JP2009000657A - Manufacturing method of fluid catalytic cracking catalyst - Google Patents

Manufacturing method of fluid catalytic cracking catalyst Download PDF

Info

Publication number
JP2009000657A
JP2009000657A JP2007165617A JP2007165617A JP2009000657A JP 2009000657 A JP2009000657 A JP 2009000657A JP 2007165617 A JP2007165617 A JP 2007165617A JP 2007165617 A JP2007165617 A JP 2007165617A JP 2009000657 A JP2009000657 A JP 2009000657A
Authority
JP
Japan
Prior art keywords
catalytic cracking
fluid catalytic
cracking catalyst
zeolite
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007165617A
Other languages
Japanese (ja)
Other versions
JP4859766B2 (en
JP2009000657A5 (en
Inventor
Hiroshi Matsumoto
広 松本
Naoyuki Kido
直之 城戸
Masahide Yayama
雅英 矢山
Mitsunori Watabe
光徳 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2007165617A priority Critical patent/JP4859766B2/en
Publication of JP2009000657A publication Critical patent/JP2009000657A/en
Publication of JP2009000657A5 publication Critical patent/JP2009000657A5/ja
Application granted granted Critical
Publication of JP4859766B2 publication Critical patent/JP4859766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of fluid catalytic cracking catalyst having a high gasoline yield, low coke yield, and high abrasion strength. <P>SOLUTION: The manufacturing method of fluid catalytic cracking catalyst includes the steps of: mixing zeolite with an inorganic oxide matrix containing basic aluminum chloride serving as a binding material to obtain mixture slurry of pH 3.0-4.4; adding a weak basic substance thereto to condition it to pH 4.6-5.2, so as to prepare conditioned slurry; and spraying and drying the conditioned slurry as liquid droplets, wherein the weak basic substance comprises either one or two or more of magnesium hydroxide, calcium hydroxide, sodium hydrogencarbonate and sodium carbonate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガソリン収率が高く、コーク収率が低く、更に摩耗強度の高い流動接触分解触媒の製造方法に関する。   The present invention relates to a method for producing a fluid catalytic cracking catalyst having a high gasoline yield, a low coke yield, and a high wear strength.

従来、ゼオライトと、結合材である塩基性塩化アルミニウム(アルミニウムクロロヒドロール)を含有する無機酸化物マトリックスとを含むpH2.5〜3.5の混合物のスラリー状物(以下、「混合スラリー」という)を、液滴として噴霧乾燥する流動接触分解触媒の製造方法が知られていた。しかしながら、この方法では、混合スラリー中の塩基性塩化アルミニウムの重合が促進されず、噴霧乾燥時に、熱風と接触した液滴の表面部分が密に固体化して卵の殻のような状態になるため、液滴に含まれる水の蒸発と液滴の収縮とがバランス良く進まない。この結果、液滴粒子の内部に歪みが形成されたり、その外側表面を破壊しながら、液滴の内部の水が蒸発するので、得られる触媒の表面にクラックが発生するという問題があった。
そこで、混合スラリーを、水酸化ナトリウム、水酸化アンモニウム、アルミン酸ナトリウム等のpH調整剤によってpH4〜6に調整して、塩基性塩化アルミニウムの重合を促進させたスラリー(以下、「調整スラリー」という)を作製し、この調整スラリーを液滴として噴霧乾燥する方法が開発された(例えば、特許文献1参照)。この調合スラリーは、塩基性塩化アルミニウムが固体化した際に粗に構成されるため、噴霧乾燥時に液滴中の水が容易に脱離でき、液滴の外部表面を破壊することなく、触媒を形成することができる。
Conventionally, a slurry of a mixture having a pH of 2.5 to 3.5 (hereinafter referred to as “mixed slurry”) containing zeolite and an inorganic oxide matrix containing basic aluminum chloride (aluminum chlorohydrol) as a binder. ) Has been known for producing a fluid catalytic cracking catalyst which is spray-dried as droplets. However, in this method, polymerization of basic aluminum chloride in the mixed slurry is not promoted, and during spray drying, the surface portion of the droplet in contact with the hot air is solidified into a state like an egg shell. The evaporation of water contained in the droplet and the contraction of the droplet do not proceed in a good balance. As a result, there is a problem in that cracks are generated on the surface of the obtained catalyst because water inside the droplet evaporates while distortion is formed inside the droplet particle or the outer surface of the droplet particle is destroyed.
Therefore, the mixed slurry was adjusted to pH 4-6 with a pH adjuster such as sodium hydroxide, ammonium hydroxide, sodium aluminate or the like to promote the polymerization of basic aluminum chloride (hereinafter referred to as “adjusted slurry”). ), And a method of spray drying the adjusted slurry as droplets was developed (see, for example, Patent Document 1). Since this prepared slurry is roughly composed when the basic aluminum chloride is solidified, the water in the droplets can be easily desorbed during spray drying, and the catalyst can be removed without destroying the external surface of the droplets. Can be formed.

