles arranged inside the path. Are separated. However, even with a blood cell component separation structure using such a capillary phenomenon and an obstacle inside the path, there is still room for improvement with respect to the necessary blood volume. Currently, the sample volume used in the chip-type blood glucose level sensor is about 0.3 to 4 μL, but the blood component separation structure requires a sample volume of 20 to 50 μL in order to perform blood filtration. Therefore, a large amount of sample is still required as compared with the case where the blood glucose level sensor is inspected without separating blood cells.

特許文献4開示される血球成分分離構造物では、マイクロ流路中に隙間が約0.1μm〜2μmと微小なスリットを設け、スリットが血球成分で目詰まりしないように約2μm〜10μmのキャビティを設けることを特徴としており、微量な血液試料から血球成分を濾過することが出来る。しかしながら、マイクロ流路中に隙間が0.1μm〜2μmの微小なスリットを設ける加工は簡単ではなく、工業的に難しく、この構造を有したチップは高価となってしまう問題がある。   In the blood cell component separation structure disclosed in Patent Document 4, a micro slit is provided with a small slit of about 0.1 μm to 2 μm, and a cavity of about 2 μm to 10 μm is provided so that the slit is not clogged with blood cell components. A blood cell component can be filtered from a very small amount of blood sample. However, the process of providing a minute slit with a gap of 0.1 μm to 2 μm in the microchannel is not easy and industrially difficult, and there is a problem that a chip having this structure becomes expensive.

上記のように、安価で簡単な操作により微量な全血サンプルから血球を分離し血漿を定量的に回収する血液分離回収デバイスはなかった。   As described above, there has been no blood separation / recovery device for separating blood cells from a small amount of whole blood sample and recovering the plasma quantitatively by an inexpensive and simple operation.

特開2004−109099号公報JP 2004-109099 A 特開2006−110491号公報JP 2006-110491 A 米国特許第6319719号明細書US Pat. No. 6,319,719 国際公開第2004/097393号パンフレットInternational Publication No. 2004/097393 Pamphlet

本発明の目的は、安価で簡単な操作により微量な全血サンプルから血球を分離し血漿を定量的に回収する血液分離回収デバイスを提供することである。     An object of the present invention is to provide a blood separation / recovery device that separates blood cells from a small amount of whole blood sample and collects plasma quantitatively by an inexpensive and simple operation.

本発明は、以下の通りである。
(1)遠心分離操作により全血を遠心分離し血漿を回収する際に用いる血液分離回収デバイスであって、第1の母材及び第2の母材から構成され、第1の母材に全血採取部及び血球成分分離部が連通されて形成され、第2の母材に血漿回収部が形成され、前記全血採取部が毛細管現象により全血を採取可能であり、前記血漿回収部が毛細管現象により前記血球成分分離部の血漿を回収可能であり、第1の母材と第2の母材が着脱可能であることを特徴とする血液分離回収デバイス。
(2)前記全血採取部及び前記血漿回収部が管状形状であり、断面積が0.01〜1.2mmである(1)記載の血液分離回収デバイス。
(3)前記全血採取部、前記血球成分分離部、及び前記血漿回収部が高分子又はガラスからなる(1)又は(2)記載の血液分離回収デバイス。
(4)前記血球成分分離部にゲル状物質が具備されている(1)〜(3)いずれか記載の血液分離回収デバイス。
(5)前記血液採取部及び前記血漿回収部の内表面の水に対する接触角が60°以下である(1)〜(4)いずれか記載の血液分離回収デバイス。
(6)前記血液採取部及び前記血漿回収部の内表面の水に対する接触角が60°以下にするための処理方法が、プラズマ処理、コロナ処理、ガンマ線照射処理、又は親水性ポリマー処理のいずれかである(5)記載の血液分離回収デバイス。
(7)前記親水性ポリマー処理方法が、ポリエチレングリコール(PEG)、エバール(EVOH)、ポバール(PVOH)、又はホスホリルコリン基を有するポリマーを成分とする親水性ポリマーを表面コート処理することである(6)記載の血液分離回収デバイス。
The present invention is as follows.
(1) A blood separation / recovery device used for centrifuging whole blood by a centrifugal separation operation to recover plasma, which is composed of a first base material and a second base material, A blood collection unit and a blood cell component separation unit are formed in communication, a plasma collection unit is formed in the second base material, the whole blood collection unit can collect whole blood by capillary action, and the plasma collection unit A blood separation / recovery device characterized in that plasma of the blood cell component separation part can be collected by capillary action, and the first base material and the second base material are detachable.
(2) The blood separation / collection device according to (1), wherein the whole blood collection unit and the plasma collection unit have a tubular shape and a cross-sectional area of 0.01 to 1.2 mm 2 .
(3) The blood separation / collection device according to (1) or (2), wherein the whole blood collection unit, the blood cell component separation unit, and the plasma collection unit are made of a polymer or glass.
(4) The blood separation / recovery device according to any one of (1) to (3), wherein the blood cell component separation part comprises a gel substance.
(5) The blood separation / collection device according to any one of (1) to (4), wherein a contact angle of water on the inner surfaces of the blood collection unit and the plasma collection unit is 60 ° or less.
(6) The treatment method for setting the contact angle of water on the inner surface of the blood collection part and the plasma collection part to 60 ° or less is any one of plasma treatment, corona treatment, gamma irradiation treatment, and hydrophilic polymer treatment. (5) The blood separation / recovery device according to (5).
(7) The hydrophilic polymer treatment method is a surface coating treatment of a hydrophilic polymer composed of a polymer having polyethylene glycol (PEG), eval (EVOH), poval (PVOH), or a phosphorylcholine group (6 ) The blood separation and recovery device described.

