JP2009008292A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2009008292A
JP2009008292A JP2007168358A JP2007168358A JP2009008292A JP 2009008292 A JP2009008292 A JP 2009008292A JP 2007168358 A JP2007168358 A JP 2007168358A JP 2007168358 A JP2007168358 A JP 2007168358A JP 2009008292 A JP2009008292 A JP 2009008292A
Authority
JP
Japan
Prior art keywords
refrigerator
temperature
chamber
pressure
decompression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007168358A
Other languages
Japanese (ja)
Inventor
Yuko Akagi
祐子 赤木
Atsuko Funayama
敦子 船山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007168358A priority Critical patent/JP2009008292A/en
Publication of JP2009008292A publication Critical patent/JP2009008292A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of suppressing oxidation by properly adjusting vacuum in storing food in a raw state by vacuuming at a refrigerating temperature zone to prevent degradation, that is, capable of retaining color and freshness by suppressing oxidation of food. <P>SOLUTION: In this refrigerator having a pressure reducing chamber defined in a refrigerating compartment, a vacuum pump for reducing a pressure in the pressure reducing chamber, and a control means for controlling the vacuum pump, the pressure inside of the pressure reducing chamber is controlled to be 0.4 atmosphere or more and less than atmospheric pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は冷蔵庫に関する。   The present invention relates to a refrigerator.

近年、社会環境の変化により食品を保存する日数が増えてきており、食品を無駄なく新鮮に保存し、生鮮食品の貯蔵中の品質向上を行うことが重要となる。   In recent years, due to changes in the social environment, the number of days for storing food is increasing, and it is important to store food freshly without waste and improve the quality of fresh food during storage.

一般に食品は貯蔵中に、酵素作用による変化,微生物による変化,物理的変化,化学変化などによる品質低下が起こる。これらの変化を遅らせ、食品の品質を維持することが重要となる。   In general, during food storage, quality deterioration occurs due to changes due to enzyme action, changes due to microorganisms, physical changes, chemical changes, and the like. It is important to delay these changes and maintain food quality.

例えば、酵素作用による変化としては、酸化還元酵素による褐色化,加水分解酵素によるタンパク質の分解,脂質の加水分解などが挙げられる。   For example, the change by enzyme action includes browning by oxidoreductase, protein degradation by hydrolase, lipid hydrolysis, and the like.

微生物による変化として、細菌・酵母や真菌などの微生物は食品の水分活性やpHや成分と食品を取り巻く環境によってその発育が左右される。その中でも、最も大き要因は貯蔵温度である。   Microorganisms such as bacteria, yeast and fungi are influenced by the water activity of food, pH, ingredients and the environment surrounding the food. Among them, the largest factor is the storage temperature.

また、物理的変化としては、乾燥が挙げられる。一般に乾燥は、食品表面の蒸気圧と食品に接する空気の蒸気圧の差が大きく、食品に接する空気の流速が大きくなるほど乾燥が進む。食品の乾燥により、目減りだけでなく、マグロなどではメト化(肉色が褐色のメトミオグロビンになる反応)も促進される。食品の貯蔵中に発生するこれらの変化は、温度が低温になるほどより少なくなり、低温貯蔵の原理となっている。   Moreover, drying is mentioned as a physical change. In general, in drying, the difference between the vapor pressure on the surface of the food and the vapor pressure of the air in contact with the food is large, and the drying proceeds as the flow rate of the air in contact with the food increases. Drying of food not only reduces eye weight, but also promotes metrification (reaction to turn meat color brown metmyoglobin) in tuna and the like. These changes that occur during the storage of foods become less the lower the temperature, and this is the principle of cold storage.

化学変化としては、食品の酸化が挙げられる。空気中の酸素によって油脂の酸化や色素が生じ、不快なフレーバーを生じる。食品中の油脂の酸化は、一般的に油脂の酸敗や油焼けと呼ばれ、温度,水分,光線,酸素分圧によって左右される。   Chemical changes include food oxidation. Oxygen in the air causes oxidation and pigmentation of fats and oils, resulting in an unpleasant flavor. Oxidation of fats and oils in foods is generally referred to as fat and oil rancidity or oil burning, and depends on temperature, moisture, light, and oxygen partial pressure.

しかしながら、品質低下の中でも特に酸化による食品の変色は、消費者の購買意欲を著しく低下させるとともに、他の品質劣化よりも比較的早い時期に起こるので、酸化抑制が品質保持の重要課題となる。   However, discoloration of foods due to oxidation particularly among quality degradations significantly lowers consumers' willingness to purchase, and also occurs at a relatively earlier time than other quality degradations. Therefore, suppression of oxidation is an important issue for maintaining quality.

減圧装置を有する冷蔵庫の従来例としては、例えば特許文献1に示すようにチルド室または冷凍室の酸素濃度を酸素濃度2.5%〜5%濃度になるように減圧ポンプを制御し、魚等の変色を抑制する冷蔵庫が挙げられる。   As a conventional example of a refrigerator having a decompression device, for example, as shown in Patent Document 1, a decompression pump is controlled so that an oxygen concentration in a chilled room or a freezing room becomes an oxygen concentration of 2.5% to 5%. Refrigerator that suppresses discoloration is mentioned.

