JP2009001467A - Coating composition for fertilizer - Google Patents

Coating composition for fertilizer Download PDF

Info

Publication number
JP2009001467A
JP2009001467A JP2007166529A JP2007166529A JP2009001467A JP 2009001467 A JP2009001467 A JP 2009001467A JP 2007166529 A JP2007166529 A JP 2007166529A JP 2007166529 A JP2007166529 A JP 2007166529A JP 2009001467 A JP2009001467 A JP 2009001467A
Authority
JP
Japan
Prior art keywords
fertilizer
coating composition
resin
polyisocyanate
polyester polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166529A
Other languages
Japanese (ja)
Inventor
Hironobu Fukuzaki
裕延 福崎
Yoichi Nagaoka
陽一 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP2007166529A priority Critical patent/JP2009001467A/en
Publication of JP2009001467A publication Critical patent/JP2009001467A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating composition for fertilizer which uses raw materials having biodegradability and can well adjust the elution accuracy of fertilizer components by the use of a simple method. <P>SOLUTION: The coating composition for fertilizer is prepared by reacting a polyester polyol obtained by reacting lactic acid, ≥6C oxycarboxylic acid and a polyhydric alcohol with each other with polyisocyanate. The use of the coating composition for fertilizer improves the biodegradability of the coating composition and produces a coated fertilizer in which the elution of fertilizer components is adjusted with well accuracy, and thereby the technology is extremely useful in industrial utilization. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、肥料用被覆組成物に関する。さらに詳しくは、生分解性を有する原料を用い、有機溶媒などを用いずに簡便な方法で、肥料成分の溶出を精度良く調整することができる肥料用被覆組成物に関する。   The present invention relates to a fertilizer coating composition. More specifically, the present invention relates to a fertilizer coating composition that can adjust the elution of fertilizer components with high accuracy by a simple method using a biodegradable raw material without using an organic solvent or the like.

近年、湖沼などの閉鎖性水域の富栄養化や硝酸性窒素による地下水汚染などの環境問題や、農業人口の減少、従事者の高齢化による省力型肥料が要請により、多くの被覆粒状肥料が開発され、市販・実用化されている。しかしながら、被膜の非崩壊性による環境負荷が大きくなるなどの問題も生じている。
そこで、このような環境への負荷の小さい被覆材料として、エステル結合を有するヒマシ油やヒマシ油誘導体を原料として用いることにより、樹脂の生分解性が期待できることから、このような樹脂とポリイソシアネートとを反応させたポリウレタン樹脂を被膜として用いることが提案されている(例えば、特許文献1〜3参照)。しかし、このような樹脂被覆組成物の生分解性は低く、肥料成分が溶出した後も長期にわたって環境中に残存するのが現状である。
In recent years, many coated granular fertilizers have been developed in response to environmental problems such as eutrophication of closed water areas such as lakes and marshes and groundwater contamination by nitrate nitrogen, labor-saving fertilizers due to a decrease in the agricultural population and the aging of workers. It is commercially available and commercialized. However, problems such as an increased environmental load due to the non-disintegrating nature of the coating have also occurred.
Therefore, as a coating material having a small environmental load, it is possible to expect the biodegradability of the resin by using castor oil or castor oil derivative having an ester bond as a raw material. It has been proposed to use a polyurethane resin obtained by reacting as a coating (see, for example, Patent Documents 1 to 3). However, the biodegradability of such a resin coating composition is low, and the present condition is that it remains in the environment for a long time even after the fertilizer components are eluted.

また、ポリ乳酸、ポリカプロラクトンに代表される、主鎖にエステル結合を有する生分解性樹脂を粒状肥料に被覆することが提案されている(例えば、特許文献4〜7参照)。このような樹脂の生分解性は高いものの、その製造時には樹脂を有機溶媒に溶解して被覆するため、使用した溶媒の一部は大気中に気散するなどの問題がある。また、溶出性能も従来の非分解性樹脂を用いた被覆粒状肥料に較べて劣る傾向が強い。   In addition, it has been proposed to coat granular fertilizer with a biodegradable resin having an ester bond in the main chain, represented by polylactic acid and polycaprolactone (see, for example, Patent Documents 4 to 7). Although the biodegradability of such a resin is high, since the resin is dissolved and coated in an organic solvent at the time of production, there is a problem that a part of the solvent used is diffused into the atmosphere. Also, the elution performance tends to be inferior compared to the conventional coated granular fertilizer using non-degradable resin.

更に、乳酸成分、ジカルボン酸成分、およびジオール成分からなるポリエステルポリオールを肥料に被覆することも提案されている(例えば、特許文献8〜9参照)。この場合には、加熱により溶融した樹脂を被覆するか、或いは有機溶媒に溶解して被覆する方法があるが、前者では溶出性能が劣る傾向があり、また後者では有機溶媒の気散の問題が残されている。   Furthermore, it is also proposed to coat a fertilizer with a polyester polyol composed of a lactic acid component, a dicarboxylic acid component, and a diol component (see, for example, Patent Documents 8 to 9). In this case, there is a method in which the resin melted by heating is coated, or there is a method of coating by dissolving in an organic solvent, but the former tends to have poor elution performance, and the latter has a problem of diffusing organic solvent. It is left.

このように肥料用の樹脂被覆組成物は、樹脂の生分解性、肥料の溶出性能などで未だ十分なものとはいえず、また製造時には有機溶媒などの環境負荷物質を大気中に放出する場合があるのが現状である。   In this way, the resin coating composition for fertilizer is not yet sufficient in terms of resin biodegradability, elution performance of fertilizer, etc., and when environmentally hazardous substances such as organic solvents are released into the atmosphere during production There is a current situation.

