JP2009002172A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2009002172A
JP2009002172A JP2007161575A JP2007161575A JP2009002172A JP 2009002172 A JP2009002172 A JP 2009002172A JP 2007161575 A JP2007161575 A JP 2007161575A JP 2007161575 A JP2007161575 A JP 2007161575A JP 2009002172 A JP2009002172 A JP 2009002172A
Authority
JP
Japan
Prior art keywords
exhaust
catalyst
temperature
amount
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007161575A
Other languages
Japanese (ja)
Inventor
Reika Negishi
玲佳 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007161575A priority Critical patent/JP2009002172A/en
Priority to DE102008029040A priority patent/DE102008029040A1/en
Priority to FR0803437A priority patent/FR2917785A1/en
Publication of JP2009002172A publication Critical patent/JP2009002172A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine that can certainly suppress CO or HC in exhaust gas exiting from an exhaust-gas purification catalyst during catalyst warm-up even when a capturing amount of the catalyst is suppressed, and can achieve both an exhaust-gas purification performance and a reduction of cost. <P>SOLUTION: The exhaust emission control device for the internal combustion engine includes an EGR means for re-circulating a part of exhaust gas from the engine to an intake manifold side through an EGR passage, and an exhaust-gas purification catalyst for purifying an exhaust component discharged into an exhaust passage. The exhaust emission control device also includes a catalyst floor temperature sensor for detecting a catalyst floor temperature of the exhaust-gas purification catalyst. An ECU 50 includes functions as a basic EGR amount calculating means for calculating a basic EGR amount based on an operating condition of the engine, and an amount-reduction compensating means for executing an amount-reduction compensation of the basic EGR amount within a range of catalyst temperature up to its reach of a predetermined exhaust-gas purification temperature Tca in accordance with a rise of the purification performance during the catalyst warm-up and temperature-increase based on the detected temperature Tc by the catalyst floor temperature sensor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の排気浄化制御装置、特に排気浄化触媒の暖機昇温時にEGR量を制限するようにした内燃機関の排気浄化制御装置に関する。   The present invention relates to an exhaust gas purification control device for an internal combustion engine, and more particularly to an exhaust gas purification control device for an internal combustion engine that limits the EGR amount when the exhaust purification catalyst warms up.

排気ガス中の有害成分であるNOxの低減にEGR(Exhaust Gas Recirculation)すなわち排気再循環が有効であることが一般に知られており、冷間時にはEGRによる失火が生じ易くなるためEGR量を低減させることが知られている。   It is generally known that exhaust gas recirculation (EGR), that is, exhaust gas recirculation, is effective in reducing NOx, which is a harmful component in exhaust gas. Since misfire due to EGR is likely to occur when cold, the amount of EGR is reduced. It is known.

例えば、ディーゼルエンジンにおいては、ガソリンエンジンに比べると、排気ガス中の煤(すす)やSOF(Soluble Organic Fraction)等の粒子状物質、すなわち、パティキュレートマター(以下、単にPMという)の含有量が多く、このPMを低減するようエンジンの燃焼を改善すると排気ガス中のNOx(酸化窒素)が増加してしまうため、そのNOx低減のためにEGRが採用されることが多い。しかし、大量のEGRを行うと燃焼室内で燃料の着火が遅れ、燃焼温度の低下や膨張行程後期の燃焼割合の増加によって酸素不足となり、PMの他、一酸化炭素(CO)や未燃炭化水素系化合物(HC)等の有害排気成分が増加する可能性がある。   For example, in a diesel engine, the content of particulate matter such as soot and SOF (Soluble Organic Fraction) in exhaust gas, that is, particulate matter (hereinafter simply referred to as PM), is higher than that of a gasoline engine. In many cases, if the combustion of the engine is improved so as to reduce this PM, NOx (nitrogen oxide) in the exhaust gas increases, so EGR is often employed to reduce the NOx. However, if a large amount of EGR is performed, the ignition of the fuel is delayed in the combustion chamber, the oxygen becomes insufficient due to a decrease in the combustion temperature and an increase in the combustion ratio in the latter stage of the expansion stroke, and in addition to PM, carbon monoxide (CO) and unburned hydrocarbon There is a possibility that harmful exhaust components such as system compounds (HC) may increase.

従来のこの種の内燃機関の排気浄化装置種としては、例えばエンジン始動時に排気浄化装置で要求される排気昇温のために空気過剰率を下げる場合にEGR(排気再循環)率を好適に制御するべく、エンジン回転数と燃料噴射量に基づいて基本EGR率(新気吸気量/吸気量(排気再循環量を含む))マップから基本EGR率(マップ値)を求めるとともに、エンジン冷却水温に応じて予め設定された水温補正テーブルから水温補正係数を求め、その基本EGR率に水温補正テーブルで得られた水温補正係数を乗じることで、目標EGR率を算出するようにしたものが知られている(例えば、特許文献1参照)。   As a conventional type of exhaust gas purification device for an internal combustion engine of this type, for example, when the excess air ratio is lowered to increase the temperature of exhaust gas required by the exhaust gas purification device when starting the engine, the EGR (exhaust gas recirculation) rate is suitably controlled. Therefore, the basic EGR rate (map value) is obtained from the basic EGR rate (fresh air intake amount / intake amount (including exhaust gas recirculation amount)) map based on the engine speed and the fuel injection amount, and the engine cooling water temperature is calculated. Accordingly, it is known that the target EGR rate is calculated by obtaining a water temperature correction coefficient from a preset water temperature correction table and multiplying the basic EGR rate by the water temperature correction coefficient obtained in the water temperature correction table. (For example, refer to Patent Document 1).

また、燃料噴射を圧縮上死点前のパイロット噴射と圧縮上死点以後のメイン噴射とに分割し、パイロット噴射により燃焼室内の温度・圧力を上昇させるとともにメイン噴射時期を遅角させることで、排気エネルギを増加させ、排気浄化触媒の活性温度までの暖機を効果的に行うとともに排気ガス中のHC濃度を抑えるようにしたものが知られている(例えば、特許文献2、3参照)。
特開2003−41983号公報(第0062段落参照) 特開2004−245133号公報 特開2003−65121号公報
Further, by dividing the fuel injection into pilot injection before compression top dead center and main injection after compression top dead center, the temperature and pressure in the combustion chamber is increased by pilot injection and the main injection timing is delayed, There is known one that increases exhaust energy, effectively warms up the exhaust purification catalyst to the activation temperature, and suppresses the HC concentration in the exhaust gas (see, for example, Patent Documents 2 and 3).
Japanese Unexamined Patent Publication No. 2003-41983 (see paragraph 0062) JP 2004-245133 A JP 2003-65121 A

しかしながら、上述のような従来の内燃機関の排気浄化制御装置にあっては、エンジン回転数と燃料噴射量に基づいてEGR量のベース値となる基本EGR量を決定し、エンジン冷却水温や外気温に応じたEGR量に補正していたため、触媒床温が排気浄化可能な活性温度(以下、浄化温度ともいう)に達していなくとも、エンジン冷却水温が所定温度まで高くなれば、EGR量が増量され、触媒昇温中にEGR量の減量(カットを含む)が実行されなくなっていた。そのため、排気浄化触媒の量(例えば触媒の貴金属担持量)を抑えると、排気浄化触媒を通った排気ガス中に有害成分であるCOやHCが含まれ易くなり、コスト高な排気浄化触媒の量を抑えることができなかった。すなわち、従来は、排気浄化装置の排気浄化性能とコスト低減とを両立させることができなかった。   However, in the conventional exhaust gas purification control device for an internal combustion engine as described above, the basic EGR amount that becomes the base value of the EGR amount is determined based on the engine speed and the fuel injection amount, and the engine cooling water temperature and the outside air temperature are determined. Therefore, even if the catalyst bed temperature does not reach the activation temperature at which the exhaust gas can be purified (hereinafter also referred to as the purification temperature), if the engine cooling water temperature rises to a predetermined temperature, the EGR amount increases. Therefore, the EGR amount reduction (including the cut) is not performed during the temperature rise of the catalyst. Therefore, if the amount of the exhaust purification catalyst (for example, the amount of the precious metal supported on the catalyst) is suppressed, the exhaust gas that has passed through the exhaust purification catalyst is likely to contain harmful components such as CO and HC, and the amount of the exhaust purification catalyst that is expensive. Could not be suppressed. That is, conventionally, it has been impossible to achieve both the exhaust purification performance of the exhaust purification device and the cost reduction.

特に、エンジンの冷却水温上昇とその始動時の触媒暖機による触媒床温上昇とのずれ方は、始動時の排気浄化触媒の温度によって大きく異なるため、エンジン冷却水温に基づくEGR量の補正では排気浄化触媒の排気浄化性能の立上り(活性化)の温度特性を十分に反映したEGR量の補正となり得なかった。そのため、そのずれの大きい運転域でEGR量の減量(カットを含む)が実行されなくなると、排気浄化触媒のCO浄化率(HC浄化率)が低い段階でEGR率が増大することになり、十分な触媒担持量を確保しないとCOやHCの排出量が増加してしまうことになっていた。   In particular, the difference between the rise in engine coolant temperature and the rise in catalyst bed temperature due to catalyst warm-up at the time of start varies greatly depending on the temperature of the exhaust purification catalyst at start-up. It was impossible to correct the EGR amount sufficiently reflecting the temperature characteristics of the rise (activation) of the exhaust gas purification performance of the purification catalyst. Therefore, if the EGR amount reduction (including cut) is not performed in the operating range where the deviation is large, the EGR rate increases at a stage where the CO purification rate (HC purification rate) of the exhaust purification catalyst is low. Unless a sufficient amount of catalyst is secured, CO and HC emissions will increase.

