JP2009002710A - Light measuring instrument, and specimen identification dispensing device - Google Patents

Light measuring instrument, and specimen identification dispensing device Download PDF

Info

Publication number
JP2009002710A
JP2009002710A JP2007161927A JP2007161927A JP2009002710A JP 2009002710 A JP2009002710 A JP 2009002710A JP 2007161927 A JP2007161927 A JP 2007161927A JP 2007161927 A JP2007161927 A JP 2007161927A JP 2009002710 A JP2009002710 A JP 2009002710A
Authority
JP
Japan
Prior art keywords
sample
flow velocity
specimen
flow
dispensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007161927A
Other languages
Japanese (ja)
Other versions
JP5074833B2 (en
Inventor
Takeshi Tsukii
健 月井
Toru Takahashi
亨 高橋
Takashi Jo
傑 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2007161927A priority Critical patent/JP5074833B2/en
Publication of JP2009002710A publication Critical patent/JP2009002710A/en
Application granted granted Critical
Publication of JP5074833B2 publication Critical patent/JP5074833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light measuring instrument and a specimen identification dispensing device, capable of making a specimen dispersed into a sample liquid flowing in an inside of a flow channel flow regularly while recognizing an actual flow condition, and capable of enhancing the measurement reliability of optical information in the specimen. <P>SOLUTION: A user can recognize the actual flow condition, by providing two measuring parts 11a, 11b for measuring the optical information of a transmission light in the specimen, a flow velocity calculating part 12 for calculating a flow velocity of the specimen, a flow velocity graph generating part 13 for generating flow velocity graph information, and a flow condition determining part 14 for determining the flow condition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光計測装置及び検体識別分注装置に関する。特に、流路内を流れるサンプル液中に分散した検体を、実際のフローコンディションを認識しながら整然と流すとともに、流速値によって検体を選別することにより、検体の光情報の測定信頼性を向上させることが可能な光計測装置及び検体識別分注装置に関する。   The present invention relates to an optical measurement device and a specimen identification and dispensing device. In particular, the specimen dispersed in the sample liquid flowing in the flow path is flowed in an orderly manner while recognizing the actual flow condition, and the specimen is selected by the flow velocity value, thereby improving the measurement reliability of the optical information of the specimen. The present invention relates to an optical measurement apparatus and a specimen identification / dispensing apparatus capable of performing the above.

液体に細胞などの検体(被検微小物)を分散させた液体が毛細管内を流れるようにして、光源からの光がこの液体流に照射されることで、液体流中の検体の光情報(蛍光情報)を測定して検体を識別することが提案されている。検体が識別された後に、検体は分注部において超音波振動を加えて液滴を形成して、例えば数百ボルトの電荷を与える。そして、偏向板から数千ボルトの電圧を印加することにより、それぞれの液滴の落下位置をプラス極側とマイナス極側に分けて分注部の任意の容器(ウェル)に分注する。
山下達郎、丹羽真一郎、細胞工学 Vol.16,No.10 p1532−1541,1997
A liquid in which a specimen such as a cell (microscopic object) such as a cell is dispersed in the liquid flows in the capillary tube, and light from the light source is irradiated onto this liquid stream, so that optical information on the specimen in the liquid stream ( It has been proposed to identify specimens by measuring fluorescence information. After the specimen is identified, the specimen is subjected to ultrasonic vibrations in the dispensing unit to form droplets, giving a charge of, for example, several hundred volts. Then, by applying a voltage of several thousand volts from the deflecting plate, the drop position of each droplet is divided into a plus pole side and a minus pole side, and dispensed into an arbitrary container (well) of the dispensing unit.
Tatsuro Yamashita, Shinichiro Niwa, Cell Engineering Vol. 16, no. 10 p1532-1541, 1997

上述したような管路内に検体を分散させた液体(サンプル液)を流す場合、シースフロー技術を利用して、シール液の流れ(シース流)に包み込まれるようにサンプル液を流れ(サンプル流)をつくることにより、管路内の中心部にサンプル液を流す。このとき、レギュレータの設定圧力によりサンプル流及びシース流の圧力を制御して、管路断面での検体の流れる位置や、サンプル流の流速を一定条件となるように調整する。また、サンプル流及びシース流の圧力センサにより検出した測定パラメータをフィードバックして、レギュレータによる設定圧力を調整して、サンプル流及びシース流の圧力を制御して、サンプル流の流速を一定条件となるように調整することもある(フィードバック制御)。   When flowing the liquid (sample liquid) in which the specimen is dispersed in the conduit as described above, the sample liquid flows (sample flow) so as to be wrapped in the flow of the sealing liquid (sheath flow) using the sheath flow technique. ) To make the sample solution flow to the center of the pipe. At this time, the pressure of the sample flow and the sheath flow is controlled by the set pressure of the regulator, and the position where the specimen flows in the pipe cross section and the flow rate of the sample flow are adjusted to be constant conditions. Moreover, the measurement parameters detected by the pressure sensor of the sample flow and the sheath flow are fed back, the set pressure by the regulator is adjusted, the pressure of the sample flow and the sheath flow is controlled, and the flow rate of the sample flow becomes a constant condition. It may be adjusted as follows (feedback control).

しかしながら、従来の方法では、サンプル流及びシース流の流量及び計測パラメータから設定圧力を決定しているために、管路内を検体が流れる状態(フローコンディション)は、計測パラメータからしか判断できなかった。そのため、管路内の実際のフローコンディションを認識することができないという問題点があった。例えば、管路内に詰りや異物付着が発生した場合、同じ条件圧力設定であっても、流速が異なってしまうという問題点があった。   However, in the conventional method, since the set pressure is determined from the flow rate of the sample flow and the sheath flow and the measurement parameter, the state (flow condition) in which the specimen flows in the pipeline can be determined only from the measurement parameter. . Therefore, there is a problem that the actual flow condition in the pipe cannot be recognized. For example, when clogging or foreign matter adherence occurs in the pipeline, there is a problem that the flow velocity is different even if the same pressure condition is set.

