JP2009005104A - High frequency circuit and antenna - Google Patents

High frequency circuit and antenna Download PDF

Info

Publication number
JP2009005104A
JP2009005104A JP2007164265A JP2007164265A JP2009005104A JP 2009005104 A JP2009005104 A JP 2009005104A JP 2007164265 A JP2007164265 A JP 2007164265A JP 2007164265 A JP2007164265 A JP 2007164265A JP 2009005104 A JP2009005104 A JP 2009005104A
Authority
JP
Japan
Prior art keywords
substrate
antenna
conductive plate
line
ground pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007164265A
Other languages
Japanese (ja)
Inventor
Takenao Wada
武尚 和田
Shoji Ishizaki
庄治 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2007164265A priority Critical patent/JP2009005104A/en
Publication of JP2009005104A publication Critical patent/JP2009005104A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a collinear antenna with an excellent omnidirectivity and a wideband property. <P>SOLUTION: There are provided a first substrate 10 and a second substrate 20. The first substrate 10 comprises, on the surface of a flexible insulated board 11, a feeder 14 and a plurality of antenna elements 12 to which the feeder 14 is branched and connected and the second substrate 20 comprises a ground pattern 22 all over the surface of a flexible insulated board 21. The rear side of the first substrate 10 is overlaid on the front side of the second substrate 20, the first and second substrates 10 and 20 are rolled in a tubular shape to expose the first substrate 10, a triplate line is formed by covering upper and lower faces of the feeder 12 with the ground pattern 22, and the antenna elements 12 are exposed on the outer face of the triplate line. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、トリプレート線路からなる高周波回路およびこれを利用したアンテナに関するものである。   The present invention relates to a high-frequency circuit composed of a triplate line and an antenna using the same.

無指向特性のアンテナとして、(1)軸方向に一直線状に配列したアンテナ素子にワイヤ、同軸ケーブル、プリント基板等で直列給電を行う構造(非特許文献1、2、3参照)、(2)同様の構造で並列給電を行うもの、(3)金属円筒上に間隔を設けてパッチアンテナを複数巻いて直列給電を行う構造(非特許文献4)、(4)偏波共用の構造(非特許文献5)、(5)角柱の表裏2面にパッチアンテナを配置した構造(非特許文献6)がある。   As an omnidirectional antenna, (1) a structure in which power is serially fed to an antenna element arranged in a straight line in the axial direction by a wire, a coaxial cable, a printed board, etc. (see Non-Patent Documents 1, 2, and 3), A parallel feed with the same structure, (3) A structure in which a plurality of patch antennas are wound around a metal cylinder and a series feed is performed (Non-Patent Document 4), (4) A structure for sharing polarization (Non-patent) Documents 5) and (5) have a structure (Non-patent Document 6) in which patch antennas are arranged on two front and back surfaces of a prism.

Johnson,Richard and Jasik,Henry(ed.),"Antnna Engineering Handbook",Second Edition McGraw Hill,1984,pp.14-27Johnson, Richard and Jasik, Henry (ed.), "Antnna Engineering Handbook", Second Edition McGraw Hill, 1984, pp. 14-27 Randy.Bancroft and Blaine Bateman,"An Omnidirectional Planar Microstrip Antenna",IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,VOL.52,NO.11,NOVEMBER.2004、pp3151-3153Randy.Bancroft and Blaine Bateman, "An Omnidirectional Planar Microstrip Antenna", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL.52, NO.11, NOVEMBER.2004, pp3151-3153 kin-Lu Wong et al.,"Omnidirectional Planar Dipole Array Antenna",IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,VOL.52,NO.2,FEBRUARY.2004,pp.624−628.kin-Lu Wong et al., "Omnidirectional Planar Dipole Array Antenna", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL.52, NO.2, FEBRUARY.2004, pp.624-628. N.Herscovic,"The Cylindrical Omnidirectional Patch Antenna",IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,VOL.49,NO.12,DECEMBER.2001,pp.1746−1753.N. Herscovic, "The Cylindrical Omnidirectional Patch Antenna", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL.49, NO.12, DECEMBER.2001, pp. 1746-1753. 大島 外 著、「2GHz帯偏波共用オムニアンテナ」、2003年、電子情報通信学会通信ソサエティ大会 149頁Oshima Tsuyoshi, "2 GHz Band Polarization Shared Omni Antenna", 2003, IEICE Communication Society Conference, page 149 松下 外 著、「2面型垂直偏波オムニ指向特性アンテナに対する無給電パッチの効果」、2005年、電子情報通信学会通信ソサエティ大会 85頁。Matsushita, “Effects of parasitic patches on two-plane vertical polarization omnidirectional antennas”, 2005, 85th IEICE Communication Society Conference.