特許登録第3161997号公報Patent Registration No. 3161997 特開2001−213685号公報Japanese Patent Laid-Open No. 2001-213865 特開2005−1957号公報JP 2005-1957 A 特開平7−33577号公報JP 7-33577 A 特開平9−263476号公報JP-A-9-263476 特開平10−67591号公報JP-A-10-67591 特開2002−284594号公報JP 2002-284594 A 特開平7−309689号公報Japanese Patent Laid-Open No. 7-309688 特開平9−249477号公報Japanese Patent Laid-Open No. 9-249477

本発明は、生分解性を考慮した原料を用い、環境に配慮して有機溶媒を使用せず、簡便な方法で、肥料成分の溶出が精度良く調整することができる肥料用被覆組成物を提供することを課題とする。   The present invention provides a fertilizer coating composition capable of accurately adjusting the elution of fertilizer components by a simple method using raw materials considering biodegradability and not using an organic solvent in consideration of the environment. The task is to do.

本発明者らは、被覆肥料について鋭意検討を重ねた結果、主として乳酸、炭素数6以上のオキシカルボン酸及び多価アルコールとを反応してなるポリエステルポリオール成分と、ポリイソシアネート成分とを反応させたポリウレタン樹脂が前記課題を解決することを見出し、係る知見に基づき本発明を完成したものである。   As a result of intensive studies on coated fertilizers, the present inventors have reacted a polyester polyol component obtained mainly by reacting lactic acid, an oxycarboxylic acid having 6 or more carbon atoms and a polyhydric alcohol with a polyisocyanate component. The present inventors have found that a polyurethane resin can solve the above problems and have completed the present invention based on such knowledge.

即ち本発明は、乳酸、炭素数6以上のオキシカルボン酸及び多価アルコールとを反応してなるポリエステルポリオール成分と、ポリイソシアネートとを反応してなる肥料用被覆組成物に関する。   That is, the present invention relates to a fertilizer coating composition obtained by reacting a polyisocyanate with a polyester polyol component obtained by reacting lactic acid, an oxycarboxylic acid having 6 or more carbon atoms and a polyhydric alcohol.

本発明で使用するポリエステルポリオールは、室温ではペースト状であるため、有機溶媒などを用いないで肥料への被覆が可能であり、更に、これとポリイソシアネートとを反応してなる本発明の肥料用樹脂組成物は、被覆肥料の肥料成分の溶出が精度良く調整されると共に、主に被膜中のエステル基により生分解性が促進されるという特徴を有する。   Since the polyester polyol used in the present invention is a paste at room temperature, it can be coated on a fertilizer without using an organic solvent or the like, and further, this is reacted with polyisocyanate for the fertilizer of the present invention. The resin composition is characterized in that the elution of the fertilizer component of the coated fertilizer is adjusted with high accuracy and the biodegradability is promoted mainly by the ester group in the coating.

以下、本発明の肥料用被覆組成物について、更に詳細に説明を行なう。
本発明において、肥料粒の被覆に使用する肥料用被覆組成物は、ポリウレタン樹脂であり、乳酸、炭素数6以上のオキシカルボン酸及び多価アルコールとを反応してなる室温でペースト状のポリエステルポリオールと、ポリイソシアネートとを反応させることによって得られる熱硬化性樹脂である。
Hereinafter, the coating composition for fertilizer of the present invention will be described in more detail.
In the present invention, the fertilizer coating composition used for coating fertilizer grains is a polyurethane resin, and is a paste-like polyester polyol formed by reacting lactic acid, an oxycarboxylic acid having 6 or more carbon atoms and a polyhydric alcohol. And a thermosetting resin obtained by reacting polyisocyanate.

ポリエステルポリオールの合成方法について云えば、一般的なアルキド樹脂を合成する手法である直接法、エステル交換反応を行うアルコーリシス法のいずれの方法により行なってもよい。
ポリエステルポリオールの合成に使用する乳酸について云えば、L−乳酸、DL−乳酸、D−乳酸の何れを用いても問題はないが、L−乳酸の使用が汎用されることから好ましい。また、オキシカルボン酸について云えば、炭素数6以上のオキシカルボン酸を使用することが必要であり、例えばリシノール酸を主成分とするヒマシ油脂肪酸又はε-カプロラクトンの加水分解物等であり、炭素数5以下になれば、得られるポリウレタン樹脂の親水性が高くなるため、肥料成分の溶出コントロールが困難となる。尚、本発明で云うポリエステルポリオールは、有機溶媒を使用せずに肥料粒へ被覆するため、室温でペースト状であることが重要であり、このため、ポリエステルポリオール中の乳酸組成分は20〜80質量%であり、オキシカルボン酸の使用量は、10~70質量%であることが好ましい。
Speaking of the method for synthesizing the polyester polyol, it may be carried out by either a direct method, which is a method for synthesizing a general alkyd resin, or an alcoholysis method in which a transesterification reaction is performed.
Speaking of lactic acid used for the synthesis of the polyester polyol, there is no problem even if any of L-lactic acid, DL-lactic acid and D-lactic acid is used, but it is preferable because the use of L-lactic acid is widely used. As for oxycarboxylic acid, it is necessary to use an oxycarboxylic acid having 6 or more carbon atoms, such as a castor oil fatty acid mainly composed of ricinoleic acid or a hydrolyzate of ε-caprolactone. If it becomes several 5 or less, since the hydrophilic property of the obtained polyurethane resin will become high, the elution control of a fertilizer component will become difficult. In addition, since the polyester polyol referred to in the present invention is coated on fertilizer grains without using an organic solvent, it is important that the polyester polyol is in a paste form at room temperature. For this reason, the lactic acid composition in the polyester polyol is 20-80. The amount of oxycarboxylic acid used is preferably 10 to 70% by mass.

次に、多価アルコールについて云えば、水酸基数が2以上であれば使用可能であり、水酸基数が3以上のグリセリン、ペンタエリスリトール、トリメチロールプロパン、マンニトール、ソルビトールなどの使用が好ましいが、特にこれらに限定されるものではない。   Next, with regard to polyhydric alcohol, it can be used if the number of hydroxyl groups is 2 or more, and glycerin, pentaerythritol, trimethylolpropane, mannitol, sorbitol and the like having 3 or more hydroxyl groups are preferably used. It is not limited to.