そこで、本発明は、排気浄化触媒の昇温中の排気浄化性能の立上り特性に応じてEGR量の減量補正を的確に実行することにより、排気浄化触媒の担持量を抑えても触媒暖機中に触媒を出る排気ガス中のCOやHCを確実に抑制するようにして、排気浄化装置の排気浄化性能とコスト低減とを両立させ得る内燃機関の排気浄化制御装置を提供することを目的とする。   In view of this, the present invention accurately executes the reduction correction of the EGR amount in accordance with the rising characteristic of the exhaust purification performance during the temperature rise of the exhaust purification catalyst, so that the catalyst is warming up even if the amount of the exhaust purification catalyst carried is suppressed. An object of the present invention is to provide an exhaust gas purification control device for an internal combustion engine that can achieve both the exhaust gas purification performance and cost reduction of the exhaust gas purification device by reliably suppressing CO and HC in the exhaust gas exiting the catalyst. .

本発明の内燃機関の排気浄化制御装置は、上記目的達成のため、(1)内燃機関の排気の一部をEGR通路を通して吸気マニホルド側に再循環させるEGR手段と、前記内燃機関の排気通路に排気された排気成分を浄化する排気浄化触媒とを有する内燃機関の排気浄化制御装置において、前記排気浄化触媒の触媒床温度を検出する触媒床温度検出手段と、前記内燃機関の運転状態に基づいて、前記吸気マニホルド側に排気再循環させるための基本EGR量を算出する基本EGR量算出手段と、前記触媒床温度検出手段の検出温度に基づき、前記排気浄化触媒の暖機昇温中の浄化性能の立上りに応じて、前記排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内で前記基本EGR量についての減量補正を実行する減量補正手段と、を備えたことを特徴とする。   In order to achieve the above object, the internal combustion engine exhaust gas purification control apparatus according to the present invention includes (1) EGR means for recirculating a part of the exhaust gas of the internal combustion engine to the intake manifold side through the EGR passage, and the exhaust passage of the internal combustion engine. In an exhaust gas purification control device for an internal combustion engine having an exhaust gas purification catalyst for purifying exhaust gas components exhausted, based on catalyst bed temperature detection means for detecting the catalyst bed temperature of the exhaust gas purification catalyst, and the operating state of the internal combustion engine The basic EGR amount calculating means for calculating the basic EGR amount for recirculating the exhaust gas to the intake manifold side, and the purification performance during warming up of the exhaust purification catalyst based on the detected temperature of the catalyst bed temperature detecting means A reduction correction means for executing a reduction correction for the basic EGR amount within a temperature range until the exhaust purification catalyst reaches a predetermined exhaust purification temperature in response to the rise of the exhaust purification catalyst. Characterized in that was.

この構成により、触媒床温度検出手段によって始動時における触媒床温度が検出され、排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内で、暖機昇温時の浄化性能の立上り特性に応じて基本EGR量に対する減量補正が実行される。したがって、排気浄化触媒の担持量を抑えても触媒暖機中に触媒を出る排気ガス中のCOやHCが確実に抑制され、排気浄化装置の排気浄化性能とコスト低減とを両立させ得ることになる。なお、ここにいう触媒床温度の検出は、センサ等による直接的な検出のみならず、間接的な検出、例えば排気温度に基づいて触媒床温度を推定することによる検出を含む。   With this configuration, the catalyst bed temperature at the start-up is detected by the catalyst bed temperature detecting means, and within the temperature range until the exhaust purification catalyst reaches a predetermined exhaust purification temperature, the rising performance of the purification performance at the time of warming up is achieved. Accordingly, a reduction correction for the basic EGR amount is executed. Therefore, even if the amount of the exhaust purification catalyst supported is suppressed, CO and HC in the exhaust gas exiting the catalyst during the catalyst warm-up can be reliably suppressed, and both the exhaust purification performance and the cost reduction of the exhaust purification device can be achieved. Become. The detection of the catalyst bed temperature here includes not only direct detection by a sensor or the like but also indirect detection, for example, detection by estimating the catalyst bed temperature based on the exhaust gas temperature.

上記(1)の内燃機関の排気浄化制御装置においては、(2)前記減量補正手段が、前記排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内で、前記排気浄化触媒の温度上昇に応じてEGR量の減量補正量を減少させるように変化する減量補正係数を算出し、前記排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内で、前記触媒床温度検出手段の検出温度に対応する前記減量補正係数と前記基本EGR量とに基づいて前記減量補正量を算出するのが好ましい。   In the exhaust gas purification control device for an internal combustion engine according to (1), (2) the temperature reduction of the exhaust gas purification catalyst is within a temperature range until the exhaust gas reduction catalyst reaches a predetermined exhaust gas purification temperature. A reduction correction coefficient that changes so as to decrease the reduction correction amount of the EGR amount in accordance with is calculated and detected by the catalyst bed temperature detection means within a temperature range until the exhaust purification catalyst reaches a predetermined exhaust purification temperature. It is preferable to calculate the reduction correction amount based on the reduction correction coefficient corresponding to the temperature and the basic EGR amount.

この構成により、内燃機関の特性に応じた既存の基本EGR量算出用のマップ情報を活用しながら、触媒床温度検出手段によって始動時に検出される触媒床温度に対応する減量補正係数を更に用いて、排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内で、暖機昇温時の浄化性能の立上り特性に応じてきめ細かに基本EGR量に対する減量補正が実行できることになり、排気浄化触媒の担持量を抑えても触媒暖機中に触媒を出る排気ガス中のCOやHCがより確実に抑制される。   With this configuration, while using the existing map information for calculating the basic EGR amount according to the characteristics of the internal combustion engine, the reduction correction coefficient corresponding to the catalyst bed temperature detected at the start by the catalyst bed temperature detecting means is further used. The exhaust gas purification catalyst can be finely corrected for reduction of the basic EGR amount within the temperature range until the exhaust gas purification catalyst reaches a predetermined exhaust gas purification temperature, according to the rise characteristic of the purification performance at the time of warming up. Even if the supported amount is suppressed, CO and HC in the exhaust gas exiting the catalyst during the warm-up of the catalyst are more reliably suppressed.

上記(2)の内燃機関の排気浄化制御装置においては、(3)前記減量補正手段が、前記触媒床温度検出手段の検出温度に対応する前記減量補正係数を前記基本EGR量に乗じた減量補正量を算出し、該減量補正量分だけ前記基本EGR量から減量補正するのが好ましい。   In the exhaust gas purification control apparatus for an internal combustion engine of (2), (3) the reduction correction unit is configured to reduce the reduction by multiplying the basic EGR amount by the reduction correction coefficient corresponding to the temperature detected by the catalyst bed temperature detection unit. It is preferable to calculate the amount and correct the amount of decrease from the basic EGR amount by the amount of decrease correction.

この場合、排気浄化触媒の浄化性能の温度特性に基づいて減量補正係数を容易に設定することができる。   In this case, the reduction correction coefficient can be easily set based on the temperature characteristic of the purification performance of the exhaust purification catalyst.

上記(2)または(3)の内燃機関の排気浄化制御装置は、望ましくは、(4)前記減量補正係数が、前記排気浄化触媒の排気浄化率が最小となる触媒床温度域で最大になるとともに、前記排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内では、前記触媒床温度検出手段の暖機昇温に応じた前記排気浄化率の上昇率に反比例する減少率で減少するものである。   In the exhaust gas purification control apparatus for an internal combustion engine according to (2) or (3), preferably, (4) the reduction correction coefficient is maximized in a catalyst bed temperature range where the exhaust gas purification rate of the exhaust gas purification catalyst is minimum. At the same time, within a temperature range until the exhaust purification catalyst reaches a predetermined exhaust purification temperature, the exhaust purification catalyst decreases at a reduction rate that is inversely proportional to the increase rate of the exhaust purification rate according to the warming-up temperature of the catalyst bed temperature detecting means. Is.

この場合、排気浄化触媒の浄化性能の温度特性に基づいて減量補正係数を容易に設定することができるのみならず、触媒暖機中に触媒を出る排気ガス中のCOやHCがより確実に抑制される。   In this case, not only can the weight reduction correction coefficient be easily set based on the temperature characteristics of the purification performance of the exhaust purification catalyst, but also more reliably suppress CO and HC in the exhaust gas exiting the catalyst during catalyst warm-up. Is done.

本発明によれば、触媒床温度検出手段によって始動時における触媒床温度を検出し、排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内で、触媒暖機昇温時の浄化性能の立上り特性に応じて基本EGR量に対する減量補正を実行するようにしているので、排気浄化触媒の担持量を抑えても触媒暖機中に触媒を出る排気ガス中のCOやHCを確実に抑制することができ、排気浄化装置の排気浄化性能とコスト低減とを両立させることのできる内燃機関の排気浄化制御装置を提供することができる。   According to the present invention, the catalyst bed temperature at the time of start-up is detected by the catalyst bed temperature detection means, and the purification performance at the catalyst warm-up temperature rise is within the temperature range until the exhaust purification catalyst reaches the predetermined exhaust purification temperature. Since the reduction correction for the basic EGR amount is executed according to the start-up characteristics, even if the amount of the exhaust purification catalyst supported is suppressed, the CO and HC in the exhaust gas exiting the catalyst during the catalyst warm-up are surely suppressed. Therefore, it is possible to provide an exhaust gas purification control device for an internal combustion engine that can achieve both the exhaust gas purification performance and cost reduction of the exhaust gas purification device.