そこで、本発明は、以上のような問題点を解決するためになされたもので、流路内を流れるサンプル液中に分散した検体を、実際のフローコンディションを認識しながら整然と流すとともに、流速値によって検体を選別することにより、検体の光情報の測定信頼性を向上させることが可能な光計測装置及び検体識別分注装置を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and the sample dispersed in the sample liquid flowing in the flow path is flowed in an orderly manner while recognizing the actual flow condition, and the flow velocity value is determined. An object of the present invention is to provide an optical measurement device and a sample identification / dispensing device that can improve the measurement reliability of optical information of a sample by selecting the sample by the above method.

上述した従来の問題点を解決すべく下記の発明を提供する。   The following invention is provided to solve the above-mentioned conventional problems.

本発明の第1の態様にかかる光計測装置は、流路内を流れるサンプル液に分散させた被測定対象である検体に対して、光を照射して、前記検体の光情報を測定する光計測装置であって、前記検体に光を照射する光照射部と、前記検体に光を照射することにより得られる前記光情報を受光する光受光部とからなる測定部と、前記測定部が複数設置され、前記検体に対して複数の前記測定部によって測定された前記光情報の測定時刻の差と、複数の前記測定部の間隔に基づいて、当該検体の流速値を算出する流速算出部と、を備えていることを特徴とする。   The optical measurement apparatus according to the first aspect of the present invention is a light that measures light information of a specimen by irradiating the specimen, which is a measurement target, dispersed in a sample liquid flowing in a flow path. A measuring device, comprising: a light irradiating unit that irradiates light to the specimen; a light receiving unit that receives the optical information obtained by irradiating the specimen with light; and a plurality of measuring units A flow rate calculation unit that is installed and calculates a flow rate value of the sample based on a difference in measurement time of the optical information measured by the plurality of measurement units with respect to the sample and an interval between the plurality of measurement units; It is characterized by providing.

本発明の第2の態様にかかる光計測装置は、本発明の第1の態様にかかる光計測装置において、前記流速算出部によって算出された前記検体の流速値を、前記サンプル液の流れ状態を判定する測定パラメータとすることを特徴とする。   The optical measurement apparatus according to the second aspect of the present invention is the optical measurement apparatus according to the first aspect of the present invention, wherein the flow rate value of the specimen calculated by the flow rate calculation unit is obtained from the flow state of the sample liquid. The measurement parameter is determined.

本発明の第3の態様にかかる光計測装置は、本発明の第1または2の態様にかかる光計測装置において前記流速算出部によって算出された前記検体の流速値を、算出された順に並べた時系列の流速グラフ情報を生成するとともに、表示部に生成した前記流速グラフ情報を出力する流速グラフ生成部を備えていることを特徴とする。   The optical measurement device according to the third aspect of the present invention arranges the flow velocity values of the specimen calculated by the flow velocity calculation unit in the optical measurement device according to the first or second aspect of the present invention in the order calculated. A flow rate graph generation unit that generates time-series flow rate graph information and outputs the generated flow rate graph information on a display unit is provided.

本発明の第4の態様にかかる光計測装置は、本発明の第2また3の態様にかかる光計測装置において、前記流速グラフ情報、または、前記検体の流速値を含む前記測定パラメータに基づいて、前記流路内の前記検体の流れ状態を判定し、判定した結果情報を、前記表示部を含む出力部に出力する流れ状態判定部を備えていることを特徴とする。   An optical measurement apparatus according to a fourth aspect of the present invention is the optical measurement apparatus according to the second or third aspect of the present invention, based on the flow velocity graph information or the measurement parameter including the flow velocity value of the specimen. And a flow state determination unit that determines a flow state of the sample in the flow path and outputs the determined result information to an output unit including the display unit.

本発明の第5の態様にかかる光計測装置は、本発明の第3の態様にかかる光計測装置において、流速グラフ生成部は、全ての前記流速グラフ情報の中から、所望のグラフ領域範囲を指定するとともに、指定された前記グラフ領域範囲内の前記検体の流速値を取得する領域指定部を備え、前記領域指定部によって取得された前記検体の流速値を、前記流速算出部によって算出された順に並べた時系列の前記流速グラフ情報を生成するとともに、表示部に生成した前記流速グラフ情報を出力することを特徴とする。   The optical measurement device according to the fifth aspect of the present invention is the optical measurement device according to the third aspect of the present invention, wherein the flow velocity graph generator generates a desired graph region range from all the flow velocity graph information. The flow rate value of the sample acquired by the region specifying unit is calculated by the flow rate calculating unit, the region specifying unit acquiring the flow rate value of the sample within the specified graph region range The flow rate graph information in time series arranged in order is generated, and the generated flow rate graph information is output to a display unit.

本発明の第1の態様にかかる検体識別分注装置は、流路内を流れるサンプル液に分散させた被測定対象である検体の中から分取対象となる目的検体を分取する検体識別分注装置であって、本発明の第1から5のいずれか1つの態様にかかる光計測装置と、前記光計測装置によって計測された前記測定パラメータに基づいて識別された前記検体を、ノズルを介して分注対象部位に分注する分注部と、を備えていることを特徴とする。   The sample identification and dispensing apparatus according to the first aspect of the present invention is a sample identification and separation unit for collecting a target sample to be sampled from a sample to be measured dispersed in a sample liquid flowing in a flow path. An optical measurement apparatus according to any one of the first to fifth aspects of the present invention, and the specimen identified based on the measurement parameter measured by the optical measurement apparatus, through a nozzle And a dispensing unit that dispenses into a portion to be dispensed.

本発明の第2の態様にかかる検体識別分注装置は、本発明の第1の態様にかかる検体識別分注装置において、前記光計測装置の領域指定部によって指定された前記グラフ領域範囲内の前記流速グラフ情報に対応する前記検体を前記目的検体として分取することを特徴とする。   The sample identification / dispensing device according to the second aspect of the present invention is the sample identification / dispensing device according to the first aspect of the present invention, wherein the sample identification / dispensing device is within the graph region range designated by the region designation unit of the optical measurement device. The sample corresponding to the flow rate graph information is sorted as the target sample.