上記の原料を加熱縮合して得られるポリエステルポリオールは、ウレタン化して被覆材として使用するために、水酸基価は50〜400のものが好ましく、この範囲外では被覆した肥料成分を精度よく調整することが困難となる。また、酸価に関して云えば、酸価が高いとウレタン化反応が阻害され被膜の硬化が悪くなり、均一な被膜形成が困難となるため、酸価は15以下、さらに好ましくは10以下である。
また、上記ポリエステルポリオールは、ポリエーテルポリオールや天然物由来の水酸基を有する各種ヒマシ油などと、生分解性を著しく低下させない範囲内で、必要に応じて混合使用することも可能である。
The polyester polyol obtained by heat condensation of the above raw materials is preferably urethanized and used as a coating material, so that the hydroxyl value is preferably 50 to 400, and outside this range, the coated fertilizer components should be adjusted accurately. It becomes difficult. In terms of the acid value, if the acid value is high, the urethanization reaction is inhibited and the coating film is hardened and it becomes difficult to form a uniform film. Therefore, the acid value is 15 or less, more preferably 10 or less.
Further, the polyester polyol can be mixed with a polyether polyol or various castor oils having a hydroxyl group derived from a natural product, if necessary, within a range that does not significantly reduce biodegradability.

ウレタン化に際して使用するポリイソシアネートとしては、モノマーのジイソシアネート、液状のポリイソシアネートがあり、好適な例として、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、キシレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等が挙げられる。また、これらの混合物も使用することができる。しかし、これらの内、本発明の目的及び被膜形成性の点から、ポリメチレンポリフェニルポリイソシアネートの使用が最も好ましい。   The polyisocyanate used for urethanization includes monomeric diisocyanate and liquid polyisocyanate. Preferred examples include tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, xylene diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, Examples include isophorone diisocyanate and dicyclohexylmethane diisocyanate. Mixtures of these can also be used. However, among these, the use of polymethylene polyphenyl polyisocyanate is most preferable from the viewpoints of the object of the present invention and the film-forming property.

ポリエステルポリオールとポリイソシアネートとの反応割合は、イソシアネート基とヒドロキシル基のモル比(NCO/OH)として0.5〜2.0の範囲が好ましい。このモル比が0.5を下廻ると、ポリウレタン架橋が減少して被膜の耐水性が低下する。また、モル比が2.0を上廻りウレタン架橋が増加すると、生分解性が低下するため好ましくない。   The reaction ratio between the polyester polyol and the polyisocyanate is preferably in the range of 0.5 to 2.0 as the molar ratio of isocyanate group to hydroxyl group (NCO / OH). When this molar ratio is less than 0.5, polyurethane crosslinking is reduced and the water resistance of the coating is lowered. Further, if the molar ratio exceeds 2.0 and the urethane crosslinking increases, the biodegradability decreases, which is not preferable.

この様な反応に伴うウレタン化に際して、反応を促進するために触媒を添加することは有用である。この様な触媒としては、公知のものを用いることができ、例えば、オクタン酸カリウム等の有機塩類、トリエチレンジアミン等のアミン化合物が使用できる。
しかし、反応速度の調整の容易さ、均一な被膜の形成のし易さの点から、脂肪族モノカルボン酸カリウムの使用が好ましい。また、ポリエステルポリオールの1成分にリシノール酸やヒマシ油脂肪酸を用いる場合では、より強靭な被膜を形成する目的で、架橋触媒として、例えば、ナフテン酸マンガン、オクタン酸コバルト等の有機塩類を使用することも有用である。
In the urethanization accompanying such a reaction, it is useful to add a catalyst in order to accelerate the reaction. As such a catalyst, a known catalyst can be used. For example, organic salts such as potassium octoate and amine compounds such as triethylenediamine can be used.
However, it is preferable to use an aliphatic monocarboxylic acid potassium from the viewpoint of easy adjustment of the reaction rate and easy formation of a uniform film. In addition, when ricinoleic acid or castor oil fatty acid is used as one component of the polyester polyol, an organic salt such as manganese naphthenate or cobalt octoate is used as a crosslinking catalyst for the purpose of forming a tougher film. Is also useful.

本発明の組成物が使用できる肥料は、粒状であれば特に制限はなく、例えば、尿素、硫安、塩安、りん安、硝安、硫酸カリ、塩化カリ、りん酸マグネシウム、硫りん安、硫加りん安、りん硝安カリ、過りん酸石灰が、その代表として挙げられる。また、肥料粒子の粒径に関しても特に制限はないが、概ね1mm〜5mmの範囲のものの使用が好ましい。   The fertilizer that can be used in the composition of the present invention is not particularly limited as long as it is granular. For example, urea, ammonium sulfate, ammonium sulfate, phosphoric acid, ammonium nitrate, potassium sulfate, potassium chloride, magnesium phosphate, ammonium phosphate, phosphorous sulfate. Typical examples of such materials include ammonium, potassium phosphate, and superphosphate lime. Moreover, there is no restriction | limiting in particular regarding the particle size of a fertilizer particle, However, Use of the thing of the range of 1 mm-about 5 mm is preferable.

次いで、粒状肥料への本発明肥料用樹脂組成物の被覆方法について云えば、流動または転動状態にある粒状肥料に対し、各被覆材、即ち、ポリエステルポリオールとポリイソシアネートを付着反応させ、これを熱風等で加温することによって、粒状肥料表面上で乾燥させ被膜を形成させる。粒状肥料を流動、転動するためには、公知の方法が使用できる、例えば、流動化には流動装置や噴流動装置が、転動化には回転パンや回転ドラムの装置が使用できる。   Next, with respect to the method of coating the granular fertilizer with the resin composition for fertilizer of the present invention, each coating material, that is, polyester polyol and polyisocyanate is adhered to and reacted with the granular fertilizer in a flowing or rolling state. By heating with hot air or the like, it is dried on the surface of the granular fertilizer to form a film. In order to flow and roll the granular fertilizer, a known method can be used. For example, a fluidizing device or jetting device can be used for fluidization, and a rotating pan or a rotating drum device can be used for rolling.