以下、本発明の好ましい実施の形態について図面に基づいて説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る内燃機関の排気浄化制御装置を示す図であり、本発明を多気筒ディーゼルエンジンに適用した例を示している。
まず、その構成について説明する。
FIG. 1 is a diagram showing an exhaust gas purification control apparatus for an internal combustion engine according to an embodiment of the present invention, and shows an example in which the present invention is applied to a multi-cylinder diesel engine.
First, the configuration will be described.

図1に示すように、車両用内燃機関であるエンジン10は複数の気筒11を有しており、このエンジン10には、各気筒11内の燃焼室(詳細を図示していない)に燃料を噴射するコモンレール型の燃料噴射装置12と、燃焼室に空気を吸入させる吸気装置13と、燃焼室からの排気ガスを排気させる排気装置14と、排気装置14内の排気エネルギを利用して吸気装置13内の空気を圧縮し燃焼室に空気を過給するターボ過給機15と、排気の一部を吸気側に還流させ再循環させる排気再循環装置16とが装備されている。   As shown in FIG. 1, an engine 10 that is an internal combustion engine for a vehicle has a plurality of cylinders 11. The engine 10 supplies fuel to combustion chambers (not shown in detail) in each cylinder 11. Common rail type fuel injection device 12 for injecting, intake device 13 for sucking air into the combustion chamber, exhaust device 14 for exhausting exhaust gas from the combustion chamber, and intake device using exhaust energy in exhaust device 14 A turbocharger 15 that compresses the air in 13 and supercharges the air in the combustion chamber, and an exhaust gas recirculation device 16 that recirculates and recirculates a part of the exhaust gas to the intake side are provided.

燃料噴射装置12は、図外の燃料タンクから燃料を汲み上げて高圧の燃圧(燃料圧力)に加圧し吐出するサプライポンプ21と、そのサプライポンプ21からの燃料が導入されるコモンレール22と、このコモンレール22を通して供給される燃料を後述する電子制御ユニット(以下、ECUという)50からの噴射指令信号に対応するタイミング及び開度(デューティー比)で燃焼室内に噴射する燃料噴射弁23とを含んで構成されている。   The fuel injection device 12 includes a supply pump 21 that pumps fuel from a fuel tank (not shown), pressurizes the fuel to a high fuel pressure (fuel pressure), and discharges the fuel, a common rail 22 into which fuel from the supply pump 21 is introduced, and the common rail And a fuel injection valve 23 that injects fuel supplied through the cylinder 22 at a timing and opening degree (duty ratio) corresponding to an injection command signal from an electronic control unit (hereinafter referred to as ECU) 50 described later. Has been.

サプライポンプ21は、例えばエンジン10の回転動力を利用して駆動され、コモンレール22はサプライポンプ21から供給された高圧燃料を均等に保ちながら複数の燃料噴射弁23に分配・供給する。燃料噴射弁23は、電磁駆動される公知のニードル弁で構成され、所定時間毎のパルス状の噴射指令信号に応じてその所定時間中の開弁時間の比率を制御されることにより、噴射指令信号に応じた燃料噴射量の燃料(例えば軽油)を燃焼室内に噴射・供給することができる。   The supply pump 21 is driven using, for example, the rotational power of the engine 10, and the common rail 22 distributes and supplies the high-pressure fuel supplied from the supply pump 21 to the plurality of fuel injection valves 23 while keeping it even. The fuel injection valve 23 is constituted by a known needle valve that is electromagnetically driven, and the injection command is controlled by controlling the ratio of the valve opening time during the predetermined time in accordance with a pulse-like injection command signal for every predetermined time. Fuel (for example, light oil) of a fuel injection amount corresponding to the signal can be injected and supplied into the combustion chamber.

本実施形態においては、エンジン10における1燃焼サイクル中の燃料噴射は、図示しないピストンが圧縮上死点に達する前に実行されるパイロット噴射と、そのピストンが圧縮上死点を通過する時点以後(圧縮上死点以後)に実行されるメイン噴射と、筒内燃焼でなく排出ガスと共に未燃炭化水素(HC)として排気後処理装置44内に供給することを意図したポスト噴射とを含むように、複数回の噴射に分割されて実行されるようになっている。燃料噴射装置12は、さらに、サプライポンプ21で汲み上げた燃料の一部を排気装置14内に噴射する燃料添加ノズル24を有しており、燃料添加ノズル24は所定圧以上の燃圧で燃料が付与されたときに開弁して、排気装置14の排気マニホルド41内に燃料を噴射できるようになっている。   In the present embodiment, fuel injection in one combustion cycle in the engine 10 includes pilot injection executed before a piston (not shown) reaches the compression top dead center, and after the time when the piston passes the compression top dead center ( Main injection executed after compression top dead center) and post-injection intended to be supplied into the exhaust aftertreatment device 44 as unburned hydrocarbon (HC) together with exhaust gas rather than in-cylinder combustion. The operation is divided into a plurality of injections. The fuel injection device 12 further includes a fuel addition nozzle 24 that injects a part of the fuel pumped up by the supply pump 21 into the exhaust device 14, and the fuel addition nozzle 24 applies fuel at a fuel pressure equal to or higher than a predetermined pressure. When opened, the fuel can be injected into the exhaust manifold 41 of the exhaust device 14.

吸気装置13には、吸気マニホルド31と、それより上流側の吸気管32と、吸気管32の上流側でフィルタにより吸入空気を清浄化するエアクリーナ33と、ターボ過給機15より下流側で過給により昇温した吸入空気を冷却するインタークーラ34と、新気の吸入流量である吸入空気量を検出するエアフローメータ35と、エンジン10内への吸入空気量を調整するスロットルバルブ36と、吸気マニホルド31内の現在の吸気温度をEGRバルブ62(後述する)より気筒側で検出する吸気温度センサ37とが、それぞれ装着されている。   The intake device 13 includes an intake manifold 31, an intake pipe 32 upstream of the intake manifold 31, an air cleaner 33 that cleans intake air using a filter on the upstream side of the intake pipe 32, and excess air on the downstream side of the turbocharger 15. An intercooler 34 that cools the intake air whose temperature has been raised by the supply, an air flow meter 35 that detects an intake air amount that is an intake flow rate of fresh air, a throttle valve 36 that adjusts the intake air amount into the engine 10, and an intake air An intake air temperature sensor 37 that detects the current intake air temperature in the manifold 31 on the cylinder side from the EGR valve 62 (described later) is mounted.

排気装置14は、排気マニホルド41と、それより下流側の排気管42と、ターボ過給機15より下流側に位置する広域空燃比センサであるA/Fセンサ43と、このA/Fセンサ43より下流側の排気管42に装着されてエンジン10の排気通路に排気された排気成分を浄化する排気浄化触媒(詳細図示せず)を有する排気後処理装置44と、排気後処理装置44内の排気浄化触媒の触媒床温度を検出する触媒床温センサ45(触媒床温度検出手段)とを含んで構成されている。   The exhaust device 14 includes an exhaust manifold 41, an exhaust pipe 42 on the downstream side thereof, an A / F sensor 43 that is a wide area air-fuel ratio sensor located on the downstream side of the turbocharger 15, and the A / F sensor 43. An exhaust aftertreatment device 44 having an exhaust purification catalyst (not shown in detail) attached to the exhaust pipe 42 on the downstream side and purifying exhaust components exhausted into the exhaust passage of the engine 10; It includes a catalyst bed temperature sensor 45 (catalyst bed temperature detection means) for detecting the catalyst bed temperature of the exhaust purification catalyst.

排気後処理装置44は、詳細は図示しないが、エンジン10の排気管42内(排気通路)に排気された所定の排気成分を浄化する公知の排気浄化触媒を含んで構成されており、例えばハニカム構造のセラミックコアに白金(Pt)等の貴金属を担持させた酸化触媒を筒状のケース内に収納したものである。この排気後処理装置44は、排気ガス中の炭化水素(HC)を酸化(HC+O)させて二酸化炭素(CO)と水(HO)に変化させるとともに、排気ガス中の一酸化炭素(CO)を酸化させて(CO+O)二酸化炭素(CO)に変化させることができる。なお、排気後処理装置44は、酸化触媒の後段に排気ガス中のすす(煤)の成分を除去する公知のDPF(ディーゼル・パティキュレート・フィルタ)を併有したものであってもよい。 Although not shown in detail, the exhaust aftertreatment device 44 includes a known exhaust purification catalyst that purifies a predetermined exhaust component exhausted into the exhaust pipe 42 (exhaust passage) of the engine 10. An oxidation catalyst in which a noble metal such as platinum (Pt) is supported on a ceramic core having a structure is housed in a cylindrical case. The exhaust aftertreatment device 44 oxidizes (HC + O 2 ) hydrocarbon (HC) in the exhaust gas to change it into carbon dioxide (CO 2 ) and water (H 2 O), and at the same time, carbon monoxide in the exhaust gas. (CO) is oxidized to (CO + O 2) can be changed into carbon dioxide (CO 2). The exhaust aftertreatment device 44 may include a known DPF (diesel particulate filter) that removes soot (soot) components in the exhaust gas after the oxidation catalyst.

図2は、この排気後処理装置44中の酸化触媒の排気浄化性能と触媒床温度との関係を示す排気浄化性能の温度特性図である。   FIG. 2 is a temperature characteristic diagram of the exhaust purification performance showing the relationship between the exhaust purification performance of the oxidation catalyst in the exhaust aftertreatment device 44 and the catalyst bed temperature.