特表2004−528180号公報Special table 2004-528180 gazette

しかしながら、前記したpH調整剤を使用した場合、調整スラリー中の塩基性塩化アルミニウムが部分的にゲル化を起こすため、充分な結合力が得られずに、触媒の摩耗強度が低下するという問題があった。この摩耗強度が低下した触媒は、接触分解装置内で粉化して飛散し、装置の故障の原因となる虞があった。
また、前記pH調整剤として水酸化アンモニウムを使用した場合には、塩基性塩化アルミニウムと水酸化アンモニウムが、通常の噴霧乾燥時の排気温度である210℃以上で、それぞれ塩酸ガス、アンモニアガスに分解され、更に、これらが反応して、塩化アンモニウムのヒュームガス(白煙状の固体微粒子)となり、大気汚染の原因となるという問題もあった。なお、このヒュームガスを除去するための装置もあるが、コストがかかる。
However, when the pH adjusting agent described above is used, the basic aluminum chloride in the adjusting slurry partially gels, so that a sufficient bonding force cannot be obtained and the wear strength of the catalyst is lowered. there were. The catalyst having reduced wear strength may be pulverized and scattered in the catalytic cracking apparatus, causing a failure of the apparatus.
In addition, when ammonium hydroxide is used as the pH adjuster, basic aluminum chloride and ammonium hydroxide are decomposed into hydrochloric acid gas and ammonia gas, respectively, at an exhaust temperature of 210 ° C. or higher during normal spray drying. Further, they react to form ammonium chloride fume gas (white smoke-like solid fine particles), which causes air pollution. Although there is an apparatus for removing this fume gas, it is expensive.

本発明はかかる事情に鑑みてなされたもので、ガソリン収率が高く、コーク収率が低く、摩耗強度の高い流動接触分解触媒の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a method for producing a fluid catalytic cracking catalyst having a high gasoline yield, a low coke yield, and a high wear strength.

前記目的に沿う本発明に係る第1の流動接触分解触媒の製造方法は、ゼオライトと、結合材である塩基性塩化アルミニウムを含有する無機酸化物マトリックスとを混合して得られたpH3.0〜4.4の混合スラリーに、弱塩基性物質を加えてpH4.6〜5.2に調整して調整スラリーとし、該調整スラリーを液滴として噴霧乾燥する流動接触分解触媒の製造方法において、前記弱塩基性物質が、水酸化マグネシウム、水酸化カルシウム、炭酸水素ナトリウム、及び炭酸ナトリウムのいずれか1又は2以上からなる。
前記目的に沿う本発明に係る第2の流動接触分解触媒の製造方法は、ゼオライトと、結合材である塩基性塩化アルミニウムを含有する無機酸化物マトリックスと、水酸化マグネシウム、水酸化カルシウム、炭酸水素ナトリウム、及び炭酸ナトリウムからなる群から選ばれた少なくとも1つの弱塩基性物質とを含有するpH4.6〜5.2の調整スラリーを液滴として噴霧乾燥する。
ここで、本発明の第1、第2の流動接触分解触媒に使用されるゼオライトとしては、X型ゼオライト、Y型ゼオライト、モルデナイト、ZSM型ゼオライト等の合成ゼオライトや天然ゼオライトが使用できる。
また、結合材として使用される塩基性塩化アルミニウムは、下記(1)式で示される。
[Al(OH)Cl6−n・・・(1)
(ただし、0<n<6、1≦m≦10、好ましくは4.8≦n≦5.3、3≦m≦7である。なお、mおよびnは、自然数を示す。)
The first method for producing a fluid catalytic cracking catalyst according to the present invention in accordance with the above object is obtained by mixing zeolite with an inorganic oxide matrix containing basic aluminum chloride as a binder, and having a pH of 3.0 to In the method for producing a fluid catalytic cracking catalyst, a weakly basic substance is added to the mixed slurry of 4.4 to adjust the pH to 4.6 to 5.2 to prepare a regulated slurry, and the adjusted slurry is spray-dried as droplets. The weakly basic substance consists of any one or more of magnesium hydroxide, calcium hydroxide, sodium bicarbonate, and sodium carbonate.
The second method for producing a fluid catalytic cracking catalyst according to the present invention in accordance with the above object comprises a zeolite, an inorganic oxide matrix containing basic aluminum chloride as a binder, magnesium hydroxide, calcium hydroxide, hydrogen carbonate. The adjusted slurry having a pH of 4.6 to 5.2 containing sodium and at least one weakly basic substance selected from the group consisting of sodium carbonate is spray-dried as droplets.
Here, as the zeolite used for the first and second fluid catalytic cracking catalysts of the present invention, synthetic zeolite such as X-type zeolite, Y-type zeolite, mordenite, ZSM-type zeolite, and natural zeolite can be used.
Further, basic aluminum chloride used as a binder is represented by the following formula (1).
[Al 2 (OH) n Cl 6-n ] m (1)
(However, 0 <n <6, 1 ≦ m ≦ 10, preferably 4.8 ≦ n ≦ 5.3, 3 ≦ m ≦ 7. Note that m and n represent natural numbers.)

