JP2009004436A - Reflow apparatus - Google Patents

Reflow apparatus Download PDF

Info

Publication number
JP2009004436A
JP2009004436A JP2007161423A JP2007161423A JP2009004436A JP 2009004436 A JP2009004436 A JP 2009004436A JP 2007161423 A JP2007161423 A JP 2007161423A JP 2007161423 A JP2007161423 A JP 2007161423A JP 2009004436 A JP2009004436 A JP 2009004436A
Authority
JP
Japan
Prior art keywords
temperature
reflow
heating
unit
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007161423A
Other languages
Japanese (ja)
Other versions
JP5103064B2 (en
Inventor
Takehiko Kawakami
武彦 川上
Nobuaki Tamori
信章 田森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Tamura FA System Corp
Original Assignee
Tamura Corp
Tamura FA System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp, Tamura FA System Corp filed Critical Tamura Corp
Priority to JP2007161423A priority Critical patent/JP5103064B2/en
Priority to PCT/JP2008/055989 priority patent/WO2008155939A1/en
Publication of JP2009004436A publication Critical patent/JP2009004436A/en
Application granted granted Critical
Publication of JP5103064B2 publication Critical patent/JP5103064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/10Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated heated by hot air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/12Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Furnace Details (AREA)
  • Tunnel Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To assure a temperature difference between the surface temperature of the soldering surface of a substrate and the surface temperature of the non-soldering surface of the substrate when reflow soldering is performed on one side of the surface. <P>SOLUTION: A heating section 15 and a housing section 35 are provided through a conveyance way 41. The heating section 15 heats the reflow surface W1 of an article W to be heated. The housing section 35 has an open surface 36 in close proximity to the conveyance way 41, and a closed surface 37 facing the open surface 36. Since a distance from the conveyance way 41 to the closed surface 37 of the housing section 35 is longer than that from the conveyance way 41 to a radiation panel 19, the temperature of the housing section 35 can be made lower than that of the heating section 15. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、リフロー装置に関し、詳しくは、プリント配線基板の片面にリフローはんだ付けを行うリフロー装置に関する。   The present invention relates to a reflow apparatus, and more particularly, to a reflow apparatus that performs reflow soldering on one side of a printed wiring board.

電子部品またはプリント配線基板に対して予めはんだを供給しておき、リフロー炉の中にプリント配線基板を搬送コンベヤで搬送し、はんだ付けを行うために、リフロー装置が使用されている。   A reflow apparatus is used for supplying solder to an electronic component or a printed circuit board in advance, transporting the printed circuit board into a reflow furnace by a transport conveyor, and performing soldering.

リフロー装置は、被加熱体例えばプリント配線基板を搬送する搬送コンベヤと、この搬送コンベヤによって基板が搬入されるリフロー炉本体とを備えている。リフロー炉は、例えば、搬入口から搬出口に至る搬送経路に沿って、複数のゾーンに分割されており、これらの複数のゾーンがインライン状に配列されている。複数のゾーンは、その機能によって、加熱ゾーン、冷却ゾーンなどの役割を有し、基板の表面温度を所望の温度プロファイルにしたがって制御することによって、所望のはんだ付けを行うことができる。   The reflow apparatus includes a transport conveyor for transporting an object to be heated, such as a printed wiring board, and a reflow furnace main body into which the substrate is transported by the transport conveyor. For example, the reflow furnace is divided into a plurality of zones along a transfer path from a carry-in port to a carry-out port, and the plurality of zones are arranged in-line. The plurality of zones have roles such as a heating zone and a cooling zone depending on their functions, and desired soldering can be performed by controlling the surface temperature of the substrate according to a desired temperature profile.

加熱ゾーンのそれぞれには、例えば送風機や輻射パネルなどから構成される加熱部が設けられる。例えば図8に概略的に示すように、電子部品101が搭載されたプリント配線基板などの被加熱体Wの片面にリフローはんだ付けを行う場合(以下、被加熱体Wにおいてリフローはんだ付けを行う面をリフロー面W1と適宜称する)、加熱部102はリフロー面W1に対して熱風を吹きつけたり、赤外線を照射したりすることによって被加熱体Wを加熱し、リフロー面W1上のはんだを溶融させて電極に付着させる。リフロー面W1上に実装される電子部品101は、はんだの溶融温度以上の高温にさらされることから、耐熱性の高いものが用いられる。   Each of the heating zones is provided with a heating unit including, for example, a blower or a radiation panel. For example, as schematically shown in FIG. 8, when reflow soldering is performed on one surface of a heated body W such as a printed wiring board on which the electronic component 101 is mounted (hereinafter, the surface on which the reflow soldering is performed on the heated body W). The heating unit 102 heats the heated object W by blowing hot air or irradiating infrared rays on the reflow surface W1 and melts the solder on the reflow surface W1. Adhere to the electrode. Since the electronic component 101 mounted on the reflow surface W1 is exposed to a high temperature equal to or higher than the melting temperature of the solder, one having high heat resistance is used.

ところで、このような被加熱体Wのはんだ付けを行わない面(以下、被加熱体Wにおいてリフローはんだ付けを行わない面を非リフロー面W2と称する)に、耐熱温度の低いコンデンサ、IC(Integrated Circuit)などの弱耐熱性部品が実装されている場合、リフロー面W1にリフローはんだ付けを行うと、非リフロー面W2もリフロー加熱による影響を受けて表面温度が上昇するため、弱耐熱性部品の耐熱性が損なわれるおそれがある。   By the way, a capacitor, IC (Integrated) having a low heat-resistant temperature is provided on a surface to which the object to be heated W is not soldered (hereinafter, a surface to which the object W is not reflowed is referred to as a non-reflow surface W2). When a reflow soldering is performed on the reflow surface W1 when a weak heat resistant component such as a circuit) is mounted, the surface temperature of the non-reflow surface W2 rises due to the influence of the reflow heating. Heat resistance may be impaired.

そこで、例えば下記特許文献1には、リフロー炉で基板下面を全面的に加熱して基板下面にリフローはんだ付けを行うと共に、基板上面に冷却風を供給することによって基板上面を冷却し、基板上面に実装された部品の温度上昇を抑制することが記載されている。   Therefore, for example, in Patent Document 1 below, the lower surface of the substrate is heated entirely in a reflow furnace to perform reflow soldering on the lower surface of the substrate, and the cooling air is supplied to the upper surface of the substrate to cool the upper surface of the substrate. In Japanese Patent Application Laid-Open No. H10-260260 describes that the temperature rise of components mounted on the board is suppressed.

特開2000−59020号公報JP 2000-59020 A

しかしながら、上述の特許文献1に記載のものは、給気ファンから送られる冷却風を基板に均一に供給できるよう、複数の偏向板を適切に設置する必要があるため、装置が大型化しやすく、構成が複雑となるという問題があった。   However, in the above-described Patent Document 1, it is necessary to appropriately install a plurality of deflecting plates so that the cooling air sent from the air supply fan can be uniformly supplied to the substrate. There was a problem that the configuration was complicated.