本発明の第3の態様にかかる検体識別分注装置は、本発明の第1または2の態様にかかる検体識別分注装置において、前記光計測装置の領域指定部によって指定された前記グラフ領域範囲内の前記流速グラフ情報に対応する前記検体を前記目的検体として分取することに際し、計測された前記目的検体の流速が変化しても、当該目的検体が計測された流速に関連付けられた関係に基づいて、分注するための時間を算出することによって、当該目的検体を流路のノズル先端から、前記分注対象部位に分注できることを特徴とする。   The sample identification and dispensing apparatus according to the third aspect of the present invention is the sample identification and dispensing apparatus according to the first or second aspect of the present invention, wherein the graph region range designated by the region designation unit of the optical measurement device. When the sample corresponding to the flow rate graph information in the sample is collected as the target sample, even if the measured flow rate of the target sample is changed, the target sample has a relationship associated with the measured flow rate. On the basis of this, by calculating the time for dispensing, the target specimen can be dispensed from the nozzle tip of the flow channel to the dispensing target site.

本発明の第4の態様にかかる検体識別分注装置は、本発明の第3の態様にかかる検体識別分注装置において、前記測定対象物である検体が計測された位置の流速よりも、遅い流速を経過してから、流路のノズル先端から、前記分注対象部位に一個ないし、複数個の計測された対象物を分注できることを特徴とする
本発明の第5の態様にかかる検体識別分注装置は、本発明の第4の態様にかかる検体識別分注装置において前記測定対象物である検体が計測・計算された流速に基づいて算出される分注するための時間をもって、流路のノズル先端と前記分注対象部位の位置関係を切り替えることによって、前記計測対象物が、前記分注対象部位に分注されることを特徴とする。
The sample identification and dispensing apparatus according to the fourth aspect of the present invention is slower than the flow velocity at the position where the sample as the measurement object is measured in the sample identification and dispensing apparatus according to the third aspect of the present invention. The specimen identification according to the fifth aspect of the present invention is characterized in that one or a plurality of measured objects can be dispensed from the nozzle tip of the flow path to the dispensing object site after the passage of the flow velocity. In the sample identification and dispensing device according to the fourth aspect of the present invention, the dispensing device has a time for dispensing that is calculated based on the flow rate measured and calculated by the sample that is the measurement object. The measurement object is dispensed into the dispensing target site by switching the positional relationship between the tip of the nozzle and the dispensing target site.

本発明の光計測装置及び検体識別分注装置によれば、流路内を流れる検体個々の流速を測定パラメータとすることで、実際のフローコンディションを認識することができる。即ち、管路に詰り、異物付着等の異常が発生していないかを確認することができる。例えば、ディスプレイに、検体個々の流速を、計測時刻に対して時系列にグラフで表示したり、その他の計測パラメータを表示したりしてフローコンディションをユーザに認識させることができる。また、異常が発生したときは、異常状態をディスプレイに表示したり、音声出力したりして、ユーザに異常を短時間に認識させるとともに、正常状態への回復作業時間を短縮させることができる。   According to the optical measurement apparatus and the specimen identification and dispensing apparatus of the present invention, the actual flow condition can be recognized by using the flow velocity of each specimen flowing in the flow channel as a measurement parameter. In other words, it is possible to check whether there is an abnormality such as clogging of the pipe line and adhesion of foreign matter. For example, the flow condition of each specimen can be displayed on the display as a graph in time series with respect to the measurement time, or other measurement parameters can be displayed to allow the user to recognize the flow condition. In addition, when an abnormality occurs, the abnormal state can be displayed on the display or output by voice so that the user can recognize the abnormality in a short time and the time for recovery to the normal state can be shortened.

また、フローコンディションをユーザに認識させることにより流速の安定させることにより、ばらつきのない光情報を測定することができる。従って、精度良く分注作業を実行することができる。   Further, by making the user recognize the flow condition and stabilizing the flow velocity, it is possible to measure optical information without variation. Therefore, the dispensing operation can be executed with high accuracy.

また、流路内の位置によって光の照射密度が異なる為、流速のばらつきのない検体を選別して分注しすることは、分注された対象物のバラツキを抑える他、再度、光情報を測定することにより、ばらつきのない光情報を測定することができる。従って、精度良く分注作業を実行することができるとともに、効率よく分注作業を実行することができる。   In addition, since the light irradiation density varies depending on the position in the flow path, selecting and dispensing specimens with no variation in flow velocity can reduce the dispersion of the dispensed objects, and the optical information can be used again. By measuring, optical information without variation can be measured. Therefore, the dispensing operation can be performed with high accuracy, and the dispensing operation can be performed efficiently.

この発明の一実施態様を、図面を参照しながら説明する。なお、以下に説明する実施態様は説明のためのものであり、本発明の範囲を制限するものではない。従って、当業者であればこれらの各要素もしくは全要素をこれと同等なもので置換した実施態様を採用することが可能であるが、これらの実施態様も本発明の範囲に含まれる。   An embodiment of the present invention will be described with reference to the drawings. In addition, the embodiment described below is for explanation, and does not limit the scope of the present invention. Accordingly, those skilled in the art can employ embodiments in which each or all of these elements are replaced by equivalents thereof, and these embodiments are also included in the scope of the present invention.

図1は、本発明の光計測装置の好ましい実施形態を示す斜視図である。   FIG. 1 is a perspective view showing a preferred embodiment of the optical measuring device of the present invention.