この装置では、真空度の高い状態のため、肉・魚の酸化を抑制し長期保存が可能となる。   In this device, since the degree of vacuum is high, oxidation of meat and fish is suppressed and long-term storage becomes possible.

特開2000−337758号公報JP 2000-337758 A

しかし、冷凍では最大氷結晶生成帯を通る際に筋肉組織内に含まれる水が氷結して、体積が増加しその結果、筋肉組織が破壊されるために、解凍の際に再度細胞に取り込まれなかった自由水がドリップとなって、流出し味を落とす結果となることが問題となる。   However, in freezing, the water contained in the muscle tissue freezes as it passes through the maximum ice crystal formation zone, and the volume increases, resulting in the destruction of the muscle tissue. The problem is that the free water that did not become a drip results in a runoff and loss of taste.

また、自由水の凍結により筋肉組織内に氷晶が多数形成され、解凍後の筋肉組織の強度が下がることで、柔らかい食感に変化してしまう問題があった。   In addition, there is a problem that a free texture is changed to a soft texture due to the formation of many ice crystals in the muscle tissue due to free water freezing and the strength of the muscle tissue after thawing is reduced.

そして、冷凍を行っているために、喫食する際には解凍を行う必要があり手間がかかるといった問題もある。   And since it is frozen, there is also a problem that it takes time and effort to defrost when eating.

また、酸素濃度が2.5% 〜5%のように気圧が低いほど、蒸発し易くなるため乾燥により食品の質や味が落ちてしまう問題もあった。   In addition, the lower the atmospheric pressure, such as the oxygen concentration of 2.5% to 5%, the easier it is to evaporate.

本発明は、上述した問題に対し、食品を生の状態保存した場合に、適正な真空度を調整することにより酸化を抑制し、劣化を抑制する冷蔵庫を提供することを目的としている。   An object of the present invention is to provide a refrigerator that suppresses deterioration and suppresses deterioration by adjusting an appropriate degree of vacuum when food is stored in a raw state with respect to the above-described problems.

本発明は、冷蔵室内に減圧室及び該減圧室内を減圧する真空ポンプ及び該真空ポンプを制御する制御手段を有する冷蔵庫であって、前記減圧室内を0.4気圧以上で大気圧未満に圧力を制御したことを特徴とする。   The present invention is a refrigerator having a decompression chamber in a refrigerator compartment, a vacuum pump for decompressing the decompression chamber, and a control means for controlling the vacuum pump, wherein the pressure in the decompression chamber is at least 0.4 atm and less than atmospheric pressure. It is controlled.

又、本発明は、冷蔵室内に減圧室及び該減圧室内を減圧する真空ポンプ及び該真空ポンプを制御する制御手段を有する冷蔵庫であって、前記減圧室内を0.5気圧から0.8気圧に圧力を制御したことを特徴とする。   The present invention is also a refrigerator having a decompression chamber in a refrigeration chamber, a vacuum pump for decompressing the decompression chamber, and a control means for controlling the vacuum pump, wherein the decompression chamber is changed from 0.5 atm to 0.8 atm. It is characterized by controlling the pressure.

又、本発明は、冷蔵室内に減圧室及び該減圧室内を減圧する真空ポンプ及び該真空ポンプを制御する制御手段を有する冷蔵庫であって、前記減圧室内を0.7気圧に圧力を制御したことを特徴とする。   Further, the present invention is a refrigerator having a decompression chamber, a vacuum pump for decompressing the decompression chamber, and a control means for controlling the vacuum pump, wherein the pressure in the decompression chamber is controlled to 0.7 atm. It is characterized by.

又、本発明は、減圧室は0℃以上の冷蔵温度帯であることを特徴とする。   Further, the present invention is characterized in that the decompression chamber is in a refrigeration temperature zone of 0 ° C. or higher.

本発明により、食品を生の状態保存した場合に、適正な真空度を調整することにより酸化を抑制し、劣化を抑制する冷蔵庫とすることができる。   According to the present invention, when the food is stored in a raw state, the refrigerator can be suppressed by suppressing oxidation by adjusting an appropriate degree of vacuum to suppress deterioration.

以下、本発明の実施例について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は冷蔵庫の要部断面説明図である。   FIG. 1 is an explanatory cross-sectional view of a main part of a refrigerator.

図1に於いて、40は冷蔵庫本体であり、この冷蔵庫本体40内には複数の区画された室が設けてあり、該室を使用頻度の多い順に、上から順に配置することにより、該冷蔵庫の使い勝手が良くなるように構成してある。   In FIG. 1, reference numeral 40 denotes a refrigerator main body, and a plurality of compartments are provided in the refrigerator main body 40, and the refrigerators are disposed in order from the top in the order of frequency of use. It is configured to improve usability.