また、基板の非リフロー面を冷却することにより、リフロー面の表面温度が低下しやすくなり、はんだの接続不良を起こしやすくなるという問題もある。リフロー面では高温度を保ちつつ、非リフロー面では温度上昇を抑制するためには、リフロー面の表面温度と非リフロー面の表面温度との間に差を確保する必要がある。しかしながら、リフロー面および非リフロー面の表面温度をそれぞれ制御してこれらの温度差を確保することは困難である。   In addition, by cooling the non-reflow surface of the substrate, there is a problem that the surface temperature of the reflow surface is likely to be lowered, and poor solder connection is likely to occur. In order to suppress a temperature rise on the non-reflow surface while maintaining a high temperature on the reflow surface, it is necessary to ensure a difference between the surface temperature of the reflow surface and the surface temperature of the non-reflow surface. However, it is difficult to secure the temperature difference by controlling the surface temperatures of the reflow surface and the non-reflow surface.

したがって、この発明の目的は、簡単な構成で、基板などの被加熱体のリフロー面と非リフロー面との温度差を確保し、非リフロー面に実装された弱耐熱性部品を熱的に保護することができるリフロー装置を提供することにある。   Accordingly, an object of the present invention is to secure a temperature difference between a reflow surface and a non-reflow surface of a heated object such as a substrate with a simple configuration, and to thermally protect a weak heat-resistant component mounted on the non-reflow surface. It is in providing the reflow apparatus which can do.

上述した課題を解決するために、この発明は、搬送される被加熱体の搬送路に沿って複数のゾーンにリフロー炉が順次分割され、複数のゾーンで被加熱体の加熱または冷却を行うことによって、被加熱体の片面にはんだ付けを行うリフロー装置において、
被加熱体の加熱を行うゾーンは、
輻射パネルを有する加熱部と、
搬送路と近接する開口面と、開口面と対向する閉塞面とを有する筐体部とを備え、
加熱部と筐体部とは搬送路を介して対向して設けられ、加熱部と筐体部との間に搬送路が設けられ、
搬送路から筐体部の閉塞面までの距離が、搬送路から輻射パネルまでの距離に比してより長いことを特徴とするリフロー装置である。
In order to solve the above-described problem, the present invention is such that a reflow furnace is sequentially divided into a plurality of zones along a conveyance path of a heated object to be conveyed, and the heated object is heated or cooled in the plurality of zones. In the reflow apparatus for performing soldering on one side of the heated object,
The zone for heating the object to be heated is
A heating unit having a radiation panel;
A housing portion having an opening surface close to the conveyance path and a closing surface facing the opening surface;
The heating unit and the case unit are provided to face each other via a conveyance path, and a conveyance path is provided between the heating unit and the case unit,
The reflow apparatus is characterized in that the distance from the conveyance path to the closed surface of the casing is longer than the distance from the conveyance path to the radiation panel.

この発明では、搬送路から筐体部の閉塞面までの距離が、搬送路から輻射パネルまでの距離に比してより長いので、ゾーンの筐体部内の温度を加熱部内の温度よりも低下させることができる。   In this invention, since the distance from the conveyance path to the closed surface of the casing is longer than the distance from the conveyance path to the radiation panel, the temperature in the casing in the zone is made lower than the temperature in the heating section. be able to.

この発明では、筐体部は、筐体部内の温度を低下させるためのガスを導入するガス導入部を有することが好ましい。ゾーンの筐体部内の温度をより低下させることができるからである。   In this invention, it is preferable that a housing | casing part has a gas introduction part which introduces the gas for reducing the temperature in a housing | casing part. This is because the temperature inside the casing of the zone can be further reduced.

さらに、この発明では、加熱部と筐体部との間に、加熱部からの熱風を遮蔽するための遮蔽板が設けられることが好ましい。加熱部および筐体部の雰囲気の相互の移動を抑制することにより、ゾーンの筐体部内の温度と加熱部内の温度との差をより大きくすることができるからである。   Furthermore, in this invention, it is preferable that a shielding plate for shielding hot air from the heating unit is provided between the heating unit and the housing unit. This is because by suppressing the mutual movement of the atmosphere of the heating unit and the casing, the difference between the temperature in the casing of the zone and the temperature in the heating unit can be further increased.

この発明によれば、簡単な構成で、ゾーンの筐体部内の温度と加熱部内の温度とに差をつけることができるため、被加熱体のリフロー面の表面温度と非リフロー面の表面温度との間に差を確保することができる。したがって、基板などの被加熱体のリフロー面を高温に加熱しつつ、非リフロー面の温度上昇を抑制することができるので、非リフロー面に実装された弱耐熱性部品の耐熱限界を超えることを防止し、弱耐熱性部品を熱的に保護することができる。   According to this invention, since the temperature in the casing portion of the zone and the temperature in the heating portion can be differentiated with a simple configuration, the surface temperature of the reflow surface and the surface temperature of the non-reflow surface of the heated object The difference can be ensured between. Therefore, it is possible to suppress the temperature rise of the non-reflow surface while heating the reflow surface of the heated object such as the substrate to a high temperature, so that the heat resistance limit of the weak heat-resistant component mounted on the non-reflow surface is exceeded. It can prevent and heat-protect weak heat-resistant parts.

以下、この発明の実施形態について図面を参照しながら説明する。図1は、この発明の一実施の形態によるリフロー装置の外板を除く概略的構成を示す。プリント配線基板の一面にはんだおよび表面実装用電子部品が搭載され、他面に弱耐熱性部品が実装された被加熱体が搬送コンベヤの上に置かれ、搬入口11からリフロー装置内に搬入される。搬送コンベヤが所定速度で矢印方向(図1に向かって左から右方向)へ被加熱体を搬送し、被加熱体が搬出口12から取り出される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration excluding an outer plate of a reflow apparatus according to an embodiment of the present invention. An object to be heated, in which solder and electronic components for surface mounting are mounted on one side of the printed wiring board and weak heat-resistant components are mounted on the other side, is placed on the conveyor and is carried into the reflow apparatus from the carry-in entrance 11. The The conveyor conveys the object to be heated in the arrow direction (from left to right as viewed in FIG. 1) at a predetermined speed, and the object to be heated is taken out from the carry-out port 12.