ところが、(1)の構造は、その構造が簡単なため低コストで生産可能という利点があるものの、直列給電であるので、周波数特性が狭帯域となる問題がある。また(2)の構造は、並列給電であるため周波数特性が広帯域となる利点があるが、給電線路が露出するために、アンテナ素子がその給電線路と干渉し、指向特性を乱してしまうため、無指向特性を得ることができない。また(3)の構造は、給電線路を入れるスペースに余裕がないため直列給電とならざるを得ず、周波数帯域が狭帯域となる。また(4)の構造は、立体的であるため部品点数が多くなり、安価に作成することが難しく、また給電線路を入れるスペースに余裕がないため(3)と同様な問題がある。さらに(5)の構造も無指向特性を向上させるには筒の大きさを小さくせざるを得ず、給電線路を入れるスペースに余裕がないため、(3)と同様な問題がある。   However, although the structure (1) has the advantage that it can be produced at low cost because the structure is simple, there is a problem that the frequency characteristic becomes a narrow band because of the series feeding. The structure (2) has an advantage that the frequency characteristic becomes wide because of parallel feeding. However, since the feeding line is exposed, the antenna element interferes with the feeding line and disturbs the directivity. Unable to get omnidirectional characteristics. In addition, the structure (3) has no space in the feed line, so it must be a series feed, and the frequency band is narrow. In addition, the structure (4) is three-dimensional and therefore has a large number of parts, making it difficult to produce at a low cost, and there is no room for a feed line, and there is a problem similar to (3). Furthermore, the structure of (5) also has the same problem as (3) because the size of the cylinder has to be reduced in order to improve the omnidirectional characteristics, and there is no room for the feed line.

本発明の目的は、並列給電線路の構成が容易なトリプレート線路の給電線路を有する高周波回路およびこれを利用したアンテナを提供することである。   An object of the present invention is to provide a high-frequency circuit having a tri-plate line feed line with an easy configuration of a parallel feed line and an antenna using the same.