図1に示すように、光計測装置10は、検体の透過光の光情報を測定する2つの測定部11a、11bと、検体の流速を算出する流速算出部12と、流速グラフ情報を生成する流速グラフ生成部13と、フローコンディションを判定する流れ状態判定部14を備えている。検体S、SRは被検微小物あるいはサンプルともいい、サンプル液30内に複数の検体S、SRが分散されている。また、サンプル液30の流れをサンプル流50と呼び、サンプル流50を包み込むような形のシース液31の流れをシース流55と呼ぶ。ここで、検体Sは、分注する対象となる目的検体であり、検体SRは、廃棄する対象となる非目的検体である。   As shown in FIG. 1, the optical measurement device 10 generates two measurement units 11a and 11b that measure optical information of light transmitted through a specimen, a flow velocity calculation unit 12 that calculates a flow velocity of the specimen, and flow velocity graph information. A flow rate graph generation unit 13 and a flow state determination unit 14 for determining a flow condition are provided. The specimens S and SR are also called test minute objects or samples, and a plurality of specimens S and SR are dispersed in the sample liquid 30. The flow of the sample liquid 30 is called a sample flow 50, and the flow of the sheath liquid 31 that wraps around the sample flow 50 is called a sheath flow 55. Here, the sample S is a target sample to be dispensed, and the sample SR is a non-target sample to be discarded.

測定部11aは、レーザ(光源)113aと、照射光ファイバ112aと、透過光受光ファイバ111a、及び光受光素子(PD)114aとを備えている。測定部11bは、レーザ113bと、照射光ファイバ112bと、透過光受光ファイバ111b、及び光受光素子(PD)114bとを備えている。   The measuring unit 11a includes a laser (light source) 113a, an irradiation optical fiber 112a, a transmitted light receiving fiber 111a, and a light receiving element (PD) 114a. The measuring unit 11b includes a laser 113b, an irradiation optical fiber 112b, a transmitted light receiving fiber 111b, and a light receiving element (PD) 114b.

測定部11aは、レーザ113aから照射された励起光を、照射光ファイバ112a介して、サンプル流50の中を通過する検体S、SRに対して照射して、透過光を受光する受光ファイバ111aを介してPD114aにより受光する。PD114aで受光した測定時刻情報を流速算出部12へ送信する。同様に、測定部11aと所定間隔H、流路方向(Z方向)に離れた測定部11bにおいても、サンプル流50の中を通過する検体S、SRに対する透過光をPD114dにより受光し、受光した測定時刻情報を流速算出部12へ送信する。従って、同一の検体S、SRに対して測定部11a及び測定部11bにおいて測定した2つの測定時刻情報が、流速算出部12へ送信される。なお、所定間隔Hは特に限定されないが、図1の実施形態では光ファイバの3本分の直径である750μm程度とした。   The measurement unit 11a irradiates the sample S and SR passing through the sample flow 50 with the excitation light irradiated from the laser 113a via the irradiation optical fiber 112a and receives the light receiving fiber 111a that receives the transmitted light. And received by the PD 114a. The measurement time information received by the PD 114a is transmitted to the flow velocity calculation unit 12. Similarly, in the measurement unit 11b that is separated from the measurement unit 11a by a predetermined distance H and in the flow channel direction (Z direction), the transmitted light with respect to the specimens S and SR passing through the sample flow 50 is received by the PD 114d and received. The measurement time information is transmitted to the flow velocity calculation unit 12. Accordingly, two pieces of measurement time information measured by the measurement unit 11 a and the measurement unit 11 b for the same specimens S and SR are transmitted to the flow velocity calculation unit 12. The predetermined interval H is not particularly limited, but in the embodiment of FIG. 1, it is about 750 μm, which is the diameter of three optical fibers.

サンプル流50は、レギュレータ42の設定圧力により制御されるとともに、圧力センサ44により、圧力が測定される。圧力センサ44により測定された圧力は、測定パラメータとして、フローコンディションを判定するために使用されたり、サンプル流50の圧力のフィードバック制御に使用されたりする。   The sample flow 50 is controlled by the set pressure of the regulator 42, and the pressure is measured by the pressure sensor 44. The pressure measured by the pressure sensor 44 is used as a measurement parameter for determining the flow condition or for feedback control of the pressure of the sample flow 50.

また、シース流55は、レギュレータ41の設定圧力により制御されるとともに、圧力センサ43により、圧力が測定される。圧力センサ43により測定された圧力は、測定パラメータとして、フローコンディションを判定するために使用されたり、シース流55の圧力のフィードバック制御に使用されたりする。   The sheath flow 55 is controlled by the set pressure of the regulator 41, and the pressure is measured by the pressure sensor 43. The pressure measured by the pressure sensor 43 is used as a measurement parameter for determining the flow condition or used for feedback control of the pressure of the sheath flow 55.

また、図1の測定部11aは、側方受光ファイバ26を介して、検体S、SRの蛍光情報や側方散乱光情報をフォトマル(PMT)25により受光する。また、測定部11bは、側方受光ファイバ27を介して、検体S、SRの蛍光情報や側方散乱光情報をPMT21,22,23,24により受光する。PMT21,22,23,24,25において受光した光情報は、検体S、SRを識別するために利用させる。   In addition, the measurement unit 11 a in FIG. 1 receives the fluorescence information and the side scattered light information of the specimens S and SR by the photomultiplier (PMT) 25 through the side light receiving fiber 26. Further, the measurement unit 11 b receives the fluorescence information and the side scattered light information of the specimens S and SR by the PMTs 21, 22, 23, and 24 via the side light receiving fiber 27. The optical information received by the PMTs 21, 22, 23, 24, and 25 is used to identify the specimens S and SR.

図1の流速算出部12は、同一の検体S、SRに対して測定部11a及び測定部11bにおいて測定した2つの測定時刻情報と、測定部11aと測定部11bとの間隔Hとに基づいて、検体S、SRの流速値を算出する。   The flow velocity calculation unit 12 in FIG. 1 is based on two pieces of measurement time information measured by the measurement unit 11a and the measurement unit 11b for the same specimens S and SR, and an interval H between the measurement unit 11a and the measurement unit 11b. The flow velocity values of the specimens S and SR are calculated.