搬入口11から搬出口12に至る搬送経路に沿って、リフロー炉が例えば6個のゾーンZ1からZ6に順次分割され、これらのゾーンZ1〜Z6がインライン状に配列されている。フラックス回収システム13aが搬入口側に設けられ、搬出口側にフラックス回収システム13bおよび13cが設けられている。入り口側から5個のゾーンZ1〜Z5が加熱ゾーンであり、出口側のゾーンZ6が冷却ゾーンである。冷却ゾーンZ6に関連して強制冷却ユニット14が設けられている。なお、ゾーン数は、一例であって、他の個数のゾーンを備えても良い。   A reflow furnace is sequentially divided into, for example, six zones Z1 to Z6 along a conveyance path from the carry-in entrance 11 to the carry-out port 12, and these zones Z1 to Z6 are arranged in-line. A flux collection system 13a is provided on the carry-in side, and flux collection systems 13b and 13c are provided on the carry-out side. Five zones Z1 to Z5 from the entrance side are heating zones, and the zone Z6 on the exit side is a cooling zone. A forced cooling unit 14 is provided in relation to the cooling zone Z6. The number of zones is an example, and other numbers of zones may be provided.

上述した複数のゾーンZ1〜Z6がリフロー時の温度プロファイルにしたがって被加熱体の温度を制御する。図2に、温度プロファイルの例の概略を示す。横軸が時間であり、縦軸が被加熱体の表面温度である。最初の区間が加熱によって温度が上昇する昇温部R1であり、次の区間が温度がほぼ一定のプリヒート(予熱)部R2であり、次の区間が本加熱部R3であり、最後の区間が冷却部R4である。   The plurality of zones Z1 to Z6 described above controls the temperature of the object to be heated according to the temperature profile during reflow. FIG. 2 shows an outline of an example of a temperature profile. The horizontal axis is time, and the vertical axis is the surface temperature of the object to be heated. The first section is the temperature raising portion R1 where the temperature rises due to heating, the next section is the preheating (preheating) portion R2 where the temperature is substantially constant, the next section is the main heating portion R3, and the last section is This is the cooling unit R4.

昇温部R1は、常温からプリヒート部R2(例えば150°C〜170°C)まで被加熱体を加熱する期間である。プリヒート部R2は、等温加熱を行い、フラックスを活性化し、電極、はんだ粉の表面の酸化膜を除去し、また、被加熱体の加熱ムラをなくすための期間である。本加熱部R3(例えばピーク温度で220°C〜240°C)は、はんだが溶融し、接合が完成する期間である。本加熱部R3では、はんだの溶融温度を超える温度まで昇温が必要とされる。本加熱部R3は、プリヒート部R2を経過していても、温度上昇のムラが存在するので、はんだの溶融温度を超える温度までの加熱が必要とされる。最後の冷却部R4は、急速にプリント配線基板を冷却し、はんだ組成を形成する期間である。   The temperature raising portion R1 is a period in which the heated object is heated from room temperature to a preheating portion R2 (for example, 150 ° C. to 170 ° C.). The preheating part R2 is a period for performing isothermal heating, activating the flux, removing the oxide film on the surface of the electrode and solder powder, and eliminating heating unevenness of the heated object. The main heating portion R3 (for example, 220 ° C. to 240 ° C. at the peak temperature) is a period in which the solder is melted and the joining is completed. In the main heating part R3, the temperature needs to be raised to a temperature exceeding the melting temperature of the solder. Even when the preheating portion R2 has passed, the main heating portion R3 needs to be heated to a temperature exceeding the melting temperature of the solder because there is uneven temperature rise. The last cooling part R4 is a period in which the printed wiring board is rapidly cooled to form a solder composition.

図2において、曲線1は、鉛フリーはんだの温度プロファイルを示す。共晶はんだの場合の温度プロファイルは、曲線2で示すものとなる。鉛フリーはんだの融点は、共晶はんだの融点より高いので、プリヒート部R2における設定温度が共晶はんだに比して高いものとされている。   In FIG. 2, curve 1 shows the temperature profile of lead-free solder. The temperature profile in the case of eutectic solder is shown by curve 2. Since the melting point of lead-free solder is higher than the melting point of eutectic solder, the set temperature in the preheating portion R2 is higher than that of eutectic solder.

このリフロー装置では、図2における昇温部R1の温度制御を、主としてゾーンZ1が受け持つ。プリヒート部R2の温度制御は、主としてゾーンZ2およびZ3が受け持つ。本加熱部R3の温度制御は、ゾーンZ4およびZ5が受け持つ。冷却部R4の温度制御は、ゾーンZ6が受け持つ。   In this reflow apparatus, the zone Z1 mainly takes charge of the temperature control of the temperature raising portion R1 in FIG. The temperature control of the preheating portion R2 is mainly handled by the zones Z2 and Z3. The zones Z4 and Z5 are responsible for temperature control of the main heating unit R3. The zone Z6 is responsible for temperature control of the cooling unit R4.

加熱ゾーンZ1〜Z5のそれぞれは、加熱部15と、筐体部35とを有する。加熱部15と、筐体部35とは搬送路を介して対向して設けられ、加熱部15と筐体部35との間に設けられた搬送路41に沿って被加熱体が通過する。加熱ゾーンZ1〜Z5のそれぞれの加熱部15は、搬送コンベヤの一方の側、例えば搬送コンベヤの下方側に設けられ、加熱ゾーンZ1〜Z5のそれぞれの筐体部35は、搬送コンベヤの他方の側、例えば搬送コンベヤの上方側に設けられる。被加熱体のリフローはんだ付けされるリフロー面が、加熱部15と対向するように搬送され、加熱部15から被加熱体のリフロー面に対して熱風が吹きつけられる。   Each of the heating zones Z <b> 1 to Z <b> 5 includes a heating unit 15 and a housing unit 35. The heating unit 15 and the housing unit 35 are provided to face each other via the conveyance path, and the heated object passes along the conveyance path 41 provided between the heating unit 15 and the housing unit 35. Each heating section 15 of the heating zones Z1 to Z5 is provided on one side of the conveyor, for example, on the lower side of the conveyor, and each housing section 35 of the heating zones Z1 to Z5 is on the other side of the conveyor. For example, it is provided in the upper side of a conveyance conveyor. The reflow surface to be heated and reflowed is conveyed so as to face the heating unit 15, and hot air is blown from the heating unit 15 to the reflow surface of the heated object.

図3および図4を参照して、加熱ゾーンZ1〜Z5の構成の一例について説明する。例えばゾーンZ5の構成が図3および図4に示されており、図4は図3の破線I−I’に沿った断面図である。加熱部15と筐体部35との対向間隙内で、リフロー面W1にはんだおよび表面実装用電子部品が搭載され、非リフロー面W2に弱耐熱性電子部品が搭載された被加熱体Wが、搬送コンベヤ41上に置かれて搬送される。搬送コンベヤ41は例えば一対のチェーンコンベヤで構成され、このチェーンコンベヤから突出された搬送ピン上に被加熱体Wが載置される。加熱部15内および筐体部35内には、雰囲気ガス例えば窒素(N2)が充満している。 An example of the configuration of the heating zones Z1 to Z5 will be described with reference to FIGS. For example, the configuration of the zone Z5 is shown in FIGS. 3 and 4, and FIG. 4 is a cross-sectional view taken along the broken line II ′ of FIG. Within a facing gap between the heating unit 15 and the housing unit 35, a heated object W in which solder and a surface mounting electronic component are mounted on the reflow surface W1 and a weak heat-resistant electronic component is mounted on the non-reflow surface W2, It is placed on the conveyor 41 and conveyed. The conveyor 41 is composed of a pair of chain conveyors, for example, and the heated object W is placed on the conveyor pins protruding from the chain conveyor. An atmosphere gas such as nitrogen (N 2 ) is filled in the heating unit 15 and the housing unit 35.