上記目的を達成するために、請求項1にかかる発明の高周波回路は、フレキシブルな絶縁基板の表面に給電線が設けられた第1基板と、フレキシブルな絶縁基板の表面に接地パターンが設けられた第2基板とを備え、前記第2基板の前記表面の上に前記第1基板の裏面を重ねて、前記第1基板が外側となるように前記第1および第2基板を筒形状に巻き、前記給電線が前記接地パターンによって上下面を覆われ、トリプレート線路が形成されるようにしたことを特徴とする。
請求項2にかかる発明は、請求項1に記載の高周波回路において、前記第1基板を前記給電線と同じ形状の第1導電板に置き換え、および/又は、前記第2基板を前記接地パターンと同じ形状の第2導電板に置き換え、前記第1基板と前記第2導電板、前記第1導電板と前記第2基板、又は前記第1導電板と前記第2導電板を、絶縁シートを介して筒形状に巻いたことを特徴とする。
請求項3にかかる発明のアンテナは、フレキシブルな絶縁基板の表面に給電線および該給電線が接続されたアンテナ素子が設けられた第1基板と、フレキシブルな絶縁基板の表面に接地パターンが設けられた第2基板とを備え、前記第2基板の前記表面の上に前記第1基板の裏面を重ねて、前記第1基板が外側となるように前記第1および第2基板を筒形状に巻き、前記給電線が前記接地パターンによって上下面を覆われてトリプレート線路が形成され、該トリプレート線路の外面に前記アンテナ素子が位置するようにしたことを特徴とする。
請求項4にかかる発明は、請求項3に記載のアンテナにおいて、前記第1基板を前記給電線および前記アンテナ素子と同じ形状の第1導電板に置き換え、および/又は、前記第2基板を前記接地パターンと同じ形状の第2導電板に置き換え、前記第1基板と前記第2導電板、前記第1導電板と前記第2基板、又は前記第1導電板と前記第2導電板を、絶縁シートを介して筒形状に巻いたことを特徴とする。
請求項5にかかる発明は、請求項3又は4に記載のアンテナにおいて、前記アンテナ素子を前記巻きの軸方向に並ぶように複数個設けたことを特徴とする。
請求項6にかかる発明は、請求項5に記載のアンテナにおいて、前記給電線を、前記複数個の前記アンテナ素子への給電が並列給電となるよう配線したことを特徴とする。
請求項7にかかる発明は、請求項3、5又は6に記載のアンテナにおいて、前記第2基板に、前記巻き付け状態で前記アンテナ素子の上面に位置する無給電パッチ素子を設けたことを特徴とする。
In order to achieve the above object, a high-frequency circuit according to a first aspect of the present invention includes a first substrate in which a feeder line is provided on the surface of a flexible insulating substrate, and a ground pattern on the surface of the flexible insulating substrate. A second substrate, and the back surface of the first substrate is overlaid on the front surface of the second substrate, and the first and second substrates are wound into a cylindrical shape so that the first substrate is outside, The feeder line is covered with the ground pattern to form a triplate line.
According to a second aspect of the present invention, in the high-frequency circuit according to the first aspect, the first substrate is replaced with a first conductive plate having the same shape as the feeder line, and / or the second substrate is replaced with the ground pattern. Replacing the second conductive plate with the same shape, the first substrate and the second conductive plate, the first conductive plate and the second substrate, or the first conductive plate and the second conductive plate via an insulating sheet It is characterized by being rolled into a cylindrical shape.
According to a third aspect of the present invention, there is provided an antenna having a first substrate provided with a feed line and an antenna element connected to the feed line on a surface of a flexible insulating substrate, and a ground pattern provided on the surface of the flexible insulating substrate. A second substrate, and the first substrate and the second substrate are wound in a cylindrical shape with the back surface of the first substrate overlaid on the front surface of the second substrate. The feeding line is covered with the ground pattern to form a triplate line, and the antenna element is located on the outer surface of the triplate line.
The invention according to claim 4 is the antenna according to claim 3, wherein the first substrate is replaced with a first conductive plate having the same shape as the feeder line and the antenna element, and / or the second substrate is replaced with the first substrate. Replace the second conductive plate with the same shape as the ground pattern, and insulate the first substrate and the second conductive plate, the first conductive plate and the second substrate, or the first conductive plate and the second conductive plate. It is characterized by being wound into a cylindrical shape via a sheet.
According to a fifth aspect of the invention, in the antenna according to the third or fourth aspect, a plurality of the antenna elements are provided so as to be aligned in the axial direction of the winding.
According to a sixth aspect of the present invention, in the antenna according to the fifth aspect, the feeding line is wired so that feeding to the plurality of antenna elements is parallel feeding.
The invention according to claim 7 is the antenna according to claim 3, 5 or 6, characterized in that a parasitic patch element positioned on the upper surface of the antenna element in the wound state is provided on the second substrate. To do.

本発明の高周波回路によれば、給電線路がトリプレート線路で形成されるため、他に悪影響を与えない給電線路を構成でき、並列給電線路も容易に構成でき、しかもその構造は筒形状であるので、狭い筒内等に配置することが可能となる。また、本発明のアンテナによれば、トリプレート線路の給電線路の外側にアンテナ素子が露出するように筒形状に構成されるが、給電線とアンテナ素子が相互干渉することはなく、指向特性に悪い影響を与えることはない。アンテナ素子を筒の軸方向に複数配置すれば、無指向特性のコリニアアンテナを形成でき、並列給電によって広帯域を実現できる。   According to the high-frequency circuit of the present invention, since the feed line is formed by a triplate line, a feed line that does not adversely affect others can be configured, a parallel feed line can be easily configured, and the structure is cylindrical. Therefore, it can be arranged in a narrow cylinder. Further, according to the antenna of the present invention, it is configured in a cylindrical shape so that the antenna element is exposed to the outside of the feeding line of the triplate line, but the feeding line and the antenna element do not interfere with each other, and directivity characteristics are improved. There is no negative impact. If a plurality of antenna elements are arranged in the axial direction of the cylinder, a omnidirectional collinear antenna can be formed, and a wide band can be realized by parallel feeding.