本発明の血液分離回収デバイスを用いることにより、安価で簡単な操作により微量な全血サンプルから血球を分離し血漿を定量的に回収することが可能である。     By using the blood separation / recovery device of the present invention, it is possible to separate blood cells from a small amount of whole blood sample and to collect plasma quantitatively by an inexpensive and simple operation.

以下、本発明を実施するための最良の形態を図を用いて説明する。
図1に本発明の血液分離回収デバイスの一例の断面の概略平面図を示す。
血液分離回収デバイスは第1の母材1及び第2の母材5から構成され、第1の母材1に全血採取部2及び血球成分分離部3が連通されて形成され、第2の母材5に血漿回収部4が形成され、全血採取部2が毛細管現象により全血を採取可能であり、血漿回収部4が毛細管現象により血球成分分離部3の血漿を回収可能であり、第1の母材1と第2の母材5が着脱可能であることを特徴とする。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic plan view of a cross section of an example of the blood separation / recovery device of the present invention.
The blood separation and recovery device is composed of a first base material 1 and a second base material 5, and is formed by communicating the whole blood collection part 2 and the blood cell component separation part 3 with the first base material 1, A plasma collecting part 4 is formed on the base material 5, the whole blood collecting part 2 can collect whole blood by capillary action, and the plasma collecting part 4 can collect plasma of the blood cell component separating part 3 by capillary action, The first base material 1 and the second base material 5 are detachable.

本発明に使用する第1の母材1及び第2の母材5の材質は、Si、ガラス、プラスチック等が挙げられ、母材1、5は同一材質である必要は無い。このような候補の中で自由な形状に加工しやすく量産が容易であるプラスチック材料が材質として特に好ましい。プラスチックの材質としては、ポリスチレン、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリカーボネート、ポリエステル、環状ポリオレフィン樹脂(COC)、ポリメチルメタクリレート、ポリビニルアセテート、ビニル−アセテート共重合体、スチレン−メチルメタアクリレート共重合体、アクリルニトリル−スチレン共重合体、アクリルニトリル−ブタジエン−スチレン共重合体、ナイロン、ポリメチルペンテン、シリコン樹脂、アミノ樹脂、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルイミド、フッ素樹脂、ポリイミド等の種々のプラスチック材料を選択することが可能である。また、これらのプラスチック材料に、顔料、染料、酸化防止剤、難燃剤等の添加物を適宜混合してもよい。   Examples of the material of the first base material 1 and the second base material 5 used in the present invention include Si, glass, and plastic, and the base materials 1 and 5 do not need to be the same material. Among such candidates, a plastic material that can be easily processed into a free shape and is easily mass-produced is particularly preferable. As plastic materials, polystyrene, polyethylene, polyvinyl chloride, polypropylene, polycarbonate, polyester, cyclic polyolefin resin (COC), polymethyl methacrylate, polyvinyl acetate, vinyl-acetate copolymer, styrene-methyl methacrylate copolymer, Various plastics such as acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, nylon, polymethylpentene, silicone resin, amino resin, polysulfone, polyethersulfone, polyetherimide, fluororesin, polyimide It is possible to select the material. In addition, additives such as pigments, dyes, antioxidants, and flame retardants may be appropriately mixed with these plastic materials.

本発明において、母材を所定の形状に加工する加工方法としては任意であり、切削加工、射出成形、溶剤キャスト法、フォトリソグラフィー、レーザーアブレーション、ホットエンボス法などの方法を利用できる。   In the present invention, the processing method for processing the base material into a predetermined shape is arbitrary, and methods such as cutting, injection molding, solvent casting, photolithography, laser ablation, and hot embossing can be used.

全血採取部2及び血漿回収部3は中空の管状形状であることが好ましく、角柱状、円柱状等の形状が好ましい。全血採取部2及び血漿回収部3は、母材を直接加工して形成しても良く、又は予め形成した管状形状等の部材を母材に接着、嵌合しても良い。   The whole blood collection part 2 and the plasma collection part 3 are preferably in the shape of a hollow tube, and are preferably in the shape of a prism or cylinder. The whole blood collection unit 2 and the plasma collection unit 3 may be formed by directly processing a base material, or may be formed by bonding and fitting a preformed member such as a tubular shape to the base material.