また、各被覆材は、粘度が300mPa・s以下になる様に調整したものを使用することが好ましい。例えば、上記ポリエステルポリオールを60〜120℃に加熱することで、その粘度は急激に低下して300mPa・s以下とすることができる。
ポリイソシアネートは、常温で300mPa・s以下のものはそのまま、また、固体のものは融点以上に加熱し液状化して使用する。この場合に、各被覆材の粘度が300mPa・sを越えると作業性が悪くなり、さらに均一な被膜が形成されず、肥料溶出の制御が困難となるため好ましくない。
Moreover, it is preferable to use each coating material adjusted so that the viscosity is 300 mPa · s or less. For example, when the polyester polyol is heated to 60 to 120 ° C., the viscosity is drastically decreased to 300 mPa · s or less.
Polyisocyanates having a viscosity of 300 mPa · s or less at room temperature are used as they are, and solid isocyanates are heated to a melting point or higher to be liquefied before use. In this case, when the viscosity of each coating material exceeds 300 mPa · s, workability is deteriorated, and further, a uniform film is not formed, and it is difficult to control fertilizer elution.

肥料粒子への被覆材の付着方法は、肥料粒子に均一に塗布できれば特に限定はなく、スプレーによる噴霧、滴下による方法に限らず実施できる。また、各被覆材は同一の箇所から粒状肥料に噴霧しても、あるいは別々の箇所から噴霧しても良い。
また、作業性の面から、触媒はポリエステルポリオールに予め混合して使用し、ポリエステルポリオールとポリイソシアネートは別の箇所から噴霧しても、噴霧直前に混合して用いても特に制限はない。
The method of attaching the coating material to the fertilizer particles is not particularly limited as long as it can be uniformly applied to the fertilizer particles, and can be carried out without being limited to spraying and dropping. Moreover, each coating | coated material may be sprayed on granular fertilizer from the same location, or may be sprayed from a different location.
Further, from the viewpoint of workability, there is no particular limitation whether the catalyst is mixed with polyester polyol in advance and the polyester polyol and polyisocyanate are sprayed from different places or mixed immediately before spraying.

更に、肥料用被覆組成物の付着、反応により生成した被膜を硬化させるために、室温から90℃の範囲で加熱を行うが、硬化温度が低すぎると噴霧された溶液の粘性が高くなり、肥料粒表面上で均一な膜が形成されない。また、硬化温度が高すぎるとウレタン化反応の速度が速くなり、硬化速度を調節し難く、均一な被膜形成が困難となる。従って、加熱温度は概ね50℃〜80℃の範囲が好ましい。   Furthermore, in order to cure the coating formed by the adhesion and reaction of the fertilizer coating composition, heating is performed in the range of room temperature to 90 ° C. If the curing temperature is too low, the viscosity of the sprayed solution increases, and the fertilizer A uniform film is not formed on the grain surface. On the other hand, if the curing temperature is too high, the speed of the urethanization reaction is increased, it is difficult to adjust the curing speed, and it is difficult to form a uniform film. Therefore, the heating temperature is preferably in the range of about 50 ° C to 80 ° C.

ところで、肥料粒表面上への被膜の形成は、被覆組成物の付着、乾燥を繰り返すことで行うことが望ましい。即ち、繰り返しによる被膜の多層化により、緻密な被膜を形成することができる。一回の被膜形成に使用される被覆組成物の量は、被覆組成物の噴霧あるいは滴下速度、硬化速度等により異なり、一概に言及することはできないが、被覆される粒状肥料に対し好ましくは0.3〜1.5質量%である。この場合に、下限を下廻ると被覆回数が増え、工業的に不利となるばかりでなく、被覆ムラを起こしやすい。また、上限を上廻ると粒状肥料粒子上に多数の粒子の塊が形成され、転動あるいは流動中にこの塊が肥料粒子から離脱して被膜に欠陥が生じ好ましくない。肥料粒への被覆組成物の付着、乾燥の繰り返しは、少なくとも3回以上即ち、被膜を3層以上多層化することが好ましい。
この多層化の上限に関して云えば、30回以下、即ち被膜を30層以下とすることが好ましい。肥料粒への被覆組成物の付着、乾燥の繰り返し工程の回数が上記範囲外となり、回数が少ない場合には、被膜に存在するピンホールの影響で、肥料の初期溶出率が高くなる。また、回数が多くなると生産性が低下し、工業的には不利となる。
By the way, it is desirable to form the coating film on the fertilizer grain surface by repeatedly applying and drying the coating composition. That is, a dense coating can be formed by multilayering the coating by repetition. The amount of the coating composition used for forming a single coating varies depending on the spraying or dropping rate of the coating composition, the curing rate, etc., and cannot be generally mentioned, but is preferably 0.3 for the granular fertilizer to be coated. It is -1.5 mass%. In this case, if the lower limit is not reached, the number of coatings increases, which is not only industrially disadvantageous but also tends to cause coating unevenness. On the other hand, if the upper limit is exceeded, a large number of particle lumps are formed on the granular fertilizer particles, and these lumps are detached from the fertilizer particles during rolling or flow, causing defects in the coating. It is preferable that the coating composition is repeatedly adhered and dried to the fertilizer grains at least three times, that is, the coating is multilayered by three or more layers.
With regard to the upper limit of the multi-layering, it is preferable that the number of coatings is 30 times or less, that is, the film is 30 layers or less. The number of repeated steps of attaching and drying the coating composition to the fertilizer grains is out of the above range, and when the number is small, the initial elution rate of the fertilizer increases due to the influence of pinholes existing in the coating. Moreover, when the number of times increases, productivity decreases, which is industrially disadvantageous.