同図に示すように、排気後処理装置44は、その触媒床温度が所定の排気浄化温度Tcaを超えて(あるいは、触媒床温度の変化に対応する所定時間毎の排気温度の平均値が所定の排気浄化温度を超えて)活性化されているときに、排気ガス中のほとんどの炭化水素(HC)や一酸化炭素(CO)を二酸化炭素(CO)と水(HO)に変化させることができるようになっている。また、その排気浄化温度Tcaに達するまでの昇温中、排気後処理装置44の酸化触媒は排気浄化温度Tca近傍に達するまでは活性化されず、排気浄化温度Tca近傍においてCO浄化率(あるいはHC浄化率)が急上昇するという温度特性を有している。したがって、排気後処理装置44は、この排気浄化温度Tcaを多少超える温度まで暖機された後に、排気ガス中のほとんどの炭化水素(HC)や一酸化炭素(CO)を二酸化炭素(CO)と水(HO)に変化させる。 As shown in the figure, the exhaust aftertreatment device 44 has a catalyst bed temperature exceeding a predetermined exhaust purification temperature Tca (or an average exhaust gas temperature at a predetermined time corresponding to a change in the catalyst bed temperature is a predetermined value). Most of the hydrocarbons (HC) and carbon monoxide (CO) in the exhaust gas change to carbon dioxide (CO 2 ) and water (H 2 O) when activated It can be made to. Further, during the temperature increase until the exhaust purification temperature Tca is reached, the oxidation catalyst of the exhaust aftertreatment device 44 is not activated until it reaches the vicinity of the exhaust purification temperature Tca, and the CO purification rate (or HC) near the exhaust purification temperature Tca. (Purification rate) has a temperature characteristic that increases rapidly. Therefore, the exhaust aftertreatment device 44 is warmed up to a temperature slightly exceeding the exhaust purification temperature Tca, and then converts most of the hydrocarbons (HC) and carbon monoxide (CO) in the exhaust gas to carbon dioxide (CO 2 ). And water (H 2 O).

燃料噴射装置12でのポスト噴射や燃料添加ノズル24からの添加燃料噴射は、このような排気後処理装置44の特性に対して、排気温度を高めたりその酸化触媒(あるいは更にその後段のDPF)の作用を高めるために実行されるようになっている。   The post-injection in the fuel injection device 12 and the added fuel injection from the fuel addition nozzle 24 increase the exhaust temperature or the oxidation catalyst (or further DPF in the subsequent stage) with respect to such characteristics of the exhaust aftertreatment device 44. It is designed to be executed in order to enhance the action.

ターボ過給機15は、図1に示すように、互いに回転方向一体に連結された吸入空気コンプレッサ15aおよび排気タービン15bを有し、排気タービン15bを排気エネルギにより回転させて吸入空気コンプレッサ15aを回転させるもので、エンジン10内に正圧の空気を吸入させることができる。   As shown in FIG. 1, the turbocharger 15 has an intake air compressor 15a and an exhaust turbine 15b that are integrally connected to each other in the rotational direction, and rotates the intake air compressor 15a by rotating the exhaust turbine 15b with exhaust energy. Therefore, positive pressure air can be sucked into the engine 10.

排気再循環装置16は、エンジン10の排気の一部を吸気マニホルド31側に再循環させるEGR手段である。この排気再循環装置16は、エンジン10内の燃焼室をバイパスして排気マニホルド41内の排気通路と吸気マニホルド31内の吸気通路とを連通させる排気再循環通路、すなわち、EGR通路61を有しており、このEGR通路61には排気再循環量を調整するEGRバルブ62と、EGR通路61を通って還流する排気を冷却する排気冷却器、すなわちEGRクーラ63とが設けられている。EGR通路61は、エンジン10の排気通路側から吸気通路側に排気の一部を還流させる通路であり、EGRクーラ63はそのEGR通路61の一部を冷却通路としており、入口63aおよび出口63bを有している。また、EGRバルブ62はEGR通路61を吸気通路に接続させる開弁状態と、その接続を制限、例えば遮断する閉弁状態とに切り替え可能になっている。   The exhaust gas recirculation device 16 is an EGR means for recirculating a part of the exhaust gas of the engine 10 to the intake manifold 31 side. The exhaust gas recirculation device 16 has an exhaust gas recirculation passage that bypasses the combustion chamber in the engine 10 and connects the exhaust passage in the exhaust manifold 41 and the intake passage in the intake manifold 31, that is, an EGR passage 61. The EGR passage 61 is provided with an EGR valve 62 for adjusting the exhaust gas recirculation amount, and an exhaust cooler for cooling the exhaust gas recirculated through the EGR passage 61, that is, an EGR cooler 63. The EGR passage 61 is a passage that recirculates a part of the exhaust gas from the exhaust passage side to the intake passage side of the engine 10, and the EGR cooler 63 uses a part of the EGR passage 61 as a cooling passage, and has an inlet 63a and an outlet 63b. Have. The EGR valve 62 can be switched between an open state in which the EGR passage 61 is connected to the intake passage and a closed state in which the connection is restricted, for example, shut off.

排気再循環装置16には、さらに、排気通路側から吸気通路側に還流する排気を、EGRクーラ63をバイパスしてEGRバルブ62に供給することができるバイパス通路64と、EGRクーラ63の入口63aの近傍に位置するEGR通路61からバイパス通路64への分岐部分に配置されたEGRクーラバイパスバルブ65と、排気ガス中の未燃燃料分を酸化処理するEGR酸化触媒ユニット66とが設けられている。ここで、EGRクーラバイパスバルブ65は、バイパス通路64を開放する開弁状態と、バイパス通路64を閉止する閉弁状態とに切り替え可能なバイパス開閉バルブとなっている。   The exhaust gas recirculation device 16 further includes a bypass passage 64 capable of bypassing the EGR cooler 63 and supplying the exhaust gas recirculated from the exhaust passage side to the intake passage side to the EGR valve 62, and an inlet 63a of the EGR cooler 63. An EGR cooler bypass valve 65 disposed at a branch portion from the EGR passage 61 to the bypass passage 64 located in the vicinity of the EGR passage, and an EGR oxidation catalyst unit 66 for oxidizing unburned fuel in the exhaust gas are provided. . Here, the EGR cooler bypass valve 65 is a bypass opening / closing valve that can be switched between a valve opening state in which the bypass passage 64 is opened and a valve closing state in which the bypass passage 64 is closed.

EGRバルブ62は、例えばその弁体部62a(図1参照)を駆動部62bによって図1中の上下方向に進退動させて開閉するようになっている。また、EGRクーラバイパスバルブ65は、その開弁によりバイパス通路64を開放するとともにEGRクーラ63の入口側を閉止し、その閉弁によりバイパス通路64を閉止するとともにEGRクーラ63の入口側を開放するようになっている。このEGRクーラバイパスバルブ65は、板状の弁体(符号なし)を回動させることで、図1中に点線で示す開弁位置とその位置からバイパス通路64に向かって同図中時計方向に回転した閉弁位置とに切り替わるようになっている。   The EGR valve 62 is configured to open and close by, for example, a valve body 62a (see FIG. 1) being moved forward and backward in the vertical direction in FIG. Further, the EGR cooler bypass valve 65 opens the bypass passage 64 by opening the valve and closes the inlet side of the EGR cooler 63, and closes the bypass passage 64 by opening the valve and opens the inlet side of the EGR cooler 63. It is like that. The EGR cooler bypass valve 65 rotates a plate-like valve body (not shown) to open the valve indicated by a dotted line in FIG. 1 and from the position toward the bypass passage 64 in the clockwise direction in FIG. The valve is switched to the rotated valve closing position.

一方、サプライポンプ21の通電制御や燃料噴射弁23による燃料噴射量の制御、スロットルバルブ36の開度制御、EGRバルブ62やEGRクーラバイパスバルブ65の開度制御等は、ECU50によって電子制御されるようになっており、ECU50は所定時間毎に所定の制御プログラムを実行するように構成されている。   On the other hand, the energization control of the supply pump 21, the fuel injection amount control by the fuel injection valve 23, the opening control of the throttle valve 36, the opening control of the EGR valve 62 and the EGR cooler bypass valve 65, and the like are electronically controlled by the ECU 50. The ECU 50 is configured to execute a predetermined control program every predetermined time.

図1に示すように、ECU50は、CPU(Central Processing Unit)51、ROM(Read Only Memory)52、RAM(Random Access Memory)53、EEPROM54(Electronically Erasable and Programmable Read Only Memory)、A/D変換器やバッファ等を含む入力インターフェース回路56、および、駆動回路等を含む出力インターフェース回路57を含んで構成されている。   As shown in FIG. 1, the ECU 50 includes a CPU (Central Processing Unit) 51, a ROM (Read Only Memory) 52, a RAM (Random Access Memory) 53, an EEPROM 54 (Electronically Erasable and Programmable Read Only Memory), and an A / D converter. And an input interface circuit 56 including a buffer and the like, and an output interface circuit 57 including a drive circuit and the like.