全血採取部2及び血漿回収部3の中空部分の断面積は、0.01mm以上1.2mm以下であることが好ましく、更に好ましくは0.05mm以上1.0mm以下である。全血採取部2又は血漿回収部3の断面積が下限値未満では管状形状を作製する際に技術を要し工業的な生産が困難であること、ある特定量の全血を採取および血漿を回収する際に管状形状の長さを長くする必要があり経済的でないこと、毛細管現象を利用して全血を採取および血漿を回収するため細く長い管状形状では特定量を採取および回収するためには時間を要するため好ましくない。全血採取部2又は血漿回収部3の断面積が上限値を超えると表面張力やキャピラリー効果による流体の移動効果が薄くなり全血の採取および血漿を回収するにあたり時間を要し、更には全血の採取および血漿の回収ができなくなるため好ましくない。 The cross-sectional areas of the hollow portions of the whole blood collection unit 2 and the plasma collection unit 3 are preferably 0.01 mm 2 or more and 1.2 mm 2 or less, more preferably 0.05 mm 2 or more and 1.0 mm 2 or less. If the cross-sectional area of the whole blood collection part 2 or the plasma collection part 3 is less than the lower limit value, it requires a technique for producing a tubular shape, and industrial production is difficult. It is not economical because it is necessary to increase the length of the tubular shape when collecting it. To collect and collect whole blood using capillary action and to collect plasma, a thin and long tubular shape is used to collect and collect a specific amount. Is not preferable because it takes time. If the cross-sectional area of the whole blood collection unit 2 or the plasma collection unit 3 exceeds the upper limit value, the fluid movement effect due to the surface tension or the capillary effect becomes thin, and it takes time to collect the whole blood and collect the plasma. This is not preferable because blood collection and plasma collection cannot be performed.

全血採取部2及び血漿回収部3の水に対する接触角は60°以下であることが好ましく、更に好ましくは40°以下である。全血採取部と血漿回収部の水に対する接触角が上限値を超えると表面張力やキャピラリー効果による流体の移動効果が薄くなり液体が流路を流れる際に時間を要するため好ましくない。全血採取部2と血漿回収部3の水に対する接触角を60°以下にする手法として、プラズマ処理またはコロナ放電処理、ガンマ線照射処理やポリエチレングリコール(PEG)、エバール(EVOH)、ポバール(PVOH)、又はホスホリルコリン基を有するポリマーを成分とする親水性ポリマーを表面コート処理することが好ましいが、血液成分の組成物や組成比を変化させるような悪い影響を与えない方法であれば特に限定しない。   The contact angle of the whole blood collection unit 2 and the plasma collection unit 3 with respect to water is preferably 60 ° or less, and more preferably 40 ° or less. If the contact angle of the whole blood collection part and the plasma recovery part with respect to water exceeds the upper limit value, the fluid movement effect due to the surface tension and the capillary effect becomes thin, and it takes time for the liquid to flow through the flow path. Methods for reducing the water contact angle of the whole blood collection unit 2 and the plasma collection unit 3 to 60 ° or less include plasma treatment, corona discharge treatment, gamma irradiation treatment, polyethylene glycol (PEG), eval (EVOH), and poval (PVOH). Alternatively, it is preferable to surface coat a hydrophilic polymer containing a polymer having a phosphorylcholine group as a component, but there is no particular limitation as long as the method does not adversely affect the composition or composition ratio of blood components.

図2に全血を採取したときの血液分離回収デバイスの断面の概略平面図を示す。全血サンプルを全血採取部2の先端部に接触させることにより毛細管現象により全血採取部に採取された全血サンプル6を採取することができる。全血採取部2の管の面積および長さを適宜設計することにより特定量の全血サンプルを採取することができる。   FIG. 2 shows a schematic plan view of a cross section of the blood separation / recovery device when whole blood is collected. By bringing the whole blood sample into contact with the tip of the whole blood collection unit 2, the whole blood sample 6 collected in the whole blood collection unit by capillary action can be collected. A specific amount of whole blood sample can be collected by appropriately designing the area and length of the tube of the whole blood collection unit 2.

図3に遠心分離したときの血液分離回収デバイスの断面の概略平面図を示す。全血採取部2で全血サンプルを特定量採取した後、図3に示す遠心力作用方向に遠心操作することにより採取された全血は血球成分分離部3へと移動し、血球成分分離部3で遠心分離された血球成分9と遠心分離された血漿7に分離される。   FIG. 3 shows a schematic plan view of a cross section of the blood separation / recovery device when centrifuged. After a specific amount of whole blood sample is collected by the whole blood collecting unit 2, the whole blood collected by centrifuging in the direction of centrifugal force action shown in FIG. 3 moves to the blood cell component separating unit 3, and the blood cell component separating unit 3 is separated into a blood cell component 9 centrifuged at 3 and a plasma 7 centrifuged.

血球成分分離部3には血漿と血球成分の中間に層を成すゲル状物質8が具備されていることが好ましい。ゲル状物質を具備することにより遠心分離後に血球成分と血漿が明確に分離することができ、また、ゲル状物質であるため毛細管現象により血漿回収部へと導入されることがなく血漿回収部で血漿を回収する際に血球成分が混入することを防ぐことができる。   The blood cell component separation unit 3 is preferably provided with a gel-like substance 8 that forms a layer between plasma and blood cell components. By providing a gel-like substance, blood cell components and plasma can be clearly separated after centrifugation, and since it is a gel-like substance, it is not introduced into the plasma collection part by capillary action. It is possible to prevent blood cell components from being mixed when plasma is collected.

遠心分離後、血球成分分離部3で分離された血漿は血漿回収部4の先端から血漿回収部4へと毛細管現象により特定量の血漿が回収される。血球成分分離部3の体積は、全血採取部で採取する全血サンプル6の量と血漿と血球成分の中間に層を成すゲル状物質8の量により適宜設計されるが、全血採取部で採取する全血サンプル6の量と血漿と血球成分の中間に層を成すゲル状物質8の量を合せた体積よりも大きい方が好ましく、より好ましくは同じ量の体積を持つことである。   After centrifugation, the plasma separated by the blood cell component separation unit 3 is collected from the tip of the plasma collection unit 4 to the plasma collection unit 4 by a capillary phenomenon. The volume of the blood cell component separation unit 3 is appropriately designed according to the amount of the whole blood sample 6 collected by the whole blood collection unit and the amount of the gel-like substance 8 that forms a layer between the plasma and the blood cell component. The volume is preferably larger than the total volume of the whole blood sample 6 collected in step 1 and the amount of the gel-like substance 8 that forms a layer between plasma and blood cell components, and more preferably has the same volume.