本発明に係る流動接触分解触媒の製造方法において、前記ゼオライトが、超安定化Y型ゼオライトであるのが好ましい。ここで、超安定化Y型ゼオライト(以下、「USYゼオライト」ともいう)は、Y型ゼオライトを水熱処理等の脱アルミニウム処理をして製造することができる。
本発明に係る流動接触分解触媒の製造方法において、前記ゼオライトは、レアアース交換Y型ゼオライト又はレアアース交換超安定化Y型ゼオライトであってもよい。
また、前記混合スラリーには金属捕捉剤(メタルトラップ剤)が含まれていることが好ましく、レアアース交換タイプのものの場合にはとくに好ましい。
ここで、レアアース(希土類元素)とは、スカンジウム、イットリウム、及び、ランタノイドの17元素の総称であって、本発明では、その内のいずれか1又は2以上が使用され、特に、ランタン、セリウム、プラセオジム、ネオジム、サマリウムが好適に使用される。また、レアアース交換Y型ゼオライト(Rare Earth exchanged Y zeolite 以下、「REY」ともいう)は、一部がレアアースで交換されたY型ゼオライトであり、レアアース交換超安定化Y型ゼオライト(Rare Earth exchanged USY 以下、「REUSY」ともいう)は、一部がレアアースで交換されたUSYゼオライトである。
前記金属捕捉剤としては、カルシウムアルミネート、酸化マンガン、炭酸ランタン、酸化アルミニウム、及び、水酸化アルミニウム等のいずれか1又は2以上が使用できる。
In the method for producing a fluid catalytic cracking catalyst according to the present invention, the zeolite is preferably ultra-stabilized Y-type zeolite. Here, ultra-stabilized Y-type zeolite (hereinafter also referred to as “USY zeolite”) can be produced by subjecting the Y-type zeolite to dealumination treatment such as hydrothermal treatment.
In the method for producing a fluid catalytic cracking catalyst according to the present invention, the zeolite may be a rare earth exchange Y zeolite or a rare earth exchange ultra-stabilized Y zeolite.
The mixed slurry preferably contains a metal scavenger (metal trap agent), and is particularly preferable in the case of a rare earth exchange type.
Here, the rare earth (rare earth element) is a generic name of 17 elements of scandium, yttrium, and lanthanoid, and in the present invention, one or more of them are used, and in particular, lanthanum, cerium, Praseodymium, neodymium and samarium are preferably used. A rare earth exchanged Y-type zeolite (hereinafter referred to as “REY”) is a Y-type zeolite partially exchanged with a rare earth, and a rare earth exchanged ultra-stabilized Y-type zeolite (Rare Earth exchanged USY). (Hereinafter also referred to as “REUSY”) is USY zeolite partially exchanged with rare earth.
As the metal scavenger, one or more of calcium aluminate, manganese oxide, lanthanum carbonate, aluminum oxide, aluminum hydroxide and the like can be used.

本発明の流動接触分解触媒の製造方法においては、調整スラリーが、水酸化マグネシウム、水酸化カルシウム、炭酸ナトリウム、及び炭酸水素ナトリウムのいずれか1又は2以上からなる弱塩基性物質でpH4.6〜5.2に調整されるので、調整スラリー中の塩基性塩化アルミニウムがゲル化を起こさず、塩基性塩化アルミニウムの結合力が維持されており、このような調整スラリーを噴霧乾燥するので、摩耗強度の高い触媒を得ることができる。
ここで、ゼオライトが、超安定化Y型ゼオライトである場合には、減圧軽油の接触分解に好適に使用できる。また、ゼオライトが、レアアース交換Y型ゼオライト又はレアアース交換超安定化Y型ゼオライトである場合には、重質油の接触分解に好適に使用でき、更に、混合スラリーに金属捕捉剤を含有させることにより、重質油中の金属を除去することができ、金属による触媒の被毒を防止し、寿命を長くすることができる。
In the method for producing a fluid catalytic cracking catalyst of the present invention, the adjustment slurry is a weakly basic substance composed of any one or more of magnesium hydroxide, calcium hydroxide, sodium carbonate, and sodium bicarbonate, and has a pH of 4.6 to Since it is adjusted to 5.2, the basic aluminum chloride in the adjustment slurry does not cause gelation, and the binding strength of the basic aluminum chloride is maintained, and since such adjustment slurry is spray-dried, the wear strength High catalyst can be obtained.
Here, when the zeolite is ultra-stabilized Y-type zeolite, it can be suitably used for catalytic cracking of vacuum gas oil. Further, when the zeolite is a rare earth exchange Y-type zeolite or a rare earth exchange ultra-stabilized Y-type zeolite, it can be suitably used for catalytic cracking of heavy oil, and further, by adding a metal scavenger to the mixed slurry. The metal in the heavy oil can be removed, the catalyst poisoning by the metal can be prevented, and the life can be extended.

本発明の第1の実施の形態に係る流動接触分解触媒は、例えば、超安定化Y型ゼオライトと、結合材(バインダー)である塩基性塩化アルミニウム、活性アルミナ、及びカオリンを含む無機酸化物マトリックスとを混合して得られるpH3.0〜4.4の混合スラリーを、水酸化マグネシウム、水酸化カルシウム、炭酸水素ナトリウム、及び炭酸ナトリウムのいずれか1又は2以上からなる弱塩基性物質をpH調整剤として使用して、pHを4.6〜5.2、好ましくは4.8〜5.0に調整した後、これを噴霧乾燥して製造される。この流動接触分解触媒は、減圧軽油の流動接触分解に好適に使用することができる。
本発明の第2の実施の形態に係る流動接触分解触媒は、例えば、超安定化Y型ゼオライトと、結合材である塩基性塩化アルミニウム、活性アルミナ、及びカオリンを含む無機酸化物マトリックスと、pH調整剤として水酸化マグネシウム、水酸化カルシウム、炭酸水素ナトリウム、及び炭酸ナトリウムのいずれか1又は2以上からなる弱塩基性物質とを混合し、pH4.6〜5.2、好ましくはpH4.8〜5.0に調整した調整スラリーを噴霧乾燥して製造される。この流動接触分解触媒は、減圧軽油の流動接触分解に好適に使用することができる。
本発明の第3の実施の形態に係る流動接触分解触媒は、ゼオライトとしてレアアース交換超安定化Y型ゼオライトを用いた点が、前記した第1の実施の形態と異なっており、重質油の流動接触分解に好適に使用される。
The fluid catalytic cracking catalyst according to the first embodiment of the present invention includes, for example, an ultra-stabilized Y-type zeolite, an inorganic oxide matrix containing basic aluminum chloride as a binder (binder), activated alumina, and kaolin. PH adjustment of a weakly basic substance composed of any one or more of magnesium hydroxide, calcium hydroxide, sodium hydrogen carbonate, and sodium carbonate from a mixed slurry of pH 3.0 to 4.4 obtained by mixing It is produced by spray-drying after adjusting the pH to 4.6 to 5.2, preferably 4.8 to 5.0. This fluid catalytic cracking catalyst can be suitably used for fluid catalytic cracking of vacuum gas oil.
The fluid catalytic cracking catalyst according to the second embodiment of the present invention includes, for example, an ultra-stabilized Y-type zeolite, an inorganic oxide matrix containing basic aluminum chloride, activated alumina, and kaolin as a binder, pH A weakly basic substance composed of one or more of magnesium hydroxide, calcium hydroxide, sodium hydrogen carbonate, and sodium carbonate is mixed as a regulator, and the pH is 4.6 to 5.2, preferably pH 4.8 to Manufactured by spray drying the adjusted slurry adjusted to 5.0. This fluid catalytic cracking catalyst can be suitably used for fluid catalytic cracking of vacuum gas oil.
The fluid catalytic cracking catalyst according to the third embodiment of the present invention differs from the first embodiment described above in that a rare earth exchange ultra-stabilized Y-type zeolite is used as the zeolite. It is suitably used for fluid catalytic cracking.