ECU50の入力インターフェース回路56には、エアフローメータ35、吸気温度センサ37、A/Fセンサ43、触媒床温センサ45、図外のアクセルペダルの踏み込みを検出するアクセル開度センサ71、スロットルバルブ36の開度を検出するスロットル開度センサ72、所定角度単位のクランク回転からエンジン回転数に対応する信号を出力するクランク角センサ73(回転数センサ)、エンジン10が搭載された車両の走行速度または車輪回転速度を検出する車速センサ74、エンジン10の吸気圧(過給圧)を検出する吸気管内圧力センサ75等がそれぞれ接続されており、これらのセンサ群35、37、43、45および71〜75からの情報がECU50に取り込まれるようになっている。   An input interface circuit 56 of the ECU 50 includes an air flow meter 35, an intake air temperature sensor 37, an A / F sensor 43, a catalyst bed temperature sensor 45, an accelerator opening sensor 71 for detecting depression of an accelerator pedal (not shown), and a throttle valve 36. A throttle opening sensor 72 for detecting the opening degree, a crank angle sensor 73 (rotation speed sensor) for outputting a signal corresponding to the engine speed from the crank rotation in a predetermined angle unit, a traveling speed or a wheel of a vehicle on which the engine 10 is mounted A vehicle speed sensor 74 for detecting the rotational speed, an intake pipe pressure sensor 75 for detecting the intake pressure (supercharging pressure) of the engine 10, and the like are connected, and these sensor groups 35, 37, 43, 45 and 71 to 75 are connected. Information is taken into the ECU 50.

ECU50の出力インターフェース回路57には、図示しないそれぞれの駆動回路を介してサプライポンプ21、複数の燃料噴射弁23、燃料添加ノズル24、EGRバルブ62およびEGRクーラバイパスバルブ65が接続されている。   Connected to the output interface circuit 57 of the ECU 50 are a supply pump 21, a plurality of fuel injection valves 23, a fuel addition nozzle 24, an EGR valve 62, and an EGR cooler bypass valve 65 via respective drive circuits (not shown).

ECU50のROM52には、入力インターフェース回路56に取り込まれるアクセル開度センサ71からの加速要求をチェックするとともに、クランク角センサ73からのエンジン回転数等を所定時間毎に取り込んでエンジン10の燃焼室内への燃料噴射量や噴射時期、エンジン10の各筒内に吸入されるべき目標空気量等を算出するための演算処理プログラムが格納されている。ここで目標噴射時期算出手段となる演算処理プログラムは、エンジン10における1燃焼サイクル中の燃料噴射を、ピストンが圧縮上死点(TDC)に達する前にメイン噴射量より少ない噴射量で実行されるパイロット噴射と、ピストンの圧縮上死点通過以後に実行されるメイン噴射とを含む複数回の噴射に分割するとともに、エンジン10の運転状態に応じて、目標噴射時期マップから得られるその運転状態で最適なパイロット噴射の噴射時期およびメイン噴射の目標噴射時期を算出することができるようになっている。   The ROM 52 of the ECU 50 checks the acceleration request from the accelerator opening sensor 71 taken into the input interface circuit 56, and takes in the engine speed and the like from the crank angle sensor 73 at predetermined time intervals into the combustion chamber of the engine 10. A calculation processing program for calculating the fuel injection amount and injection timing, the target air amount to be sucked into each cylinder of the engine 10, and the like are stored. Here, the arithmetic processing program serving as the target injection timing calculation means executes fuel injection in one combustion cycle in the engine 10 with an injection amount smaller than the main injection amount before the piston reaches compression top dead center (TDC). The operation is divided into a plurality of injections including pilot injection and main injection executed after the piston has passed through the compression top dead center, and the operation state obtained from the target injection timing map according to the operation state of the engine 10 The optimal pilot injection timing and the target injection timing of the main injection can be calculated.

また、ROM52には、排気マニホルド41側から吸気マニホルド31側に排気再循環させるための基本EGR量を算出する基本EGR量算出プログラムと、触媒床温センサ45の検出温度Tcに基づき、排気後処理装置44内の排気浄化触媒の暖機昇温中の浄化性能の立上り特性に応じて、その排気浄化触媒が所定の排気浄化温度Tcaに達するまでの温度範囲内で基本EGR量についての減量補正を実行する減量補正プログラムとが、それぞれ格納されている。そして、ECU50は、ROM52内のこれらのプログラムを、CPU51によりRAM53との間でデータを授受したり入力インターフェース回路56からの情報を取り込んだりしながら実行することで、基本EGR量算出手段および減量補正手段として機能する。   Further, in the ROM 52, an exhaust post-processing is performed based on a basic EGR amount calculation program for calculating a basic EGR amount for recirculating exhaust from the exhaust manifold 41 side to the intake manifold 31 side, and a detected temperature Tc of the catalyst bed temperature sensor 45. In accordance with the rise characteristic of the purification performance during the warming-up temperature of the exhaust purification catalyst in the device 44, the reduction correction for the basic EGR amount is performed within the temperature range until the exhaust purification catalyst reaches the predetermined exhaust purification temperature Tca. Each of the weight loss correction programs to be executed is stored. The ECU 50 executes these programs in the ROM 52 while transferring data to and from the RAM 53 by the CPU 51 and taking in information from the input interface circuit 56, whereby the basic EGR amount calculating means and the reduction correction are executed. Functions as a means.

ECU50は、基本EGR量算出手段として、例えばエンジン回転数および燃料噴射量(負荷に対応する)で特定される全運転範囲について、失火や過早着火がなくかつ排気浄化性能上最適な、すなわち排気浄化率が最も高くなり排気エミッションが最も少なくなるEGR量として予めの運転試験により取得されたマップデータを、ROM52内に後述する基本EGR量マップとして記憶格納しており、また、エンジン10のエンジン回転数および燃料噴射量の検出値に基づいて最適なEGR量をこの基本EGR量マップから算出するためのROM52内の基本EGR量算出プログラムと、RAM53内の作業メモリとを含んでいる。   The ECU 50 is the basic EGR amount calculation means, for example, for the entire operating range specified by the engine speed and the fuel injection amount (corresponding to the load), and is optimal in exhaust purification performance without misfire or pre-ignition. Map data acquired in advance by an operation test as an EGR amount with the highest purification rate and the lowest exhaust emission is stored and stored in the ROM 52 as a basic EGR amount map, which will be described later. A basic EGR amount calculation program in the ROM 52 for calculating an optimum EGR amount from the basic EGR amount map based on the number and the detected value of the fuel injection amount, and a working memory in the RAM 53 are included.

減量補正手段としてのECU50は、触媒床温センサ45の検出温度Tcに基づいて排気後処理装置44内の排気浄化触媒が所定の排気浄化温度Tcaに達したか否かを判定し、その排気浄化触媒が所定の排気浄化温度Tcaに達するまでの温度範囲内では、基本EGR量算出手段の機能により算出した基本EGR量を減量補正するようになっている。   The ECU 50 as the weight reduction correction means determines whether or not the exhaust purification catalyst in the exhaust aftertreatment device 44 has reached a predetermined exhaust purification temperature Tca based on the detected temperature Tc of the catalyst bed temperature sensor 45, and the exhaust purification. Within the temperature range until the catalyst reaches a predetermined exhaust purification temperature Tca, the basic EGR amount calculated by the function of the basic EGR amount calculating means is corrected to decrease.

また、この減量補正手段は、排気浄化触媒の温度上昇に応じてEGR量の減量補正量を減少(縮小)させるように変化する減量補正係数h(図3参照)を、ROM52に予め記憶させた減量補正係数マップあるいは減量補正係数算出式によって算出するようになっており、排気浄化触媒が所定の排気浄化温度Tcaに達するまでの温度範囲内で、触媒床温センサ45の検出温度Tcに対応する減量補正係数と基本EGR量とに基づいて減量補正量を算出するようになっている。   Further, this reduction correction means stores in advance in ROM 52 a reduction correction coefficient h (see FIG. 3) that changes so as to reduce (reduce) the reduction correction amount of the EGR amount in accordance with the temperature rise of the exhaust purification catalyst. It is calculated by the reduction correction coefficient map or the reduction correction coefficient calculation formula, and corresponds to the detected temperature Tc of the catalyst bed temperature sensor 45 within the temperature range until the exhaust purification catalyst reaches a predetermined exhaust purification temperature Tca. The amount of reduction correction is calculated based on the amount of reduction correction coefficient and the basic EGR amount.

ここにいう減量補正係数hは、図3に示す減量補正係数マップのように、排気後処理装置44内の排気浄化触媒の排気浄化率(図2に示すCO浄化率又はHC浄化率)が最小となる触媒床温度域で最大になるとともに、排気浄化触媒が所定の排気浄化温度Tcaに達するまでの温度範囲内では、排気浄化触媒の暖機昇温に応じた排気浄化率の上昇率に反比例する減少率で減少するものである。   Here, the reduction correction coefficient h has the minimum exhaust purification rate (the CO purification rate or the HC purification rate shown in FIG. 2) of the exhaust purification catalyst in the exhaust aftertreatment device 44, as in the reduction correction coefficient map shown in FIG. In the temperature range until the exhaust purification catalyst reaches a predetermined exhaust purification temperature Tca, it is inversely proportional to the rate of increase in the exhaust purification rate according to the warming-up temperature of the exhaust purification catalyst. It decreases at a decreasing rate.

図3および図4は、このようなECU50の基本EGR量算出手段および減量補正手段の機能を説明する図であり、図3はエンジン10の運転状態と排気後処理装置44の触媒床温度とに基づいてEGR補正量を算出する処理を説明するブロック図、図4はエンジン10の運転状態と算出済みのEGR補正量とに基づいて最終EGR量を算出する処理を説明するブロック図である。   3 and 4 are diagrams for explaining the functions of the basic EGR amount calculation means and the reduction correction means of the ECU 50. FIG. 3 shows the operating state of the engine 10 and the catalyst bed temperature of the exhaust aftertreatment device 44. FIG. 4 is a block diagram illustrating a process for calculating the final EGR amount based on the operating state of the engine 10 and the calculated EGR correction amount.