血球成分分離部3の断面積は、血漿回収部4の先端が血球成分分離部3へ入り込む大きさ以上に設計する必要があるが、血球成分分離部3の断面積が大きすぎると遠心分離された血漿7および遠心分離された血球成分9の高さが低くなるため血球回収部4の先端位置の精度が必要となり設計上難しくなるため好ましくない。   The cross-sectional area of the blood cell component separation unit 3 needs to be designed to be larger than the size at which the tip of the plasma collection unit 4 enters the blood cell component separation unit 3, but if the cross-sectional area of the blood cell component separation unit 3 is too large, it is centrifuged. Further, since the height of the blood plasma 7 and the centrifuged blood cell component 9 is lowered, the accuracy of the tip position of the blood cell collection unit 4 is required, which is difficult to design.

血漿回収部4が遠心分離された血漿6に接する先端の位置は全血採取部で採取する全血サンプル6の量および血球成分分離部3の体積、血漿と血球成分の中間に層を成すゲル状物質8の体積、血漿回収部で回収される血漿11の体積により適宜設計される。より詳細には、血漿回収部4の先端が遠心分離された血漿7に触れる位置であり、血漿回収部4で回収する特定量の血漿に触れる位置となるように適宜設計される。血漿回収部4の管の面積および長さを設計することにより特定量の血漿を回収することができる。   The position of the tip of the plasma collection unit 4 that contacts the centrifuged plasma 6 is the amount of the whole blood sample 6 collected by the whole blood collection unit, the volume of the blood cell component separation unit 3, and the gel that forms a layer between the plasma and blood cell components It is designed as appropriate depending on the volume of the substance 8 and the volume of the plasma 11 collected by the plasma collection unit. More specifically, the front end of the plasma recovery unit 4 is a position where the distal end of the plasma collection unit 4 comes into contact with the centrifuged plasma 7 and is appropriately designed to be a position where the plasma collection unit 4 comes into contact with a specific amount of plasma. A specific amount of plasma can be collected by designing the area and length of the tube of the plasma collection unit 4.

図4に遠心分離後に第1の母材から第2の母材を外して、血漿回収部を取り外したときの第1の母材における全血採取部2および血球成分分離部3の一例を示す。血漿回収部4へ血漿が回収され回収されなかった余剰の血漿10と血漿と血球成分の中間に層を成すゲル状物質8と遠心分離された血球成分9が残される。   FIG. 4 shows an example of whole blood collection unit 2 and blood cell component separation unit 3 in the first base material when the second base material is removed from the first base material after centrifugation and the plasma recovery unit is removed. . The plasma is recovered in the plasma recovery unit 4 and the surplus plasma 10 that has not been recovered, the gel material 8 that forms a layer between the plasma and the blood cell component, and the centrifuged blood cell component 9 are left.

図5に遠心分離後に第1の母材から第2の母材を外して、血漿回収部を取り外したときの第2の母材における血漿回収部の一例を示す。毛細管現象により血漿回収部に回収された血漿11が特定量回収され取り外される。特定量の血漿が回収された血漿回収部4を使用することにより、測定値に高いバックグランドを生じる可能性があり装置の性能を妨害する可能性のある血球成分を取り除いた形で血液分析をすることができる。   FIG. 5 shows an example of the plasma recovery part in the second base material when the second base material is removed from the first base material after centrifugation and the plasma recovery part is removed. A specific amount of plasma 11 collected in the plasma collection unit by capillary action is collected and removed. By using the plasma collection unit 4 from which a specific amount of plasma has been collected, blood analysis can be performed in a form that removes blood cell components that may cause a high background in measurement values and interfere with the performance of the device. can do.

これらの血液分離回収デバイスの流路設計は検出対象物、利便性を考慮に適宜設計される。血液分離回収デバイスとして、膜、ポンプ、バルブ、センサー、モーター、ミキサー、ギア、クラッチ、マイクロレンズ、電気回路等を装備したり、複数本のマイクロチャネルを同一基板上に加工することにより複合化したりすることも可能である。   The flow path design of these blood separation and recovery devices is appropriately designed in consideration of the detection object and convenience. Equipped with membranes, pumps, valves, sensors, motors, mixers, gears, clutches, microlenses, electrical circuits, etc. as blood separation / recovery devices, or by combining multiple microchannels on the same substrate It is also possible to do.