<第1の実施例>
図1は本発明の第1の実施例のコリニアアンテナの展開図である。10は第1基板であり、フレキシブルな絶縁性基板11の表面に4個のアンテナ素子(パッチ素子)12が縦方向に等ピッチで配置され、その各アンテナ素子12の下端中央には、そこから1個の給電端子13に至る給電線14が配線されている。この給電線14は給電端子13から各アンテナ素子12までの距離が等長となるように2段に亘って分岐配線されている。なお、本実施例では水平方向で最大利得を得るために、各アンテナ素子の励振分布が一様かつ同相となるよう設計しているが、最大利得方向を下方にチルトさせる等の垂直面内指向特性の形成を行う場合は、給電線路の線路長や分岐の分配比を平面トリプレート線路と同様な手法で調整することで、各アンテナ素子の励振分布を制御可能である。15,16,17はそれぞれ縦向に等ピッチで5個ずつ、アンテナ素子12や給電線14から離れた位置に形成された位置決め穴であり、各段は横方向に並んでいる。
<First embodiment>
FIG. 1 is a development view of a collinear antenna according to a first embodiment of the present invention. Reference numeral 10 denotes a first substrate, and four antenna elements (patch elements) 12 are arranged on the surface of the flexible insulating substrate 11 at equal pitches in the vertical direction. A power supply line 14 extending to one power supply terminal 13 is wired. The feed line 14 is branched and wired in two stages so that the distance from the feed terminal 13 to each antenna element 12 is equal. In this embodiment, in order to obtain the maximum gain in the horizontal direction, the excitation distribution of each antenna element is designed to be uniform and in phase, but the vertical in-plane direction such as tilting the maximum gain direction downward is used. When the characteristics are formed, the excitation distribution of each antenna element can be controlled by adjusting the line length of the feed line and the distribution ratio of the branches by the same method as that of the planar triplate line. Reference numerals 15, 16, and 17 are five positioning holes formed at equal pitches in the vertical direction at positions away from the antenna element 12 and the feed line 14, and the steps are arranged in the horizontal direction.

20は第2基板であり、フレキシブルな絶縁性基板21の表面全面に接地パターン22が配置されている。25,26,27は第1基板10の位置決め穴15,16,17と同様の位置決め穴である。   Reference numeral 20 denotes a second substrate, and a ground pattern 22 is disposed on the entire surface of the flexible insulating substrate 21. Reference numerals 25, 26 and 27 are positioning holes similar to the positioning holes 15, 16 and 17 of the first substrate 10.

30は第1発泡シート、40は第2発泡シートであり、いずれもフレキシブルな絶縁スペーサとして働く。発泡シート30には、アンテナ基板10の位置決め穴15,16,17と同様の位置決め穴35,36,37が形成されている。また、発泡シート40には、アンテナ基板10の位置決め穴15,16と同様の位置決め穴45,46が形成されている。   Reference numeral 30 denotes a first foam sheet and reference numeral 40 denotes a second foam sheet, both of which function as flexible insulating spacers. Positioning holes 35, 36, and 37 similar to the positioning holes 15, 16, and 17 of the antenna substrate 10 are formed in the foam sheet 30. In addition, positioning holes 45 and 46 similar to the positioning holes 15 and 16 of the antenna substrate 10 are formed in the foam sheet 40.

さて、これを組み立てるには、図2(a)に示すように、絶縁性の円柱50の上に、接地パターン22が形成された面を上面とした第2基板20、第1発泡シート30,アンテナ素子12と給電線14が形成された面を上面とした第1基板10、第2発泡シート40を、順次重ねておき、位置決め穴15,25,35,45が合致し、位置決め穴16,26,36,46が合致するように、その重合シートを円柱50の周囲に巻き付ける。   To assemble this, as shown in FIG. 2 (a), the second substrate 20, first foam sheet 30, The first substrate 10 and the second foam sheet 40 with the surface on which the antenna element 12 and the feeder line 14 are formed as the upper surface are sequentially stacked, and the positioning holes 15, 25, 35, and 45 are aligned with each other. The polymer sheet is wound around the cylinder 50 so that 26, 36, and 46 are matched.

巻き付けが終わった後は、縦方向に並ぶそれぞれの位置決め穴15〜17,25〜27、35〜37,45,46に絶縁性ビス60(合計5個)を挿入して円柱50の穴55にねじ込み、その重合シートの状態を保持する。このとき、第1および第2発泡シート30,40は、絶縁スペーサとして働く。これにより、図2(b)、図3に示すように、アンテナ素子12の横方向の幅a(図1参照)の長さがほぼ1周の長さ(図3C−C参照)を形成するよう、アンテナ素子12が、円柱50の軸方向に一直線で4個並ぶことになる。   After the winding is finished, insulating screws 60 (five in total) are inserted into the respective positioning holes 15 to 17, 25 to 27, 35 to 37, 45, and 46 arranged in the vertical direction to the holes 55 of the cylinder 50. Screw and hold the state of the polymerized sheet. At this time, the first and second foam sheets 30 and 40 function as insulating spacers. As a result, as shown in FIGS. 2B and 3, the width of the antenna element 12 in the lateral direction a (see FIG. 1) forms a length of almost one turn (see FIGS. 3C-C). Thus, four antenna elements 12 are arranged in a straight line in the axial direction of the cylinder 50.