図1の流速グラフ生成部13は、流速算出部12において算出した検体S、SRの流速値を、算出した時刻順に並べた流速グラフ情報を生成し、生成した流速グラフ情報を表示部15へ出力して、流速グラフを表示させる。図2は、流速グラフの一例を示した図である。図2に示すように縦軸に流速を、横軸に検体S、SRの順番をとり、サンプル流50の中の検体S、SRの流速状態を表示部15に表示して、ユーザに認識させる。   The flow velocity graph generation unit 13 in FIG. 1 generates flow velocity graph information in which the flow velocity values of the specimens S and SR calculated by the flow velocity calculation unit 12 are arranged in the calculated time order, and outputs the generated flow velocity graph information to the display unit 15. To display a flow velocity graph. FIG. 2 is a diagram showing an example of a flow velocity graph. As shown in FIG. 2, the vertical axis indicates the flow velocity, the horizontal axis indicates the order of the specimens S and SR, and the flow velocity state of the specimens S and SR in the sample flow 50 is displayed on the display unit 15 to allow the user to recognize. .

また、流速グラフ生成部13は、表示部15に表示された流速グラフの中の所望のグラフ領域範囲をユーザに、入力部(図示せず)を介して指定させ、指定させたグラフ領域範囲の流速値を取得する領域指定部300を備えており、指定された領域範囲の流速値を算出した時刻順に再度並べた流速グラフ情報を生成し、生成した流速グラフ情報を表示部15へ出力して、流速グラフを表示させる。   Further, the flow velocity graph generation unit 13 causes the user to specify a desired graph region range in the flow velocity graph displayed on the display unit 15 via an input unit (not shown), and the specified graph region range. An area designating unit 300 for obtaining a flow velocity value is provided, and flow velocity graph information is generated by rearranging the flow velocity values in the designated region range again in the order of time calculated, and the generated flow velocity graph information is output to the display unit 15. Display the flow rate graph.

図3は、流速グラフ情報の領域範囲指定の一例を示した図である。図3(a)は、流速測定結果を示した図であり、図3(b)は蛍光測定結果を示した図である。図3(a)に示すように、図2に示した流速グラフの中のグラフ領域範囲400を指定した結果、指定された範囲の検体は流速値の安定した流速グラフとなった。即ち、流速の変動係数Cvが6.7%から0.9%に下がった。また、図3(b)に示すように、指定された範囲の検体から測定された蛍光情報のピークの頻度も、38.2%から34.0%に変動係数Cvが下がり、ばらつきが低減する結果となった。   FIG. 3 is a diagram showing an example of area range designation of the flow velocity graph information. FIG. 3A is a diagram showing the flow rate measurement result, and FIG. 3B is a diagram showing the fluorescence measurement result. As shown in FIG. 3A, as a result of designating the graph region range 400 in the flow velocity graph shown in FIG. 2, the specimen in the designated range became a flow velocity graph with a stable flow velocity value. That is, the flow rate variation coefficient Cv decreased from 6.7% to 0.9%. In addition, as shown in FIG. 3B, the variation coefficient Cv of the peak frequency of the fluorescence information measured from the specimen in the specified range is also decreased from 38.2% to 34.0%, and the variation is reduced. As a result.

図1の流れ状態判定部14は、流速グラフ生成部13によって生成された流速グラフ情報、測定パラメータ(流速算出部12によって算出された流速値、圧力センサ43,44により測定されたサンプル流50及びシース流55の圧力等)、各種設定値等を解析して、フローコンディションを判定し、判定した結果を表示部15へ出力して、ユーザにフローコンディションを認識させる。   The flow state determination unit 14 in FIG. 1 includes flow rate graph information generated by the flow rate graph generation unit 13, measurement parameters (flow rate values calculated by the flow rate calculation unit 12, sample flows 50 measured by the pressure sensors 43 and 44, and The pressure of the sheath flow 55, etc.), various set values, etc. are analyzed to determine the flow condition, and the determined result is output to the display unit 15 to allow the user to recognize the flow condition.

上述した本発明の実施形態の光計測装置10では、検体S、SRの流速を算出し、算出した流速を測定パラメータとすることで、実際のフローコンディションを、ユーザが認識することができる。例えば、ディスプレイに、検体個々の流速を、計測時刻に対して時系列にグラフで表示したり、その他の計測パラメータを表示したりしてフローコンディションをユーザに認識させることができる。また、異常が発生したときは、異常状態をディスプレイに表示したり、音声出力したりして、ユーザに異常を短時間に認識させるとともに、正常状態への回復作業時間を短縮させることができる。   In the optical measurement device 10 according to the embodiment of the present invention described above, the user can recognize the actual flow condition by calculating the flow velocity of the specimens S and SR and using the calculated flow velocity as a measurement parameter. For example, the flow condition of each specimen can be displayed on the display as a graph in time series with respect to the measurement time, or other measurement parameters can be displayed to allow the user to recognize the flow condition. In addition, when an abnormality occurs, the abnormal state can be displayed on the display or output by voice so that the user can recognize the abnormality in a short time and the time for recovery to the normal state can be shortened.

次に、光計測装置10を使用した検体識別分注装置の一例を説明する。図4は、光計測装置10を使用した、本発明の検体識別分注装置の好ましい実施形態を示す斜視図である。   Next, an example of the sample identification and dispensing apparatus using the optical measurement device 10 will be described. FIG. 4 is a perspective view showing a preferred embodiment of the specimen identifying and dispensing apparatus of the present invention using the optical measuring device 10.

図4に示すように、検体識別分注装置1000は、光計測装置10と、検体の分注部80とを備えている。上述したように光計測装置10においては、検体S、SRの光情報を測定して、検体S、SRを識別するとともに、検体S、SRの流速値を算出し、フローコンディションを判定する。   As shown in FIG. 4, the sample identification and dispensing device 1000 includes an optical measurement device 10 and a sample dispensing unit 80. As described above, the optical measurement device 10 measures the optical information of the samples S and SR, identifies the samples S and SR, calculates the flow velocity values of the samples S and SR, and determines the flow condition.