以下に実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。  EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
第1及び第2の母材として、環状ポリオレフィン(COC)を使用し切削加工により図1のようなデバイス形状を作製した。血球成分分離部3を断面1.0mm角で5mm高さの管状形状とした。全血採取部2として内径1.0mmφ、外径1.4mm、長さ6mmのガラス管(ガラス管容積:約5μL)を使用し母材1に接着剤により固定した。血漿回収部4として内径0.6mmφ、外形0.9mmφ、長さ7mmのガラス管(ガラス管容積:約2μL)を使用し血漿回収部4のガラス管の先端が血球成分分離部3の入口から2.0mmの長さだけ血球成分分離部へ入った位置となるように母材5に接着剤により固定した。ガラス管に使用したガラスと同じ材質のガラス基板の水との接触角を測定したところ25°であった。指先から無痛針を使用し全血採取部に全血を毛細管現象により採取し、2000Gで30秒間遠心分離操作を実施した。5秒静置後、血漿回収部を血漿分離回収デバイスから取り外したところ血漿回収部に血漿が透明な液体として採取された。採取された血漿の体積を測定したところ2μLであった。
Example 1
A device shape as shown in FIG. 1 was produced by cutting using cyclic polyolefin (COC) as the first and second base materials. The blood cell component separation part 3 was formed into a tubular shape having a cross section of 1.0 mm square and a height of 5 mm. A glass tube (glass tube volume: about 5 μL) having an inner diameter of 1.0 mmφ, an outer diameter of 1.4 mm, and a length of 6 mm was used as the whole blood collection part 2 and fixed to the base material 1 with an adhesive. A plasma tube (glass tube volume: about 2 μL) having an inner diameter of 0.6 mmφ, an outer diameter of 0.9 mmφ, and a length of 7 mm is used as the plasma recovery unit 4, and the tip of the glass tube of the plasma recovery unit 4 is connected to the inlet of the blood cell component separation unit 3. It was fixed to the base material 5 with an adhesive so as to be in a position where it entered the blood cell component separation part by a length of 2.0 mm. The contact angle with water of a glass substrate made of the same material as the glass used for the glass tube was measured and found to be 25 °. Using a painless needle from the fingertip, whole blood was collected by capillary action at a whole blood collection part, and centrifuged at 2000 G for 30 seconds. After standing for 5 seconds, the plasma recovery part was removed from the plasma separation and recovery device, and plasma was collected as a transparent liquid in the plasma recovery part. The volume of the collected plasma was measured and found to be 2 μL.

(実施例2)
第1の母材1として、ポリプロピレン(PP)を使用し切削加工により図1のようなデバイス形状を作製した。血球成分分離部3を断面1.0mm角で3mm高さの管状形状とした。全血採取部2として内径0.69mmφ、外径0.97mm、長さ8mmのガラス管(ガラス管容積:約3μL)を使用し母材1に接着剤により固定した。血漿回収部4としてポリスチレン(PS)を材料とする第2の母材5に幅0.5mm、深さ0.5mm、長さ4mmの流路(流路容積:約1.0μL)を切削加工で加工し血漿回収部4の流路の先端が血球成分分離部3の入口から1.8mm長さ血球成分分離部へ入った位置となるように母材を加工した。加工した血漿回収部4にホスホリルコリン基を有するポリマーを成分とする親水性ポリマー(日本油脂株式会社製、MPCポリマー)をマイクロ流路に導入しエタノールで洗浄し遠心乾燥することで流路表面に親水性ポリマーを塗布した。別のポリスチレン(PS)基板にMPCポリマーを同様に塗布し水との接触角を測定したところ55°であった。
指先から無痛針を使用し全血採取部に全血を毛細管現象により採取し、500Gで10分間遠心分離操作を実施した。10秒静置後血漿回収部を血漿分離回収デバイスから取り外したところ血漿回収部に血漿が透明な液体として採取された。採取された血漿の体積を測定したところ1.0μLであった。
(Example 2)
As the first base material 1, polypropylene (PP) was used to produce a device shape as shown in FIG. 1 by cutting. The blood cell component separation part 3 was formed into a tubular shape having a cross section of 1.0 mm square and a height of 3 mm. A glass tube (glass tube volume: about 3 μL) having an inner diameter of 0.69 mmφ, an outer diameter of 0.97 mm, and a length of 8 mm was used as the whole blood collection part 2 and fixed to the base material 1 with an adhesive. As the plasma collection unit 4, a second base material 5 made of polystyrene (PS) is cut into a flow path (flow path volume: about 1.0 μL) having a width of 0.5 mm, a depth of 0.5 mm, and a length of 4 mm. The base material was processed so that the tip of the flow path of the plasma recovery unit 4 was positioned at a position where the tip of the blood cell component separation unit 3 entered the blood cell component separation unit 1.8 mm long. A hydrophilic polymer (MPC polymer, manufactured by Nippon Oil & Fats Co., Ltd.) containing a polymer having a phosphorylcholine group as a component is introduced into the processed plasma recovery unit 4 into a microchannel, washed with ethanol, and centrifuged to dry the surface of the channel. A functional polymer was applied. The MPC polymer was similarly applied to another polystyrene (PS) substrate, and the contact angle with water was measured to be 55 °.
Using a painless needle from the fingertip, whole blood was collected in the whole blood collection part by capillary action, and centrifuged at 500 G for 10 minutes. After standing for 10 seconds, the plasma recovery part was removed from the plasma separation and recovery device, and plasma was collected as a transparent liquid in the plasma recovery part. The volume of the collected plasma was measured and found to be 1.0 μL.