上記巻き付けにおいて、第2基板20は、始めは給電線14の下側に位置するが、巻き付けが進み1周目を越えた2周目に入ると、その給電線14の上側に位置する。このため、その給電線14の幅b(図1参照)の部分は、アンテナ素子12よりも円柱50に近い内側において、上下両面が第2基板20の接地パターン22で挟まれたトリプレート線路(図3C−C参照)として動作する。よって、給電線14のアンテナ素子12に対する干渉が抑制されることになる。   In the winding described above, the second substrate 20 is initially positioned on the lower side of the power supply line 14, but is positioned on the upper side of the power supply line 14 when the winding proceeds and enters the second turn beyond the first turn. For this reason, the width b (see FIG. 1) of the feeder line 14 is a triplate line (both upper and lower surfaces sandwiched by the ground pattern 22 of the second substrate 20 on the inner side closer to the cylinder 50 than the antenna element 12). 3C-C). Therefore, interference with the antenna element 12 of the feeder 14 is suppressed.

また、第2基板20の接地パターン22の2周目の部分は、アンテナ素子12からみて下側に位置するため、アンテナ素子12に対しては接地として振る舞い、円筒型のコンフォーマルアンテナとほぼ同様な特性を呈することが可能となる。アンテナ素子12の幅a(図1参照)を調整することで、水平面内の無指向特性を得ることができる。   Further, since the second round portion of the ground pattern 22 of the second substrate 20 is located below the antenna element 12, it behaves as a ground for the antenna element 12, and is almost the same as a cylindrical conformal antenna. It becomes possible to exhibit various characteristics. By adjusting the width a (see FIG. 1) of the antenna element 12, omnidirectional characteristics in a horizontal plane can be obtained.

また、給電線14は、上記のようにトリプレート線路としてアンテナ中に隠れ、各アンテナ素子12に対して並列給電を行う。このため、周波数が異なっても、各アンテナ素子12には同一の条件で給電が行われるので、広帯域での動作が可能となる。   Further, the feed line 14 is hidden in the antenna as a triplate line as described above, and feeds power to each antenna element 12 in parallel. For this reason, even if the frequencies are different, since power is supplied to each antenna element 12 under the same conditions, it is possible to operate in a wide band.

<第2の実施例>
図4は本発明の第2の実施例のコリニアアンテナの展開図である。本実施例では、第1の実施例における第2基板20を、符号20Aで示す第2基板20Aに置き換え、且つ第2発泡シート40を符号40Aで示す第2発泡シート40Aに置き換えている。
<Second Embodiment>
FIG. 4 is a development view of the collinear antenna of the second embodiment of the present invention. In this embodiment, the second substrate 20 in the first embodiment is replaced with a second substrate 20A indicated by reference numeral 20A, and the second foam sheet 40 is replaced by a second foam sheet 40A indicated by reference numeral 40A.

第2基板20Aは、横方向の幅を1周分延長して位置決め穴28を追加している。また、この第2基板20Aの導体パターンは、接地パターン22aと、第1基板10のアンテナ素子12に対応する無給電パッチ素子22bとで構成している。29は導体パターンの形成されていない絶縁領域である。第2発泡シート40Aも、横方向の幅を1周分延長して位置決め穴47を追加している。   In the second substrate 20A, the lateral width is extended by one turn and a positioning hole 28 is added. The conductor pattern of the second substrate 20 </ b> A includes a ground pattern 22 a and a parasitic patch element 22 b corresponding to the antenna element 12 of the first substrate 10. Reference numeral 29 denotes an insulating region in which no conductor pattern is formed. The second foam sheet 40 </ b> A also has a positioning hole 47 by extending the lateral width by one round.

本実施例では、組み立てにおいて、図5(a)に示すように、絶縁性の円柱50の上に、接地パターン22aと導体パターン22bが形成された面を上面とした第2基板20A、第1発泡シート30、アンテナ素子12と給電線14が形成された面を上面とした第1基板10、第2発泡シート40Aを、順次重ねておき、位置決め穴15,25,35,45が合致し、位置決め穴16,26,36,46が合致するようにして、その重合シートを円柱50の周囲に巻き付ける。   In the present embodiment, in the assembly, as shown in FIG. 5A, the second substrate 20A, the first substrate 20A, the first substrate 20A having the ground pattern 22a and the conductor pattern 22b formed on the insulating cylinder 50 are formed. The first substrate 10 and the second foam sheet 40A having the foam sheet 30, the surface on which the antenna element 12 and the feeder line 14 are formed as the upper surface are sequentially stacked, and the positioning holes 15, 25, 35, 45 are matched, The superposition sheet is wound around the cylinder 50 so that the positioning holes 16, 26, 36, 46 are matched.