加熱部15は、主加熱源16、副加熱源17、送風機18、輻射パネル19、熱風循環ダクト20、開口部21などからなる。主加熱源16、副加熱源17は、例えば電熱ヒータで構成され、加熱部15内の雰囲気ガスを加熱する。また、主加熱源16は、輻射パネル19も加熱する。   The heating unit 15 includes a main heating source 16, a sub heating source 17, a blower 18, a radiation panel 19, a hot air circulation duct 20, an opening 21, and the like. The main heating source 16 and the sub heating source 17 are composed of, for example, an electric heater, and heat the atmospheric gas in the heating unit 15. The main heating source 16 also heats the radiation panel 19.

送風機18は、ファンと、ファンを回転駆動するモータ等から構成されている。ファンとしては、例えば、ターボファン、シロッコファンを用いることができる。   The blower 18 includes a fan and a motor that rotationally drives the fan. As the fan, for example, a turbo fan or a sirocco fan can be used.

輻射パネル19は、例えばアルミニウムからなり、送風機18からの風を通過させる多数の通風孔が形成されている。この通風孔を通じた熱風(熱せられた雰囲気ガス)は、開口部21を通過して、被加熱体Wのリフロー面W1に均一に吹きつけられる。これにより、被加熱体Wのリフロー面W1は温度ムラなく均一に加熱される。なお、赤外線を照射しても良い。   The radiant panel 19 is made of, for example, aluminum, and has a large number of ventilation holes through which air from the blower 18 passes. Hot air (heated atmospheric gas) through the ventilation holes passes through the opening 21 and is uniformly blown to the reflow surface W1 of the heated object W. Thereby, the reflow surface W1 of the to-be-heated body W is heated uniformly, without temperature irregularity. In addition, you may irradiate infrared rays.

熱風は、送風機18によって循環される。すなわち、(主加熱源16→輻射パネル19→開口部21→被加熱体W→熱風循環ダクト20→副加熱源17→熱風循環ダクト20→送風機18→主加熱源16)の経路を介して熱風が循環する。   Hot air is circulated by the blower 18. That is, hot air is passed through the path of (main heating source 16 → radiation panel 19 → opening 21 → heated body W → hot air circulation duct 20 → sub-heating source 17 → hot air circulation duct 20 → blower 18 → main heating source 16). Circulates.

加熱部15の下部に設けた孔22aおよび22bは、フラックス回収用の孔であり、図示しないが、ホースを通じて回収容器が接続されている。   The holes 22a and 22b provided in the lower part of the heating unit 15 are holes for flux collection, and although not shown, a collection container is connected through a hose.

搬送コンベヤ41を介して加熱部15の反対側には、筐体部35が設けられる。筐体部35は、搬送コンベヤと近接する開口面36から、開口面36に対向する閉塞面37に向かって閉塞され、筐体部35内部に空間を形成する。筐体部35の、例えば閉塞面37には、ガス導入部38と、温度センサ39とが設けられる。   A housing part 35 is provided on the opposite side of the heating part 15 via the transport conveyor 41. The housing part 35 is closed from the opening surface 36 close to the transport conveyor toward the closing surface 37 facing the opening surface 36 to form a space inside the housing part 35. For example, a gas introduction part 38 and a temperature sensor 39 are provided on the closing surface 37 of the housing part 35.

搬送コンベヤ41から筐体部35の閉塞面37までの距離は、搬送コンベヤ41から輻射パネル19までの距離に比してより長くなるよう構成される。これにより、筐体部35内の空間体積を加熱部14内の空間体積よりも大きくすることができるため、加熱部15から筐体部35内に波及した熱が拡散され、筐体部35内の温度を加熱部15内の温度よりも低くすることができ、温度差をつけることができる。この発明の構成と異なり、筐体部35の閉塞面37までの距離が、搬送コンベヤ41から輻射パネル19までの距離よりも短い乃至同程度の場合、筐体部35内の空間が狭いため、加熱部15からの熱がこもりやすくなってしまう。   The distance from the transport conveyor 41 to the closing surface 37 of the housing unit 35 is configured to be longer than the distance from the transport conveyor 41 to the radiation panel 19. Thereby, since the space volume in the housing part 35 can be made larger than the space volume in the heating part 14, the heat spread from the heating part 15 into the housing part 35 is diffused, and the inside of the housing part 35 is diffused. Can be made lower than the temperature in the heating section 15, and a temperature difference can be made. Unlike the configuration of the present invention, when the distance to the closing surface 37 of the housing portion 35 is shorter or the same as the distance from the transport conveyor 41 to the radiation panel 19, the space in the housing portion 35 is narrow. Heat from the heating unit 15 tends to be trapped.

ガス導入部38は、筐体部35内の温度を低下させるための雰囲気ガスを外部から導入する孔である。この雰囲気ガスは、筐体部35内の温度よりも低い常温域の雰囲気ガスで、筐体部35内に充満している雰囲気ガスに合わせて例えば窒素(N2)が用いられる。筐体部35内の温度は加熱部15からの熱風の影響で高温となるが、ガス導入部38から常温の窒素(N2)を導入することにより、筐体部35内の温度上昇を抑制することができる。したがって、筐体部35内の温度と加熱部15内の温度との差をより大きくすることができる。 The gas introduction part 38 is a hole through which an atmospheric gas for lowering the temperature in the housing part 35 is introduced from the outside. This atmospheric gas is an atmospheric gas in a room temperature range lower than the temperature in the housing part 35, and, for example, nitrogen (N 2 ) is used in accordance with the atmospheric gas filled in the housing part 35. Although the temperature in the casing 35 becomes high due to the influence of hot air from the heating section 15, the temperature rise in the casing 35 is suppressed by introducing nitrogen (N 2 ) at normal temperature from the gas introduction section 38. can do. Therefore, the difference between the temperature in the housing part 35 and the temperature in the heating part 15 can be further increased.

ガス導入部38からの窒素(N2)ガスと加熱部15からの熱風とは筐体部35内で攪拌され、筐体部35内の温度はほぼ均一となる。筐体部35内の温度は、温度検出を行う温度センサ39により検出される。詳細は後述するが、温度センサ39により検出された温度に基いて、ガス導入部38から導入される窒素(N2)の流量を調節するようにしてもよい。 Nitrogen (N 2 ) gas from the gas introduction part 38 and hot air from the heating part 15 are agitated in the casing part 35, and the temperature in the casing part 35 becomes substantially uniform. The temperature in the housing part 35 is detected by a temperature sensor 39 that performs temperature detection. Although details will be described later, the flow rate of nitrogen (N 2 ) introduced from the gas introduction unit 38 may be adjusted based on the temperature detected by the temperature sensor 39.

なお、図3に示すガス導入部38および温度センサ39の配置は一例であって、設置箇所は他の場所であっても良い。また、ガス導入部38および温度センサ39を複数設けても良い。   In addition, arrangement | positioning of the gas introduction part 38 and the temperature sensor 39 which are shown in FIG. 3 is an example, Comprising: The installation location may be another location. A plurality of gas introduction portions 38 and temperature sensors 39 may be provided.

図4に示すように、加熱部15と筐体部35との間には、加熱部15からの熱風を遮蔽するための遮蔽板40aおよび40bとが設けられる。遮蔽板40aおよび40bは、搬送コンベヤ41と互いに重ならないように設けられ、例えば筐体部35の開口面36と平行に設けられる。遮蔽板40aおよび遮蔽板40bにより、加熱部15と筐体部35との間の搬送コンベヤ41および被加熱体W以外の部分が塞がれるので、この部分の加熱部15内および筐体部35内の窒素(N2)の移動が抑制される。したがって、加熱部15内の温度と筐体部35内の温度との相互の影響が少なくなり、これらの温度差をより大きくすることができる。 As shown in FIG. 4, shielding plates 40 a and 40 b for shielding hot air from the heating unit 15 are provided between the heating unit 15 and the housing unit 35. The shielding plates 40 a and 40 b are provided so as not to overlap with the transport conveyor 41, and are provided, for example, in parallel with the opening surface 36 of the housing unit 35. Since the shielding plate 40a and the shielding plate 40b block the portions other than the transport conveyor 41 and the heated object W between the heating unit 15 and the housing unit 35, the inside of the heating unit 15 and the housing unit 35 of this part are closed. The movement of nitrogen (N 2 ) inside is suppressed. Therefore, the mutual influence of the temperature in the heating part 15 and the temperature in the housing | casing part 35 becomes small, and these temperature differences can be enlarged more.

また、図示はしないが、遮蔽板40aおよび40bを、例えばリフロー装置の外装ケースの内壁から搬送コンベヤ41に向かって、加熱部15と筐体部35との間対向間隙を遮蔽するように設けても良い。   Although not shown, the shielding plates 40a and 40b are provided so as to shield the facing gap between the heating unit 15 and the housing unit 35 from the inner wall of the outer case of the reflow device toward the transport conveyor 41, for example. Also good.

このように、この発明の一実施の形態では、簡単な構成で、加熱部15内の温度と筐体部35内の温度とに差をつけることができるため、被加熱体Wのリフロー面W1と非リフロー面W2との間に温度差を確保することができる。したがって、非リフロー面W2に実装された弱耐熱性部品を損なうことなく、リフロー面W1にリフローはんだ付けをすることができる。   As described above, according to the embodiment of the present invention, since the temperature in the heating unit 15 and the temperature in the housing unit 35 can be made different with a simple configuration, the reflow surface W1 of the object to be heated W1. And a non-reflow surface W2 can ensure a temperature difference. Therefore, the reflow soldering can be performed on the reflow surface W1 without damaging the weak heat-resistant component mounted on the non-reflow surface W2.

次に、ガス導入部38から導入される窒素(N2)の流量調節の一例について、図5を参照して説明する。図5に示すように、加熱を受け持つゾーンZ1、Z2、Z3、Z4、Z5のそれぞれの筐体部35に対してガス導入部38を介して窒素(N2)が供給される。窒素(N2)発生装置45からの窒素(N2)が、分岐部46によってメイン供給とサブ供給とに分離される。例えば超低温の液化窒素を気化させることで窒素(N2)が発生される。 Next, an example of adjusting the flow rate of nitrogen (N 2 ) introduced from the gas introduction unit 38 will be described with reference to FIG. As shown in FIG. 5, nitrogen (N 2 ) is supplied through a gas introduction part 38 to the respective housing parts 35 of the zones Z1, Z2, Z3, Z4, and Z5 that are responsible for heating. Nitrogen (N 2) nitrogen from generator 45 (N 2) is separated into the main supply and the sub-supply by a branch unit 46. For example, nitrogen (N 2 ) is generated by vaporizing ultra-low temperature liquefied nitrogen.

サブ供給経路は例えば5個に分岐され、各分岐に対して電子的制御可能なバルブV1、バルブV2、バルブV3、V4およびV5が設けられ、各ゾーンのガス導入部38に接続される。バルブV1、V2、V3、V4およびV5を切り替えることによって、各ゾーンに対する窒素(N2)の導通、遮断が制御される。なお、図示しないが、各ゾーンに対する窒素(N2)の供給路中には、レギュレータ、圧力センサー等が配されている。 For example, the sub supply path is branched into five, and a valve V1, a valve V2, a valve V3, V4, and V5 that are electronically controllable are provided for each branch, and are connected to the gas introduction unit 38 of each zone. By switching the valves V1, V2, V3, V4 and V5, the conduction and shut-off of nitrogen (N 2 ) to each zone are controlled. Although not shown, a regulator, a pressure sensor, and the like are disposed in the nitrogen (N 2 ) supply path to each zone.

ガス導入部38から導入される窒素(N2)の流量は、制御部により調整することができる。制御部は、温度センサ39より供給される筐体部35内の温度検出結果と、目標とする筐体部35内の温度(設定温度)とを比較し、導入される窒素(N2)の流量を調整する。例えば検出された温度が設定温度よりも高い場合には導入される窒素(N2)の流量を増やすように制御し、検出された温度と設定温度との差が小さくなってくると、導入される窒素(N2)の流量を減らしていくように制御する。なお、導入される窒素(N2)の流量を多くしても、被加熱体Wには積極的に吹き付けない程度の流量とされる。このような制御は例えばPID制御によって行われ、筐体部35内の温度をほぼ設定温度に保つことができる。図4では簡単のため制御部によりバルブV5を制御する例を示しているが、バルブV1、V2、V3、V4のそれぞれを制御可能な構成とすることについては言うまでもない。 The flow rate of nitrogen (N 2 ) introduced from the gas introduction unit 38 can be adjusted by the control unit. The control unit compares the temperature detection result in the casing 35 supplied from the temperature sensor 39 with the target temperature (set temperature) in the casing 35, and the introduced nitrogen (N 2 ). Adjust the flow rate. For example, when the detected temperature is higher than the set temperature, control is performed to increase the flow rate of introduced nitrogen (N 2 ), and when the difference between the detected temperature and the set temperature becomes small, the flow rate is introduced. The nitrogen (N 2 ) flow rate is controlled to decrease. It should be noted that even if the flow rate of introduced nitrogen (N 2 ) is increased, the flow rate is set so as not to be actively blown to the heated object W. Such control is performed by, for example, PID control, and the temperature in the housing portion 35 can be kept substantially at the set temperature. Although FIG. 4 shows an example in which the valve V5 is controlled by the controller for simplicity, it goes without saying that each of the valves V1, V2, V3, and V4 can be controlled.

また、図示はしないが手動の流量調整ボリュームを設けて、導入される窒素(N2)の流量を調整することができる。上述したような窒素(N2)の流量調整により、例えば、筐体部35内の温度が高いゾーン、すなわち加熱部を受け持つゾーンZ4およびゾーン5に近いゾーンほど窒素(N2)の流量が多くされる。このように、筐体部35内に外部から窒素(N2)を導入し、この流量を調整することで、筐体部35内の温度上昇を抑制し、筐体部35内部の温度をある程度一定に保つことができる。 Although not shown, a manual flow rate adjustment volume can be provided to adjust the flow rate of introduced nitrogen (N 2 ). By adjusting the flow rate of nitrogen as described above (N 2), for example, the flow rate of the temperature is high zone in the housing portion 35, i.e. nitrogen as zone closer to the zone Z4 and the zone 5 responsible for the heating unit (N 2) number Is done. In this way, nitrogen (N 2 ) is introduced from the outside into the housing part 35 and the flow rate is adjusted to suppress a temperature rise in the housing part 35 and to keep the temperature inside the housing part 35 to some extent. Can be kept constant.

図6に、この発明の一実施の形態のリフロー装置を用いて被加熱体Wにリフローはんだ付けを行ったときの、リフロー面W1および非リフロー面W2の表面温度変化の概略の一例を示す。横軸が時間であり、縦軸が温度であり、曲線3および曲線4がリフロー面W1の面内の異なる位置での表面温度の変化をそれぞれ示し、曲線5および曲線6が非リフロー面W2の面内の異なる位置での表面温度の変化をそれぞれ示している。   FIG. 6 shows an example of an outline of surface temperature changes of the reflow surface W1 and the non-reflow surface W2 when the reflow soldering is performed on the heated object W using the reflow apparatus according to the embodiment of the present invention. The horizontal axis is time, the vertical axis is temperature, curves 3 and 4 show changes in surface temperature at different positions in the surface of the reflow surface W1, respectively, and curves 5 and 6 show the non-reflow surface W2. The changes in the surface temperature at different positions in the plane are respectively shown.

図6に示すように、曲線3および曲線4と、曲線5および曲線6との間に温度差を確保することができる。特に、最も被加熱体Wの表面温度が高くなる本加熱部R3の期間においてもリフロー面W1と非リフロー面W2との間に十分な温度差を確保できるため、非リフロー面W2に実装された弱耐熱性部品を損なうことなく、リフロー面にリフローはんだづけを行うことができる。   As shown in FIG. 6, a temperature difference can be secured between the curves 3 and 4 and the curves 5 and 6. In particular, a sufficient temperature difference can be ensured between the reflow surface W1 and the non-reflow surface W2 even during the main heating part R3 in which the surface temperature of the heated object W is highest, so that the surface is mounted on the non-reflow surface W2. Reflow soldering can be performed on the reflow surface without damaging the weak heat resistant parts.

また、リフロー面W1が均一に加熱されることから、曲線3と曲線4との温度差はほとんどなく、リフロー面W1の温度ムラは小さい。同様に、非リフロー面W2が均一に冷却されることから、曲線5と曲線6との温度差はほとんどなく、非リフロー面W2の面内の温度ムラは小さい。このように、一実施の形態のリフロー装置では、リフロー面W1および非リフロー面W2の面内の表面温度をそれぞれほぼ均一に保ちつつ、リフロー面W1と非リフロー面W2との表面温度差を確保し、弱耐熱性部品を熱的に保護することができる。   Moreover, since the reflow surface W1 is heated uniformly, there is almost no temperature difference between the curve 3 and the curve 4, and the temperature nonuniformity of the reflow surface W1 is small. Similarly, since the non-reflow surface W2 is uniformly cooled, there is almost no temperature difference between the curve 5 and the curve 6, and the temperature unevenness in the surface of the non-reflow surface W2 is small. As described above, in the reflow device according to the embodiment, the surface temperature difference between the reflow surface W1 and the non-reflow surface W2 is ensured while the surface temperatures in the reflow surface W1 and the non-reflow surface W2 are kept substantially uniform. In addition, the weak heat resistant component can be thermally protected.

図7に、この発明の一実施の形態のリフロー装置、および筐体部35内にパネルを設けた比較の形態のリフロー装置における、被加熱体Wの表面温度差の一例を示す。なお、比較の形態のリフロー装置は、筐体部35内に閉塞面37とほぼ平行になるようにパネルを設けることにより、搬送コンベヤ41から筐体部35内のパネルまでの距離と、搬送コンベヤ41から加熱部15内の輻射パネル19までの距離とをほぼ等しくしたものである。図7に示す数値は、ゾーンZ5における被加熱体Wのリフロー面W1と非リフロー面W2との表面温度差(℃)をそれぞれ示し、筐体部35内に窒素(N2)を供給した場合としない場合のそれぞれの測定値である。なお、窒素(N2)の供給量は、100nl/minである。 FIG. 7 shows an example of the surface temperature difference of the heated object W in the reflow device according to the embodiment of the present invention and the reflow device according to the comparative example in which a panel is provided in the housing portion 35. In addition, the reflow apparatus of the comparative form is provided with a panel in the housing part 35 so as to be substantially parallel to the closing surface 37, so that the distance from the transport conveyor 41 to the panel in the housing part 35, and the transport conveyor The distance from 41 to the radiation panel 19 in the heating unit 15 is substantially equal. 7 indicates the surface temperature difference (° C.) between the reflow surface W1 and the non-reflow surface W2 of the heated object W in the zone Z5, and when nitrogen (N 2 ) is supplied into the casing portion 35. These are the measured values when not. Note that the supply amount of nitrogen (N 2 ) is 100 nl / min.

図7に示すように、一実施の形態のリフロー装置は、筐体部35内にパネルが無く、搬送コンベヤ41から筐体部35の閉塞面37までの間に空間が形成されるため、比較の形態のリフロー装置よりも温度差を大きくすることができる。   As shown in FIG. 7, the reflow device according to the embodiment has no panel in the housing portion 35, and a space is formed between the transport conveyor 41 and the closing surface 37 of the housing portion 35. The temperature difference can be made larger than that of the reflow apparatus of the form.

また、窒素(N2)を供給することにより、筐体部35内の温度上昇を防ぎ、リフロー面W1と非リフロー面W2との表面温度の差をより大きくすることが可能になる。 Further, by supplying nitrogen (N 2 ), it is possible to prevent a temperature rise in the casing 35 and to increase the difference in surface temperature between the reflow surface W1 and the non-reflow surface W2.

本加熱部を受け持つゾーンZ5では、例えばリフロー面W1の表面温度はピーク温度で220℃〜240℃まで加熱されるが、筐体部35内に窒素(N2)を供給した一実施の形態では、被加熱体Wの非リフロー面W2のピーク温度を、例えば約190〜210℃まで抑えることができる。非リフロー面W2に実装されるICなどの弱耐熱性部品の耐熱温度を例えば約230℃以下とすると、非リフロー面W1の表面温度と弱耐熱性部品の耐熱温度との差を確保することができるため、弱耐熱性部品を熱的に保護することができる。 In the zone Z5 that is responsible for the main heating unit, for example, the surface temperature of the reflow surface W1 is heated to 220 ° C. to 240 ° C. at the peak temperature, but in one embodiment in which nitrogen (N 2 ) is supplied into the housing unit 35. The peak temperature of the non-reflow surface W2 of the heated object W can be suppressed to about 190 to 210 ° C., for example. If the heat resistant temperature of a weak heat resistant component such as an IC mounted on the non-reflow surface W2 is about 230 ° C. or less, for example, the difference between the surface temperature of the non-reflow surface W1 and the heat resistant temperature of the weak heat resistant component may be secured. Therefore, the weak heat resistant component can be thermally protected.

以上、この発明の実施の形態について具体的に説明したが、この発明は、上述の実施の形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。例えば、雰囲気ガスとして窒素ガスの代わりに窒素ガス以外の不活性ガスまたは大気を用いても良い。また、筐体部35に設けられるガス導入部38は、少なくとも被加熱体の加熱を受け持つゾーンに設けられるが、加熱を受け持つ全てのゾーンにガス導入部38を設ける必要はなく、例えば本加熱を受け持つゾーンにのみガス導入部38を設けても良い。また、搬送路41に対して上部に加熱部15を設け、下部に筐体部35を設ける構成としても良い。   Although the embodiment of the present invention has been specifically described above, the present invention is not limited to the above-described embodiment, and various modifications based on the technical idea of the present invention are possible. For example, an inert gas other than nitrogen gas or air may be used as the atmospheric gas instead of nitrogen gas. In addition, the gas introduction part 38 provided in the housing part 35 is provided at least in a zone that is responsible for heating of the object to be heated, but it is not necessary to provide the gas introduction part 38 in all zones that are responsible for heating. You may provide the gas introduction part 38 only in the zone which it takes charge of. In addition, the heating unit 15 may be provided on the upper side of the conveyance path 41 and the housing unit 35 may be provided on the lower side.

この発明の一実施の形態によるリフロー装置の概略を示す略線図である。It is a basic diagram which shows the outline of the reflow apparatus by one embodiment of this invention. リフロー時の温度プロファイルの例を示すグラフである。It is a graph which shows the example of the temperature profile at the time of reflow. この発明の一実施の形態における1つのゾーンの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of one zone in one embodiment of this invention. この発明の一実施の形態におけるN2導入の流量調整を説明するための略線図である。It is a schematic diagram for explaining the flow rate adjustment of the N 2 introduced in the embodiment of the present invention. 図4のI−I’線に沿った断面図である。FIG. 5 is a cross-sectional view taken along line I-I ′ of FIG. 4. この発明の一実施の形態におけるリフロー時の被加熱体のリフロー面および非リフロー面の表面温度変化の例を示すグラフである。It is a graph which shows the example of the surface temperature change of the reflow surface of the to-be-heated body at the time of reflow in one embodiment of this invention, and a non-reflow surface. この発明の一実施の形態および比較の形態の1つのゾーンにおける被加熱体のリフロー面および非リフロー面の表面温度の差を示す図である。It is a figure which shows the difference of the surface temperature of the reflow surface of a to-be-heated body, and the non-reflow surface in one zone of one Embodiment of this invention, and a comparative form. リフロー炉の加熱ゾーンにおけるリフロー加熱を説明するための略線図である。It is a basic diagram for demonstrating the reflow heating in the heating zone of a reflow furnace.

符号の説明Explanation of symbols

Z1〜Z9 ゾーン
W 被加熱体
W1 リフロー面
W2 非リフロー面
11 被加熱体の搬入口
12 被加熱体の搬出口
15 加熱部
16 主加熱源
17 副加熱源
18 送風機
19 輻射パネル
20 熱風循環ダクト
21 開口部
35 筐体部
36 開口面
37 閉塞面
38 ガス導入部
39 温度センサ
40a、40b 遮蔽板
41 搬送コンベヤ
Z1 to Z9 Zone W Object to be heated W1 Reflow surface W2 Non-reflow surface 11 Carrying in port of heated object 12 Carrying out port of heated object 15 Heating unit 16 Main heating source 17 Sub heating source 18 Blower 19 Radiation panel 20 Hot air circulation duct 21 Opening portion 35 Housing portion 36 Opening surface 37 Closure surface 38 Gas introduction portion 39 Temperature sensor 40a, 40b Shield plate 41 Conveyor

Claims (5)