(実施例3)
第1の母材1として、ポリプロピレン(PP)を使用し成形により図1のようなデバイス形状を作製した。血球成分分離部3を断面1.0mm角で7mm高さの管状形状とした。全血採取部2として内径1.0mmφ、外径1.4mm、長さ6mmのガラス管(ガラス管容積:約5μL)を使用し母材1に接着剤により固定した。血漿回収部4としてポリカーボネート(PC)を材料とする第2の母材に幅0.5mm、深さ0.5mm、長さ6mmの流路(流路容積:約1.5μL)を切削加工で加工し、血漿回収部4の流路の先端が血球成分分離部3の入口から1.5mm長さ血球成分分離部へ入った位置となるように母材を加工した。加工した血漿回収部4に酸素プラズマ処理を実施した。プラズマ処理の装置としてブランソン製プラズマ照射機(IPC7150−12436ST)を使用し、プラズマ処理条件として電力700W、酸素流量300sccm、プラズマ照射時間は10分を採用した。別のポリカーボネート(PC)基板に同様の酸素プラズマ処理を実施し水との接触角を測定したところ45°であった。血球成分の中間に層を成すゲル状物質(日本ペイント株式会社製、PS Gel No460)を2μL血液成分分離部に注入した。
指先から無痛針を使用し全血採取部に全血を毛細管現象により採取し、2000Gで60秒間遠心分離操作を実施した。10秒静置後血漿回収部を血漿分離回収デバイスから取り外したところ血漿回収部に血漿が透明な液体として採取された。採取された血漿の体積を測定したところ1.5μLであった。
(Example 3)
As the first base material 1, polypropylene (PP) was used to produce a device shape as shown in FIG. The blood cell component separation part 3 was formed into a tubular shape having a cross section of 1.0 mm square and a height of 7 mm. A glass tube (glass tube volume: about 5 μL) having an inner diameter of 1.0 mmφ, an outer diameter of 1.4 mm, and a length of 6 mm was used as the whole blood collection part 2 and fixed to the base material 1 with an adhesive. A flow path (flow path volume: about 1.5 μL) having a width of 0.5 mm, a depth of 0.5 mm, and a length of 6 mm is cut into a second base material made of polycarbonate (PC) as the plasma collection unit 4. The base material was processed so that the front end of the flow path of the plasma collection unit 4 was positioned 1.5 mm long from the inlet of the blood cell component separation unit 3 into the blood cell component separation unit. The processed plasma collection unit 4 was subjected to oxygen plasma treatment. A plasma irradiation apparatus (IPC7150-12436ST) manufactured by Branson was used as the plasma processing apparatus, and the power was 700 W, the oxygen flow rate was 300 sccm, and the plasma irradiation time was 10 minutes as the plasma processing conditions. The same oxygen plasma treatment was performed on another polycarbonate (PC) substrate, and the contact angle with water was measured to be 45 °. A gel substance (PS Gel No. 460, manufactured by Nippon Paint Co., Ltd.) that forms a layer in the middle of the blood cell component was injected into the 2 μL blood component separator.
Using a painless needle from the fingertip, whole blood was collected into the whole blood collection part by capillary action, and centrifuged at 2000 G for 60 seconds. After standing for 10 seconds, the plasma recovery part was removed from the plasma separation and recovery device, and plasma was collected as a transparent liquid in the plasma recovery part. The volume of the collected plasma was measured and found to be 1.5 μL.

(比較例1)
実施例1と比較し、全血採血部2の材質をガラス管からフッ素チューブへと変更した以外は実施例1と同様の方法で血液分離回収デバイスを作製した。指先から無痛針を使用し全血採取部に全血を毛細管現象により採取しようとしたが毛細管現象で全血を採取できなかったため、全血分離回収デバイスとして機能しなかった。
(Comparative Example 1)
Compared with Example 1, a blood separation / recovery device was produced in the same manner as in Example 1 except that the material of the whole blood collection part 2 was changed from a glass tube to a fluorine tube. An attempt was made to collect whole blood in the whole blood collection part using a painless needle from the fingertip by capillary action. However, since whole blood could not be collected by capillary action, it did not function as a whole blood separation and collection device.

(比較例2)
実施例1と比較し、第1の母材と第2の母材が一体型となり分離できない血液分離デバイスを作製した以外は実施例1と同様の方法で血液分離回収デバイスを作製した。指先から無痛針を使用し全血採取部に全血を毛細管現象により採取し、2000Gで30秒間遠心分離操作を実施した。5秒静置後血漿回収部から血漿を回収するために、シリンジを用いて2μLを血漿回収部から吸い上げたが血球成分が混じり血漿が回収できなかった。
(Comparative Example 2)
Compared with Example 1, a blood separation and recovery device was produced in the same manner as in Example 1 except that a blood separation device in which the first base material and the second base material were integrated and could not be separated was produced. Using a painless needle from the fingertip, whole blood was collected by capillary action at a whole blood collection part, and centrifuged at 2000 G for 30 seconds. In order to recover plasma from the plasma recovery part after standing for 5 seconds, 2 μL was sucked up from the plasma recovery part using a syringe, but blood cell components were mixed and plasma could not be recovered.

(比較例3)
実施例1と比較し、血漿回収部4の材質をガラス管からポリエーテルエーテルケトン(PEEK)からなるチューブへと変更した以外は実施例1と同様の方法で血液分離回収デバイスを作製した。
指先から無痛針を使用し全血採取部に全血を毛細管現象により採取し、2000Gで30秒間遠心分離操作を実施した。5秒静置後血漿回収部を血漿分離回収デバイスから取り外したところ血漿回収部には液体が採取されておらず、血液分離回収デバイスとして機能しなかった。
(Comparative Example 3)
Compared with Example 1, a blood separation / recovery device was produced in the same manner as in Example 1 except that the material of the plasma recovery unit 4 was changed from a glass tube to a tube made of polyetheretherketone (PEEK).
Using a painless needle from the fingertip, whole blood was collected by capillary action at a whole blood collection part, and centrifuged at 2000 G for 30 seconds. When the plasma recovery part was removed from the plasma separation / recovery device after standing for 5 seconds, no liquid was collected in the plasma recovery part, and the device did not function as a blood separation / recovery device.