両図に示すように、ECU50は、減量補正手段としての機能により、触媒床温センサ45の検出温度Tcに対応する減量補正係数hを基本EGR補正量Ebに乗じたEGR補正量を算出するとともに(図3参照)、そのEGR補正量分だけ基本EGR量から減算、すなわち減量補正して最終EGR量を算出するようになっている(図4参照)。   As shown in both figures, the ECU 50 calculates the EGR correction amount obtained by multiplying the basic EGR correction amount Eb by the reduction correction coefficient h corresponding to the detected temperature Tc of the catalyst bed temperature sensor 45 by the function as the reduction correction means. The final EGR amount is calculated by subtracting from the basic EGR amount by the EGR correction amount, that is, by reducing the amount (see FIG. 4).

ここで、図4に示す基本EGR量マップは、縦軸を燃料噴射量q、横軸をクランク角センサ73(回転数センサ)で得られるエンジン回転数Neとして、それらで特定される各運転状態について基本EGR量を予めの運転試験により取得してマップデータを作成したものであり、燃料噴射量qはアクセル開度センサ71で検出されるアクセル開度とエンジン回転数Neを基に予めの試験等により取得したマップデータから要求トルクを算出し、その要求トルクに応じた燃料噴射量として設定される。また、図3に示す基本EGR補正量マップは、エンジン10の運転状態としてエンジン回転数および燃料噴射量に基づいて得られる基本EGR量を求める基本EGR量マップとほぼ同一であってもよいし、基本EGR量を予め他のパラメータ(例えば冷却水温)に基づいて補正した後のEGR量データを有するものであってもよい。さらに、基本EGR補正量マップが基本EGR量を1とする減量補正係数を求めるものであってもよいが、その場合、図4に示す減算の処理は、乗算(最終EGR量=基本EGR量×減量補正係数)に置き換わる。   Here, in the basic EGR amount map shown in FIG. 4, the vertical axis indicates the fuel injection amount q and the horizontal axis indicates the engine speed Ne obtained by the crank angle sensor 73 (rotational speed sensor). The basic EGR amount is acquired by a preliminary operation test and map data is created, and the fuel injection amount q is a preliminary test based on the accelerator opening detected by the accelerator opening sensor 71 and the engine speed Ne. The required torque is calculated from the map data acquired by the above method and set as the fuel injection amount corresponding to the required torque. Further, the basic EGR correction amount map shown in FIG. 3 may be substantially the same as the basic EGR amount map for obtaining the basic EGR amount obtained based on the engine speed and the fuel injection amount as the operating state of the engine 10. You may have EGR amount data after correcting the basic EGR amount based on other parameters (for example, cooling water temperature) in advance. Further, the basic EGR correction amount map may obtain a reduction correction coefficient in which the basic EGR amount is 1. However, in this case, the subtraction process shown in FIG. 4 is performed by multiplication (final EGR amount = basic EGR amount × It is replaced with the weight loss correction coefficient.

ROM52内には、算出された最終EGR量に従ってEGRバルブ62の目標開度を決定し、EGRバルブ62の開度を目標値に制御するEGRバルブ開度制御プログラムも格納されている。   The ROM 52 also stores an EGR valve opening degree control program that determines the target opening degree of the EGR valve 62 according to the calculated final EGR amount and controls the opening degree of the EGR valve 62 to the target value.

さらに、ROM52内には、触媒床温センサ45の検出温度に応じて燃料噴射装置12によるパイロット噴射量、パイロットインターバル(パイロット噴射完了時期からメイン噴射開始時期までの期間)、メイン噴射時期、噴射圧、ポスト噴射量、ポスト噴射時期のいずれかを、COおよびHCを減少させる方向に補助的に補正するための補正プログラム、マップおよび作業メモリが格納されており、ECU50は、上述したEGR量の補正と併せてその補助的な補正を予めの実験で得られたマップデータに基づいて実行するようになっている。なお、パイロット噴射量、パイロットインターバル、メイン噴射時期、噴射圧、ポスト噴射量、ポスト噴射時期のいずれかを補正する方向は、COおよびHCを減少させる補正方向であり、エンジン10の各運転状態に応じてそのパラメータの増加又は減少方向のいずれかとなるように、その方向と補正量がマップデータとして予め準備され、ROM52内に格納されている。   Further, in the ROM 52, the pilot injection amount by the fuel injection device 12, the pilot interval (the period from the pilot injection completion timing to the main injection start timing), the main injection timing, the injection pressure, according to the temperature detected by the catalyst bed temperature sensor 45. A correction program, a map, and a working memory for supplementarily correcting any one of the post injection amount and the post injection timing in the direction of decreasing CO and HC are stored, and the ECU 50 corrects the EGR amount described above. In addition, the auxiliary correction is executed on the basis of the map data obtained in the previous experiment. The direction for correcting any one of the pilot injection amount, the pilot interval, the main injection timing, the injection pressure, the post injection amount, and the post injection timing is a correction direction for reducing CO and HC. The direction and the amount of correction are prepared in advance as map data and stored in the ROM 52 so that the parameter increases or decreases accordingly.

次に、作用について説明する。   Next, the operation will be described.

エンジン10の運転時には、ECU50内でROM52内に格納された複数のプログラムがそれぞれに所定の周期又はタイミングで実行される。   When the engine 10 is operated, a plurality of programs stored in the ROM 52 in the ECU 50 are respectively executed at a predetermined cycle or timing.

図5は、エンジン10の排気ガス中におけるNOx成分およびCO(又はHC)成分のEGR感度、すなわちその排気成分濃度がEGR量の変化に対してどのように変化するかを示すグラフである。   FIG. 5 is a graph showing how the EGR sensitivity of the NOx component and CO (or HC) component in the exhaust gas of the engine 10, that is, how the exhaust component concentration changes with respect to the change in the EGR amount.

エンジン10の運転時には、EGR量(EGR率に対応する)の変化に対し、図5に示すように、EGR量の少ない運転状態では、排気ガス中のNOx成分の排出濃度が高くなる一方でCOやHCの排出濃度は低くなり、EGR量の多い運転状態では、排気ガス中のNOx成分の排出濃度が低くなる一方でCOやHCの排出濃度は高くなる。   When the engine 10 is in operation, as shown in FIG. 5, in contrast to the change in the EGR amount (corresponding to the EGR rate), in the operation state where the EGR amount is small, the exhaust concentration of the NOx component in the exhaust gas increases while the CO In an operating state with a large EGR amount, the exhaust concentration of NOx components in the exhaust gas is lowered, while the exhaust concentration of CO and HC is increased.

そこで、本実施形態では、まず、排気後処理装置44内の排気浄化触媒の触媒床温度が所定の排気浄化温度Tcaに達しないために活性状態になく排気浄化率が低い段階では、例えばパイロット噴射量、パイロットインターバル、メイン噴射時期、噴射圧、ポスト噴射量、ポスト噴射時期のいずれかを補正することによってNOxを抑えながら、EGR量の減量補正によってEGR量を減少させておく。   Therefore, in the present embodiment, first, at a stage where the exhaust purification catalyst in the exhaust aftertreatment device 44 does not reach the predetermined exhaust purification temperature Tca and is not in an active state and the exhaust purification rate is low, for example, pilot injection The EGR amount is decreased by correcting the decrease in the EGR amount while suppressing NOx by correcting any of the amount, the pilot interval, the main injection timing, the injection pressure, the post injection amount, and the post injection timing.

次いで、排気後処理装置44内の排気浄化触媒の触媒床温度が所定の排気浄化温度Tcaに近付いてきて排気浄化率が上昇しつつある段階になると、EGR量を排気後処理装置44内の排気浄化触媒の温度特性に基づき、触媒床温度に応じた減量補正量となるように、触媒床温センサ45の検出温度に応じてEGR量の減量補正量を変化させる。   Next, when the catalyst bed temperature of the exhaust purification catalyst in the exhaust aftertreatment device 44 approaches the predetermined exhaust purification temperature Tca and the exhaust purification rate is increasing, the EGR amount is exhausted in the exhaust aftertreatment device 44. Based on the temperature characteristic of the purification catalyst, the amount of correction for reducing the EGR amount is changed in accordance with the temperature detected by the catalyst bed temperature sensor 45 so that the amount of decrease in correction is based on the catalyst bed temperature.

次いで、排気後処理装置44内の排気浄化触媒の触媒床温度が所定の排気浄化温度Tcaを超え排気浄化率が十分に高まった段階では、EGR量の減量補正でなく、EGR量を増加させてNOxを低減させるようにする。   Next, at a stage where the catalyst bed temperature of the exhaust purification catalyst in the exhaust aftertreatment device 44 exceeds the predetermined exhaust purification temperature Tca and the exhaust purification rate has sufficiently increased, the EGR amount is not increased, but the EGR amount is increased. NOx is reduced.