ここで、本発明の流動接触分解触媒に用いられる塩基性塩化アルミニウムは、塩化アルミニウム水溶液に金属アルミニウム(例えば、アルミニウム粉、アルミニウムホイル等)を溶解させて製造することができる。
また、超安定化Y型ゼオライトは、Y型ゼオライトを水熱処理等の脱アルミニウム処理して製造でき、レアアース交換超安定化Y型ゼオライトは、この超安定化Y型ゼオライトに、例えば、塩化レアアース水溶液等のレアアース含有水溶液を含浸し、イオン交換によってレアアースを担持させて製造することができる。
無機酸化物マトリックスを構成する成分としては、カオリン、活性アルミナ、シリカ、シリカアルミナ、カオリナイト鉱物、モンモリロナイト鉱物等がある。
Here, the basic aluminum chloride used in the fluid catalytic cracking catalyst of the present invention can be produced by dissolving metal aluminum (for example, aluminum powder, aluminum foil, etc.) in an aluminum chloride aqueous solution.
The ultra-stabilized Y-type zeolite can be produced by subjecting the Y-type zeolite to dealumination treatment such as hydrothermal treatment. The rare earth-exchanged ultra-stabilized Y-type zeolite can be produced by adding, for example, a rare earth chloride aqueous solution to It can be produced by impregnating a rare earth-containing aqueous solution such as and carrying rare earth by ion exchange.
Components constituting the inorganic oxide matrix include kaolin, activated alumina, silica, silica alumina, kaolinite mineral, montmorillonite mineral and the like.

(実施例1:減圧軽油分解用の流動接触分解触媒A)
<塩基性塩化アルミニウム水溶液の調製>
スチームジャケット付きのチタン製のタンク(容量60L)に、10.14kgの塩化アルミニウム6水和物と38.9kgの純水とを入れて十分に攪拌し、塩化アルミニウム水溶液を得た。この塩化アルミニウム水溶液を攪拌しながら95℃まで加温し、液温を保持したまま、純度99.9%のアルミニウムホイル(アルミ箔)5.67kgを6時間かけて少量づつ(15.75g/分)投入して、アルミ箔を溶解させた。なお、アルミ箔の溶解時には、大量の水素ガスが発生し、水溶液中の水が水蒸気として蒸発するため、タンク内の水溶液の貯留量が一定になるように95℃の純水を補給した。アルミ箔が完全に溶解した後、この水溶液を35℃まで冷却して、54.7kgの塩基性塩化アルミニウム水溶液を得た。この塩基性塩化アルミニウム水溶液は、pH3.6であり、Alとして23.5質量%の塩基性塩化アルミニウムを含んでいた。
(Example 1: Fluid catalytic cracking catalyst A for cracking gas oil under reduced pressure)
<Preparation of basic aluminum chloride aqueous solution>
A titanium tank with a steam jacket (capacity 60 L) was charged with 10.14 kg of aluminum chloride hexahydrate and 38.9 kg of pure water and stirred sufficiently to obtain an aluminum chloride aqueous solution. This aluminum chloride aqueous solution was heated to 95 ° C. with stirring, and 5.67 kg of aluminum foil (aluminum foil) with a purity of 99.9% was gradually added over a period of 6 hours (15.75 g / min) while maintaining the liquid temperature. ) To dissolve the aluminum foil. When the aluminum foil was dissolved, a large amount of hydrogen gas was generated, and water in the aqueous solution evaporated as water vapor. Therefore, 95 ° C. pure water was replenished so that the amount of aqueous solution stored in the tank was constant. After the aluminum foil was completely dissolved, this aqueous solution was cooled to 35 ° C. to obtain 54.7 kg of a basic aluminum chloride aqueous solution. This basic aluminum chloride aqueous solution had a pH of 3.6 and contained 23.5% by mass of basic aluminum chloride as Al 2 O 3 .