本発明を用いることにより、安価で簡単な操作により微量な全血サンプルから血球を分離し血漿を定量的に回収する血液分離回収デバイスが提供され、化学、生化学、食品衛生、環境測定、医学分野などの液体サンプルを遠心分離し回収する分野に利用が可能である。より具体的には化学、生化学、医学などの分野における臨床試験、特にポイントオブケア検査または家庭などで使用する血液分離が必要とされる検査に利用される。   By using the present invention, a blood separation / recovery device that separates blood cells from a small amount of whole blood sample and recovers the plasma quantitatively by an inexpensive and simple operation is provided. Chemistry, biochemistry, food hygiene, environmental measurement, medicine It can be used in the field of collecting liquid samples such as fields by centrifugation. More specifically, it is used for clinical tests in fields such as chemistry, biochemistry, and medicine, particularly for point-of-care tests or tests that require blood separation to be used at home.

血液分離回収デバイスの一例の断面の概略平面図Schematic plan view of a cross section of an example of a blood separation and recovery device 全血を採取したときの血液分離回収デバイスの断面の概略平面図Schematic plan view of the cross section of the blood separation and recovery device when whole blood is collected 遠心分離したときの血液分離回収デバイスの断面の概略平面図Schematic plan view of the cross section of the blood separation and recovery device when centrifuged 遠心分離後に血漿回収部を取り外したときの全血採取部及び血球成分分離部の断面の概略平面図Schematic plan view of the cross section of the whole blood collection part and blood cell component separation part when the plasma collection part is removed after centrifugation 遠心分離後に血漿回収部を取り外したときの血漿回収部の断面の概略平面図Schematic plan view of the cross section of the plasma recovery part when the plasma recovery part is removed after centrifugation

符号の説明Explanation of symbols

1 血液分離回収デバイス本体の第1の母材
2 全血採取部
3 血球成分分離部
4 血漿回収部
5 血液分離回収デバイス血漿回収部の第2の母材
6 全血採取部に採取された全血サンプル
7 遠心分離された血漿
8 血漿と血球成分の中間に層を成すゲル状物質
9 遠心分離された血球成分
10 血漿回収部に回収されなかった余剰の血漿
11 血漿回収部に回収された血漿
1 First base material of blood separation / recovery device body
2 Whole blood collection unit 3 Blood cell component separation unit 4 Plasma collection unit 5 Second base material 6 of blood separation and collection device plasma collection unit Whole blood sample collected in whole blood collection unit 7 Centrifugated plasma 8 Plasma and blood cells Gel-like substance stratified in the middle of components 9 Centrifugated blood cell component 10 Excess plasma not recovered in plasma recovery unit 11 Plasma recovered in plasma recovery unit

Claims (7)

遠心分離操作により全血を遠心分離し血漿を回収する際に用いる血液分離回収デバイスであって、第1の母材及び第2の母材から構成され、第1の母材に全血採取部及び血球成分分離部が連通されて形成され、第2の母材に血漿回収部が形成され、前記全血採取部が毛細管現象により全血を採取可能であり、前記血漿回収部が毛細管現象により前記血球成分分離部の血漿を回収可能であり、第1の母材と第2の母材が着脱可能であることを特徴とする血液分離回収デバイス。 A blood separation / recovery device used for centrifuging whole blood by a centrifugal separation operation and collecting plasma, comprising a first base material and a second base material, and a whole blood collecting part on the first base material And a blood cell component separation part is formed in communication, a plasma recovery part is formed on the second base material, the whole blood collection part can collect whole blood by capillary action, and the plasma recovery part is obtained by capillary action A blood separation / recovery device characterized in that the plasma of the blood cell component separation part can be collected, and the first base material and the second base material are detachable. 前記全血採取部及び前記血漿回収部が管状形状であり、断面積が0.01〜1.2mmである請求項1記載の血液分離回収デバイス。 The whole blood collecting section and the plasma collection portion is a tubular shape, blood separation and recovery device according to claim 1, wherein the cross-sectional area is 0.01~1.2mm 2. 前記全血採取部、前記血球成分分離部、及び前記血漿回収部が高分子又はガラスからなる請求項1又は2記載の血液分離回収デバイス。 The blood separation / collection device according to claim 1 or 2, wherein the whole blood collection unit, the blood cell component separation unit, and the plasma collection unit are made of a polymer or glass. 前記血球成分分離部にゲル状物質が具備されている請求項1〜3いずれか記載の血液分離回収デバイス。 The blood separation / recovery device according to any one of claims 1 to 3, wherein the blood cell component separation part comprises a gel substance. 前記血液採取部及び前記血漿回収部の内表面の水に対する接触角が60°以下である請求項1〜4いずれか記載の血液分離回収デバイス。 The blood separation and collection device according to any one of claims 1 to 4, wherein a contact angle with respect to water of inner surfaces of the blood collection unit and the plasma collection unit is 60 ° or less. 前記血液採取部及び前記血漿回収部の内表面の水に対する接触角が60°以下にするための処理方法が、プラズマ処理、コロナ処理、ガンマ線照射処理、又は親水性ポリマー処理のいずれかである請求項5記載の血液分離回収デバイス。 The treatment method for setting the contact angle of water on the inner surfaces of the blood collection part and the plasma recovery part to 60 ° or less is any of plasma treatment, corona treatment, gamma irradiation treatment, or hydrophilic polymer treatment. Item 6. The blood separation and recovery device according to Item 5. 前記親水性ポリマー処理方法が、ポリエチレングリコール(PEG)、エバール(EVOH)、ポバール(PVOH)、又はホスホリルコリン基を有するポリマーを成分とする親水性ポリマーを表面コート処理することである請求項6記載の血液分離回収デバイス。 7. The hydrophilic polymer treatment method according to claim 6, wherein the hydrophilic polymer treatment is a surface-treatment of a hydrophilic polymer containing a polymer having polyethylene glycol (PEG), eval (EVOH), poval (PVOH), or phosphorylcholine group as a component. Blood separation and recovery device.
JP2007167167A 2007-06-26 2007-06-26 Blood separation and recovery device Expired - Fee Related JP4752815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167167A JP4752815B2 (en) 2007-06-26 2007-06-26 Blood separation and recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167167A JP4752815B2 (en) 2007-06-26 2007-06-26 Blood separation and recovery device

