JP2009008108A - Expansion and contraction actuator - Google Patents

Expansion and contraction actuator Download PDF

Info

Publication number
JP2009008108A
JP2009008108A JP2007167360A JP2007167360A JP2009008108A JP 2009008108 A JP2009008108 A JP 2009008108A JP 2007167360 A JP2007167360 A JP 2007167360A JP 2007167360 A JP2007167360 A JP 2007167360A JP 2009008108 A JP2009008108 A JP 2009008108A
Authority
JP
Japan
Prior art keywords
end plate
linear motion
screw shaft
motion mechanism
airtight chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007167360A
Other languages
Japanese (ja)
Inventor
Tetsuo Ichikizaki
哲雄 市来崎
Yuuzou Kageyama
優造 陰山
Seiji Nomura
聖治 野村
Hiroo Nagafuji
浩朗 長藤
Taisuke Kubota
泰輔 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MHI Solution Technologies Co Ltd
Original Assignee
MHI Solution Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MHI Solution Technologies Co Ltd filed Critical MHI Solution Technologies Co Ltd
Priority to JP2007167360A priority Critical patent/JP2009008108A/en
Publication of JP2009008108A publication Critical patent/JP2009008108A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive mechanism not using a slide part seal requiring periodical replacement in a submerged robot and the like. <P>SOLUTION: An electrical wire penetration part 25 in which an electrical wire 26 for electric power supply and the transfer of a control signal to the inside of an airtight chamber is electrically insulated and penetrates an end plate in a state that pressure resistance and airtightness for withstanding a pressure difference between an inside and an outside is provided in a linear motion mechanism unit 10 having a linear motion mechanism element 11 comprising a spiral screw shaft 20, a female screw (motor rotor) 21, and a motor stator 22 built in an airtight chamber 40 comprising an end plate A23, an end plate B23a, and a stretchable cylindrical film member 30, and the airtight chamber is filled with liquid 50 having an electrical insulation property. Consequently, an expansion and contraction actuator suitable to used underwater or under the sea is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水中あるいは海中で使われる機器の直線駆動に適した伸縮アクチュエータに関する。   The present invention relates to a telescopic actuator suitable for linear drive of equipment used underwater or in the sea.

日本は周囲を海でかこまれた海洋国家であり、海からの多大な恩恵を享受してきている。しかし近年は様々な開発や乱獲が要因となり、多くの海洋生物を絶滅の危機に追い込んでいる。このような状況のもと、「自然再生」をめざした取組みが活発になってきており、水中ロボットによる海洋調査のニーズも従来に増して強くなってきている。これらの調査に使われる水中ロボットの大半は、推進方式としてスクリューを採用しており性能、信頼性の面で豊富な実績を誇っているが、海洋生物にやさしいという点で改良の余地を残している。発明者らはこれまでに弾性振動翼を適用した、ひれで推力を発生させて遊泳する魚型ロボットの開発を手がけてきている。これまでに実施した開発の経験から弾性振動翼を使ったひれには、環境や海洋生物にやさしいという優れた特性があることがわかってきており、ひれで推力を発生させる魚型の水中ロボットに注目をしている。     Japan is a marine nation surrounded by the sea and has enjoyed great benefits from the sea. In recent years, however, various developments and overfishing have contributed to the danger of extinction. Under these circumstances, efforts aimed at “natural regeneration” have become active, and the need for marine research using underwater robots has become stronger than before. Most of the underwater robots used in these surveys employ screws as the propulsion method and boast a wealth of achievements in terms of performance and reliability, but leave room for improvement in terms of being friendly to marine life. Yes. The inventors have so far developed a fish-type robot that applies elastic vibrating wings and swims by generating a thrust with a fin. From the experience of development conducted so far, it has been found that fins using elastic vibrating wings have excellent characteristics that they are friendly to the environment and marine organisms. I am paying attention.