<調合工程>
容量5Lのプラスチック製の容器に、得られた塩基性塩化アルミニウム水溶液1227gと、格子定数が24.56Åの超安定化Y型ゼオライトをシリカ−アルミナ基準で900gと、カオリンを乾燥基準で700gと、平均粒子径が10μmの活性アルミナ(住友化学社製、BK−112)を乾燥基準で100gと、60℃の純水1500gとを攪拌しながら混合した。得られた混合スラリーは、固形分濃度が42.0質量%、pHが4.10、温度が45℃であった。
更に、混合スラリーがpH4.80となるまで、25質量%の水酸化マグネシウム(弱塩基性物質の一例)水溶液を添加して、調整スラリーを作製した。
<Mixing process>
In a plastic container having a capacity of 5 L, 1227 g of the obtained basic aluminum chloride aqueous solution, 900 g of ultra-stabilized Y-type zeolite having a lattice constant of 24.56 kg on a silica-alumina basis, and 700 g of kaolin on a dry basis, 100 g of activated alumina having an average particle size of 10 μm (manufactured by Sumitomo Chemical Co., Ltd., BK-112) and 100 g of pure water at 60 ° C. were mixed with stirring. The obtained mixed slurry had a solid content concentration of 42.0% by mass, a pH of 4.10, and a temperature of 45 ° C.
Furthermore, 25 mass% magnesium hydroxide (an example of a weak basic substance) aqueous solution was added until the mixed slurry became pH 4.80, and the adjustment slurry was produced.

<噴霧乾燥工程>
調整スラリーを液滴として、入口温度が460℃で、出口温度が260℃に設定された噴霧乾燥機で噴霧乾燥を行い、平均粒子径が65μmの球状粒子を得た。
<洗浄及び乾燥工程>
容量20Lの容器に、60℃の純水10Lと、得られた球状粒子2000gとを入れ、再懸濁(レスラリー)した後、15質量%のアンモニア水でpH4.5に調整し、60℃で5分間攪拌し、更に、ブフナーロートで濾過した後、濾過残渣を60℃の純水10Lで洗浄した。
容量20Lの容器に、洗浄した濾過残渣(洗浄ケーキ)、60℃の純水10L、及び硫酸アンモニウム170gを入れ、60℃で20分間攪拌した後、ブフナーロートで濾過し、更に濾過残渣を60℃の純水10Lで洗浄した。この操作を2回繰り返した後、洗浄によって、ナトリウム、塩素等が除去された濾過残渣を130℃で12時間乾燥して、流動接触分解触媒Aを得た。
<Spray drying process>
Using the adjusted slurry as droplets, spray drying was performed with a spray dryer in which the inlet temperature was set to 460 ° C. and the outlet temperature set to 260 ° C. to obtain spherical particles having an average particle size of 65 μm.
<Washing and drying process>
In a 20 L container, 10 L of pure water at 60 ° C. and 2000 g of the obtained spherical particles were put, resuspended (reslurry), adjusted to pH 4.5 with 15% by mass of ammonia water, and at 60 ° C. After stirring for 5 minutes and further filtering through a Buchner funnel, the filtration residue was washed with 10 L of pure water at 60 ° C.
In a 20 L container, put the washed filtration residue (wash cake), 10 L of pure water at 60 ° C., and 170 g of ammonium sulfate, stir at 60 ° C. for 20 minutes, filter through a Buchner funnel, and further filter the residue at 60 ° C. Washed with 10 L of pure water. After this operation was repeated twice, the filtration residue from which sodium, chlorine, etc. had been removed by washing was dried at 130 ° C. for 12 hours to obtain fluid catalytic cracking catalyst A.

得られた流動接触分解触媒Aの化学組成(ナトリウム、硫黄、アルミニウム、マグネシウム、水分。以下同様)及び物理的性状(嵩密度、比表面積、耐摩耗性。以下同様)を測定し、その結果を表1に示す。なお、化学組成及び物理的性状は、以下のようにしてそれぞれ測定した。
化学組成は、プラズマ発光分析(ICP)及びイオンクロマトグラフィにより測定した。また、物理的性状は、流動接触分解触媒Aを600℃で2時間空気中で焼成した後、デシケータ内で吸湿しないように冷却した後に測定した。嵩密度は、200mlのガラス製メスシリンダーに前記した触媒を充填して、容積当たりの重量から求めた。比表面積は、窒素の吸着−脱離等温線(BET法)から求めた。耐摩耗性は、小孔を備えた蓋が上下に取り付けられた筒状容器内に所定量(例えば、100g)の流動接触分解触媒Aを入れた後、下方の小孔から空気を234m/sの速度で送り、12〜42時間の間で摩耗して粉化した触媒の重量を測定し、粉化した重量と初期の重量との割合を耐摩耗性指数として求めた。
The chemical composition (sodium, sulfur, aluminum, magnesium, moisture, the same applies hereinafter) and physical properties (bulk density, specific surface area, wear resistance, the same applies hereinafter) of the obtained fluid catalytic cracking catalyst A were measured, and the results were obtained. Table 1 shows. The chemical composition and physical properties were measured as follows.
The chemical composition was measured by plasma emission analysis (ICP) and ion chromatography. The physical properties were measured after the fluid catalytic cracking catalyst A was calcined in air at 600 ° C. for 2 hours and then cooled so as not to absorb moisture in the desiccator. The bulk density was determined from the weight per volume of a 200 ml glass graduated cylinder filled with the catalyst described above. The specific surface area was determined from nitrogen adsorption-desorption isotherm (BET method). Abrasion resistance is determined by placing a predetermined amount (for example, 100 g) of fluid catalytic cracking catalyst A in a cylindrical container having lids with small holes mounted on the top and bottom, and then air from the small holes below 234 m / s. The weight of the catalyst that was worn and pulverized for 12 to 42 hours was measured, and the ratio between the pulverized weight and the initial weight was determined as an abrasion resistance index.

Figure 2009000657
但し、1000℃−1Hr質量%とは、1000℃で1時間乾燥した前後の質量を水分として算出したものである。以下同様である。
Figure 2009000657
However, 1000 ° C.-1 Hr mass% is calculated as the moisture before and after drying at 1000 ° C. for 1 hour. The same applies hereinafter.