分注部80は、光計測装置10によって識別された複数の検体Sを、培養プレート(以下、プレートという)82の任意の分注対象位置にあるウェル(容器の一例)Wに対して、ノズル70を介して注入したり、廃棄する検体SRを廃液槽84へ、ノズル70を介して廃棄したりする。ここで、プレート200は、複数のウェルWを有しており、複数のウェルWはX軸方向とY軸方向に沿って、所定のピッチでマトリックス状に配列されている。このピッチ間隔は、ノズル70の先端形状に依存するもので、ノズル70の先端がウェルWに挿入された際、ウェルW内からあふれたサンプル液が隣のウェルWに入らない程度であれば良い。つまり、ウェルWが深ければ、ピッチ間隔は狭くても良いが、ウェルWが浅ければ、ピッチ間隔を出来るだけ広くする。なお、ウェルWの直径は、ノズル先端70の外径の約2倍程度とすることにより、ノズル70の先端を挿入しやすいという利点がある。   The dispensing unit 80 nozzles a plurality of specimens S identified by the optical measuring device 10 with respect to a well (an example of a container) W at an arbitrary dispensing target position of a culture plate (hereinafter referred to as a plate) 82. The sample SR to be injected is discarded via the nozzle 70, or the sample SR to be discarded is discarded to the waste liquid tank 84 via the nozzle 70. Here, the plate 200 has a plurality of wells W, and the plurality of wells W are arranged in a matrix at a predetermined pitch along the X-axis direction and the Y-axis direction. The pitch interval depends on the shape of the tip of the nozzle 70 and may be such that the sample liquid overflowing from the well W does not enter the adjacent well W when the tip of the nozzle 70 is inserted into the well W. . That is, if the well W is deep, the pitch interval may be narrow, but if the well W is shallow, the pitch interval is made as wide as possible. The diameter of the well W is approximately twice the outer diameter of the nozzle tip 70, so that there is an advantage that the tip of the nozzle 70 can be easily inserted.

また、光計測装置10において算出した流速値に基づいて、ノズル70の先端部までに検体S、SRが到達する時間(到達時間)を算出し、算出した到達時間に基づいて、分注部80及びノズル70の動作制御をして、分注処理を実行する。   In addition, based on the flow velocity value calculated in the optical measuring device 10, the time (arrival time) for the samples S and SR to reach the tip of the nozzle 70 is calculated, and on the basis of the calculated arrival time, the dispensing unit 80 is calculated. Then, the operation of the nozzle 70 is controlled to execute the dispensing process.

これにより、フローコンディションをユーザに認識させることにより流速の安定させることにより、ばらつきのない光情報を測定することができる。従って、精度良く分注作業を実行することができる。   Thereby, the light information without a dispersion | variation can be measured by making a user recognize a flow condition and stabilizing a flow velocity. Therefore, the dispensing operation can be executed with high accuracy.

また、光計測装置10の領域指定部300によって選別された、流速の安定した検体S、SRを分注し、再度、光計測装置10にて光情報を測定することにより、ばらつきのない光情報を測定することができる。従って、精度良く分注作業を実行することができるとともに、効率よく分注作業を実行することができる。   In addition, by dispensing the specimens S and SR with a stable flow velocity selected by the region designating unit 300 of the optical measurement device 10 and measuring the optical information again with the optical measurement device 10, there is no variation in optical information. Can be measured. Therefore, the dispensing operation can be performed with high accuracy, and the dispensing operation can be performed efficiently.

ところで、本発明は、上記実施形態に限定されず種々の変形例を採用できる。   By the way, this invention is not limited to the said embodiment, A various modified example is employable.

例えば、図1において、音声出力部やランプ等を更に備えることにより、フローコンディションの異常を判定したとき、ユーザに異常を素早く認識させることができる。また、異常状態の回復作業を、ユーザに実行させることができる。   For example, in FIG. 1, by further providing an audio output unit, a lamp, and the like, the user can be made to quickly recognize the abnormality when the abnormality of the flow condition is determined. In addition, the user can be caused to perform an abnormal state recovery operation.

また、フローコンディションをユーザに認識させることにより、重大な異常の発生を回避することもできる。   In addition, by causing the user to recognize the flow condition, it is possible to avoid occurrence of a serious abnormality.

また、分注部80は、プレートであるが、プレートに限らず、チューブ、ディッシュ等であっても良い。   The dispensing unit 80 is a plate, but is not limited to a plate, and may be a tube, a dish, or the like.

本発明では、励起光は測定光あるいは照射光とも言うことができる。   In the present invention, the excitation light can also be referred to as measurement light or irradiation light.

本発明の光計測装置は、遺伝子、免疫系、タンパク質、アミノ酸、糖類の生体高分子に関する検査、解析、分析が要求される分野、例えば工学分野、食品、農産、水産加工等の農学全般、薬学分野、衛生、保健、免疫、疫病、遺伝等の医学分野、化学もしくは生物学等の理学分野等、あらゆる分野に適用できる。   The optical measuring device of the present invention is used in fields requiring examination, analysis and analysis of biopolymers of genes, immune systems, proteins, amino acids, and sugars, such as engineering, food, agriculture, fishery processing, etc. It can be applied to all fields such as fields, hygiene, health, immunity, plague, genetic fields such as heredity, and science fields such as chemistry or biology.

本発明の光計測装置の好ましい実施形態を示す斜視図である。It is a perspective view which shows preferable embodiment of the optical measuring device of this invention. 流速グラフの一例を示した図である。It is the figure which showed an example of the flow velocity graph. 流速グラフ情報の領域範囲指定の一例を示した図である。It is the figure which showed an example of area | region range specification of the flow velocity graph information. 光計測装置10を使用した、本発明の検体識別分注装置の好ましい実施形態を示す斜視図である。It is a perspective view which shows preferable embodiment of the sample identification dispensing apparatus of this invention using the optical measuring device.