図5に従来の魚型ロボット70の例として、弾性振動翼にロッキングアーム機構72と引張ワイヤ71を適用した構成例を示す。図5(a)は側面断面図、図5(b)は平面断面図を示している。ここで弾性振動翼のひれは、弾力性のあるバネ板部材68の両面に引張ワイヤ71を張り、水中(あるいは海中)でこの末端を交互に引張ることでバネ板部材68を左右に振り、その時に生じるしなりを利用して推力を発生させている。ロッキングアーム機構72は水中(あるいは海中)で使われるため、駆動用のモータ75を本体防水容器76に収納し、回転駆動軸73の摺動部にOリングなどの軸シール74をして本体容器端板64を貫通させている。
ここで66は引張ワイヤ71の固定部、76は本体防水容器である。また78はバッテリー、77は制御装置、67はモータ制御指令・電力供給用の電線を示している。
FIG. 5 shows a configuration example in which a rocking arm mechanism 72 and a tension wire 71 are applied to an elastic vibrating wing as an example of a conventional fish robot 70. FIG. 5A shows a side sectional view, and FIG. 5B shows a plan sectional view. Here, the fins of the elastic oscillating wings swing the spring plate member 68 to the left and right by stretching the tension wire 71 on both sides of the elastic spring plate member 68 and alternately pulling the ends in water (or in the sea). Thrust is generated by using the bending that occurs in Since the locking arm mechanism 72 is used underwater (or underwater), a driving motor 75 is accommodated in the main body waterproof container 76, and a shaft seal 74 such as an O-ring is provided on the sliding portion of the rotary drive shaft 73 to form the main body container. The end plate 64 is penetrated.
Here, 66 is a fixing portion of the pulling wire 71, and 76 is a main body waterproof container. Reference numeral 78 denotes a battery, 77 denotes a control device, and 67 denotes a motor control command / electric power supply wire.

特願2006-326055 「魚ロボット構造」Japanese Patent Application 2006-326055 "Fish Robot Structure"

従来の大半の水中ロボットに採用されているスクリューには回転軸があり、Oリングなどで摺動部をシールしているが、一定の時間使用すると摺動部のシールが摩耗したり、損傷を受けたりするため漏水(リーク)が生じるようになる。漏水(リーク)が起こるとシールを交換する以外に手がないため、海洋調査のミッションを遂行中であっても、一度それを中断して陸上に水中ロボットを上げ、シールの交換が必要になる。このため長期にわたり継続的にデータをとる必要のある海洋調査に水中ロボットを使うことが難しく、このことが水中ロボットの最大の課題となっている。また図5で説明したように、弾性振動翼のひれで推力を発生させる魚型ロボットでも、ロッキングアーム機構の回転軸に使われている摺動部のシールで同様な課題を抱えている。     The screw used in most conventional underwater robots has a rotating shaft, and the sliding part is sealed with an O-ring, etc., but the seal of the sliding part is worn or damaged after a certain period of use. Leakage (leakage) occurs because it receives. If there is a water leak (leak), there is no other way than to replace the seal, so even if you are performing a marine research mission, you will need to replace the seal by interrupting it once and raising the underwater robot on land. . For this reason, it is difficult to use an underwater robot for ocean surveys that require continuous data collection over a long period of time, and this is the biggest challenge for underwater robots. Further, as described with reference to FIG. 5, even a fish-type robot that generates thrust by the fins of elastic vibrating blades has a similar problem with the seal of the sliding portion used for the rotating shaft of the rocking arm mechanism.

一方、定期的に交換が必要になる摺動部のシールを使わない駆動機構として、磁気カップリング方式がある。水中ロボットのスクリュー軸や、魚型ロボットのロッキングアーム機構の回転軸についても、軸をまんなかで切断して磁気カップリングでつなぐことでシールを無くすことが可能である。しかし磁気カップリングは、磁力でトルクを伝えるという特性上の問題として、(1)動力の伝達効率が低い (2)伝達トルクに上限がある (3)強力な磁石を使用するために機構自体が重くなる、など実用上のリスクが大きく、具体化された例はあまりないのが現状である。
本発明はかかる従来の課題に鑑み、摺動部のシールを使わない駆動機構を実現することを目的とする。
On the other hand, there is a magnetic coupling method as a drive mechanism that does not use a sliding part seal that needs to be replaced periodically. For the screw shaft of an underwater robot and the rotation shaft of a rocking arm mechanism of a fish-shaped robot, it is possible to eliminate the seal by cutting the shaft in a center and connecting it with a magnetic coupling. However, magnetic coupling has the following problems in terms of the characteristics of transmitting torque by magnetic force: (1) Power transmission efficiency is low (2) There is an upper limit to transmission torque (3) The mechanism itself has to use a strong magnet. There are many practical risks, such as becoming heavier, and there are few actual examples.
The present invention has been made in view of the above-described conventional problems, and an object thereof is to realize a drive mechanism that does not use a seal of a sliding portion.

前記目的を達成するため、本発明では適正な伸縮アクチュエータを考案し、この伸縮アクチュエータを引張ワイヤの代わりに使うことで、バネ板部材を左右に振り、その時に生じるしなりを利用して推力を発生させる方式とする。この方式とすることにより、摺動部にシールを使わない駆動機構を実現することができ、しかも機構の変更に伴う課題はほとんど発生しない。   In order to achieve the above object, the present invention devised an appropriate expansion / contraction actuator, and by using this expansion / contraction actuator instead of a tension wire, the spring plate member is swung left and right, and thrust is generated by utilizing the bending generated at that time. The method to generate. By adopting this method, it is possible to realize a drive mechanism that does not use a seal for the sliding portion, and there are hardly any problems associated with the mechanism change.

請求項1の発明はこの適正な伸縮アクチュエータを提案するもので、図1〜図3に構成を示す。ここで図1は伸縮アクチュエータを伸ばした状態、図2は伸縮アクチュエータを縮めた状態を説明する図である。本発明の構成は、螺旋ねじ軸20と、それに螺合するめねじ部品(モータロータ)21、及びめねじ部品(モータロータ)21を、回転駆動するためのモータ〈めねじ部品(モータロータ)21及びモータステータ22〉を備え、めねじ部品(モータロータ)21は回転自在にモータステータ22に固定される。この螺旋ねじ軸20を直線往復運動するようにした直動機構要素11において、螺旋ねじ軸20の端に固定する端版A23と、モータステータ22に固定する端板B23aを、螺旋ねじ軸20の直線往復運動の範囲を挟んで設置し、さらに端板A23と端板B23aと伸縮性のある筒状膜部材30とで構成される気密室40の内部に、当該直動機構要素11を包み込む状態で構成した直動機構ユニット10である。ここでモータステータ22は固定部品27により一方の端板B23aに固定されている。気密室40の内部への電力供給、制御信号授受のための電線26は電気的に絶縁され、かつ内外の圧力差に耐える耐圧性と気密性を備えた電線貫通部25で、端板A23あるいは端板B23a、もしくは両方の端板を貫通している。また当該気密室40内は、電気的絶縁性を有する液体50で満たされている。
ここで24、24aはワイヤー等へのとめ金具である。
The invention of claim 1 proposes this appropriate telescopic actuator, and the configuration is shown in FIGS. Here, FIG. 1 is a diagram illustrating a state where the telescopic actuator is extended, and FIG. 2 is a diagram illustrating a state where the telescopic actuator is contracted. The configuration of the present invention includes a helical screw shaft 20, a female screw component (motor rotor) 21 that is screwed to the helical screw shaft 20, and a motor for rotating the female screw component (motor rotor) 21 <female screw component (motor rotor) 21 and motor stator. 22> and a female screw part (motor rotor) 21 is rotatably fixed to the motor stator 22. In the linear motion mechanism element 11 in which the spiral screw shaft 20 is linearly reciprocated, an end plate A23 fixed to the end of the spiral screw shaft 20 and an end plate B23a fixed to the motor stator 22 are connected to the spiral screw shaft 20. A state in which the linear motion mechanism element 11 is enclosed in an airtight chamber 40 composed of an end plate A23, an end plate B23a, and a stretchable tubular membrane member 30 with the range of linear reciprocating motion interposed therebetween. It is the linear motion mechanism unit 10 comprised by these. Here, the motor stator 22 is fixed to one end plate B 23 a by a fixing component 27. The electric wire 26 for supplying electric power to the inside of the hermetic chamber 40 and for transmitting / receiving control signals is electrically insulated and has a pressure resistance and an air tightness that can withstand a pressure difference between the inside and the outside. It penetrates the end plate B23a or both end plates. The airtight chamber 40 is filled with a liquid 50 having electrical insulation.
Here, 24 and 24a are clasps for wires or the like.

次に本発明の伸縮アクチュエータについて、機構上の用件である気密室40に液体50を充満する必要性について説明する。端板A23、B23a と伸縮性のある筒状膜部材30とで構成される気密室40には直動機構要素11が内蔵され、水中(あるいは海水中)で使用する際に直動機構要素11が、水(または海水)と直接触れないようにしている。一方水中(あるいは海水中)では気密室40に水圧がかかり、圧縮される方向に変形が生じようとする。気密室40にこの水圧に対抗する力が作用しないと、水圧の上昇につれて気密室40の収縮は進み、最終的には直動機械要素11に伸縮性のある筒状部材30が張付くところまで変形が進み、伸縮アクチュエータは直動の動きを阻害されて作動しなくなる。このことから収縮変形を抑止するための構造上の対策が不可欠であるが、気密室40への液体50の充満がその最良の対策となる。すなわち気密室40に、水に相当する体積圧縮率を有する液体50を充満することで、気密室40に水圧とバランスする圧力を発生させて、気密室40の変形がほとんど起こらないようにすることができる。また、水圧下で伸縮アクチュエータを作動させたときに、伸縮動作のどの状態においても気密室40の体積は変わらないため、水中(あるいは海中)で水圧に抗して直動機構要素11がする仕事(損失)は発生しない。つまり、直動機構要素11の伸縮には水圧に抗する力を必要としないため、基本的にはいかなる水深においても使用すること可能である。なお、モータなどの電機部品と接触する液体50には電気絶縁オイル等の電気絶縁性を有するものを使用する必要がある。     Next, regarding the expansion / contraction actuator of the present invention, the necessity of filling the liquid 50 in the hermetic chamber 40, which is a requirement on the mechanism, will be described. A linear motion mechanism element 11 is built in an airtight chamber 40 composed of the end plates A23, B23a and the elastic tubular membrane member 30, and the linear motion mechanism element 11 is used when used in water (or in seawater). However, it does not come into direct contact with water (or seawater). On the other hand, in water (or in seawater), water pressure is applied to the hermetic chamber 40, and deformation tends to occur in the compression direction. If the force against the water pressure does not act on the airtight chamber 40, the shrinkage of the airtight chamber 40 proceeds as the water pressure rises, and finally, until the tubular member 30 having elasticity is stuck to the linear motion mechanical element 11. As the deformation progresses, the telescopic actuator becomes impeded by the linear motion and does not operate. For this reason, a structural measure for suppressing shrinkage deformation is indispensable, but filling of the airtight chamber 40 with the liquid 50 is the best measure. That is, by filling the airtight chamber 40 with the liquid 50 having a volume compressibility corresponding to water, a pressure that balances the water pressure is generated in the airtight chamber 40 so that the deformation of the airtight chamber 40 hardly occurs. Can do. In addition, when the telescopic actuator is operated under water pressure, the volume of the airtight chamber 40 does not change in any state of the telescopic operation, so that the linear motion mechanism element 11 works against water pressure in water (or in the sea). (Loss) does not occur. That is, the expansion / contraction of the linear motion mechanism element 11 does not require a force against the water pressure, and therefore can be used basically at any depth. In addition, it is necessary to use what has electrical insulation, such as electrical insulation oil, for the liquid 50 which contacts electrical components, such as a motor.

請求項2の発明は請求項1の伸縮性のある筒状膜部材30としてジャバラ状あるいはベローズ状の伸縮性のある部材の適用を提案するものである。図2に示した構成例に対し、図3のように筒状膜部材30にジャバラ状、ベローズ状にすることで、伸縮の際に部材に発生するひずみを低く抑えることができる。     The invention of claim 2 proposes application of a bellows-like or bellows-like stretchable member as the stretchable tubular membrane member 30 of claim 1. In contrast to the configuration example shown in FIG. 2, by forming the cylindrical membrane member 30 in a bellows shape or a bellows shape as shown in FIG. 3, the strain generated in the member during expansion and contraction can be kept low.

請求項3の発明は、請求項1、2で説明した本発明の伸縮アクチュエータを魚型水中ロボットに組み込んだ適応例である。     The invention of claim 3 is an adaptation example in which the telescopic actuator of the present invention described in claims 1 and 2 is incorporated in a fish-type underwater robot.

本発明によれば、魚型ロボットの弾性振動翼の引張ワイヤに代えて、伸縮アクチュエータを使うことにより、摺動部にシールのない駆動機構とすることができ、従来発生していたシール交換作業が不要となる。これにより継続的にデータを取る必要がある海洋調査などに適した魚型の水中ロボットを提供でき、海洋調査で得られるデータの質を大幅に向上させることができる。   According to the present invention, instead of the tension wire of the elastic vibration wing of the fish-type robot, the drive mechanism without a seal in the sliding portion can be obtained by using an expansion / contraction actuator. Is no longer necessary. As a result, it is possible to provide a fish-type underwater robot suitable for oceanographic surveys that require continuous data collection, and to greatly improve the quality of data obtained by oceanographic surveys.

本発明の伸縮アクチュエータの最良の実施形態1を図1で説明する。ここで図1は伸縮アクチュエータを伸ばした状態、つまり直動機構要素11が螺旋ねじ軸20の右端にある状態を表す説明図である。この場合は図示のように筒状部材30は伸びた状態となっている。これに対し図2は縮めた状態、つまり直動機構要素11を螺旋ねじ軸20左端に移動させた状態の説明図である。この場合は図示のように、筒状部材30は全体長さが短くなった分だけ膨らんだ状態になる。この駆動機構要素11にはビルトイン型のモータを採用して伸縮アクチュエータをコンパクトに構成した例を示している。ねじ部品(モータロータ)21は軸受けでモータステータ22に回転自在に固定されている。ねじ部品(モータロータ)21には螺旋ねじ軸20が螺合しており、ねじ部品(モータロータ)21の回転に伴い螺旋ねじ軸20は前進・後退の直線往復運動をする。モータステータ22は固定部品27で端板B23a に固定する。筒状部材30は直動機構ユニット10の直線往復運動に追従する必要がありエアラストマーなどの適正な伸縮性を有する材料で製作する。なお筒状部材30は伸縮が繰返される部材であるため疲労への考慮が必要であるが、図3で説明するように、ジャバラ状、ベローズ状にすることで伸縮の際に部材に発生するひずみを低く抑える構造にすることが有効である。モータへの電力供給、制御信号授受は電線26を通して行なう。電線26は端板B23a を貫通させて水中(または海中)で使用するため電気的に絶縁され耐圧性と気密性を備えた電線貫通部25を設けてこれを貫通させる。気密室40に満たす液体50は、モータ22及びめねじ部品(モータロータ)21のコイル部及び電気部品、配線26と直接接触するため、電気絶縁性のある電気絶縁オイルなどの使用が適する。また液体50には水圧による気密室の収縮を抑える機能が必要であり、このために水に相当する体積圧縮率を有するものを選定する。     The best embodiment 1 of the telescopic actuator of the present invention will be described with reference to FIG. Here, FIG. 1 is an explanatory view showing a state in which the telescopic actuator is extended, that is, a state in which the linear motion mechanism element 11 is at the right end of the helical screw shaft 20. In this case, the cylindrical member 30 is in an extended state as shown in the drawing. On the other hand, FIG. 2 is an explanatory view of the contracted state, that is, the state in which the linear motion mechanism element 11 is moved to the left end of the spiral screw shaft 20. In this case, as shown in the figure, the cylindrical member 30 is inflated by the amount of the entire length being shortened. The drive mechanism element 11 is an example in which a built-in type motor is employed to form a telescopic actuator compactly. The screw component (motor rotor) 21 is rotatably fixed to the motor stator 22 by a bearing. The screw part (motor rotor) 21 is screwed with the spiral screw shaft 20. As the screw part (motor rotor) 21 rotates, the spiral screw shaft 20 makes a linear reciprocating motion in the forward and backward directions. The motor stator 22 is fixed to the end plate B23a with a fixing component 27. The cylindrical member 30 needs to follow the linear reciprocation of the linear motion mechanism unit 10 and is made of a material having an appropriate stretchability such as an air laster. In addition, since the cylindrical member 30 is a member in which expansion and contraction is repeated, it is necessary to consider fatigue. However, as illustrated in FIG. It is effective to have a structure that keeps low. Electric power is supplied to the motor and control signals are exchanged through the electric wire 26. The electric wire 26 penetrates the end plate B23a and is provided with a wire penetration portion 25 that is electrically insulated and has pressure resistance and airtightness for use in water (or underwater). Since the liquid 50 filling the hermetic chamber 40 is in direct contact with the coil part and the electric parts of the motor 22 and the female screw part (motor rotor) 21 and the wiring 26, it is suitable to use an electric insulating oil having an electric insulating property. Further, the liquid 50 needs to have a function of suppressing the shrinkage of the hermetic chamber due to water pressure, and for this purpose, a liquid having a volume compressibility corresponding to water is selected.

次に本発明の伸縮アクチュエータを魚型ロボットに適用した最良の実施形態2について図4(a)、(b)、(c)で説明する。ここで図4は魚型ロボットの概略構成を示す平面断面図である。従来方式については図5で説明したように、バネ板部材68の両面に引張ワイヤ71を張り、この末端をロッキングアーム機構72で交互に引張り、尾ひれのバネ板部材68を左右に振らす構造であった。これに対し本発明では、図4(a)に示すように、ロッキングアーム機構72の役割を担うものとして、バネ板部材68の左右に伸縮アクチュエータ61、61aを配備した。この伸縮アクチュエータ61、61aはワイヤ62、63を介して、バネ板部材68と本体容器端板64に固定した構造となっている。バネ板部材68は、バネ板部材固定部65で本体容器端板64に固定されており、伸縮アクチュエータ61,61a を左右交互に伸縮させることで、尾ひれのバネ板部材68を左右に振らす。図4(b)は図示下方の伸縮アクチュエータ61aを縮め、反対側の伸縮アクチュエータ61を伸ばした状態であり、結果としてバネ板部材68は図示下方側に撓む。この状態とは反対にした状態、つまり図4(c)のように図示下方の伸縮アクチュエータ61aを伸ばし、反対側の伸縮アクチュエータ61を縮めると、結果としてバネ板部材68は図示上方側に撓む。このような動きを連続的に繰り返すことで、尾ひれバネ板部材68により推力が発生し、魚型ロボット60を推進させことができる。伸縮アクチュエータ61,61aのモータ運転のための制御指令、電力供給は、魚型ロボット60に搭載した制御装置77及びバッテリー78からモータ制御指令・電力供給電線80を通じて行なう。本構成で魚型ロボット60を製作し、実際に水深5mの試験水槽で遊泳試験を実施したところ、従来の引張ワイヤを使った魚型ロボットと同様な遊泳特性を示すことを確認することができた。   Next, the best embodiment 2 in which the telescopic actuator of the present invention is applied to a fish robot will be described with reference to FIGS. 4 (a), 4 (b), and 4 (c). Here, FIG. 4 is a plan sectional view showing a schematic configuration of the fish robot. As described with reference to FIG. 5, the conventional system has a structure in which the tension wire 71 is stretched on both surfaces of the spring plate member 68, the ends are alternately pulled by the locking arm mechanism 72, and the tail fin spring plate member 68 is swung left and right. there were. On the other hand, in the present invention, as shown in FIG. 4A, the expansion and contraction actuators 61 and 61 a are arranged on the left and right sides of the spring plate member 68, assuming the role of the locking arm mechanism 72. The telescopic actuators 61 and 61a are fixed to the spring plate member 68 and the main body container end plate 64 via wires 62 and 63, respectively. The spring plate member 68 is fixed to the main body container end plate 64 by a spring plate member fixing portion 65, and the expansion and contraction actuators 61 and 61a are expanded and contracted alternately left and right to swing the tail fin spring plate member 68 left and right. FIG. 4B shows a state in which the lower extension actuator 61a is contracted and the opposite extension actuator 61 is extended. As a result, the spring plate member 68 is bent downward in the figure. In a state opposite to this state, that is, as shown in FIG. 4C, when the telescopic actuator 61a in the lower part of the figure is extended and the telescopic actuator 61 on the opposite side is contracted, the spring plate member 68 is bent upward in the figure. . By repeating such movement continuously, thrust is generated by the tail fin spring plate member 68, and the fish robot 60 can be propelled. Control commands and power supply for motor operation of the telescopic actuators 61 and 61a are performed through a motor control command / power supply wire 80 from a control device 77 and a battery 78 mounted on the fish robot 60. A fish-type robot 60 with this configuration was manufactured, and when a swimming test was actually conducted in a test tank with a water depth of 5 m, it was confirmed that it exhibited the same swimming characteristics as a fish-type robot using a conventional tension wire. It was.

本発明を実施するための最良の形態例であって、図1はその伸ばした展状態FIG. 1 is an example of the best mode for carrying out the present invention, and FIG. 縮めた状態Shrinked state 伸縮性のある筒状膜部材として、ジャバラ状あるいはベローズ状の部材を適用した例を示した図である。It is the figure which showed the example which applied the member of the bellows shape or the bellows shape as an elastic cylindrical membrane member. 本発明を魚型ロボットの弾性振動翼に適用した例を示した図である。 (a)は左右側(図示では上下側)の伸縮アクチュエータの長さを等しくした状態、 (b)は左側(図示では上側)の伸縮アクチュエータを伸ばした状態、右側(図示では下側)を縮めた状態にし、尾ひれを右側(図示では下側)に振った状態 (c)は左側(図示では上側)の伸縮アクチュエータを縮めた状態、右側(図示では下側)を伸ばした状態にし、尾ひれを左側(図示では上側)に振った状態を示した図である。It is the figure which showed the example which applied this invention to the elastic vibration wing | blade of a fish type robot. (A) Left and right (upper and lower in the figure) extension actuators are equal in length (b) Left (upper and lower) extension actuator is extended and right (lower in the figure) is contracted (C) is a state in which the telescopic actuator on the left side (upper side in the figure) is contracted, and a state in which the right side (lower side in the figure is extended) is extended, and the tail fin is moved to the right side (lower side in the figure). It is the figure which showed the state swung to the left side (in the illustration upper side). 従来の魚型ロボットの弾性振動翼にロッキングアーム機構と引張ワイヤを適用した例を示した図である。(a)は側面図、(b)は平面図を示す。It is the figure which showed the example which applied the rocking arm mechanism and the tension | pulling wire to the elastic vibration wing | blade of the conventional fish type robot. (A) is a side view and (b) is a plan view.