例えば、上から順に、冷蔵室44,冷凍温度室43,野菜室45を設ける構成にしてあり、上記冷凍温度室43は、例えば、マイナス6℃〜マイナス30℃程度の冷凍温度に保持する製氷室41と冷凍室42とに区画構成してあり、上記冷蔵室44は、例えば、0℃〜10℃程度の冷蔵温度室46として使用できるように区画構成してある。   For example, a refrigerator room 44, a freezing temperature room 43, and a vegetable room 45 are provided in order from the top, and the freezing temperature room 43 is, for example, an ice making room that is maintained at a freezing temperature of about minus 6 ° C to minus 30 ° C. 41 and the freezer compartment 42 are divided and configured such that the refrigerator compartment 44 can be used as a refrigerator compartment 46 having a temperature of about 0 ° C. to 10 ° C., for example.

そして、野菜室45は野菜等の長期保存に有利なように、例えば、温度を0℃〜5℃程度、湿度を例えば70〜95%程度、に保持するよう構成してある。   And the vegetable compartment 45 is comprised so that temperature may be hold | maintained at about 0 to 5 degreeC and humidity, for example, about 70 to 95% so that it may be advantageous for long-term preservation | save of vegetables etc.

そして、野菜容器を、例えば、容器深さの比較的浅い野菜容器61と、容器深さの比較的深い野菜容器63と、前記容器61と63の中間的深さを有する野菜容器62との複数に分割して、且つ、該容器深さに応じた野菜を貯蔵できるようにする。   A plurality of vegetable containers, for example, a vegetable container 61 having a relatively shallow container depth, a vegetable container 63 having a relatively deep container depth, and a vegetable container 62 having an intermediate depth between the containers 61 and 63 are used. The vegetables according to the container depth can be stored.

51は、冷却器49を設けた冷却室50にて生成した冷気を送風循環できるように構成された送風機であり、該冷蔵庫の製造コスト低減のために、前述した冷凍温度室43および冷蔵温度室46を一個の送風機51により冷却出来るように構成してある。   51 is a blower configured to blow and circulate cold air generated in the cooling chamber 50 provided with the cooler 49, and in order to reduce the manufacturing cost of the refrigerator, the above-described freezing temperature chamber 43 and refrigeration temperature chamber 46 can be cooled by one blower 51.

48は上記冷却器49に付着した霜を除去できるように構成された除霜手段であり、47は上記冷却器49や凝縮器(図示せず)等にて冷凍サイクルを構成する圧縮機であり、67は、後述するように、該冷蔵庫の運転制御を行う制御装置である。   Reference numeral 48 denotes defrosting means configured to be able to remove frost attached to the cooler 49, and reference numeral 47 denotes a compressor constituting a refrigeration cycle by the cooler 49, a condenser (not shown), or the like. , 67 is a control device that controls the operation of the refrigerator, as will be described later.

そして、58は冷凍温度室43の庫内温度を検出できるように構成された庫内温度センサであり、該庫内温度センサ58の検出値によって圧縮機47や送風機51の運転を制御できるように構成してある。   Reference numeral 58 denotes an internal temperature sensor configured to detect the internal temperature of the freezing temperature chamber 43 so that the operation of the compressor 47 and the blower 51 can be controlled by the detection value of the internal temperature sensor 58. It is configured.

また、57は冷蔵室44内の温度を検出できるように構成された庫内温度センサであり、59は野菜室45内の温度を検出できるように構成された庫内温度センサであり、該庫内温度センサ57,59の検出値によって電動ダンパ54の開閉を制御できるように構成してある。   Reference numeral 57 denotes an internal temperature sensor configured to detect the temperature in the refrigerator compartment 44, and 59 denotes an internal temperature sensor configured to detect the temperature in the vegetable compartment 45. The opening / closing of the electric damper 54 can be controlled by the detection values of the internal temperature sensors 57 and 59.

ここで、上記構成における冷却動作について、前述した図1により説明する。   Here, the cooling operation in the above configuration will be described with reference to FIG.

先ず、冷却器49により生成された冷気は、送風機51の運転により、冷却室50から冷凍用冷気ダクト52内に送風される。そして、冷凍用冷気ダクト52内に送風された冷気の一部は、複数の吐出口42dより冷凍温度室43内に吐出され、該冷凍温度室43内を所定の温度に冷却したのち、図示しない戻り口より冷却室50に戻る。   First, the cold air generated by the cooler 49 is blown from the cooling chamber 50 into the freezing cold air duct 52 by the operation of the blower 51. A part of the cold air blown into the freezing cold air duct 52 is discharged into the freezing temperature chamber 43 from the plurality of discharge ports 42d, and after cooling the freezing temperature chamber 43 to a predetermined temperature, it is not illustrated. Return to the cooling chamber 50 from the return port.

そして、上記冷凍用冷気ダクト52内に送風された冷気の一部は、冷蔵用冷気ダクト53に分流されて、且つ、冷気通過量を制御できるように構成された電動ダンパ54に制御されて、冷蔵用冷気通路44cに送風される。   Then, a part of the cold air blown into the refrigeration cold air duct 52 is diverted to the refrigeration cold air duct 53 and controlled by the electric damper 54 configured to control the cold air passage amount, The air is blown into the cold air passage 44c for refrigeration.

そして、冷蔵用冷気通路44c内に送風された冷気の一部は、複数の吐出口44dより冷蔵室44内に吐出され、該冷蔵室44内を所定の温度に冷却したのち、冷凍温度室43と冷蔵室44とを区画する仕切部材55に設けられた吸込口44e、図示しない戻り口を経て冷却室50に戻る。   A part of the cool air blown into the refrigeration cool air passage 44c is discharged into the refrigerating chamber 44 from the plurality of discharge ports 44d, and after cooling the refrigerating chamber 44 to a predetermined temperature, the freezing temperature chamber 43 Return to the cooling chamber 50 through a suction port 44e provided in a partition member 55 that divides the storage chamber 44 and the refrigerator compartment 44, and a return port (not shown).

そして、上記冷蔵用冷気通路44c内に送風された冷気の一部は、野菜用冷気通路45cに分流され、複数の吐出口45dより野菜室45内に吐出され、該野菜室45内を所定の温度に冷却したのち、冷凍温度室43と野菜室45とを区画する仕切部材56に設けられた吸込口45f,戻り口45gを経て冷却室50に戻る。   A part of the cold air blown into the chilling cold passage 44c is diverted to the vegetable cold passage 45c and discharged into the vegetable chamber 45 from the plurality of discharge ports 45d. After cooling to temperature, it returns to the cooling chamber 50 through the suction port 45f and the return port 45g provided in the partition member 56 which divides the freezing temperature chamber 43 and the vegetable chamber 45.

そして、上記冷却動作を制御する一例としては、例えば、冷凍温度室43内の温度を検出できるように構成された庫内温度センサ58の検出値によって、制御装置67が、圧縮機47と送風機51との運転制御を行うことにより、該冷凍温度室43内の温度を所定の温度に冷却するように構成してある。   As an example of controlling the cooling operation, for example, the control device 67 uses the detection value of the internal temperature sensor 58 configured to detect the temperature in the freezing temperature chamber 43 so that the compressor 47 and the blower 51 are controlled. By controlling the operation, the temperature in the freezing temperature chamber 43 is cooled to a predetermined temperature.

また、例えば、冷蔵温度室46内の温度を検出できるように構成された庫内温度センサ57,59の検出値によって、制御装置67が、前記電動ダンパ54の開閉を制御して、冷気通過量を制御することにより、冷蔵温度室46内の温度を所定の温度に冷却するように構成してある。   Further, for example, the control device 67 controls the opening and closing of the electric damper 54 based on the detection values of the internal temperature sensors 57 and 59 configured to detect the temperature in the refrigeration temperature chamber 46, and the amount of cool air passing therethrough is controlled. By controlling the above, the temperature in the refrigeration temperature chamber 46 is cooled to a predetermined temperature.

また、野菜室45は野菜等の長期保存に有利なように、庫内湿度を例えば70〜95%程度の多湿状態に保持できるように、例えば、上記冷気を、野菜容器61,62,63等の外側に強制循環するように、且つ、仕切部材64,65,66等により、前記野菜容器61,62,63内部の多湿度の調整ができるように構成してある。   In addition, the vegetable room 45 is advantageous for long-term storage of vegetables and the like, so that the inside humidity can be maintained in a high humidity state of, for example, about 70 to 95%, for example, the cold air is used for vegetable containers 61, 62, 63, etc. The inside of the vegetable containers 61, 62, 63 can be adjusted by the partition members 64, 65, 66 and the like so as to forcibly circulate outside.

次に減圧室70について説明する。減圧室70は、密閉容器で構成されており、食品の出し入れが可能な野菜容器71のドアにより開閉可能に構成されている。また、図示しない真空ポンプにより減圧室内を減圧できるように構成されている。そして、圧力センサによって所定の圧力に減圧できるように冷蔵庫の制御手段(図示せず)により制御されている。   Next, the decompression chamber 70 will be described. The decompression chamber 70 is composed of a hermetically sealed container, and is configured to be opened and closed by a door of a vegetable container 71 capable of taking in and out food. Further, the decompression chamber can be decompressed by a vacuum pump (not shown). And it is controlled by the control means (not shown) of the refrigerator so that it can be reduced to a predetermined pressure by the pressure sensor.

次に、図2から図4について説明する。図2は、色の劣化の代表例としてマグロや牛肉等で見られる、ミオグロビンの変化と生鮮肉の変色について示したものである。生鮮肉の色は筋肉色素ミオグロビンの由来するものであり、Mbのヘム鉄に酸素などが結合したり、また鉄が二価あるいは、三価に変化するので、種々の色調を呈する誘導形態が認められる。   Next, FIGS. 2 to 4 will be described. FIG. 2 shows changes in myoglobin and discoloration of fresh meat that are seen in tuna and beef as typical examples of color degradation. The color of fresh meat is derived from the muscle pigment myoglobin. Oxygen is bound to the Mb heme iron, and the iron changes to bivalent or trivalent, so that induced forms exhibiting various colors are recognized. It is done.

マグロの主な喫食形態は刺身等の生であり、その鮮度は色と食感とドリップによるところが大きい。これらを満たすためには、冷凍せずにメト化を防ぎ、生で美味しく保存することが必要となる。   The main eating form of tuna is raw, such as sashimi, and its freshness depends largely on color, texture and drip. In order to satisfy these requirements, it is necessary to prevent the formation of meth- ods without freezing and store them raw and delicious.

そこで、真空保存したマグロを鮮度の評価として一般的に用いられている鮮度指標K値を用いて・メト化と共に評価することにした。   Therefore, it was decided to evaluate tuna stored in a vacuum using a freshness index K value that is generally used for evaluation of freshness, together with methodization.

魚の鮮度指標として死後硬直生菌数、K値などが知られているが、この中で初期鮮度(生きの良さ)と良い相関を示すのが魚類鮮度恒数K値である。   As the fish freshness index, the post-mortem sclerotia count, K value, and the like are known. Among them, the fish freshness constant K value shows a good correlation with the initial freshness (goodness of life).

鮮魚の品質として重要な鮮度は細菌の増殖が始まる以前の自己消化の段階で低下する。K値はこの生鮮度すなわち酵素化学的な鮮度指標である。   Freshness, which is important for the quality of fresh fish, decreases at the stage of autolysis before the start of bacterial growth. The K value is an index of freshness, that is, enzymatic chemistry.

死後、筋肉中のアデノシン三リン酸(ATP)は酵素的に分解されてアデノシン二リン酸(ADP)→アデノシン一リン酸(AMP)→イノシン酸(IMP)→イノシン(HxR),ヒボキサンチン(Hx)の順に変化していく。   After death, adenosine triphosphate (ATP) in the muscle is enzymatically degraded and adenosine diphosphate (ADP) → adenosine monophosphate (AMP) → inosinic acid (IMP) → inosine (HxR), hiboxanthin (Hx) It will change in the order.

ATP〜IMPが魚肉中の主成分である時は生鮮度は良好であるが、鮮度が低下するに従いHxR(ヌクレオチド)やHx(プリン誘導体)が増加する。また動物は死後しばらくの間はATP含有量は維持されるがATP含有量が著しく減少すると筋肉は硬直するようになる。魚種によってHxRが生成されるもの、Hxが生成されるもの、その両方が生成されるものとそれぞれに分けられるが、いずれにしてもATP関連物質成分中に占めるHxRとHxの百分率が生鮮度の指標となる。   When ATP to IMP is the main component in fish meat, the freshness is good, but HxR (nucleotide) and Hx (purine derivatives) increase as the freshness decreases. In addition, the ATP content is maintained for a while after death, but when the ATP content is significantly reduced, the muscle becomes stiff. Depending on the fish species, HxR is generated, Hx is generated, or both are generated, but in any case, the percentage of HxR and Hx in the ATP-related substance component is freshness. It becomes an index.

図3は冷凍保存で12日間存した牛肉の真空度とメトミオグロビン生成率の関係である。横軸は気圧を示し、縦軸はメト化率(色素中に占めるメトミオグロビンの割合)を表示してある。図3に示すように、メト化は真空度が0〜0.2気圧の範囲で促進されることがわかっている。しかし、この図の場合は、保存温度が冷凍温度で低めであり、メト化は温度依存性が高いため、生で食べることができる冷蔵温度ではメト化が進行し易くなると考えられる。   FIG. 3 shows the relationship between the degree of vacuum of beef preserved for 12 days in frozen storage and the production rate of metmyoglobin. The abscissa indicates the atmospheric pressure, and the ordinate indicates the metation rate (ratio of metmyoglobin in the pigment). As shown in FIG. 3, it is known that the mettolation is promoted when the degree of vacuum is in the range of 0 to 0.2 atm. However, in the case of this figure, since the storage temperature is lower than the freezing temperature, and the methation is highly temperature-dependent, it is considered that the methanolysis is likely to proceed at a refrigerated temperature that can be eaten raw.

そこで、マグロを温度3.8度・湿度40%で三日間真空保存し鮮度を評価した結果を図4,図5に示す。尚、冷蔵温度帯(0℃以上)であれば同様の評価結果が得られる。評価項目には、マグロを貯蔵した場合の指標として、鮮度を測定するためにK値、分光分析計で保存中における食肉の鮮度をよく示す赤色度(a*)を用いて測定した。   The results of evaluating the freshness of tuna stored in a vacuum for 3 days at a temperature of 3.8 ° C. and a humidity of 40% are shown in FIGS. In addition, the same evaluation result will be obtained if it is a refrigeration temperature range (0 degreeC or more). The evaluation items were measured using a K value for measuring freshness and a redness (a *) that well indicates the freshness of meat during storage with a spectroanalyzer as an index when tuna was stored.

K値の判定には、高速液体クロマトグラフィー等でATP関連物質を定量しなければならず、整備された実験室でなければ測定できない不都合があったが、最近バイオセンサ,試験紙等が開発され、ATP関連物質の定量が簡便になっている。そこでK値の判定には、酵素反応試験紙によって魚介類の鮮度を測ることができる、試験紙を用いて行った。この試験紙は、動物の筋肉中に存在するATPの時間による分解程度(K値)を、二種類(HxR+Hx)・(AMP+IMP)の酵素発色反応を利用し、それを色表と照らし合わせて測定することができる。   The determination of the K value had to be quantified for ATP-related substances by high-performance liquid chromatography, etc., which had the inconvenience that it could only be measured by an established laboratory, but recently biosensors, test papers, etc. have been developed. Quantification of ATP-related substances is simple. Therefore, the determination of the K value was carried out using a test paper that can measure the freshness of seafood using an enzyme reaction test paper. This test paper measures the degree of degradation (K value) of ATP present in the muscles of animals with time by using two types of enzyme color reaction (HxR + Hx) and (AMP + IMP) and comparing them with a color chart. can do.

また色の測定はメト化の目安として、目視による官能評価ではバラツキがあるので、測色計を用いてマグロ表面の色を計測し、メト化の度合いを定量的に評価した。実際に使用したものは、コニカミノルタ製のCR−13という測色計である。   In addition, the measurement of color is a measure of methanation, and there is variation in the sensory evaluation by visual observation. Therefore, the color of the tuna surface was measured using a colorimeter to quantitatively evaluate the degree of methanization. What was actually used was a colorimeter called CR-13 manufactured by Konica Minolta.

表色系は、物体の色の表現に広く用いられているL*a*b*表色系を用いた。この表色系においてa*は赤方向の色を示し、数値が高くなる程鮮やかであることを表す。そこで、保存前の赤色度a*と真空保存後も赤色度a*を計測し、その変化率を赤色の残存率とし測定した。   As the color system, the L * a * b * color system widely used for expressing the color of an object was used. In this color system, a * indicates the color in the red direction, and the higher the value, the brighter the color. Therefore, the redness a * before storage and the redness a * after vacuum storage were measured, and the change rate was measured as the red residual rate.

図4は、マグロを真空保存した後の、鮮度をK値を用いて測定したものである。横軸は気圧を示し、縦軸はK値を表示してある。測定結果から、生の可食限界であるK値20%を境界線としてそれよりより低い値を示した気圧の範囲は0.4気圧から大気圧未満となった。この結果から、微小な真空度の差によって鮮度に影響が出ていることがわかる。そこで、鮮度の観点で有効な真空度は0.4気圧から大気圧未満程度とした。   FIG. 4 shows the freshness measured using a K value after tuna is stored in a vacuum. The horizontal axis indicates the atmospheric pressure, and the vertical axis indicates the K value. From the measurement results, the range of atmospheric pressure showing a lower value than the raw edible limit K value of 20% was 0.4 atmospheric pressure to less than atmospheric pressure. From this result, it can be seen that the freshness is affected by a small difference in the degree of vacuum. Therefore, the degree of vacuum effective from the viewpoint of freshness is set to about 0.4 to less than atmospheric pressure.

図5はマグロの真空保存前後での表面の赤色の変化から、メト化の度合いを測定したものである。横軸は気圧を示し、縦軸は赤色の残存率を表示してある。見た目で新鮮だと分かる赤色残存率は0.8以上である。   FIG. 5 shows the degree of methalation measured from the change in red surface of the tuna before and after vacuum storage. The horizontal axis indicates the atmospheric pressure, and the vertical axis indicates the red remaining rate. The red color remaining ratio, which is apparently fresh, is 0.8 or more.

赤色残存率から判断すると、図3で示すメト化の進行よりも、温度が高い状態で保存をしているため、0.2〜0.4気圧においてメト化が進行し、変色が促進される傾向が見られた。   Judging from the red residual rate, since the temperature is higher than that of the mettolation shown in FIG. 3, the metotization proceeds at 0.2 to 0.4 atm and the discoloration is promoted. There was a trend.

このことから、凍らせずに魚等を保存する際の変色抑制には、0.5気圧〜1.0気圧が有効であると言える。   From this, it can be said that 0.5 atmosphere to 1.0 atmosphere is effective for suppressing discoloration when preserving fish without freezing.

0.5気圧からは大気圧とほぼ同じ位赤色を保持することが可能であるとわかった。よって、K値の有効範囲(0.4気圧〜大気圧未満)と色の有効範囲(0.5気圧〜1.0気圧)から、0.5気圧から大気圧未満に真空度を制御することで、鮮度・色共に満足させることができる。さらに好適には、K値は15付近0.5〜0.8気圧にすることが良く、変色も少ない。さらに最適には0.7気圧にすることでK値も最大となり変色も少なく出来る。   It turned out that it is possible to keep red as much as atmospheric pressure from 0.5 atmospheric pressure. Therefore, the degree of vacuum is controlled from 0.5 atm to less than atmospheric pressure from the effective range of K value (0.4 atm to less than atmospheric pressure) and the effective range of color (0.5 to 1.0 atm). And can satisfy both freshness and color. More preferably, the K value should be in the vicinity of 15 to 0.5 to 0.8 atm, and discoloration is small. Furthermore, the K value is maximized and discoloration can be reduced by setting the pressure to 0.7 atm.

この際、保存は冷凍温度帯でなく冷蔵温度帯のため、解凍の手間が省けると同時に、解凍時に生じるドリップも抑えることが可能となる。   At this time, since the storage is not a freezing temperature zone but a refrigeration temperature zone, the labor of thawing can be saved and drip generated during thawing can be suppressed.

なお、K値は生化学反応のため、温度依存性が高いので、温度を低く制御するとより鮮度を保つことができる。   Since the K value is a biochemical reaction and has high temperature dependence, freshness can be maintained by controlling the temperature low.

近年冷蔵庫に化粧品等を保存する人が増えてきているが、低温により雑菌等の影響は、受けにくくなるが、酸化による影響は避けることができなかった。本発明の真空容器では、酸化を抑制することにより、防腐剤・抗酸化成分が入っていない化粧品等の長期保存にも活用することができる。
In recent years, an increasing number of people store cosmetics and the like in refrigerators, but the effects of bacteria and the like are less affected by low temperatures, but the effects of oxidation cannot be avoided. In the vacuum container of the present invention, by suppressing oxidation, it can be used for long-term storage of cosmetics and the like that do not contain preservatives and antioxidant components.

冷蔵室内に減圧室を備えた冷蔵庫の側面断面図である。It is side surface sectional drawing of the refrigerator provided with the decompression chamber in the refrigerator compartment. ミオグロビンの変化と生鮮肉の変色の関係を表す特性図である。It is a characteristic view showing the relationship between the change of myoglobin and discoloration of fresh meat. 冷凍食品における真空度とメト化反応の関係を表す特性図である。It is a characteristic view showing the relationship between the degree of vacuum and the methaization reaction in frozen food. 冷蔵食品における真空度とK値の関係を表す特性図である。It is a characteristic view showing the relationship between the vacuum degree and K value in refrigerated food. 冷蔵食品における真空度と色変化の関係を表す特性図である。It is a characteristic view showing the relationship between the degree of vacuum and color change in refrigerated food.

符号の説明Explanation of symbols

40 冷蔵庫本体
41 製氷室
42 冷凍室
42d 吐出口
43 冷凍温度室
44 冷蔵室
44c 冷蔵用冷気通路
44d,45d 吐出口
44e 吸込口
45 野菜室
45a 野菜室扉
45c 野菜用冷気通路
45f 吸込口
45g 戻り口
46 冷蔵温度室
47 圧縮機
48 除霜手段
49 冷却器
50 冷却室
51 送風機
52 冷凍用冷気ダクト
53 冷蔵用冷気ダクト
54 電動ダンパ
55,56,64,65,66 仕切部材
57,58,59 庫内温度センサ
61,62,63,71,72 野菜容器
40 Refrigerator body 41 Ice making room
42 Freezer compartment 42d Discharge port
43 Freezing temperature chamber 44 Refrigerated chamber
44c Cooling air passages 44d, 45d Discharge port 44e Suction port 45 Vegetable room 45a Vegetable room door 45c Cold air passage for vegetables 45f Suction port 45g Return port 46 Refrigeration temperature chamber 47 Compressor 48 Defrosting means 49 Cooler
50 Cooling chamber 51 Blower
52 Cold air duct for refrigeration 53 Cold air duct for refrigeration 54 Electric dampers 55, 56, 64, 65, 66 Partition members 57, 58, 59 Internal temperature sensors 61, 62, 63, 71, 72 Vegetable containers

Claims (4)

冷蔵室内に減圧室及び該減圧室内を減圧する真空ポンプ及び該真空ポンプを制御する制御手段を有する冷蔵庫であって、
前記減圧室内を0.4 気圧以上で大気圧未満に圧力を制御したことを特徴とする冷蔵庫。
A refrigerator having a decompression chamber in a refrigerator compartment, a vacuum pump for decompressing the decompression chamber, and a control means for controlling the vacuum pump,
The refrigerator characterized by controlling the pressure in the decompression chamber to 0.4 atmospheric pressure or more and less than atmospheric pressure.
冷蔵室内に減圧室及び該減圧室内を減圧する真空ポンプ及び該真空ポンプを制御する制御手段を有する冷蔵庫であって、
前記減圧室内を0.5気圧から0.8気圧に圧力を制御したことを特徴とする冷蔵庫。
A refrigerator having a decompression chamber in a refrigerator compartment, a vacuum pump for decompressing the decompression chamber, and a control means for controlling the vacuum pump,
The refrigerator characterized by controlling the pressure in the decompression chamber from 0.5 atm to 0.8 atm.
冷蔵室内に減圧室及び該減圧室内を減圧する真空ポンプ及び該真空ポンプを制御する制御手段を有する冷蔵庫であって、
前記減圧室内を0.7気圧に圧力を制御したことを特徴とする冷蔵庫。
A refrigerator having a decompression chamber in a refrigerator compartment, a vacuum pump for decompressing the decompression chamber, and a control means for controlling the vacuum pump,
A refrigerator characterized in that the pressure in the decompression chamber is controlled to 0.7 atm.
請求項1〜3のいずれか1項において、前記減圧室は0℃以上の冷蔵温度帯であることを特徴とする冷蔵庫。   The refrigerator according to any one of claims 1 to 3, wherein the decompression chamber is a refrigerated temperature zone of 0 ° C or higher.
JP2007168358A 2007-06-27 2007-06-27 Refrigerator Pending JP2009008292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168358A JP2009008292A (en) 2007-06-27 2007-06-27 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168358A JP2009008292A (en) 2007-06-27 2007-06-27 Refrigerator

Publications (1)

Publication Number Publication Date
JP2009008292A true JP2009008292A (en) 2009-01-15

Family

ID=40323543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168358A Pending JP2009008292A (en) 2007-06-27 2007-06-27 Refrigerator

Country Status (1)

Country Link
JP (1) JP2009008292A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024442A (en) * 2011-07-19 2013-02-04 Hitachi Appliances Inc Refrigerator
KR101332273B1 (en) 2011-06-20 2013-11-22 히타치 어플라이언스 가부시키가이샤 Refrigerator
US20130327411A1 (en) * 2012-06-11 2013-12-12 Lg Electronics Inc. Refrigerator having air pressure controllable storage container and storage method thereof
CN102116553B (en) * 2009-12-31 2014-12-10 海尔集团公司 Refrigerator with temperature varying and/or vacuum preservation system and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012837A (en) * 1999-06-29 2001-01-19 Matsushita Refrig Co Ltd Refrigerator equipped with vacuum cooling device
JP2002340470A (en) * 2001-05-14 2002-11-27 Goichi Kato Refrigerator
JP2005500214A (en) * 2001-08-14 2005-01-06 ソン ムン ジャン Pressure control method
JP2005055031A (en) * 2003-08-01 2005-03-03 Mitsubishi Electric Corp Refrigerator-freezer and food storage method for refrigerator
JP2006158301A (en) * 2004-12-08 2006-06-22 Marufuku Suisan Kk Method for retaining freshness of fresh fish

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012837A (en) * 1999-06-29 2001-01-19 Matsushita Refrig Co Ltd Refrigerator equipped with vacuum cooling device
JP2002340470A (en) * 2001-05-14 2002-11-27 Goichi Kato Refrigerator
JP2005500214A (en) * 2001-08-14 2005-01-06 ソン ムン ジャン Pressure control method
JP2005055031A (en) * 2003-08-01 2005-03-03 Mitsubishi Electric Corp Refrigerator-freezer and food storage method for refrigerator
JP2006158301A (en) * 2004-12-08 2006-06-22 Marufuku Suisan Kk Method for retaining freshness of fresh fish

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116553B (en) * 2009-12-31 2014-12-10 海尔集团公司 Refrigerator with temperature varying and/or vacuum preservation system and control method thereof
KR101332273B1 (en) 2011-06-20 2013-11-22 히타치 어플라이언스 가부시키가이샤 Refrigerator
JP2013024442A (en) * 2011-07-19 2013-02-04 Hitachi Appliances Inc Refrigerator
US20130327411A1 (en) * 2012-06-11 2013-12-12 Lg Electronics Inc. Refrigerator having air pressure controllable storage container and storage method thereof
US10018398B2 (en) * 2012-06-11 2018-07-10 Lg Electronics Inc. Refrigerator having air pressure controllable storage container and storage method thereof

Similar Documents

Publication Publication Date Title
Fernández et al. Shelf-life extension on fillets of Atlantic Salmon (Salmo salar) using natural additives, superchilling and modified atmosphere packaging
CN1835688B (en) Food preserving method and its device
JP5572599B2 (en) refrigerator
Genç et al. Effects of chilled storage on quality of vacuum packed meagre fillets
Devine et al. 2 Red Meats
Aidani et al. Effect of chilling, freezing and thawing on meat quality: a review.
Hong et al. Comparison of the quality characteristics of abalone processed by high-pressure sub-zero temperature and pressure-shift freezing
Tsironi et al. Effect of storage temperature and osmotic pre-treatment with alternative solutes on the shelf-life of gilthead seabream (Sparus aurata) fillets
Zaritzky Factors affecting the stability of frozen foods
Alsailawi et al. Effect of frozen storage on the quality of frozen foods—A review
JP2009008292A (en) Refrigerator
KR101158736B1 (en) Refrigerator
JP5629648B2 (en) refrigerator
JP4670689B2 (en) refrigerator
Suh et al. Effect of frozen-storage period on quality of American sirloin and mackerel (Scomber japonicus)
JP2017026184A (en) refrigerator
JP7378020B2 (en) refrigerator, system
JPS5946587B2 (en) Fresh food storage equipment
Gonçalves et al. Quality of frozen fish
Duran‐Montgé et al. Refrigerated or Superchilled Skin‐Packed Sea Bream (S parus aurata) Compared with Traditional Unpacked Storage on Ice with Regard to Physicochemical, Microbial and Sensory Attributes
Lee et al. Effects of micro-perforated film on the quality and shelf life improvements of pork loins during chilled storage
JP2008292095A (en) Refrigerator
KR100979609B1 (en) Refrigerator
KR101164811B1 (en) Refrigerator for kimchi and control method thereof
Opoku-Nkoom Safety and quality characteristics of freeze-defrost cycles in muscle foods

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090909

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Effective date: 20101109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110104

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412