符号の説明Explanation of symbols

10 光計測装置
11a、11b 測定部
12 流速算出部
13 流速グラフ生成部
14 流れ状態判定部
15 表示部
70 ノズル
80 分注部
300 領域指定部
1000 検体識別分注装置
S 検体(サンプル)
W ウェル

DESCRIPTION OF SYMBOLS 10 Optical measuring device 11a, 11b Measuring part 12 Flow velocity calculation part 13 Flow velocity graph production | generation part 14 Flow state determination part 15 Display part 70 Nozzle 80 Dispensing part 300 Area designation | designated part 1000 Sample identification dispensing apparatus S Specimen (sample)
W Well

Claims (10)

流路内を流れるサンプル液に分散させた被測定対象である検体に対して、光を照射して、前記検体の光情報を測定する光計測装置であって、
前記検体に光を照射する光照射部と、前記検体に光を照射することにより得られる前記光情報を受光する光受光部とからなる測定部と、
前記測定部が複数設置され、前記検体に対して複数の前記測定部によって測定された前記光情報の測定時刻の差と、複数の前記測定部の間隔に基づいて、当該検体の流速値を算出する流速算出部と、
を備えていることを特徴とする光計測装置。
An optical measuring device that irradiates light to a specimen to be measured dispersed in a sample liquid flowing in a flow path and measures optical information of the specimen,
A measuring unit comprising a light irradiating unit for irradiating the sample with light, and a light receiving unit for receiving the optical information obtained by irradiating the sample with light;
A plurality of the measurement units are installed, and the flow velocity value of the sample is calculated based on the difference in measurement time of the optical information measured by the plurality of measurement units with respect to the sample and the interval between the plurality of measurement units. A flow velocity calculation unit for
An optical measuring device comprising:
前記流速算出部によって算出された前記検体の流速値を、前記サンプル液の流れ状態を判定する測定パラメータとすることを特徴とする請求項1に記載の光計測装置。   The optical measurement apparatus according to claim 1, wherein the flow velocity value of the specimen calculated by the flow velocity calculation unit is used as a measurement parameter for determining the flow state of the sample liquid. 前記流速算出部によって算出された前記検体の流速値を、算出された順に並べた時系列の流速グラフ情報を生成するとともに、表示部に生成した前記流速グラフ情報を出力する流速グラフ生成部を備えていることを特徴とする請求項1または2に記載の光計測装置。   A flow rate graph generation unit for generating time-series flow rate graph information in which the flow rate values of the specimen calculated by the flow rate calculation unit are arranged in the calculated order and outputting the generated flow rate graph information on a display unit; The optical measurement device according to claim 1, wherein the optical measurement device is provided. 前記流速グラフ情報、または、前記検体の流速値を含む前記測定パラメータに基づいて、前記流路内の前記検体の流れ状態を判定し、判定した結果情報を、前記表示部を含む出力部に出力する流れ状態判定部を備えていることを特徴とする請求項2または3に記載の光計測装置。   Based on the flow velocity graph information or the measurement parameter including the flow velocity value of the specimen, the flow state of the specimen in the flow path is determined, and the determined result information is output to an output section including the display section. The optical measurement device according to claim 2, further comprising a flow state determination unit that performs the operation. 流速グラフ生成部は、全ての前記流速グラフ情報の中から、所望のグラフ領域範囲を指定するとともに、指定された前記グラフ領域範囲内の前記検体の流速値を取得する領域指定部を備え、
前記領域指定部によって取得された前記検体の流速値を、前記流速算出部によって算出された順に並べた時系列の前記流速グラフ情報を生成するとともに、表示部に生成した前記流速グラフ情報を出力することを特徴とする請求項3に記載の光計測装置。
The flow velocity graph generation unit includes a region designating unit that designates a desired graph region range from all the flow velocity graph information, and acquires the flow velocity value of the specimen within the designated graph region range,
Generates the time-series flow velocity graph information in which the flow velocity values of the specimen acquired by the region designating unit are arranged in the order calculated by the flow velocity calculation unit, and outputs the generated flow velocity graph information to a display unit The optical measuring device according to claim 3.
流路内を流れるサンプル液に分散させた被測定対象である検体の中から、分取対象となる目的検体を分取する検体識別分注装置であって、
請求項1から5のいずれか1項に記載の光計測装置と、
前記光計測装置によって計測された前記測定パラメータに基づいて識別された前記検体を、ノズルを介して分注対象部位に分注する分注部と、
を備えていることを特徴とする検体識別分注装置。
A sample identification and dispensing device for dispensing a target sample to be separated from a sample to be measured dispersed in a sample liquid flowing in a flow path,
The optical measurement device according to any one of claims 1 to 5,
A dispensing unit that dispenses the specimen identified based on the measurement parameters measured by the optical measurement device to a dispensing target site via a nozzle;
A specimen identification and dispensing apparatus comprising:
前記光計測装置の領域指定部によって指定された前記グラフ領域範囲内の前記流速グラフ情報に対応する前記検体を前記目的検体として分取することを特徴とする請求項6に記載の検体識別分注装置。   The sample identification dispensing according to claim 6, wherein the sample corresponding to the flow velocity graph information within the graph region range specified by the region specifying unit of the optical measurement device is sorted as the target sample. apparatus. 前記光計測装置の領域指定部によって指定された前記グラフ領域範囲内の前記流速グラフ情報に対応する前記検体を前記目的検体として分取することに際し、計測された前記目的検体の流速が変化しても、当該目的検体が計測された流速に関連付けられた関係に基づいて、分注するための時間を算出することによって、当該目的検体を流路のノズル先端から、前記分注対象部位に分注できることを特徴とする請求項6、7に記載の検体識別分注装置。   When the sample corresponding to the flow velocity graph information in the graph region range specified by the region specifying unit of the optical measurement device is sorted as the target sample, the flow velocity of the measured target sample is changed. In addition, by calculating the time for dispensing based on the relationship associated with the flow velocity at which the target sample is measured, the target sample is dispensed from the nozzle tip of the flow path to the dispensing target site. 8. The specimen identifying and dispensing apparatus according to claim 6, wherein the specimen identifying and dispensing apparatus can perform the specimen identifying and dispensing apparatus. 前記測定対象物である検体が計測された位置の流速よりも、遅い流速を経過してから、流路のノズル先端から、前記分注対象部位に一個ないし、複数個の計測された対象物を分注できることを特徴とする請求項8に記載の検体識別分注装置。   One or a plurality of measured objects are placed on the portion to be dispensed from the tip of the nozzle of the flow path after a flow rate that is slower than the flow velocity at the position where the sample that is the measurement object is measured. 9. The specimen identifying and dispensing apparatus according to claim 8, wherein dispensing is possible. 前記測定対象物である検体が計測・計算された流速に基づいて算出される分注するための時間をもって、流路のノズル先端と前記分注対象部位の位置関係を切り替えることによって、前記計測対象物が、前記分注対象部位に分注されることを特徴とする請求項9に記載の検体識別分注装置。



The measurement target is switched by switching the positional relationship between the nozzle tip of the flow path and the portion to be dispensed with a time for dispensing the sample that is the measurement target based on the measured and calculated flow velocity. 10. The specimen identifying and dispensing apparatus according to claim 9, wherein an object is dispensed to the portion to be dispensed.