Publications (2)

Publication Number Publication Date
JP2009008401A true JP2009008401A (en) 2009-01-15
JP4752815B2 JP4752815B2 (en) 2011-08-17

Family

ID=40323642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167167A Expired - Fee Related JP4752815B2 (en) 2007-06-26 2007-06-26 Blood separation and recovery device

Country Status (1)

Country Link
JP (1) JP4752815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504755A (en) * 2009-10-28 2013-02-07 グロテック シーオー.,エル ティー ディー. Centrifugal kit and centrifugal method using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350432A (en) * 2001-05-25 2002-12-04 Mitsubishi Pencil Co Ltd Blood gathering capillary and gathering method of examination blood
JP2005265685A (en) * 2004-03-19 2005-09-29 Arkray Inc Plasma component analyzing device
JP2006068384A (en) * 2004-09-03 2006-03-16 Advance Co Ltd Body fluid transfer implement, and body fluid inspecting system using the same
JP2006119127A (en) * 2004-09-27 2006-05-11 Citizen Watch Co Ltd Biosensor
JP2007114162A (en) * 2005-10-24 2007-05-10 Matsushita Electric Ind Co Ltd Assay method, sensor device for operating it, and measurement device for sensor device
JP2009503542A (en) * 2005-08-04 2009-01-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method and apparatus for collecting and diluting liquid samples

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350432A (en) * 2001-05-25 2002-12-04 Mitsubishi Pencil Co Ltd Blood gathering capillary and gathering method of examination blood
JP2005265685A (en) * 2004-03-19 2005-09-29 Arkray Inc Plasma component analyzing device
JP2006068384A (en) * 2004-09-03 2006-03-16 Advance Co Ltd Body fluid transfer implement, and body fluid inspecting system using the same
JP2006119127A (en) * 2004-09-27 2006-05-11 Citizen Watch Co Ltd Biosensor
JP2009503542A (en) * 2005-08-04 2009-01-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method and apparatus for collecting and diluting liquid samples
JP2007114162A (en) * 2005-10-24 2007-05-10 Matsushita Electric Ind Co Ltd Assay method, sensor device for operating it, and measurement device for sensor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504755A (en) * 2009-10-28 2013-02-07 グロテック シーオー.,エル ティー ディー. Centrifugal kit and centrifugal method using the same

Also Published As

Publication number Publication date
JP4752815B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4844318B2 (en) Microchannel device
JP6737835B2 (en) Biological fluid collection device and biological fluid collection inspection system
US6319719B1 (en) Capillary hematocrit separation structure and method
US20060084174A1 (en) Blood analyzer and method of separating plasma
JP6267320B2 (en) Biological fluid collection device and biological fluid separation and inspection system
JP4587298B2 (en) Method and apparatus for separating particles in a microfluidic device
JP5608943B2 (en) Plasma separation apparatus and method
JP6193474B2 (en) Biological fluid collection and transfer device and biological fluid separation and inspection system
US20110124984A1 (en) Device for Aliquoting and Filtering Blood
JP6101400B2 (en) Blood sampling transfer device and blood separation and test execution system
CN103285949A (en) Micro-fluidic serum extracting chip
JP6597801B2 (en) Sampling device, holder for the sampling device, and sample pretreatment method using the sampling device
JP5385149B2 (en) Fluid ion sensor and manufacturing method thereof
JP2007298502A (en) Filter for separating blood cells
JP6240308B2 (en) Biological fluid separation device and biological fluid separation and inspection system
CA2909231C (en) Biological fluid collection device and biological fluid separation system
JP4752815B2 (en) Blood separation and recovery device
KR20080051011A (en) Micro filtration device for the separation of blood plasma
EP2721407B1 (en) Plasma or serum separator
JP2009072083A (en) Cell separator
WO2016083550A1 (en) Compact glass-based fluid analysis device and method to fabricate
JP2006052950A (en) Blood analyzer and blood analyzing method
Choi et al. A disposable plastic biochip cartridge with on-chip power sources for blood analysis
CN114018835B (en) Micro whole blood pretreatment and automatic quantitative plasma distribution device and analysis method
JP2005241617A (en) Blood analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4752815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees