JP2009007612A - Method for manufacturing nitrided component, and endless metal belt - Google Patents

Method for manufacturing nitrided component, and endless metal belt Download PDF

Info

Publication number
JP2009007612A
JP2009007612A JP2007168981A JP2007168981A JP2009007612A JP 2009007612 A JP2009007612 A JP 2009007612A JP 2007168981 A JP2007168981 A JP 2007168981A JP 2007168981 A JP2007168981 A JP 2007168981A JP 2009007612 A JP2009007612 A JP 2009007612A
Authority
JP
Japan
Prior art keywords
nitriding
metal belt
endless metal
color
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007168981A
Other languages
Japanese (ja)
Inventor
Koji Nishida
幸司 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007168981A priority Critical patent/JP2009007612A/en
Publication of JP2009007612A publication Critical patent/JP2009007612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and surely detect a poorly nitrided part while relying on a color of the surface. <P>SOLUTION: This detection method includes adding an oxidation treatment step of heating an endless hoop material (W) made from a maraging steel to 300 to 400°C in atmospheric air to a process of manufacturing an endless metal belt by the steps of solution-heat-treating the hoop material, controlling a peripheral length of the hoop material, and then subjecting the hoop material to aging treatment and nitriding treatment to impart a compressive residual stress to the surface of the hoop material; and simply and surely determining whether the nitriding treatment has been adequate or not, according to a color difference between a normally nitrided portion which shows a blue color and a poorly nitrided portion which shows other colors except the blue color. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、窒化処理が施される窒化部品の製造方法および該製造方法により製造された無端金属ベルトに関する。   The present invention relates to a method for manufacturing a nitrided part subjected to nitriding treatment and an endless metal belt manufactured by the manufacturing method.

例えば、無段変速機(CVT)に用いられるベルトは、図3に符号1にて示されるように、V溝間隔が変更可能なプーリPに係合する多数のエレメント2を積層リング3を介して環状に結束した構造となっている。このようなCVT用ベルト1において、前記積層リング3は、周長の異なる無端金属ベルト4を相互に密着させて多数枚(例えば、9枚)積層した構造となっており、図示の例では、各エレメント2の首部2aの両側のサドル面2bに二列に配置されている。CVT用ベルトとしては、各エレメントのサドル面の両側に設けたフック部の間の凹所内に積層リングを二列に配置した構造のものもある。   For example, in a belt used in a continuously variable transmission (CVT), as indicated by reference numeral 1 in FIG. 3, a number of elements 2 that engage with a pulley P whose V-groove interval can be changed are arranged through a laminated ring 3. It has a structure that is bundled in an annular shape. In such a CVT belt 1, the laminated ring 3 has a structure in which a large number of endless metal belts 4 having different circumferential lengths are closely adhered to each other (for example, 9 pieces), and in the illustrated example, The saddle surfaces 2b on both sides of the neck 2a of each element 2 are arranged in two rows. There is a CVT belt having a structure in which laminated rings are arranged in two rows in a recess between hook portions provided on both sides of a saddle surface of each element.

ところで、上記積層リング3には、高い曲げ荷重が繰返し作用するため、該積層リング3を構成する無端金属ベルト4には高い疲労強度が要求される。そこで従来は、この無端金属ベルト4の材料として、高い強度と靭性とを有するマルエージング鋼を選択し、図4に示されるように、該マルエージング鋼により製作した無端のフープ素材Wに溶体化処理を施した後、周長調整を行い、その後、時効処理および窒化処理を行って表面に圧縮残留応力を付与せしめるようにしていた。   By the way, since a high bending load repeatedly acts on the laminated ring 3, the endless metal belt 4 constituting the laminated ring 3 is required to have high fatigue strength. Therefore, conventionally, maraging steel having high strength and toughness is selected as the material of the endless metal belt 4, and as shown in FIG. 4, it is solutionized in an endless hoop material W made of the maraging steel. After the treatment, the perimeter was adjusted, and then an aging treatment and a nitriding treatment were performed to impart compressive residual stress to the surface.

しかるに、上記した無端金属ベルト4に対する窒化処理は、各種部品に対する一般的な窒化処理と異なって低温(410〜450℃)で行われており、これによって形成される窒化層の厚さも、一般的な窒化層の厚さと比べてかなり薄くなっている(一例として、25〜40μm程度)。このため、窒化処理前の表面にわずかでも窒化阻害物が付着していると、窒化層が形成されないか、薄く形成される窒化不良が発生し、得られた無端金属ベルトの強度低下が避けられないようになる。   However, the nitriding treatment for the endless metal belt 4 described above is performed at a low temperature (410 to 450 ° C.) unlike the general nitriding treatment for various parts, and the thickness of the nitride layer formed thereby is also common. It is considerably thinner than the thickness of the nitrided layer (for example, about 25 to 40 μm). For this reason, if even a slight amount of nitriding inhibitor adheres to the surface before nitriding, a nitriding layer will not be formed or a thin nitriding defect will occur, and a reduction in the strength of the resulting endless metal belt can be avoided. It will not be.

このため、上記した無端金属ベルトの製造に際しては、最終的に窒化不良の有無を検査することが必要不可欠となっているが、従来一般には、表面のわずかな変色を頼りに目視により検査していたため、その検査に多くの熟練と時間とを要し、検査結果に対する信頼性もいま一つ乏しい、という問題があった。   For this reason, in the manufacture of the endless metal belt described above, it is indispensable to finally inspect for the presence of nitriding defects. However, in general, the inspection is made visually by relying on slight discoloration of the surface. Therefore, there is a problem that the inspection requires a lot of skill and time, and the reliability of the inspection result is still poor.

なお、例えば、特許文献1に記載されたものでは、表面凹凸を面粗度計を用いて測定し、窪み量が目標窪み量以上であれば圧縮残留応力が十分でなく、窒化不良と判定することを行っているが、この場合でも、目視検査によって変色箇所を特定することが前提となっており、上記した問題解決には至らない。
特開2005−248978号公報
Note that, for example, in the one described in Patent Document 1, the surface unevenness is measured using a surface roughness meter, and if the amount of dents is equal to or greater than the target amount of dents, the compressive residual stress is not sufficient, and it is determined that the nitriding is defective. However, even in this case, it is assumed that the discolored portion is specified by visual inspection, and the above-described problem cannot be solved.
JP 2005-248978 A

本発明は、上記した従来の問題点に鑑みてなされたもので、その課題とするところは、表面の色を頼りに窒化不良を簡単かつ確実に把握できるようにし、もって品質保証に対する信頼性の向上に大きく寄与する窒化部品の製造方法を提供し、併せて該製造方法によって製造された無端金属ベルトを提供することにある。   The present invention has been made in view of the above-described conventional problems, and the problem is that the nitriding failure can be easily and reliably grasped by relying on the surface color, and the reliability of quality assurance can be improved. An object of the present invention is to provide a method of manufacturing a nitrided part that greatly contributes to improvement, and to provide an endless metal belt manufactured by the manufacturing method.

上記課題を解決するため、本発明に係る窒化部品の製造方法は、窒化処理後、大気中で加熱して、表面の酸化膜の色の違いから窒化の良否を判定することを特徴とする。一般に窒化処理後に大気中で加熱すると、加熱温度の上昇に応じて表面の酸化膜の色が茶色→紫色→青色に変化する。しかし、表面に窒化不良箇所が存在すると、該不良箇所の色が周辺と異なった色となり、したがって、この色の違いから窒化の良否を簡単かつ確実に判定することができる。
以下、本発明の態様をいくつか例示し、それらについて項分けして説明する。
In order to solve the above-described problems, the method for manufacturing a nitrided part according to the present invention is characterized in that after nitriding, heating is performed in the air, and the quality of nitriding is determined from the difference in the color of the oxide film on the surface. In general, when heated in the air after nitriding, the color of the oxide film on the surface changes from brown to purple to blue as the heating temperature rises. However, if there is a defective nitriding portion on the surface, the color of the defective portion is different from the surrounding color. Therefore, the quality of nitriding can be easily and reliably determined from this color difference.
Hereinafter, some aspects of the present invention will be illustrated and described in terms of items.

(1)窒化処理後、大気中で300〜400℃に加熱する酸化処理を行い、表面の色の違いから窒化の良否を判定することを特徴とする窒化部品の製造方法。   (1) A method for producing a nitrided part, characterized in that after the nitriding treatment, an oxidation treatment is performed by heating to 300 to 400 ° C. in the air, and the quality of nitriding is judged from the difference in surface color.

窒化処理後、大気中で300〜400℃に加熱すると、表面の酸化膜の色は青色となるが、窒化層の薄い箇所または窒化層の存在しない窒化不良箇所では、青色と全く異なった色となる。したがって、青色との違いから窒化の良否を簡単かつ確実に判定することができる。   When heated to 300-400 ° C. in the atmosphere after nitriding, the color of the oxide film on the surface becomes blue. However, in a portion where the nitrided layer is thin or where there is no nitrided layer, the color is completely different from blue. Become. Therefore, the quality of nitriding can be easily and reliably determined from the difference from blue.

本製造方法においては、上記した色の違いを目視により判別することができるが、表面を撮像した画像を画像処理して自動的に判別するようにしてもよく、後者の場合は、自動化によって省力化および生産性の向上を図ることができる。   In the present manufacturing method, the above-described color difference can be visually determined, but an image obtained by imaging the surface may be automatically determined by image processing. In the latter case, labor can be saved by automation. And productivity can be improved.

(2)窒化部品が、無段変速機用の無端金属ベルトであり、マルエージング鋼からなっていることを特徴とする(1)項に記載の窒化部品の製造方法。   (2) The method for producing a nitrided part according to (1), wherein the nitrided part is an endless metal belt for a continuously variable transmission and is made of maraging steel.

無段変速機用の無端金属ベルトは、前記したように圧縮残留応力の付与の目的で窒化処理を低温で行い、かつ薄く窒化層を形成するが、このように薄い窒化層を有するものを対象とした場合に、窒化不良が存在する箇所の色の違いがより明瞭に現れる。したがって、本製造方法は、このような無段変速機用の無端金属ベルトの製造に向けて特に有用となる。   As described above, the endless metal belt for continuously variable transmission is subjected to nitriding treatment at a low temperature for the purpose of imparting compressive residual stress, and a thin nitride layer is formed. In this case, the difference in the color of the portion where the nitriding failure exists appears more clearly. Therefore, this manufacturing method is particularly useful for manufacturing such an endless metal belt for a continuously variable transmission.

(3)窒化処理後に、大気中で300〜400℃に加熱する酸化処理が施されていることを特徴とする無端金属ベルト。   (3) An endless metal belt, which is subjected to an oxidation treatment which is heated to 300 to 400 ° C. in the air after the nitriding treatment.

(4)表面が、青色を呈していることを特徴とする(3)項に記載の無端金属ベルト。   (4) The endless metal belt according to item (3), wherein the surface is blue.

本発明に係る無端金属ベルトは、大気中で300〜400℃に加熱する酸化処理が施されて表面が青色を呈しているので、(3)項記載の300〜400℃での酸化処理の確認により、あるいは(4)記載の青色の確認により、表面検査による窒化の良否判定が確実になされているを把握できる。   Since the endless metal belt according to the present invention is subjected to an oxidation treatment that is heated to 300 to 400 ° C. in the atmosphere and has a blue surface, the confirmation of the oxidation treatment at 300 to 400 ° C. described in (3) Or by confirming the blue color described in (4), it can be ascertained that the quality of nitriding by the surface inspection is reliably determined.

本発明に係る窒化部品の製造方法によれば、表面の色を頼りに窒化不良を簡単かつ確実に把握できるので、品質保証に対する信頼性が著しく高いものとなる。   According to the method for manufacturing a nitrided part according to the present invention, it is possible to easily and reliably grasp the nitriding defect by relying on the color of the surface, so that the reliability for quality assurance is remarkably high.

また、上記製造方法によって製造された無端金属ベルトは、300〜400℃での酸化処理の確認あるいは表面の青色の確認により、窒化の良否判定が確実になされているを把握でき、製品価値が高まる。   In addition, the endless metal belt manufactured by the above-described manufacturing method can grasp whether the nitriding quality is reliably determined by confirming the oxidation treatment at 300 to 400 ° C. or confirming the blue color of the surface, thereby increasing the product value. .

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本発明に係る窒化部品の製造工程を示したものである。ここで製造する窒化部品は、前出図3に示した無段変速機(CVT)用の無端金属ベルト4であり、マルエージング鋼により製作した無端のフープ素材Wに溶体化処理を施した後、周長調整を行い、その後、時効処理および窒化処理を行って表面に圧縮残留応力を付与するまでの工程は、従来(図4)と全く同じである。マルエージング鋼の標準の溶体化温度は約830℃、その標準の時効温度は約480℃となっており、周長調整前に溶体化処理を行うことで、周長調整に必要な加工性が付与され、一方、周長調整後に時効処理を行うことで高い強度および靭性が付与される。また、窒化処理は、マルエージング鋼の時効温度より低い410〜450℃で実施されており、したがって、この窒化処理によって時効処理で付与された強度および靭性が損なわれることはない。   FIG. 1 shows a manufacturing process of a nitrided part according to the present invention. The nitrided part manufactured here is an endless metal belt 4 for a continuously variable transmission (CVT) shown in FIG. 3, and after an endless hoop material W made of maraging steel is subjected to a solution treatment. The process from the adjustment of the circumference to the subsequent application of aging treatment and nitriding treatment to impart compressive residual stress to the surface is exactly the same as in the prior art (FIG. 4). The standard solution temperature of maraging steel is about 830 ° C, and the standard aging temperature is about 480 ° C. By performing solution treatment before adjusting the circumference, the workability necessary for adjusting the circumference can be obtained. On the other hand, high strength and toughness are imparted by performing an aging treatment after adjusting the circumference. Moreover, the nitriding treatment is performed at 410 to 450 ° C. which is lower than the aging temperature of the maraging steel. Therefore, the strength and toughness imparted by the aging treatment are not impaired by this nitriding treatment.

本実施形態においては、上記した窒化処理後に、大気中で300〜400℃に加熱する酸化処理を行っている。この大気中での酸化処理により、無端金属ベルト4の表面には、青色の酸化膜が形成される。しかし、前記窒化処理後の無端金属ベルト4の表面に、窒化層が薄いまたは窒化層が形成されていない窒化不良箇所が存在すると、図2に示すように、窒化不良箇所4aの色は青色とは異なる色となる。図2の右下の図は、実際に撮像した表面のカラー写真(拡大写真)をモノクロに変換して示したもので、同図中、中央の白い部分は、実像で淡緑色乃至黄緑色となっており、その周辺の黒い部分は、実像では青色となっている。   In the present embodiment, after the above nitriding treatment, an oxidation treatment is performed by heating to 300 to 400 ° C. in the atmosphere. By this oxidation treatment in the atmosphere, a blue oxide film is formed on the surface of the endless metal belt 4. However, when there is a poorly nitrided portion where the nitrided layer is thin or the nitrided layer is not formed on the surface of the endless metal belt 4 after the nitriding treatment, the color of the poorly nitrided portion 4a is blue as shown in FIG. Will be different colors. The lower right figure in FIG. 2 shows a color photograph (enlarged photograph) of the actually captured surface converted into monochrome, and in the same figure, the white portion at the center is a real image that is light green to yellow green. The black part around it is blue in the real image.

このように、最終的に大気中で300〜400℃に加熱する酸化処理を行うことで、窒化が良好に施された箇所では青色に、窒化不良箇所では青色と異なった色となる。この色の違いは、目視によって明確に判別することができ、したがって、この色の違いから窒化の良否を簡単かつ確実に判定することができる。   Thus, by performing the oxidation treatment finally heated to 300 to 400 ° C. in the atmosphere, the color is different from blue in a portion where nitridation is satisfactorily performed and blue in a portion where nitridation is poor. This color difference can be clearly determined by visual observation. Therefore, the quality of nitriding can be easily and reliably determined from this color difference.

なお、上記表面の色は酸化膜の色であるので、性能的に悪影響を及ぼすことはない。したがって得られた無端金属ベルト4は、そのまま青色を付けた状態で製品化することができる。この場合は、表面の青色の確認により、窒化の良否判定が確実になされているを把握できるので、製品価値が高まる。   Since the surface color is the color of the oxide film, the performance is not adversely affected. Therefore, the obtained endless metal belt 4 can be commercialized with a blue color applied as it is. In this case, it is possible to ascertain whether nitriding quality is reliably determined by confirming the blue color on the surface, thereby increasing the product value.

ここで、上記実施形態においては、窒化不良箇所と窒化正常箇所との色の違いを目視によって判別するようにしたが、本発明は、この色の違いを、撮像手段により撮像した画像を画像処理して自動的に判別するようにしてもよいものである。この場合、例えば、無端金属ベルト4を回転させながらその全周を撮像手段により所定のピッチで撮像し、撮像した画像について画像処理を行って、全周について窒化の良否を判定する。なお、このとき用いる撮像手段としては、撮像した画像のデータ処理が簡単となることから、CCDカメラを用いるのが望ましい。このように色の違いを自動的に判別する場合は、省力化および生産性の向上を図ることができる。   Here, in the above-described embodiment, the color difference between the defective nitriding portion and the normal nitriding portion is discriminated visually. However, in the present invention, this color difference is image-processed using the image pickup unit. Thus, it may be automatically determined. In this case, for example, the entire circumference of the endless metal belt 4 is imaged at a predetermined pitch by the imaging means, and image processing is performed on the captured image to determine whether the nitriding is good or bad for the entire circumference. As the image pickup means used at this time, it is desirable to use a CCD camera because data processing of the picked-up image becomes simple. Thus, when automatically distinguishing between the colors, it is possible to save labor and improve productivity.

窒化部品としての無端金属ベルトを製造する場合の本発明に係る製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process based on this invention in the case of manufacturing the endless metal belt as a nitrided component. 本発明の製造工程によって得られた無端金属ベルトの表面の色状態を示す模式図である。It is a schematic diagram which shows the color state of the surface of the endless metal belt obtained by the manufacturing process of this invention. 窒化部品としての無端金属ベルトが適用される無段変速機の要部構造を示す断面図である。It is sectional drawing which shows the principal part structure of the continuously variable transmission to which the endless metal belt as a nitriding component is applied. 従来の無端金属ベルトの製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the conventional endless metal belt.

符号の説明Explanation of symbols

1 無段変速機用ベルト
2 エレメント
3 積層リング
4 無端金属ベルト
4a 窒化不良箇所
1 Belt for continuously variable transmission 2 Element 3 Laminated ring 4 Endless metal belt 4a

Claims (4)

窒化処理後、大気中で300〜400℃に加熱する酸化処理を行い、表面の色の違いから窒化の良否を判定することを特徴とする窒化部品の製造方法。   A method for producing a nitrided part, characterized in that after the nitriding treatment, an oxidation treatment is performed by heating to 300 to 400 ° C. in the atmosphere, and the quality of nitriding is determined from the difference in surface color. 窒化部品が、無段変速機用の無端金属ベルトであり、マルエージング鋼からなっていることを特徴とする請求項1に記載の窒化部品の製造方法。   The method for producing a nitrided part according to claim 1, wherein the nitrided part is an endless metal belt for a continuously variable transmission and is made of maraging steel. 窒化処理後、大気中で300〜400℃に加熱する酸化処理が施されていることを特徴とする無端金属ベルト。   An endless metal belt, which is subjected to an oxidation treatment after heating to 300 to 400 ° C. in the atmosphere after nitriding. 表面が、青色を呈していることを特徴とする請求項3に記載の無端金属ベルト。   The endless metal belt according to claim 3, wherein the surface has a blue color.
JP2007168981A 2007-06-27 2007-06-27 Method for manufacturing nitrided component, and endless metal belt Pending JP2009007612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168981A JP2009007612A (en) 2007-06-27 2007-06-27 Method for manufacturing nitrided component, and endless metal belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168981A JP2009007612A (en) 2007-06-27 2007-06-27 Method for manufacturing nitrided component, and endless metal belt

Publications (1)

Publication Number Publication Date
JP2009007612A true JP2009007612A (en) 2009-01-15

Family

ID=40322988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168981A Pending JP2009007612A (en) 2007-06-27 2007-06-27 Method for manufacturing nitrided component, and endless metal belt

Country Status (1)

Country Link
JP (1) JP2009007612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9982749B2 (en) 2012-08-31 2018-05-29 Toyota Jidosha Kabushiki Kaisha Method for manufacturing endless metal belt, endless metal belt, and belt-type continuously variable transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9982749B2 (en) 2012-08-31 2018-05-29 Toyota Jidosha Kabushiki Kaisha Method for manufacturing endless metal belt, endless metal belt, and belt-type continuously variable transmission

Similar Documents

Publication Publication Date Title
TWI626438B (en) Inspection apparatus and article manufacturing method
KR101775195B1 (en) Glass bottle inspection method and apparatus
US10338005B2 (en) Apparatus for inspecting back surface of epitaxial wafer and method of inspecting back surface of epitaxial wafer using the same
US10290113B2 (en) Surface state monitoring apparatus for metallic body and surface state monitoring method for metallic body
WO2010029932A1 (en) Visual examination apparatus
TWI550526B (en) Method of setting the check condition of the sprocket and the method of checking the sprocket
JP2009007612A (en) Method for manufacturing nitrided component, and endless metal belt
CN111435118A (en) Inspection apparatus and inspection method
JP2010117326A (en) Device and method for measuring stress
JP2011089962A (en) Apparatus, method and program for coated state inspection
JP2004125396A (en) Inspection method of drive transmission belt
CN110398463B (en) Method for inspecting nickel film irradiated with laser
JP4045248B2 (en) Inspection method for continuously variable transmission belts
CN109945823B (en) Method for detecting deformation of steel part in machining process
JP2009276108A (en) Image sensor surface inspection method
JP2005098911A (en) Tooth contact inspecting method for gear wheel, tooth contact inspecting system therefor, and control program for controlling the tooth contact inspecting system for the same
JP2015121521A (en) Method of inspecting solder ball scattered on substrate
JP2006097847A (en) Element inspection method and device for endless belt
JP2007010597A (en) Surface inspection device
JP2021020791A (en) Elevator rope inspection device and elevator rope inspection method
JP2000002670A (en) Etching inspection method for titanium alloy product and test piece for etching inspection
KR100846098B1 (en) Method of setting recipes of a defect test
JP2001242086A (en) Article testing method based on image processing and its device
CN108180846B (en) Process control method and film thickness obtaining method of organic solderability preservative film
JP2009074815A (en) Lens defect inspection device