また、被膜は性能において許容される範囲で、作業性の向上及び肥効調節の補助的手段として被覆組成物に脂肪族エステル、ワックス、ロジン又はその誘導体、界面活性剤、タルク、炭酸カルシウム等の各種添加剤を加えることができる。
また、粒状肥料散布機により散布される等、より強靭な被膜が必要な場合には、保護膜の形成も有用であり、例えば、保護膜形成材料として、ポリエチレン樹脂、酢酸ビニル樹脂、エチレン-酢酸ビニル樹脂、ポリビニルアルコール樹脂、アクリル樹脂、アルキド樹脂、ウレタン樹脂等を使用することができる。これらの添加剤、保護膜形成剤の使用割合としては、全被覆量の30質量%以下であり、これ以上となると本発明の目的を達成することが困難となる場合がある。
この様にして得られる本発明の肥料用被覆組成物によって被覆された肥料は、被膜が生分解性を有し、肥料成分の溶出が精度よく調整され、また工業的にも有利な被覆粒状肥料となる。
In addition, the coating is within the allowable range in performance, and as an auxiliary means for improving workability and adjusting fertilization effect, the coating composition includes aliphatic esters, wax, rosin or derivatives thereof, surfactants, talc, calcium carbonate, etc. Various additives can be added.
In addition, when a tougher coating is required, such as when sprayed with a granular fertilizer spreader, formation of a protective film is also useful. For example, as a protective film forming material, polyethylene resin, vinyl acetate resin, ethylene-acetic acid Vinyl resin, polyvinyl alcohol resin, acrylic resin, alkyd resin, urethane resin, or the like can be used. The use ratio of these additives and protective film forming agent is 30% by mass or less of the total coating amount, and if it exceeds this, it may be difficult to achieve the object of the present invention.
The fertilizer coated with the fertilizer coating composition of the present invention thus obtained has a coating biodegradability, the dissolution of fertilizer components is accurately adjusted, and is also an industrially advantageous coated granular fertilizer It becomes.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらに限定されるものではない。尚、特に断らない限り%は全て質量%を示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these. Unless otherwise specified, all percentages are by mass.

<ポリエステルポリオールの合成>
本発明で使用するポリエステルポリオール樹脂を、以下の方法により得た。
<Synthesis of polyester polyol>
The polyester polyol resin used in the present invention was obtained by the following method.

(樹脂Aの合成)
攪拌機、温度計、窒素ガス導入管及び排ガス管を備えた1Lの4つ口フラスコに、88% L-乳酸(PURAC製、食品添加物用)200g、ε-カプロラクトン(ダイセル化学工業製)223g、D-マンニトール(試薬)40gを仕込み、攪拌下で窒素ガスを300ml/minで流しながら、200℃で7時間の反応を行い、表1に示した樹脂385gを得た。この樹脂Aは、7,600 (mPa・s)/25℃のペースト状であった。
(Synthesis of Resin A)
In a 1L four-necked flask equipped with a stirrer, thermometer, nitrogen gas inlet pipe and exhaust gas pipe, 88g L-lactic acid (PURAC, for food additives) 200g, ε-caprolactone (manufactured by Daicel Chemical Industries) 223g, 40 g of D-mannitol (reagent) was charged, and the reaction was carried out at 200 ° C. for 7 hours while flowing nitrogen gas at 300 ml / min with stirring to obtain 385 g of the resin shown in Table 1. This resin A was in the form of a paste of 7,600 (mPa · s) / 25 ° C.

Figure 2009001467
Figure 2009001467

(樹脂Bの合成)
攪拌機、温度計、窒素ガス導入管及び排ガス管を備えた1Lの4つ口フラスコに、88% L-乳酸 280g、ε-カプロラクトン 134g、ペンタエリスリトール(試薬)53gを仕込み、攪拌下で窒素ガスを300ml/minで流しながら、200℃で8時間の反応を行い、表2に示した樹脂372gを得た。この樹脂Bは、3,200 (mPa・s)/25℃のペースト状であった。
(Synthesis of Resin B)
A 1L four-necked flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and exhaust gas tube was charged with 280g of 88% L-lactic acid, 134g of ε-caprolactone, and 53g of pentaerythritol (reagent). While flowing at 300 ml / min, the reaction was carried out at 200 ° C. for 8 hours to obtain 372 g of the resin shown in Table 2. This resin B was a paste of 3,200 (mPa · s) / 25 ° C.

Figure 2009001467
Figure 2009001467

(樹脂Cの合成)
攪拌機、温度計、窒素ガス導入管及び排ガス管を備えた1Lの4つ口フラスコに、88% L-乳酸 340g、ε-カプロラクトン 84g、トリメチロールプロパン(試薬)36gを仕込み、攪拌下で窒素ガスを300ml/minで流しながら、200℃で6時間の反応を行い、表3に示した樹脂346gを得た。この樹脂Cは、8,700 (mPa・s)/25℃のペースト状であった。
(Synthesis of Resin C)
A 1L four-necked flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and exhaust gas tube was charged with 340g of 88% L-lactic acid, 84g of ε-caprolactone and 36g of trimethylolpropane (reagent), and nitrogen gas was stirred. Was allowed to flow at 300 ml / min for 6 hours at 200 ° C. to obtain 346 g of the resin shown in Table 3. The resin C was in the form of a paste at 8,700 (mPa · s) / 25 ° C.

Figure 2009001467
Figure 2009001467

(樹脂Dの合成)
攪拌機、温度計、窒素ガス導入管及び排ガス管を備えた1Lの4つ口フラスコに、88% L-乳酸 265g、ヒマシ油脂肪酸(伊藤製油製)180g、グリセリン(試薬)36gを仕込み、攪拌下で窒素ガスを300ml/minで流しながら、200℃で8時間の反応を行い、表4に示した樹脂381gを得た。この樹脂Dは、9,800 (mPa・s)/25℃のペースト状であった。
(Synthesis of Resin D)
A 1L four-necked flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and exhaust gas tube was charged with 265g of 88% L-lactic acid, 180g of castor oil fatty acid (manufactured by Ito Oil), and 36g of glycerin (reagent). The reaction was carried out at 200 ° C. for 8 hours while flowing nitrogen gas at 300 ml / min to obtain 381 g of the resin shown in Table 4. The resin D was in the form of a paste at 9,800 (mPa · s) / 25 ° C.

Figure 2009001467
Figure 2009001467

(樹脂Eの合成)
攪拌機、温度計、窒素ガス導入管及び排ガス管を備えた1Lの4つ口フラスコに、88% L-乳酸 225g、ヒマシ油脂肪酸 215g、ペンタエリスリトール56gを仕込み、攪拌下で窒素ガスを300ml/minで流しながら、200℃で8時間の反応を行い、表5に示した樹脂420gを得た。この樹脂Eは、6,900 (mPa・s)/25℃のペースト状であった。
(Synthesis of Resin E)
A 1L four-necked flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and exhaust gas tube was charged with 225g of 88% L-lactic acid, 215g of castor oil fatty acid and 56g of pentaerythritol, and nitrogen gas was stirred at 300ml / min. Then, the reaction was carried out at 200 ° C. for 8 hours to obtain 420 g of the resin shown in Table 5. The resin E was a paste of 6,900 (mPa · s) / 25 ° C.