(比較例1:減圧軽油分解用の流動接触分解触媒B)
比較例1は、前記した調合工程において、混合スラリーをpH調整せずに噴霧乾燥した点が、実施例1と異なる。得られた流動接触分解触媒Bの化学組成及び物理的性状を表1に示す。
(比較例2)
比較例2は、前記した調合工程において、混合スラリーを20質量%のケイ酸ナトリウム水溶液(pH調整剤の一例)でpH4.80に調整した点が、実施例1と異なる。なお、pH調整の際に、塩基性塩化アルミニウムがゲル化したため、噴霧乾燥ができなかった。
(比較例3)
比較例3は、前記した調合工程において、混合スラリーを22質量%のアルミン酸ナトリウム水溶液(pH調整剤の一例)でpH4.80に調整した点が、実施例1と異なる。なお、pH調整の際に、塩基性塩化アルミニウムがゲル化したため、噴霧乾燥ができなかった。
(Comparative Example 1: Fluid catalytic cracking catalyst B for cracking gas oil)
Comparative Example 1 is different from Example 1 in that the mixed slurry was spray-dried without adjusting the pH in the preparation step described above. Table 1 shows the chemical composition and physical properties of the obtained fluid catalytic cracking catalyst B.
(Comparative Example 2)
Comparative Example 2 is different from Example 1 in that the mixed slurry was adjusted to pH 4.80 with a 20 mass% sodium silicate aqueous solution (an example of a pH adjuster) in the above-described preparation step. In addition, since basic aluminum chloride gelatinized at the time of pH adjustment, spray drying was not able to be performed.
(Comparative Example 3)
Comparative Example 3 differs from Example 1 in that the mixed slurry was adjusted to pH 4.80 with a 22% by mass sodium aluminate aqueous solution (an example of a pH adjuster) in the above-described preparation step. In addition, since basic aluminum chloride gelatinized at the time of pH adjustment, spray drying was not able to be performed.

(実施例2:減圧軽油分解用の流動接触分解触媒C)
まず、格子定数が24.56Åの超安定化Y型ゼオライトをシリカ−アルミナ基準で500gと、60℃の純水930gとを攪拌しながら混合して、pH4.3とした後、炭酸水素ナトリウム(弱塩基性物質の一例)を60g添加して、pHを7.0に調整し、ゼオライトスラリー1490gを得た。次に、容量5Lのプラスチック製の容器に、前記した塩基性塩化アルミニウム水溶液1227gと、得られたゼオライトスラリー1490gと、新たな24.56Åの超安定化Y型ゼオライトの粉をシリカ−アルミナ基準で400gと、カオリンを乾燥基準で700gと、平均粒子径が10μmの活性アルミナ(住友化学社製、BK−112)を乾燥基準で100gと、60℃の純水650gとを入れ、攪拌して混合した。得られた調整スラリーは、固形分濃度が42.0質量%、pHが4.63、温度が45℃であった。
得られた調整スラリーを、実施例1と同様に噴霧乾燥、洗浄、及び乾燥を行い、流動接触分解触媒Cを製造した。得られた流動接触分解触媒Cの化学組成及び物理的性状を表2に示す。
(Example 2: fluid catalytic cracking catalyst C for cracking gas oil)
First, 500 g of ultra-stabilized Y-type zeolite having a lattice constant of 24.56 liters based on silica-alumina and 930 g of pure water at 60 ° C. were mixed with stirring to pH 4.3, and then sodium bicarbonate ( 60 g of an example of a weakly basic substance was added to adjust the pH to 7.0, and 1490 g of zeolite slurry was obtained. Next, 1227 g of the basic aqueous aluminum chloride solution, 1490 g of the obtained zeolite slurry, and a new 24.56 kg ultra-stabilized Y-type zeolite powder were placed on a silica-alumina standard in a 5 L plastic container. 400 g, 700 g of kaolin on a dry basis, 100 g of activated alumina (BK-112, manufactured by Sumitomo Chemical Co., Ltd.) having an average particle size of 10 μm and 650 g of pure water at 60 ° C. are stirred and mixed. did. The obtained adjusted slurry had a solid content concentration of 42.0% by mass, a pH of 4.63, and a temperature of 45 ° C.
The obtained adjusted slurry was spray-dried, washed and dried in the same manner as in Example 1 to produce fluid catalytic cracking catalyst C. Table 2 shows the chemical composition and physical properties of the obtained fluid catalytic cracking catalyst C.