符号の説明Explanation of symbols

10 直動機構ユニット
11 直動機構要素
20 螺旋ねじ軸
21 めねじ部品(モータロータ)
22 モータステータ
23 端板A
23a 端板B
24 とめ金具A
24a とめ金具B
25 電線貫通部
26 電線
27 固定部品
30 筒状膜部材
32 ジャバラ状あるいはベローズ状の部材
40 気密室
50 液体
60 本発明の伸縮アクチュエータを適用した魚型ロボットの例
61 伸縮アクチュエータ
61a 伸縮アクチュエータ
62 ワイヤ
62a ワイヤ
63 ワイヤ
63a ワイヤ
64 本体容器端板
65 バネ板部材固定部
66 ワイヤ固定部
67 モータ制御指令・電力供給電線
68 バネ板部材
70 従来の魚型ロボットの例
71 引張ワイヤ
71a 引張ワイヤ
72 ロッキングアーム機構
73 回転駆動軸
74 軸シール
75 モータ
76 本体防水容器
77 制御装置
78 バッテリー
80 モータ制御指令・電力供給電線
DESCRIPTION OF SYMBOLS 10 Linear motion mechanism unit 11 Linear motion mechanism element 20 Spiral screw shaft 21 Female thread component (motor rotor)
22 Motor stator 23 End plate A
23a End plate B
24 Clasp A
24a Clasp B
DESCRIPTION OF SYMBOLS 25 Electric wire penetration part 26 Electric wire 27 Fixed part 30 Cylindrical membrane member 32 Bellows-shaped or bellows-shaped member 40 Airtight chamber 50 Liquid 60 The example of the fish-type robot to which the expansion / contraction actuator of this invention is applied 61 Telescopic actuator 61a Telescopic actuator 62 Wire 62a Wire 63 Wire 63 A Wire 64 Main body container end plate 65 Spring plate member fixing portion 66 Wire fixing portion 67 Motor control command / power supply wire 68 Spring plate member
70 Example of Conventional Fish Robot 71 Tension Wire 71a Tension Wire 72 Locking Arm Mechanism 73 Rotation Drive Shaft 74 Axis Seal 75 Motor 76 Main Body Waterproof Container 77 Controller 78 Battery 80 Motor Control Command / Power Supply Wire

Claims (3)

螺旋ねじ軸とそれに螺合するめねじ部品、およびめねじ部品を回転駆動するためのモータを備え、めねじ部品を回転自在にモータステータに固定することで、螺旋ねじ軸を直線往復運動するようにした直動機構要素において、モータステータに固定する端版Aと螺旋ねじ軸端に固定する端版Bを、螺旋ねじ軸の直線往復運動の範囲を挟んで設置し、さらに端板Aと端板Bと伸縮性のある筒状膜部材とで構成される気密室の内部に、当該直動機構要素を包み込む状態で構成した直動機構ユニットにおいて、当該気密室内部への電力供給や制御信号授受のための電線が電気的に絶縁され、かつ内外の圧力差に耐える耐圧性と気密性を備えた電線貫通部であり、端板Aあるいは端板Bもしくは両方の端板を貫通し、かつ当該気密室を電気的絶縁性を有する液体で満たしたことを特徴とする、水中あるいは海中で使用するのに適した伸縮アクチュエータ。 A helical screw shaft, a female screw component screwed to the helical screw shaft, and a motor for rotationally driving the female screw component are provided, and the female screw component is rotatably fixed to the motor stator so that the helical screw shaft is linearly reciprocated. In the linear motion mechanism element, the end plate A fixed to the motor stator and the end plate B fixed to the end of the helical screw shaft are installed across the range of linear reciprocation of the helical screw shaft, and the end plate A and the end plate In the linear motion mechanism unit configured to wrap the linear motion mechanism element inside the hermetic chamber composed of B and the elastic tubular membrane member, power supply and control signal transmission / reception to the airtight chamber are performed. Is a wire penetrating portion that is electrically insulated and has pressure resistance and airtightness that can withstand pressure difference between inside and outside, and penetrates end plate A or end plate B or both end plates, and Liquid with electrical insulation in hermetic chamber Wherein the filled in, expansion actuators suitable for use in water or in the sea. 請求項1に記載の直動機構ユニットにおいて、伸縮性のある筒状膜部材としてジャバラ状あるいはベローズ状の構造で伸縮性のある部材を用いることを特徴とする水中あるいは海中で使用するのに適した伸縮アクチュエータ。 The linear motion mechanism unit according to claim 1, suitable for use in water or in the sea, characterized by using a bellows-like or bellows-like stretchable member as a stretchable tubular membrane member Telescopic actuator. 請求項1、2に記載した構成の伸縮アクチュエータを、水中ロボットの推進機構として組み込んだことを特徴とする水中ロボット。
An underwater robot comprising the telescopic actuator having the configuration described in claim 1 or 2 as a propulsion mechanism of the underwater robot.
JP2007167360A 2007-06-26 2007-06-26 Expansion and contraction actuator Pending JP2009008108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167360A JP2009008108A (en) 2007-06-26 2007-06-26 Expansion and contraction actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167360A JP2009008108A (en) 2007-06-26 2007-06-26 Expansion and contraction actuator

Publications (1)

Publication Number Publication Date
JP2009008108A true JP2009008108A (en) 2009-01-15

Family

ID=40323396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167360A Pending JP2009008108A (en) 2007-06-26 2007-06-26 Expansion and contraction actuator

Country Status (1)

Country Link
JP (1) JP2009008108A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105292425A (en) * 2015-09-21 2016-02-03 哈尔滨工业大学 Compliant bionic robotic fish capable of regulating pressure to realize variable stiffness
CN108656102A (en) * 2018-06-06 2018-10-16 南京航空航天大学 A kind of the multiple degrees of freedom deep-sea mechanical arm and its control method of hydraulic-driven
CN109050851A (en) * 2018-08-22 2018-12-21 重庆三峡学院 Line drive-type machine fish
CN111409799A (en) * 2020-04-22 2020-07-14 北京大学 Line-driven continuous bionic robotic dolphin
CN112093017A (en) * 2020-09-14 2020-12-18 山东大学 Bionic mechanical fish based on integral stretching principle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105292425A (en) * 2015-09-21 2016-02-03 哈尔滨工业大学 Compliant bionic robotic fish capable of regulating pressure to realize variable stiffness
CN108656102A (en) * 2018-06-06 2018-10-16 南京航空航天大学 A kind of the multiple degrees of freedom deep-sea mechanical arm and its control method of hydraulic-driven
CN109050851A (en) * 2018-08-22 2018-12-21 重庆三峡学院 Line drive-type machine fish
CN109050851B (en) * 2018-08-22 2024-02-27 重庆三峡学院 Line-driven robot fish
CN111409799A (en) * 2020-04-22 2020-07-14 北京大学 Line-driven continuous bionic robotic dolphin
CN111409799B (en) * 2020-04-22 2021-07-09 北京大学 Line-driven continuous bionic robotic dolphin
CN112093017A (en) * 2020-09-14 2020-12-18 山东大学 Bionic mechanical fish based on integral stretching principle

Similar Documents

Publication Publication Date Title
JP2009008108A (en) Expansion and contraction actuator
KR101133671B1 (en) High efficiency wave energy apparatus
US4352023A (en) Mechanism for generating power from wave motion on a body of water
US7557456B2 (en) Wave powered generation using electroactive polymers
US9941820B2 (en) Force modification system for wave energy convertors
US20080217921A1 (en) Wave energy harnessing device
US20150203183A1 (en) Wave Energy Watercraft
US8810054B2 (en) Wave-power unit
US10647397B2 (en) Robotic jellyfish
US9752552B2 (en) Position-controlled wave power generating apparatus
CN111661286B (en) Machine fish
KR20140126714A (en) Energy plant and parts of an energy plant
CN114056520B (en) Self-powered floating type bionic ocean exploration turtle
US9097240B1 (en) Fluid pressure based power generation system
CN210338218U (en) Miniature ocean monitoring buoy
CN108622347B (en) Bionic flexible arm driving type submersible
US816934A (en) Wave-motor.
JP2021501286A (en) Drive assembly
JP2010077923A (en) Wave-power generator using electroactive polymer diaphragm
CN212243765U (en) Wriggling yacht
CN107933860B (en) Underwater mobile carrying platform
RU166230U1 (en) USEFUL MODEL OF DIRECT DRIVE OF VIBRATION MOTORS
CN208153240U (en) A kind of electromagnetism piezoelectric generating device
CN101148194A (en) Double-tail ultra-magnetic bionic machine fish
CN109649612A (en) Underwater unmanned plane based on intelligent air bladder