搬送される被加熱体の搬送路に沿って複数のゾーンにリフロー炉が順次分割され、上記複数のゾーンで上記被加熱体の加熱または冷却を行うことによって、上記被加熱体の片面にはんだ付けを行うリフロー装置において、
上記被加熱体の加熱を行う上記ゾーンは、
輻射パネルを有する加熱部と、
上記搬送路と近接する開口面と、該開口面と対向する閉塞面とを有する筐体部とを備え、
上記加熱部と上記筐体部とは上記搬送路を介して対向して設けられ、上記加熱部と上記筐体部との間に上記搬送路が設けられ、
上記搬送路から上記筐体部の上記閉塞面までの距離が、上記搬送路から上記輻射パネルまでの距離に比してより長いことを特徴とするリフロー装置。
A reflow furnace is sequentially divided into a plurality of zones along the conveyance path of the heated object to be conveyed, and soldering is performed on one surface of the heated object by heating or cooling the heated object in the plurality of zones. In the reflow device that performs
The zone for heating the object to be heated is
A heating unit having a radiation panel;
A housing portion having an opening surface close to the conveyance path and a closing surface facing the opening surface;
The heating part and the housing part are provided to face each other via the transport path, and the transport path is provided between the heating part and the housing part,
The reflow apparatus characterized in that a distance from the conveyance path to the closed surface of the casing is longer than a distance from the conveyance path to the radiation panel.
上記筐体部は、該筐体部内の温度を低下させるためのガスを導入するガス導入部を有することを特徴とする請求項1記載のリフロー装置。   The reflow apparatus according to claim 1, wherein the housing part includes a gas introduction part that introduces a gas for lowering the temperature in the housing part. 上記ガス導入部から導入される上記ガスの流量は、上記複数のゾーンごとに調整可能であることを特徴とする請求項2記載のリフロー装置。   The reflow apparatus according to claim 2, wherein the flow rate of the gas introduced from the gas introduction unit is adjustable for each of the plurality of zones. 上記筐体部内の温度を測定する温度測定部と、
上記ガス導入部から導入される上記ガスの流量を調整する制御部とを備え、
上記制御部は、上記温度測定部により測定された測定温度と、所望の設定温度との比較に基いて上記ガスの流量を調整することを特徴とする請求項2記載のリフロー装置。
A temperature measuring unit for measuring the temperature in the casing, and
A control unit for adjusting the flow rate of the gas introduced from the gas introduction unit,
The reflow apparatus according to claim 2, wherein the control unit adjusts the flow rate of the gas based on a comparison between a measured temperature measured by the temperature measuring unit and a desired set temperature.
上記加熱部と上記筐体部との間に、上記加熱部からの熱風を遮蔽するための遮蔽板が設けられることを特徴とする請求項1記載のリフロー装置。   The reflow apparatus according to claim 1, wherein a shielding plate for shielding hot air from the heating unit is provided between the heating unit and the housing unit.
JP2007161423A 2007-06-19 2007-06-19 Reflow device Active JP5103064B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007161423A JP5103064B2 (en) 2007-06-19 2007-06-19 Reflow device
PCT/JP2008/055989 WO2008155939A1 (en) 2007-06-19 2008-03-21 Reflow device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161423A JP5103064B2 (en) 2007-06-19 2007-06-19 Reflow device

Publications (2)

Publication Number Publication Date
JP2009004436A true JP2009004436A (en) 2009-01-08
JP5103064B2 JP5103064B2 (en) 2012-12-19

Family

ID=40156101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161423A Active JP5103064B2 (en) 2007-06-19 2007-06-19 Reflow device

Country Status (2)

Country Link
JP (1) JP5103064B2 (en)
WO (1) WO2008155939A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121101A (en) * 2009-12-11 2011-06-23 Senju Metal Ind Co Ltd Reflow furnace
JP2011230143A (en) * 2010-04-26 2011-11-17 Senju Metal Ind Co Ltd Reflow furnace
JP2014049746A (en) * 2013-01-10 2014-03-17 Yamato Seisakusho:Kk Heating furnace
US8791564B2 (en) 2010-02-24 2014-07-29 Toyota Jidosha Kabushiki Kaisha Method of Manufacturing a semiconductor module and device for the same
US9243845B2 (en) 2009-12-11 2016-01-26 Senju Metal Industry Co., Ltd. Reflow furnace
JP7053126B1 (en) * 2021-03-30 2022-04-12 株式会社オリジン Radiant thermometer, soldering equipment, temperature measurement method and manufacturing method of soldered products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463129B2 (en) * 2009-12-04 2014-04-09 株式会社タムラ製作所 Reflow device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170524A (en) * 1992-12-02 1994-06-21 Sony Corp Heating furnace
JPH10209627A (en) * 1997-01-20 1998-08-07 Nihon Dennetsu Keiki Co Ltd Reflow soldering device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555876Y2 (en) * 1991-05-28 1997-11-26 株式会社タムラ製作所 Air reflow device
JP2000059020A (en) * 1998-08-10 2000-02-25 Sony Corp Single-sided reflow furnace cooling device for soldering
JP2001058259A (en) * 1999-06-18 2001-03-06 Shinko Seiki Co Ltd Soldering method and soldering apparatus
JP2003318530A (en) * 2002-04-25 2003-11-07 Fuji Electric Co Ltd Reflow-soldering equipment
JP2004214553A (en) * 2003-01-08 2004-07-29 Sony Corp Reflow furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170524A (en) * 1992-12-02 1994-06-21 Sony Corp Heating furnace
JPH10209627A (en) * 1997-01-20 1998-08-07 Nihon Dennetsu Keiki Co Ltd Reflow soldering device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121101A (en) * 2009-12-11 2011-06-23 Senju Metal Ind Co Ltd Reflow furnace
US9243845B2 (en) 2009-12-11 2016-01-26 Senju Metal Industry Co., Ltd. Reflow furnace
US8791564B2 (en) 2010-02-24 2014-07-29 Toyota Jidosha Kabushiki Kaisha Method of Manufacturing a semiconductor module and device for the same
JP2011230143A (en) * 2010-04-26 2011-11-17 Senju Metal Ind Co Ltd Reflow furnace
JP2014049746A (en) * 2013-01-10 2014-03-17 Yamato Seisakusho:Kk Heating furnace
JP7053126B1 (en) * 2021-03-30 2022-04-12 株式会社オリジン Radiant thermometer, soldering equipment, temperature measurement method and manufacturing method of soldered products
WO2022210927A1 (en) * 2021-03-30 2022-10-06 株式会社オリジン Soldering device and method for manufacturing soldered product

Also Published As

Publication number Publication date
WO2008155939A1 (en) 2008-12-24
JP5103064B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5103064B2 (en) Reflow device
JP5711583B2 (en) Reflow device
US20090014503A1 (en) Reflow apparatuses and methods for reflow
JP2011119544A (en) Reflow device
JP4602536B2 (en) Reflow soldering equipment
JP6336707B2 (en) Reflow device
JPH1093232A (en) Reflow soldering equipment
CN103515204A (en) Heat treatment apparatus and heat treatment method
KR20150118034A (en) Carrying heating device
KR20150078160A (en) Reflow Soldering Machine Having Preheating Zone and Cooling Zone with Apparatus for Moving in Upward and Downward, and Operating Method Thereof
JP2008249246A (en) Hot air circulation-near infrared ray heating combination-type continuous kiln
JP2014170906A (en) Reflow system
JP3210537B2 (en) Reflow soldering method and apparatus
JP2005079466A (en) Reflow device having cooling mechanism and reflow furnace using the reflow device
US20110073637A1 (en) Reflow Air Management System and Method
JP2008246515A (en) Reflow apparatus
JP7028835B2 (en) Heating furnace and transfer heating equipment
WO2024202637A1 (en) Conveying heating apparatus
JP2555876Y2 (en) Air reflow device
WO2023188840A1 (en) Conveying heating apparatus
JPH04269895A (en) Reflow solder method for printed board
JPH10200253A (en) Relow furnace
JP2018082112A (en) Transportation heating apparatus
JP4778998B2 (en) Reflow device
JPH11298135A (en) Heating furnace for soldering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5103064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150