Figure 2009000657
Figure 2009000657

(実施例3:減圧軽油分解用の流動接触分解触媒D)
実施例3は、ゼオライトスラリーを製造する際に、炭酸ナトリウム(弱塩基性物質の一例)を60g添加してゼオライトスラリーのpHを7.0に調整する点と、このゼオライトスラリーを含む調整スラリーのpHが4.71である点が、実施例2と異なっている。得られた流動接触分解触媒Dの化学組成及び物理的性状を表2に示す。
(実施例4:減圧軽油分解用の流動接触分解触媒E)
実施例4は、pHが4.63の調整スラリーを、更に25質量%の水酸化マグネシウム水溶液(弱塩基性物質の一例)でpH4.80に調整した調整スラリーを作製し、これを噴霧乾燥する点が、実施例2と異なっている。得られた流動接触分解触媒Eの化学組成及び物理的性状を表2に示す。
(比較例4:減圧軽油分解用の流動接触分解触媒F)
比較例4は、ゼオライトスラリーを製造する際に、20質量%の水酸化ナトリウム水溶液(pH調整剤の一例)でゼオライトスラリーのpHを7.0に調整する点が、実施例2と異なっている。得られた流動接触分解触媒Fの化学組成及び物理的性状を表2に示す。なお、混合スラリーは、pH4.63であった。
(比較例5)
比較例5は、ゼオライトスラリーを製造する際に、15質量%のアンモニア水溶液(pH調整剤の一例)でゼオライトスラリーのpHを7.0に調整する点が、実施例2と異なっている。なお、得られた混合スラリー(pH4.63)を噴霧乾燥した際に、塩基性塩化アルミニウムとアンモニアが反応して、環境汚染の原因となる塩化アンモニウムのヒュームガスが発生したため、噴霧乾燥を中止した。
(Example 3: fluid catalytic cracking catalyst D for cracking gas oil)
In Example 3, when producing a zeolite slurry, 60 g of sodium carbonate (an example of a weakly basic substance) was added to adjust the pH of the zeolite slurry to 7.0, and the adjusted slurry containing this zeolite slurry The difference from Example 2 is that the pH is 4.71. Table 2 shows the chemical composition and physical properties of the obtained fluid catalytic cracking catalyst D.
(Example 4: fluid catalytic cracking catalyst E for decomposing gas oil under reduced pressure)
In Example 4, an adjusted slurry having a pH of 4.63 was further adjusted to a pH of 4.80 with a 25% by mass magnesium hydroxide aqueous solution (an example of a weakly basic substance), and this was spray-dried. This is different from the second embodiment. Table 2 shows the chemical composition and physical properties of the obtained fluid catalytic cracking catalyst E.
(Comparative Example 4: Fluid catalytic cracking catalyst F for cracking vacuum oil)
Comparative Example 4 is different from Example 2 in that the pH of the zeolite slurry is adjusted to 7.0 with a 20% by mass sodium hydroxide aqueous solution (an example of a pH adjuster) when producing the zeolite slurry. . Table 2 shows the chemical composition and physical properties of the obtained fluid catalytic cracking catalyst F. The mixed slurry had a pH of 4.63.
(Comparative Example 5)
Comparative Example 5 differs from Example 2 in that the pH of the zeolite slurry is adjusted to 7.0 with a 15% by mass aqueous ammonia solution (an example of a pH adjusting agent) when producing the zeolite slurry. In addition, when the obtained mixed slurry (pH 4.63) was spray-dried, basic aluminum chloride and ammonia reacted to generate fume gas of ammonium chloride that causes environmental pollution. .

(実施例5:重質油分解用の流動接触分解触媒G)
容量5Lのプラスチック製の容器に、前記した塩基性塩化アルミニウム水溶液1227gと、格子定数が24.60Åのレアアース交換超安定化Y型ゼオライトをシリカ−アルミナ基準で520gと、カオリンを乾燥基準で1080gと、平均粒子径が10μmの活性アルミナ(住友化学社製、BK−112)を乾燥基準で100gと、60℃の純水1470gとを攪拌しながら混合した。得られた混合スラリーは、固形分濃度が42.0質量%、pHが4.15、温度が45℃であった。
更に、混合スラリーがpH4.85となるまで、25質量%の水酸化マグネシウム水溶液(弱塩基性物質の一例)を添加して、調整スラリーを作製した。得られた調整スラリーを、実施例1と同様に噴霧乾燥、洗浄、及び乾燥を行い流動接触分解触媒Gを製造した。得られた流動接触分解触媒Gの化学組成及び物理的性状を表3に示す。
(Example 5: Fluid catalytic cracking catalyst G for heavy oil cracking)
In a plastic container having a capacity of 5 L, 1227 g of the basic aqueous aluminum chloride solution, 520 g of rare earth exchange ultra-stabilized Y-type zeolite having a lattice constant of 24.60 で on a silica-alumina basis, and 1080 g of kaolin on a dry basis. Then, 100 g of activated alumina having a mean particle size of 10 μm (manufactured by Sumitomo Chemical Co., Ltd., BK-112) was mixed with 1470 g of pure water at 60 ° C. with stirring. The obtained mixed slurry had a solid content concentration of 42.0% by mass, a pH of 4.15, and a temperature of 45 ° C.
Furthermore, 25 mass% magnesium hydroxide aqueous solution (an example of a weak basic substance) was added until the mixed slurry became pH 4.85, and the adjustment slurry was produced. The resulting adjusted slurry was spray-dried, washed and dried in the same manner as in Example 1 to produce a fluid catalytic cracking catalyst G. Table 3 shows the chemical composition and physical properties of the obtained fluid catalytic cracking catalyst G.

Figure 2009000657
Figure 2009000657

(実施例6:重質油分解用の流動接触分解触媒H)
実施例6は、混合スラリーを20質量%の水酸化カルシウム水溶液(弱塩基性物質の一例)でpH4.85に調整して調整スラリーを得た点が、実施例5と異なっている。得られた流動接触分解触媒Hの化学組成及び物理的性状を表3に示す。
(比較例6:重質油分解用の流動接触分解触媒I)
比較例6は、混合スラリーをpH調整せずに噴霧乾燥した点が、実施例5と異なっている。得られた流動接触分解触媒Iの化学組成及び物理的性状を表3に示す。
(Example 6: fluid catalytic cracking catalyst H for heavy oil cracking)
Example 6 differs from Example 5 in that the mixed slurry was adjusted to pH 4.85 with a 20 mass% aqueous calcium hydroxide solution (an example of a weakly basic substance) to obtain an adjusted slurry. Table 3 shows the chemical composition and physical properties of the obtained fluid catalytic cracking catalyst H.
(Comparative Example 6: fluid catalytic cracking catalyst I for heavy oil cracking)
Comparative Example 6 differs from Example 5 in that the mixed slurry was spray-dried without adjusting the pH. Table 3 shows the chemical composition and physical properties of the obtained fluid catalytic cracking catalyst I.