具体的には、エンジン10のエンジン回転数および燃料噴射量に基づいて、排気再循環装置16によるEGR量の算出ベース値である基本EGR量が算出されるとともに、触媒床温センサ45によって始動時における触媒床温度が検出され、排気後処理装置44内の排気浄化触媒が所定の排気浄化温度Tcaに達するまでの温度範囲内で、その排気浄化触媒の暖機昇温時の浄化性能の立上り特性(図2参照)に応じて、基本EGR量に対する減量補正が実行される。   Specifically, a basic EGR amount that is a base value for calculating the EGR amount by the exhaust gas recirculation device 16 is calculated based on the engine speed of the engine 10 and the fuel injection amount. In the temperature range until the exhaust gas purification catalyst in the exhaust aftertreatment device 44 reaches a predetermined exhaust gas purification temperature Tca, and the rising performance of the purification performance when the exhaust gas purification catalyst warms up In accordance with (see FIG. 2), a reduction correction for the basic EGR amount is executed.

すなわち、図3に示すように、触媒床温センサ45の検出温度Tcに対応する減量補正係数hを基本EGR補正量Ebに乗じたEGR補正量が算出され、図4に示すように、その減量補正量分だけ基本EGR量から差し引く減算処理が実行されることで、最終EGR量が算出される。   That is, as shown in FIG. 3, an EGR correction amount is calculated by multiplying the basic EGR correction amount Eb by a reduction correction coefficient h corresponding to the detected temperature Tc of the catalyst bed temperature sensor 45, and as shown in FIG. A final EGR amount is calculated by executing a subtraction process for subtracting the amount of correction from the basic EGR amount.

したがって、排気後処理装置44内の排気浄化触媒の担持量が活性後の必要量程度に抑えられていても、触媒暖機中に触媒を出る排気ガス中のCOやHCが確実に抑制され、排気後処理装置44の排気浄化性能とコスト低減とを両立させ得ることになる。   Therefore, even if the supported amount of the exhaust purification catalyst in the exhaust aftertreatment device 44 is suppressed to the required amount after activation, CO and HC in the exhaust gas exiting the catalyst during catalyst warm-up are reliably suppressed, The exhaust purification performance of the exhaust aftertreatment device 44 and the cost reduction can be achieved at the same time.

本実施形態では、さらに、エンジン10の特性に応じた既存の基本EGR量算出用のマップ情報を活用しながら、触媒床温センサ45によって始動時に検出される触媒床温度に対応する減量補正係数hを更に用いて、排気後処理装置44内の排気浄化触媒が所定の排気浄化温度Tcaに達するまでの温度範囲内で、暖機昇温時の排気浄化性能の立上り特性に応じた減量補正を実行することができることになり、排気後処理装置44内の排気浄化触媒の担持量を抑えつつ、触媒暖機中に触媒を出る排気ガス中のCOやHCを確実に抑制することができる。   In the present embodiment, the reduction correction coefficient h corresponding to the catalyst bed temperature detected at the start by the catalyst bed temperature sensor 45 while utilizing the existing map information for calculating the basic EGR amount according to the characteristics of the engine 10. Is further used to perform a reduction correction according to the rising characteristics of the exhaust purification performance at the time of warm-up within the temperature range until the exhaust purification catalyst in the exhaust aftertreatment device 44 reaches a predetermined exhaust purification temperature Tca. As a result, it is possible to reliably suppress CO and HC in the exhaust gas exiting the catalyst during catalyst warm-up while suppressing the amount of the exhaust purification catalyst carried in the exhaust aftertreatment device 44.

しかも、この減量補正のための減量補正係数hは、排気後処理装置44内の排気浄化触媒の浄化性能の温度特性に基づいて容易にかつ最適な減量補正係数に設定することができるから、触媒暖機中に触媒を出る排気ガス中のCOやHCがより確実に抑制されることになる。   Moreover, since the reduction correction coefficient h for the reduction correction can be easily set to the optimal reduction correction coefficient based on the temperature characteristics of the purification performance of the exhaust purification catalyst in the exhaust aftertreatment device 44, the catalyst CO and HC in the exhaust gas exiting the catalyst during warm-up are more reliably suppressed.

このように、本実施形態の排気浄化制御装置によれば、触媒床温センサ45によって始動時における触媒床温度を検出し、排気後処理装置44内の排気浄化触媒が所定の排気浄化温度Tcaに達するまでの温度範囲内で、触媒暖機昇温時の浄化性能の立上り特性に応じて基本EGR量に対する減量補正を実行するようにしているので、排気後処理装置44内の排気浄化触媒の担持量を抑えても触媒暖機中に触媒を出る排気ガス中のCOやHCを確実に抑制することができ、排気浄化装置の排気浄化性能とコスト低減とを両立させることができる。   Thus, according to the exhaust purification control apparatus of the present embodiment, the catalyst bed temperature at the start is detected by the catalyst bed temperature sensor 45, and the exhaust purification catalyst in the exhaust aftertreatment device 44 reaches the predetermined exhaust purification temperature Tca. In the temperature range until the temperature reaches, the reduction correction for the basic EGR amount is executed in accordance with the rising characteristic of the purification performance when the catalyst warms up, and the exhaust purification catalyst is carried in the exhaust aftertreatment device 44. Even if the amount is suppressed, CO and HC in the exhaust gas exiting the catalyst during catalyst warm-up can be reliably suppressed, and both the exhaust purification performance and cost reduction of the exhaust purification device can be achieved.

なお、上述の実施形態においては、触媒床温度を触媒床温センサ45で直接に検出するものとしたが、排気温度の積算値や平均値を基に触媒床温度を推定し間接的に検出することもできる。また、本実施形態では、内燃機関をディーゼルエンジンとしたが、他の内燃機関であってもよいことはいうまでもない。   In the above-described embodiment, the catalyst bed temperature is directly detected by the catalyst bed temperature sensor 45. However, the catalyst bed temperature is estimated and indirectly detected based on the integrated value or average value of the exhaust temperature. You can also. In the present embodiment, the internal combustion engine is a diesel engine, but other internal combustion engines may be used.

以上説明したように、本発明は、触媒床温度検出手段によって始動時における触媒床温度を検出し、排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内で、触媒暖機昇温時の浄化性能の立上り特性に応じて基本EGR量に対する減量補正を実行するようにしているので、排気浄化触媒の担持量を抑えても触媒暖機中に触媒を出る排気ガス中のCOやHCを確実に抑制することができ、排気浄化性能とコスト低減とを両立させることのできる内燃機関の排気浄化制御装置を提供することができるという効果を奏するものであり、内燃機関の排気浄化制御装置、特に排気浄化触媒の暖機昇温時にEGR量を制限するようにした内燃機関の排気浄化制御装置全般に有用である。   As described above, the present invention detects the catalyst bed temperature at the time of start-up by the catalyst bed temperature detecting means, and within the temperature range until the exhaust purification catalyst reaches the predetermined exhaust purification temperature, Since the reduction correction for the basic EGR amount is executed in accordance with the start-up characteristics of the purification performance, the CO and HC in the exhaust gas exiting the catalyst during catalyst warm-up can be reduced even if the amount of the exhaust purification catalyst supported is suppressed. An exhaust purification control device for an internal combustion engine that can be reliably suppressed and can achieve both an exhaust purification performance and a cost reduction can be provided, and an exhaust purification control device for an internal combustion engine, In particular, the present invention is useful for all exhaust gas purification control devices for internal combustion engines that limit the EGR amount when the exhaust gas purification catalyst warms up.

本発明の一実施形態に係る内燃機関の排気浄化制御装置を示す図であり、本発明を多気筒ディーゼルエンジンに適用した例を示している。1 is a diagram showing an exhaust gas purification control device for an internal combustion engine according to an embodiment of the present invention, showing an example in which the present invention is applied to a multi-cylinder diesel engine. 一実施形態における排気浄化触媒の排気浄化性能と触媒床温度との関係を示す排気浄化性能の温度特性図である。It is a temperature characteristic diagram of the exhaust purification performance showing the relationship between the exhaust purification performance of the exhaust purification catalyst and the catalyst bed temperature in one embodiment. 一実施形態におけるエンジンの運転状態と排気浄化触媒の触媒床温度とに基づいてEGR補正量を算出する処理を説明するブロック図である。It is a block diagram explaining the process which calculates the EGR correction amount based on the operating state of the engine and the catalyst bed temperature of the exhaust purification catalyst in one embodiment. 一実施形態におけるエンジンの運転状態と算出済みのEGR補正量とに基づいて最終EGR量を算出する処理を説明するブロック図である。It is a block diagram explaining the process which calculates the last EGR amount based on the driving | running state of the engine and the calculated EGR correction amount in one Embodiment. 一実施形態のエンジンの排気ガス中におけるNOx成分およびCO成分のEGR感度、すなわちその排気成分濃度がEGR量の変化に対してどのように変化するかを示すグラフである。It is a graph which shows how the EGR sensitivity of the NOx component and CO component in the exhaust gas of the engine of one embodiment, that is, the exhaust component concentration changes with respect to the change of the EGR amount.