Figure 2009001467
Figure 2009001467

(樹脂Fの合成)
樹脂Aの合成において、88% L-乳酸に代えて水100gとした以外は同一条件下で反応を行い、表6に示す樹脂256gを得た。この樹脂Eは、室温でワックス状の固体であった。
(Synthesis of resin F)
Resin A was synthesized under the same conditions except that 100 g of water was used instead of 88% L-lactic acid to obtain 256 g of resin shown in Table 6. The resin E was a waxy solid at room temperature.

Figure 2009001467
Figure 2009001467

(樹脂Gの合成)
攪拌機、温度計、窒素ガス導入管及び排ガス管を備えた1Lの4つ口フラスコに、88% L-乳酸 310g、α−オキシ酪酸(試薬)150g、ペンタエリスリトール48gを仕込み、攪拌下で窒素ガスを300ml/minで流しながら、200℃で8時間の反応を行い、表7に示した樹脂385gを得た。この樹脂Eは、室温で半固体状であった。
(Synthesis of Resin G)
A 1L four-necked flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and exhaust gas tube was charged with 310% of 88% L-lactic acid, 150g of α-oxybutyric acid (reagent) and 48g of pentaerythritol, and nitrogen gas was stirred. Was allowed to flow at 300 ml / min for 8 hours at 200 ° C. to obtain 385 g of the resin shown in Table 7. This resin E was semi-solid at room temperature.

Figure 2009001467
Figure 2009001467

また、樹脂A〜Gの100℃における粘度を測定したところ、樹脂G以外は300mPa・s以下であることを確認した。 Moreover, when the viscosity at 100 degrees C of resin A-G was measured, it confirmed that it was 300 mPa * s or less except resin G.

本発明の肥料用被覆組成物を使用するに当たり、使用原料は下記の通りとした。
ポリエステルポリオール樹脂:表1〜7に示すポリエステルポリオールに対し、触媒として脂肪族モノカルボン酸カリウム溶液(濃度70%)を2 %混合し、100℃に加熱して被覆用原料とした。
ポリイソシアネート樹脂:ポリメリックジフェニルメタンジイソシアネート(住化バイエルウレタン製、商品名スミジュール 44V10)
[被覆粒状肥料の製造方法]
粒状尿素(平均粒径3mm)1kgを、熱風発生機を付設した遠心転動造粒コーティング装置(回転円板径230mm)に仕込んだ。回転円板を200rpmで回転させ、粒状肥料を転動状態にし、下部より熱風を送り70℃に保持した。
加温され且つ転動状態にある粒状尿素に、ポリエステルポリオール樹脂4.0gとポリイソシアネート樹脂2.0gとを、2ヶ所から別々に2流体ノズルにより噴霧し、3分間転動させ硬化させた。尚、この場合におけるポリエステルポリオールとポリイソシアネートとの反応割合は、イソシアネート基とヒドロキシル基のモル比(NCO/OH))として表8に示した。
In using the fertilizer coating composition of the present invention, the raw materials used were as follows.
Polyester polyol resin: 2% of an aliphatic monocarboxylic acid potassium solution (concentration: 70%) was mixed as a catalyst with the polyester polyol shown in Tables 1 to 7, and heated to 100 ° C. to obtain a coating raw material.
Polyisocyanate resin: Polymeric diphenylmethane diisocyanate (manufactured by Sumika Bayer Urethane, trade name Sumijour 44V10)
[Production method of coated granular fertilizer]
1 kg of granular urea (average particle size: 3 mm) was charged into a centrifugal rolling granulation coating apparatus (rotating disc diameter: 230 mm) equipped with a hot air generator. The rotating disk was rotated at 200 rpm to turn the granular fertilizer into a rolling state, and hot air was fed from the lower part and maintained at 70 ° C.
Polyester polyol resin (4.0 g) and polyisocyanate resin (2.0 g) were sprayed separately from two locations with a two-fluid nozzle onto granular urea that was heated and in a rolling state, and rolled and cured for 3 minutes. In this case, the reaction ratio between the polyester polyol and the polyisocyanate is shown in Table 8 as the molar ratio of isocyanate group to hydroxyl group (NCO / OH)).

Figure 2009001467
Figure 2009001467

次いで、樹脂Eを2.6g、ポリイソシアネート樹脂を3.4gとした以外は、実施例5と同一条件で製造した被覆肥料を実施例6とする。同様に樹脂Eを5.0g、ポリイソシアネート樹脂を1.0gとした以外は、実施例5と同一条件で製造した被覆肥料を実施例7とする。これら実施例におけるポリエステルポリオールとポリイソシアネートの反応割合も、表8に示す。 Next, Example 6 is a coated fertilizer manufactured under the same conditions as Example 5 except that 2.6 g of the resin E and 3.4 g of the polyisocyanate resin are used. Similarly, Example 7 is a coated fertilizer produced under the same conditions as in Example 5 except that 5.0 g of resin E and 1.0 g of polyisocyanate resin are used. Table 8 also shows the reaction ratio between the polyester polyol and the polyisocyanate in these examples.

この噴霧と硬化の工程を18回繰り返し、被覆粒状肥料を製造した。尚、この場合の被覆率は9.7%であった。尚、被覆組成物の被覆率は、下式により求めた。
被覆率(%)=(被膜質量/被覆粒状肥料の質量)×100
被覆試験により得られた肥料用被覆組成物の性能評価として、被覆組成物の生分解性評価と肥料の溶出率の測定を行った。測定方法は以下の通りである。
This spraying and curing process was repeated 18 times to produce a coated granular fertilizer. In this case, the coverage was 9.7%. The coverage of the coating composition was determined by the following formula.
Covering rate (%) = (film mass / mass of coated granular fertilizer) × 100
As performance evaluation of the coating composition for fertilizer obtained by the coating test, biodegradability evaluation of the coating composition and measurement of the elution rate of the fertilizer were performed. The measuring method is as follows.

[肥料用被覆組成物の生分解度測定]
生分解性の評価は、「JIS K 6950 プラスチック−水系培養液中の好気的究極生分解度の求め方−閉鎖呼吸計を用いる酸素消費量の測定による方法」に準じ行なった。
測定装置:閉鎖系酸素消費量測定装置/クーロメータ(大倉電気(株)製,OM-3001A型)
植種源の調製:兵庫県加古川市所在のAスーパーマーケットの排水処理施設より活性汚泥を採取し、これを培養して使用した。
試料調製:30mlポリプロピレン製ビーカーに、実施例1〜7および比較例1,2記載と同重量のポリオール樹脂とポリイソシアネート樹脂とを入れ、室温で1分間掻き混ぜた。次いで、テフロン(登録商標)シート上に塗布し、70℃で10分間加熱、硬化させフィルムを作成した。このフィルムを粉砕し、試験試料とした。
[Measurement of biodegradability of coating composition for fertilizer]
The biodegradability was evaluated in accordance with “JIS K 6950 Plastic—How to determine the aerobic ultimate biodegradability in an aqueous culture medium—Method of measuring oxygen consumption using a closed respirometer”.
Measuring device: Closed system oxygen consumption measuring device / Coulometer (Okura Electric Co., Ltd., OM-3001A type)
Preparation of planting source: Activated sludge was collected from a wastewater treatment facility of A supermarket located in Kakogawa City, Hyogo Prefecture, and this was cultured and used.
Sample preparation: A polyol resin and a polyisocyanate resin having the same weight as those described in Examples 1 to 7 and Comparative Examples 1 and 2 were placed in a 30 ml polypropylene beaker and stirred at room temperature for 1 minute. Next, it was coated on a Teflon (registered trademark) sheet, and heated and cured at 70 ° C. for 10 minutes to form a film. This film was pulverized and used as a test sample.

試験方法:培養瓶に標準試験培養液(pH7.0)を300mL入れ、これに微生物添加濃度200mg-drySS/L、試料添加濃度100mg/Lとなるように添加した。この培養瓶を閉鎖系酸素消費量測定装置にセットし、25℃、暗所、撹拌条件で28日間培養した。生物学的酸素要求量を測定し次式より生分解度を求めた。
生分解度(%)=(試料の生物学的酸素要求量)/(試料の理論的酸素要求量)×100
[被覆粒状肥料の肥料溶出率測定]
被覆粒状肥料12.5gを250mlの水に加え、容器を密閉して25℃の恒温槽に入れた。これを所定期間経過後に取り出し肥料と溶液を分別し(注1)、溶液中に溶出した窒素成分を定量して次式により肥料溶出率を計算した。
肥料溶出率(%)=(溶液中の窒素量/被覆粒状肥料中の窒素量)×100(注2)
(注1)窒素成分測定毎に、毎回分別した肥料に新たに250mlの水を加えた。
(注2)各所定期間経過後の溶出率は累積値を示した。
Test method: 300 mL of a standard test culture solution (pH 7.0) was placed in a culture bottle, and added thereto so that the microorganism addition concentration was 200 mg-dry SS / L and the sample addition concentration was 100 mg / L. This culture bottle was set in a closed system oxygen consumption measuring device and cultured for 28 days at 25 ° C. in a dark place with stirring. The biological oxygen demand was measured and the biodegradability was calculated from the following equation.
Biodegradability (%) = (Biological oxygen demand of sample) / (Theoretical oxygen demand of sample) × 100
[Measurement of fertilizer elution rate of coated granular fertilizer]
12.5 g of coated granular fertilizer was added to 250 ml of water, and the container was sealed and placed in a thermostatic bath at 25 ° C. This was taken out after a predetermined period of time, and the fertilizer and the solution were separated (Note 1), the nitrogen component eluted in the solution was quantified, and the fertilizer elution rate was calculated by the following formula.
Fertilizer elution rate (%) = (nitrogen content in solution / nitrogen content in coated granular fertilizer) x 100 (Note 2)
(Note 1) Every time nitrogen component measurement, 250 ml of water was newly added to the fertilizer separated each time.
(Note 2) The dissolution rate after the elapse of each predetermined period is a cumulative value.

[実施例1〜7]
表1〜5に示したポリエステルポリオール樹脂A〜Eとポリイソシアネート樹脂との反応により、被覆粒状肥料を製造すると共に、反応により得られた肥料用被覆組成物の生分解度を測定した。この組成物の生分解度と被覆粒状肥料の溶出率を表9に示した。
[Examples 1-7]
The coated granular fertilizer was produced by the reaction of the polyester polyol resins A to E and the polyisocyanate resin shown in Tables 1 to 5, and the biodegradability of the fertilizer coating composition obtained by the reaction was measured. The biodegradability of this composition and the dissolution rate of the coated granular fertilizer are shown in Table 9.

[比較例1、2]
表6,表7に示したポリエステルポリオール樹脂F、Gを使用し、肥料用被覆組成物の生分解度を測定すると共に、被覆粒状肥料を製造した。この組成物の生分解度と被覆粒状肥料の溶出率を表9に示した。
[Comparative Examples 1 and 2]
Polyester polyol resins F and G shown in Tables 6 and 7 were used to measure the biodegradability of the fertilizer coating composition and to produce coated granular fertilizers. The biodegradability of this composition and the dissolution rate of the coated granular fertilizer are shown in Table 9.

Figure 2009001467
Figure 2009001467

表9より、本発明のポリエステルポリオール樹脂とポリイソシアネート樹脂とを反応させ、得られた肥料用被覆組成物を粒状肥料の被覆材に適用したものは、生分解度が大きく、肥料の溶出は精度良く調整されていることが判る。これに対して、比較例1で得えられた樹脂を使用したものは、明らかに生分解性は低く、また比較例2で得られた樹脂を使用したものは、生分解度は大きいものの、明らかに肥料の溶出性能は劣っていることが判る。 From Table 9, the polyester polyol resin of the present invention and the polyisocyanate resin are reacted, and the obtained fertilizer coating composition applied to the coating material of granular fertilizer has a high degree of biodegradation and the elution of fertilizer is accurate. It turns out that it is well adjusted. On the other hand, those using the resin obtained in Comparative Example 1 clearly have low biodegradability, and those using the resin obtained in Comparative Example 2 have a high degree of biodegradation, Obviously, the elution performance of fertilizer is inferior.