JP2007161927A 2007-06-19 2007-06-19 Optical measuring device and specimen identification and dispensing device Active JP5074833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161927A JP5074833B2 (en) 2007-06-19 2007-06-19 Optical measuring device and specimen identification and dispensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161927A JP5074833B2 (en) 2007-06-19 2007-06-19 Optical measuring device and specimen identification and dispensing device

Publications (2)

Publication Number Publication Date
JP2009002710A true JP2009002710A (en) 2009-01-08
JP5074833B2 JP5074833B2 (en) 2012-11-14

Family

ID=40319265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161927A Active JP5074833B2 (en) 2007-06-19 2007-06-19 Optical measuring device and specimen identification and dispensing device

Country Status (1)

Country Link
JP (1) JP5074833B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079586A1 (en) * 2009-01-06 2010-07-15 古河電気工業株式会社 Optical measurement apparatus and sample identifying and dispensing apparatus
CN104769414A (en) * 2012-09-06 2015-07-08 古河电气工业株式会社 Device for identifying and dispensing samples and method for identifying and dispensing samples
US9435728B2 (en) 2009-12-25 2016-09-06 Furukawa Electric Co., Ltd. Sample identification/sorting apparatus and sample identification/sorting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154667A (en) * 1980-05-01 1981-11-30 Olympus Optical Co Ltd Partial injection
JPH05103642A (en) * 1991-10-15 1993-04-27 Yoneda Seika Shokuhin Kk Method for producing sweet-boiled japanese chestnut with astringent coat
JP2000205905A (en) * 1999-01-08 2000-07-28 Yazaki Corp Evaluating method of fluid vibration type flowmeter
JP2001099848A (en) * 1999-10-01 2001-04-13 Aloka Co Ltd Automatic dispenser
JP2007064759A (en) * 2005-08-30 2007-03-15 Hoyutec Kk Fluid transfer device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154667A (en) * 1980-05-01 1981-11-30 Olympus Optical Co Ltd Partial injection
JPH05103642A (en) * 1991-10-15 1993-04-27 Yoneda Seika Shokuhin Kk Method for producing sweet-boiled japanese chestnut with astringent coat
JP2000205905A (en) * 1999-01-08 2000-07-28 Yazaki Corp Evaluating method of fluid vibration type flowmeter
JP2001099848A (en) * 1999-10-01 2001-04-13 Aloka Co Ltd Automatic dispenser
JP2007064759A (en) * 2005-08-30 2007-03-15 Hoyutec Kk Fluid transfer device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079586A1 (en) * 2009-01-06 2010-07-15 古河電気工業株式会社 Optical measurement apparatus and sample identifying and dispensing apparatus
US9541489B2 (en) 2009-01-06 2017-01-10 Furukawa Electric Co., Ltd. Optical measuring apparatus and specimen discriminating and dispensing apparatus
US9435728B2 (en) 2009-12-25 2016-09-06 Furukawa Electric Co., Ltd. Sample identification/sorting apparatus and sample identification/sorting method
CN104769414A (en) * 2012-09-06 2015-07-08 古河电气工业株式会社 Device for identifying and dispensing samples and method for identifying and dispensing samples

Also Published As

Publication number Publication date
JP5074833B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US10705007B2 (en) Flow measurement and control for improved quantification of particles in flow cytometry
US9897530B2 (en) Compensation of motion-related error in a stream of moving micro-entities
JP2022125277A (en) Method and apparatus for bulk microparticle sorting using microfluidic channel
JP4971451B2 (en) Differentiation and application of flow cytometry pulses.
WO2010079586A1 (en) Optical measurement apparatus and sample identifying and dispensing apparatus
US20140051064A1 (en) Cell Sorter System and Method
JP2009300458A (en) Specimen analysis device and specimen analysis method
JP2009115672A (en) Optical measurement method and dispensing method for fine particle, and passage used for this optical measurement method and preparative method, and optical measurement device and flow cytometer
CN102998259B (en) Optical measuring apparatus, flow cytometer and measuring method
JP4540506B2 (en) Method and apparatus for controlling position of sample liquid flow
JP6830968B2 (en) A method for detecting bubbles between samples using flow cytometry scattering waveform analysis
JP5905317B2 (en) Calibration method and apparatus for fine particle sorting apparatus
JP5074833B2 (en) Optical measuring device and specimen identification and dispensing device
JP2003302330A (en) Planar flow cell device
JP2008164580A (en) Device and method for identifying and dispensing specimen
US8598863B2 (en) Apparatus and method for detecting motion characteristics of particles in flow channel
US10823657B2 (en) Flow cell for analyzing particles in a liquid to be examined
US20230273108A1 (en) Microparticle analysis device, microparticle sorting system, and microparticle analysis method
JPWO2016067772A1 (en) Control device, control system, analysis device, particle sorting device, control method, and laminar flow control program
WO2023145551A1 (en) Biological sample analysis system, method for setting optical data acquisition interval in biological sample analysis system, and information processing device
WO2022264481A1 (en) Particle sorting device, particle sorting method and program
KR20120129836A (en) Particle Measuring Method and Device and Manufacturing Method thereof
US11788944B2 (en) Microparticle measuring apparatus with measurement and cleaning modes
JP6860016B2 (en) Fine particle measuring device and fine particle measuring method
JP2016095221A (en) Particle analyzing device and particle analyzing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R151 Written notification of patent or utility model registration

Ref document number: 5074833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250