符号の説明Explanation of symbols

10 エンジン
11 気筒
12 燃料噴射装置
13 吸気装置
14 排気装置
15 ターボ過給機
15a 吸入空気コンプレッサ
15b 排気タービン
16 排気再循環装置(EGR手段)
21 サプライポンプ
22 コモンレール
23 燃料噴射弁
24 燃料添加ノズル
31 吸気マニホルド
32 吸気管
33 エアクリーナ
34 インタークーラ
35 エアフローメータ
36 スロットルバルブ
37 吸気温度センサ
41 排気マニホルド
42 排気管
43 A/Fセンサ(広域空燃比センサ)
44 排気後処理装置
45 触媒床温センサ(触媒床温度検出手段)
50 ECU(電子制御ユニット、基本EGR量算出手段、減量補正手段)
51 CPU
52 ROM
53 RAM
54 EEPROM
56 入力インターフェース回路
57 出力インターフェース回路
61 EGR通路
62 EGRバルブ
63 EGRクーラ
64 バイパス通路
65 EGRクーラバイパスバルブ
66 EGR酸化触媒ユニット
71 アクセル開度センサ
72 スロットル開度センサ
73 クランク角センサ
74 車速センサ
75 吸気管内圧力センサ
DESCRIPTION OF SYMBOLS 10 Engine 11 Cylinder 12 Fuel-injection apparatus 13 Intake apparatus 14 Exhaust apparatus 15 Turbo supercharger 15a Intake air compressor 15b Exhaust turbine 16 Exhaust gas recirculation apparatus (EGR means)
DESCRIPTION OF SYMBOLS 21 Supply pump 22 Common rail 23 Fuel injection valve 24 Fuel addition nozzle 31 Intake manifold 32 Intake pipe 33 Air cleaner 34 Intercooler 35 Air flow meter 36 Throttle valve 37 Intake temperature sensor 41 Exhaust manifold 42 Exhaust pipe 43 A / F sensor (Wide area air-fuel ratio sensor) )
44 Exhaust aftertreatment device 45 Catalyst bed temperature sensor (catalyst bed temperature detection means)
50 ECU (electronic control unit, basic EGR amount calculation means, reduction correction means)
51 CPU
52 ROM
53 RAM
54 EEPROM
56 Input interface circuit 57 Output interface circuit 61 EGR passage 62 EGR valve 63 EGR cooler 64 Bypass passage 65 EGR cooler bypass valve 66 EGR oxidation catalyst unit 71 Accelerator opening sensor 72 Throttle opening sensor 73 Crank angle sensor 74 Vehicle speed sensor 75 Intake pipe Pressure sensor

Claims (4)

内燃機関の排気の一部をEGR通路を通して吸気マニホルド側に再循環させるEGR手段と、前記内燃機関の排気通路に排気された排気成分を浄化する排気浄化触媒とを有する内燃機関の排気浄化制御装置において、
前記排気浄化触媒の触媒床温度を検出する触媒床温度検出手段と、
前記内燃機関の運転状態に基づいて、前記吸気マニホルド側に排気再循環させるための基本EGR量を算出する基本EGR量算出手段と、
前記触媒床温度検出手段の検出温度に基づき、前記排気浄化触媒の暖機昇温中の浄化性能の立上りに応じて、前記排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内で前記基本EGR量についての減量補正を実行する減量補正手段と、を備えたことを特徴とする内燃機関の排気浄化制御装置。
An exhaust gas purification control apparatus for an internal combustion engine, comprising: EGR means for recirculating a part of the exhaust gas of the internal combustion engine to the intake manifold side through the EGR passage; and an exhaust purification catalyst for purifying an exhaust component exhausted into the exhaust passage of the internal combustion engine. In
Catalyst bed temperature detecting means for detecting the catalyst bed temperature of the exhaust purification catalyst;
Basic EGR amount calculating means for calculating a basic EGR amount for recirculating exhaust gas to the intake manifold side based on an operating state of the internal combustion engine;
Based on the detected temperature of the catalyst bed temperature detecting means, the exhaust purification catalyst within the temperature range until the exhaust purification catalyst reaches a predetermined exhaust purification temperature according to the rise of the purification performance during warming-up of the exhaust purification catalyst. An exhaust purification control apparatus for an internal combustion engine, comprising: a reduction correction means for executing a reduction correction for the basic EGR amount.
前記減量補正手段が、前記排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内で、前記排気浄化触媒の温度上昇に応じてEGR量の減量補正量を減少させるように変化する減量補正係数を算出し、前記排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内で、前記触媒床温度検出手段の検出温度に対応する前記減量補正係数と前記基本EGR量とに基づいて前記減量補正量を算出することを特徴とする請求項1に記載の内燃機関の排気浄化制御装置。   The reduction correction that the reduction correction means changes so as to decrease the reduction correction amount of the EGR amount in accordance with the temperature rise of the exhaust purification catalyst within the temperature range until the exhaust purification catalyst reaches a predetermined exhaust purification temperature. A coefficient is calculated, and based on the reduction correction coefficient corresponding to the detected temperature of the catalyst bed temperature detecting means and the basic EGR amount within a temperature range until the exhaust purification catalyst reaches a predetermined exhaust purification temperature. 2. The exhaust gas purification control apparatus for an internal combustion engine according to claim 1, wherein a reduction correction amount is calculated. 前記減量補正手段が、前記触媒床温度検出手段の検出温度に対応する前記減量補正係数を前記基本EGR量に乗じた減量補正量を算出し、該減量補正量分だけ前記基本EGR量から減量補正する請求項2に記載の内燃機関の排気浄化制御装置。   The reduction correction means calculates a reduction correction amount obtained by multiplying the basic EGR amount by the reduction correction coefficient corresponding to the detected temperature of the catalyst bed temperature detection means, and reduces the correction from the basic EGR amount by the reduction correction amount. The exhaust gas purification control apparatus for an internal combustion engine according to claim 2. 前記減量補正係数が、前記排気浄化触媒の排気浄化率が最小となる触媒床温度域で最大になるとともに、前記排気浄化触媒が所定の排気浄化温度に達するまでの温度範囲内では、前記触媒床温度検出手段の暖機昇温に応じた前記排気浄化率の上昇率に反比例する減少率で減少することを特徴とする請求項2または請求項3に記載の内燃機関の排気浄化制御装置。   The reduction correction coefficient is maximized in a catalyst bed temperature region where the exhaust purification rate of the exhaust purification catalyst is minimum, and the catalyst bed is within a temperature range until the exhaust purification catalyst reaches a predetermined exhaust purification temperature. 4. The exhaust gas purification control apparatus for an internal combustion engine according to claim 2, wherein the exhaust gas purification control apparatus decreases at a rate that is inversely proportional to an increase rate of the exhaust gas purification rate according to a warm-up temperature rise of the temperature detecting means.
JP2007161575A 2007-06-19 2007-06-19 Exhaust emission control device for internal combustion engine Pending JP2009002172A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007161575A JP2009002172A (en) 2007-06-19 2007-06-19 Exhaust emission control device for internal combustion engine
DE102008029040A DE102008029040A1 (en) 2007-06-19 2008-06-18 An exhaust purification control device for an internal combustion engine and control method for an exhaust emission control device
FR0803437A FR2917785A1 (en) 2007-06-19 2008-06-19 Exhaust gas purification controlling unit for internal combustion engine i.e. oil engine, of vehicle, has control unit acting as device to reduce quantity based on temperature according to increase of purification capacity of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161575A JP2009002172A (en) 2007-06-19 2007-06-19 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009002172A true JP2009002172A (en) 2009-01-08

Family

ID=40092735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161575A Pending JP2009002172A (en) 2007-06-19 2007-06-19 Exhaust emission control device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP2009002172A (en)
DE (1) DE102008029040A1 (en)
FR (1) FR2917785A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019321A (en) * 2011-07-11 2013-01-31 Isuzu Motors Ltd Internal combustion engine and egr method of the same
JP2014080925A (en) * 2012-10-17 2014-05-08 Mitsubishi Heavy Ind Ltd Control device of internal combustion engine and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972611B2 (en) 2001-07-30 2007-09-05 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2003065121A (en) 2001-08-30 2003-03-05 Toyota Motor Corp Diesel engine
JP4182770B2 (en) 2003-02-14 2008-11-19 トヨタ自動車株式会社 diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019321A (en) * 2011-07-11 2013-01-31 Isuzu Motors Ltd Internal combustion engine and egr method of the same
JP2014080925A (en) * 2012-10-17 2014-05-08 Mitsubishi Heavy Ind Ltd Control device of internal combustion engine and control method thereof

Also Published As

Publication number Publication date
FR2917785A1 (en) 2008-12-26
DE102008029040A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
US8141349B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
US8256206B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP5187123B2 (en) Control device for internal combustion engine
JP4442643B2 (en) Exhaust gas purification control device for internal combustion engine
JP2006316746A (en) Exhaust emission control device for internal combustion engine
EP1917426A1 (en) Boost pressure control
JP2009281144A (en) Control device for internal combustion engine with turbocharger
US7900440B2 (en) Exhaust emission control device and method for internal combustion engine and engine control unit
EP2211044A1 (en) EGR controller and EGR control method for internal combustion engine
JP4759496B2 (en) Exhaust gas purification device for internal combustion engine
JP2008163794A (en) Exhaust gas recirculation device for internal combustion engine
JP2009085053A (en) Control device for compression ignition internal combustion engine
US8117829B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP4747079B2 (en) Exhaust gas purification device for internal combustion engine
JP4736969B2 (en) Diesel engine control device
JP4510656B2 (en) Exhaust gas purification device for internal combustion engine
EP2175122A2 (en) Exhaust gas purification system for internal combustion engine
JP5701009B2 (en) Apparatus and method for controlling torque fluctuation suppression of diesel engine
JP2009002172A (en) Exhaust emission control device for internal combustion engine
EP2642102B1 (en) Control device for internal combustion engine
JP2010138834A (en) Failure diagnostic device for intake air temperature sensor of internal combustion engine
JP4989954B2 (en) Exhaust gas purification device for internal combustion engine
JP2012167562A (en) Diesel engine
JP2009191678A (en) Control device of internal combustion engine
JP2011252473A (en) Ethod and device for controlling engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006