Claims (5)

乳酸、炭素数6以上のオキシカルボン酸及び多価アルコールとを反応してなるポリエステルポリオールと、ポリイソシアネートとを反応してなる肥料用被覆組成物。 A fertilizer coating composition obtained by reacting a polyester polyol obtained by reacting lactic acid, an oxycarboxylic acid having 6 or more carbon atoms and a polyhydric alcohol with a polyisocyanate. オキシカルボン酸が、リシノール酸を主成分とするヒマシ油脂肪酸又はε-カプロラクトンの加水分解物である請求項1記載の肥料用被覆組成物。 The fertilizer coating composition according to claim 1, wherein the oxycarboxylic acid is a castor oil fatty acid or ε-caprolactone hydrolyzate containing ricinoleic acid as a main component. 多価アルコールが、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール又はマンニトールである請求項1又は2記載の肥料用被覆組成物。 The fertilizer coating composition according to claim 1 or 2, wherein the polyhydric alcohol is glycerin, pentaerythritol, trimethylolpropane, sorbitol, or mannitol. ポリイソシアネートが、ポリメチレンポリフェニルポリイソシアネートである請求項1、2又は3記載の肥料用被覆組成物。 The fertilizer coating composition according to claim 1, 2 or 3, wherein the polyisocyanate is polymethylene polyphenyl polyisocyanate. ポリエステルポリオールとポリイソシアネートとの反応割合が、イソシアネート基とヒドロキシル基のモル比(NCO/OH)として0.5〜2.0の範囲である請求項1〜4のいずれか1項記載の肥料用被覆組成物。 The fertilizer according to any one of claims 1 to 4, wherein a reaction ratio between the polyester polyol and the polyisocyanate is in a range of 0.5 to 2.0 as a molar ratio of isocyanate group to hydroxyl group (NCO / OH). Coating composition.
JP2007166529A 2007-06-25 2007-06-25 Coating composition for fertilizer Pending JP2009001467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166529A JP2009001467A (en) 2007-06-25 2007-06-25 Coating composition for fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166529A JP2009001467A (en) 2007-06-25 2007-06-25 Coating composition for fertilizer

Publications (1)

Publication Number Publication Date
JP2009001467A true JP2009001467A (en) 2009-01-08

Family

ID=40318288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166529A Pending JP2009001467A (en) 2007-06-25 2007-06-25 Coating composition for fertilizer

Country Status (1)

Country Link
JP (1) JP2009001467A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058365A1 (en) * 2011-10-20 2013-04-25 東洋紡株式会社 Copolymer polyurethane resin having poly(hydroxycarboxylic acid) segment and pendant carboxyl group, and emulsion and adhesive composition including same
CN107011058A (en) * 2017-05-09 2017-08-04 中国农业大学 A kind of anti-salt type function coating slowly/controlled releasing fertilizer and preparation method thereof
JP2020526614A (en) * 2017-07-07 2020-08-31 ステパン カンパニー Low viscosity polyol for polyurethane applications

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058365A1 (en) * 2011-10-20 2013-04-25 東洋紡株式会社 Copolymer polyurethane resin having poly(hydroxycarboxylic acid) segment and pendant carboxyl group, and emulsion and adhesive composition including same
JPWO2013058365A1 (en) * 2011-10-20 2015-04-02 東洋紡株式会社 Copolyurethane resin having poly (hydroxycarboxylic acid) segment and pendant carboxyl group, emulsion and adhesive composition containing the same
CN107011058A (en) * 2017-05-09 2017-08-04 中国农业大学 A kind of anti-salt type function coating slowly/controlled releasing fertilizer and preparation method thereof
CN107011058B (en) * 2017-05-09 2020-06-09 中国农业大学 Salt-resistant functional coated slow/controlled release fertilizer and preparation method thereof
JP2020526614A (en) * 2017-07-07 2020-08-31 ステパン カンパニー Low viscosity polyol for polyurethane applications
JP7261218B2 (en) 2017-07-07 2023-04-19 ステパン カンパニー Low viscosity polyols for polyurethane applications

Similar Documents

Publication Publication Date Title
AU745527B2 (en) Granular coated fertilizer and method for producing the same
PL188969B1 (en) Application of aqueous dispersion of a biodegradable polyester for coating fertiliser granules
US20170121568A1 (en) Adhesive tape for protecting surfaces
JP2007530757A5 (en)
US20200029557A1 (en) Controlled release agrichemical composition
AU2017333600A1 (en) Controlled release granular fertiliser
TWI756183B (en) Coated granular fertilizer, method for producing coated granular fertilizer, and fertilizer composition
JP2009001467A (en) Coating composition for fertilizer
US6503288B1 (en) Process for the production of biodegradable encapsulated fertilizers
US20140298873A1 (en) Modified release agrochemical composition and a process for preparing the same
US20030040435A1 (en) Slow-release fertilizers and method for production of same
JP2010202482A (en) Coated granular fertilizer and method of manufacturing the same
JP2008222536A (en) Coating composition for fertilizer
JP4433533B2 (en) Coated granular fertilizer and method for producing the same
JPH10265288A (en) Coated granular fertilizer and its production
JP2010120785A (en) Coated granular fertilizer and method for producing the same
JP3836386B2 (en) Coated granular fertilizer and method for producing the same
JP5589440B2 (en) Coated granular fertilizer
JP5002909B2 (en) Polyurethane coated granular fertilizer
JP3496798B2 (en) Coated granular fertilizer and method for producing the same
JP3161997B2 (en) Coating agent for granular fertilizer
JP2005067904A (en) Coated granular fertilizer and method for manufacturing coated granular fertilizer
AU2018359484A1 (en) Coated agrochemical composition
JP2982933B2 (en) Fertilizer coating composition and coated granular fertilizer
JP5589439B2 (en) Coated granular fertilizer