巻き付けが終わった後は、縦方向に並ぶそれぞれの位置決め穴15〜17,25〜28、45〜37,45〜47に絶縁性ビス(合計5個)を挿入して円柱50の穴55にねじ込み、その重合シートの状態を保持する。   After the winding is finished, insulating screws (five in total) are inserted into the positioning holes 15 to 17, 25 to 28, 45 to 37, and 45 to 47 aligned in the vertical direction and screwed into the holes 55 of the cylinder 50. The state of the polymerization sheet is maintained.

本実施例では、第1の実施例における作用効果に加えて、幅aにおける給電線14の部分についても接地パターン22aによってトリプレート線路が構成されるので、結局、給電線14の全てがトリプレート線路となり、給電線14とアンテナ素子12との干渉防止がより効果的となる。また、アンテナ素子12の上面に非接触で無給電パッチが位置するので、帯域特性がより改善される。   In the present embodiment, in addition to the operational effects of the first embodiment, the triplate line is also configured by the ground pattern 22a for the portion of the feed line 14 in the width a. Thus, the interference between the feeder 14 and the antenna element 12 is more effective. In addition, since the parasitic patch is positioned on the upper surface of the antenna element 12 in a non-contact manner, the band characteristics are further improved.

図6に本実施例のコリニアアンテナの垂直面内、水平面内の指向特性を示した。3つの周波数(2.50GHz、2.55GHz、2.60GHz)でほぼ同じ特性(広帯域特性)を示し、特に水平面内の指向特性は無指向を示している。   FIG. 6 shows the directivity characteristics in the vertical plane and the horizontal plane of the collinear antenna of this example. The three frequencies (2.50 GHz, 2.55 GHz, 2.60 GHz) exhibit substantially the same characteristics (broadband characteristics), and in particular, the directivity characteristics in the horizontal plane indicate non-directivity.

<その他の実施例>
なお、以上の第1および第2の実施例はコリニアアンテナについてのものであるが、アンテナ素子12を取り外し、給電線14のみを配置することで、筒形状のトリプレートの給電線路を構成することができる。筒の外面にアンテナ素子を軸方向に複数個並べて構成したコリニアアンテナが別構成としてある場合は、このコリニアアンテナの筒内に、上記筒形状のトリプレートの給電線路を嵌め込むことにより、その給電線路によって、複数のアンテナ素子に並列給電を行うことが可能となる。
<Other examples>
The first and second embodiments described above relate to a collinear antenna. However, by removing the antenna element 12 and arranging only the feed line 14, a cylindrical triplate feed line is configured. Can do. When a collinear antenna with a plurality of antenna elements arranged in the axial direction is arranged on the outer surface of the cylinder as a separate configuration, the feeding power of the cylindrical triplate is fitted in the cylinder of the collinear antenna to The line enables parallel feeding to a plurality of antenna elements.

また、第1基板10は、アンテナ素子12および給電線14と同じ形状の導電板に置き換え、第2基板20も接地パターン22と同じ導電板に置き換えて、発泡シート30,40によりそれら両導電板の相互間の絶縁を確保して、筒形状に巻いて、コリニアアンテナを構成してもよい。   Further, the first substrate 10 is replaced with a conductive plate having the same shape as the antenna element 12 and the feeder line 14, and the second substrate 20 is also replaced with the same conductive plate as the ground pattern 22, and both the conductive plates are formed by the foam sheets 30 and 40. A collinear antenna may be configured by securing the insulation between the two and winding them in a cylindrical shape.

本発明の第1の実施例のコリニアアンテナの展開図である。It is an expanded view of the collinear antenna of 1st Example of this invention. 図1の各アンテナ構成要素の巻き付けの説明図である。It is explanatory drawing of winding of each antenna component of FIG. 図2(b)のA−A,B−B,C−C,D−Dの断面図である。It is sectional drawing of AA of FIG.2 (b), BB, CC, DD. 本発明の第2の実施例のコリニアアンテナの展開図である。It is an expanded view of the collinear antenna of 2nd Example of this invention. 図4の各アンテナ構成要素の巻き付けの説明図である。It is explanatory drawing of winding of each antenna component of FIG. 図5(b)のコリニアアンテナの特性図である。It is a characteristic view of the collinear antenna of FIG.5 (b).

符号の説明Explanation of symbols

10:第1基板、11:絶縁基板、12:アンテナ素子、13:給電端子、14:給電線、15〜17:位置決め穴
20,20A:第2基板、21:絶縁基板、22,22a:接地パターン,22b:無給電パッチ素子、25〜28:位置決め穴、29:絶縁領域
30:第1発泡シート、35〜37:位置決め穴
40,40A:第2発泡シート、45〜47:位置決め穴
DESCRIPTION OF SYMBOLS 10: 1st board | substrate, 11: Insulating board | substrate, 12: Antenna element, 13: Feeding terminal, 14: Feeding line, 15-17: Positioning hole 20, 20A: 2nd board | substrate, 21: Insulating board | substrate, 22, 22a: Grounding Pattern, 22b: Parasitic patch element, 25-28: Positioning hole, 29: Insulating region 30: First foam sheet, 35-37: Positioning hole 40, 40A: Second foam sheet, 45-47: Positioning hole

Claims (7)

フレキシブルな絶縁基板の表面に給電線が設けられた第1基板と、フレキシブルな絶縁基板の表面に接地パターンが設けられた第2基板とを備え、前記第2基板の前記表面の上に前記第1基板の裏面を重ねて、前記第1基板が外側となるように前記第1および第2基板を筒形状に巻き、前記給電線が前記接地パターンによって上下面を覆われ、トリプレート線路が形成されるようにしたことを特徴とする高周波回路。   A first substrate having a power supply line provided on a surface of a flexible insulating substrate; and a second substrate having a ground pattern provided on the surface of the flexible insulating substrate, wherein the first substrate is provided on the surface of the second substrate. The first and second substrates are wound in a cylindrical shape so that the first substrate is on the outside, with the back surface of one substrate overlapped, and the upper and lower surfaces of the feeder line are covered with the ground pattern, forming a triplate line A high-frequency circuit characterized by being made. 請求項1に記載の高周波回路において、
前記第1基板を前記給電線と同じ形状の第1導電板に置き換え、および/又は、前記第2基板を前記接地パターンと同じ形状の第2導電板に置き換え、
前記第1基板と前記第2導電板、前記第1導電板と前記第2基板、又は前記第1導電板と前記第2導電板を、絶縁シートを介して筒形状に巻いたことを特徴とする高周波回路。
The high-frequency circuit according to claim 1,
Replacing the first substrate with a first conductive plate having the same shape as the feeder line; and / or replacing the second substrate with a second conductive plate having the same shape as the ground pattern;
The first substrate and the second conductive plate, the first conductive plate and the second substrate, or the first conductive plate and the second conductive plate are wound into a cylindrical shape via an insulating sheet, High-frequency circuit.
フレキシブルな絶縁基板の表面に給電線および該給電線が接続されたアンテナ素子が設けられた第1基板と、フレキシブルな絶縁基板の表面に接地パターンが設けられた第2基板とを備え、前記第2基板の前記表面の上に前記第1基板の裏面を重ねて、前記第1基板が外側となるように前記第1および第2基板を筒形状に巻き、前記給電線が前記接地パターンによって上下面を覆われてトリプレート線路が形成され、該トリプレート線路の外面に前記アンテナ素子が位置するようにしたことを特徴とするアンテナ。   A first substrate having a feeder line and an antenna element connected to the feeder line on the surface of a flexible insulating substrate; and a second substrate having a ground pattern provided on the surface of the flexible insulating substrate. The back surface of the first substrate is overlaid on the front surface of the two substrates, the first and second substrates are wound into a cylindrical shape so that the first substrate is on the outside, and the feeder line is An antenna, wherein a lower surface is covered to form a triplate line, and the antenna element is positioned on an outer surface of the triplate line. 請求項3に記載のアンテナにおいて、
前記第1基板を前記給電線および前記アンテナ素子と同じ形状の第1導電板に置き換え、および/又は、前記第2基板を前記接地パターンと同じ形状の第2導電板に置き換え、
前記第1基板と前記第2導電板、前記第1導電板と前記第2基板、又は前記第1導電板と前記第2導電板を、絶縁シートを介して筒形状に巻いたことを特徴とするアンテナ。
The antenna according to claim 3,
Replacing the first substrate with a first conductive plate having the same shape as the feeder line and the antenna element; and / or replacing the second substrate with a second conductive plate having the same shape as the ground pattern;
The first substrate and the second conductive plate, the first conductive plate and the second substrate, or the first conductive plate and the second conductive plate are wound into a cylindrical shape via an insulating sheet, Antenna.
請求項3又は4に記載のアンテナにおいて、
前記アンテナ素子を前記巻きの軸方向に並ぶように複数個設けたことを特徴とするアンテナ。
The antenna according to claim 3 or 4,
A plurality of antenna elements are provided so as to be arranged in the axial direction of the winding.
請求項5に記載のアンテナにおいて、
前記給電線を、前記複数個の前記アンテナ素子への給電が並列給電となるよう配線したことを特徴とするアンテナ。
The antenna according to claim 5, wherein
An antenna, wherein the feeder line is wired so that feeding to the plurality of antenna elements is parallel feeding.
請求項3、5又は6に記載のアンテナにおいて、
前記第2基板に、前記巻き付け状態で前記アンテナ素子の上面に位置する無給電パッチ素子を設けたことを特徴とするアンテナ。
The antenna according to claim 3, 5 or 6,
An antenna, wherein a parasitic patch element positioned on an upper surface of the antenna element in the wound state is provided on the second substrate.
JP2007164265A 2007-06-21 2007-06-21 High frequency circuit and antenna Withdrawn JP2009005104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164265A JP2009005104A (en) 2007-06-21 2007-06-21 High frequency circuit and antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164265A JP2009005104A (en) 2007-06-21 2007-06-21 High frequency circuit and antenna

Publications (1)

Publication Number Publication Date
JP2009005104A true JP2009005104A (en) 2009-01-08

Family

ID=40321004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164265A Withdrawn JP2009005104A (en) 2007-06-21 2007-06-21 High frequency circuit and antenna

Country Status (1)

Country Link
JP (1) JP2009005104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164327A (en) * 2009-01-13 2010-07-29 Satoshi Ebihara System for estimating three-dimensional position, and dipole array antenna
WO2020090391A1 (en) * 2018-10-31 2020-05-07 株式会社村田製作所 Wiring board, antenna module and communication device
US11489250B2 (en) 2020-03-05 2022-11-01 Denso Corporation Electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164327A (en) * 2009-01-13 2010-07-29 Satoshi Ebihara System for estimating three-dimensional position, and dipole array antenna
WO2020090391A1 (en) * 2018-10-31 2020-05-07 株式会社村田製作所 Wiring board, antenna module and communication device
CN112970146A (en) * 2018-10-31 2021-06-15 株式会社村田制作所 Wiring substrate, antenna module, and communication device
US11936096B2 (en) 2018-10-31 2024-03-19 Murata Manufacturing Co., Ltd. Wiring substrate, antenna module, and communication device
CN112970146B (en) * 2018-10-31 2024-05-24 株式会社村田制作所 Wiring board, antenna module, and communication device
US11489250B2 (en) 2020-03-05 2022-11-01 Denso Corporation Electronic device

Similar Documents

Publication Publication Date Title
US11411323B2 (en) Compact wideband dual-polarized radiating elements for base station antenna applications
Hwang et al. Quasi-Yagi antenna array with modified folded dipole driver for mmWave 5G cellular devices
JP5983760B2 (en) Array antenna
US8803757B2 (en) Patch antenna, element thereof and feeding method therefor
US9373892B2 (en) Dielectric waveguide slot antenna
US8928544B2 (en) Wideband circularly polarized hybrid dielectric resonator antenna
CN102918705B (en) The double polarization radiating element of multiband antenna
JP2008178101A (en) Dual-polarization, slot-mode antenna and associated methods
CN110380202B (en) Low-cost low-profile broadband Massive MIMO antenna unit
JP2016501460A (en) Dual-polarized current loop radiator with integrated balun.
JP2015536626A (en) Mobile communication base station antenna
CN101359777A (en) Planar broad band travelling wave beam scanning array antenna
US9263807B2 (en) Waveguide or slot radiator for wide E-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
US20230017375A1 (en) Radiating element, antenna assembly and base station antenna
CN110957569A (en) Broadband radiation unit and antenna
US8228235B2 (en) High gain antenna for microwave frequencies
JP2007166630A (en) Dual polarization antenna array with inter-element capacitive coupling plate and associated method
JP2017188850A (en) Multi-frequency common antenna assembly
JP2009005104A (en) High frequency circuit and antenna
Zhao et al. Low-profile broadband dual-polarized integrated patch subarray for X-band synthetic aperture radar payload on small satellite
US20170338553A1 (en) Self-complementary multilayer array antenna
US11563271B2 (en) Antenna array with ABFN circuitry
WO2021197400A1 (en) A patch antenna
JP2005203841A (en) Antenna apparatus
JP6062201B2 (en) Roadside antenna

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907