(試験例1:減圧軽油の流動接触分解)
流動接触分解触媒A〜Fを、790℃で20時間、100%水蒸気で処理した後、反応試験装置(ザイテル社製、ACE−R+の流動床式MAT)を使用して、以下の測定条件で減圧軽油の流動接触分解性能の評価をそれぞれ行った。
原料油:脱硫減圧軽油(DSVGO)100質量%
反応温度:506℃
触媒重量基準の空間速度(WHSV):8質量%/質量%
触媒/油比(質量比。以下同様):3.75、5.0、6.0の3水準
生成油のカット温度
ガソリン:C5〜200℃
ライトサイクルオイル(LCO):200〜380℃
ヘビーサイクルオイル(HCO):380℃超
ここで、表4に、流動接触分解触媒A〜Fについて、触媒/油比が5.0の場合の減圧軽油の分解率、ドライガス収率、LPG収率、ガソリン収率、LCO収率、HCO収率、コーク収率、及びリサーチ法によるオクタン価の測定結果を示す(なお、触媒/油比が3.75及び6.0の場合のデータは示さず)。また、流動接触分解触媒A〜Fについて、触媒/油比が3.75、5.0、及び6.0の3水準における減圧軽油の分解率のデータと、触媒/油比、ドライガス収率、LPG収率、ガソリン収率、LCO収率、HCO収率、コーク収率、及びリサーチ法によるオクタン価の各データとの関係から、軽油の分解率を同一(71.0%)とした場合の触媒/油比、ドライガス収率、LPG収率、ガソリン収率、LCO収率、HCO収率、コーク収率、及びリサーチ法によるオクタン価をそれぞれ求め、その結果を表5に示す。
(Test Example 1: Fluid catalytic cracking of vacuum gas oil)
After the fluid catalytic cracking catalysts A to F were treated with 100% steam at 790 ° C. for 20 hours, using a reaction test apparatus (ACE-R + fluid bed type MAT manufactured by Zytel) under the following measurement conditions. The fluid catalytic cracking performance of vacuum gas oil was evaluated.
Raw material oil: 100% by mass of desulfurized vacuum gas oil (DSVGO)
Reaction temperature: 506 ° C
Space velocity based on catalyst weight (WHSV): 8% by mass /% by mass
Catalyst / oil ratio (mass ratio; the same applies hereinafter): 3 levels of 3.75, 5.0, 6.0 Cut temperature of produced oil Gasoline: C5 to 200 ° C
Light cycle oil (LCO): 200-380 ° C
Heavy cycle oil (HCO): over 380 ° C. Here, for fluid catalytic cracking catalysts A to F, Table 4 shows the cracking rate of dry gas oil, dry gas yield, LPG yield when the catalyst / oil ratio is 5.0 , Gasoline yield, LCO yield, HCO yield, coke yield, and octane number measured by research method are shown (data not shown for catalyst / oil ratios of 3.75 and 6.0) . In addition, for fluid catalytic cracking catalysts A to F, the data on the decomposition rate of vacuum gas oil at three levels of catalyst / oil ratios of 3.75, 5.0, and 6.0, catalyst / oil ratio, and dry gas yield. , LPG yield, gasoline yield, LCO yield, HCO yield, coke yield, and the octane number data from the research method. The catalyst / oil ratio, the dry gas yield, the LPG yield, the gasoline yield, the LCO yield, the HCO yield, the coke yield, and the octane number by the research method were determined, and the results are shown in Table 5.

Figure 2009000657
Figure 2009000657

Figure 2009000657
Figure 2009000657

(試験例2:重質油の流動接触分解)
流動接触分解触媒G〜Iを、600℃で2時間焼成した後、ナフテン酸ニッケル及びナフテン酸バナジウムが溶解したベンゼンにより、ニッケル(Ni)が1500ppm、バナジウム(V)が2500ppmとなるようにミッチェル法により含浸を行い、次に600℃で燃焼して、有機物を除去し、更に780℃で13時間100%水蒸気で処理した後、前記した反応試験装置を使用して、以下の測定条件で重質油の流動接触分解性能の評価をそれぞれ行った。
原料油:DSVGO50質量%+脱硫常圧蒸留残渣油(DSAR)50質量%
反応温度:535℃
WHSV:8質量%/質量%
触媒/油比:3.75、5.0、6.0の3水準
生成油のカット温度
ガソリン:C5〜205℃
LCO:205〜343℃
HCO:343℃超
ここで、表6に、流動接触分解触媒G〜Iについて、触媒/油比が5.0の場合の重質油の分解率、ドライガス収率、LPG収率、ガソリン収率、LCO収率、HCO収率、コーク収率、及びリサーチ法によるオクタン価の測定結果を示す(なお、触媒/油比が3.75及び6.0の場合のデータは示さず)。また、触媒/油比が3.75、5.0、及び6.0の3水準における重質油の分解率のデータと、流動接触分解触媒G〜Iについて、触媒/油比、ドライガス収率、LPG収率、ガソリン収率、LCO収率、HCO収率、コーク収率、及びリサーチ法によるオクタン価の各データとの関係から、軽油の分解率を同一(74.0%)とした場合の触媒/油比、ドライガス収率、LPG収率、ガソリン収率、LCO収率、HCO収率、コーク収率、及びリサーチ法によるオクタン価をそれぞれ求め、その結果を表7に示す。
(Test Example 2: Fluid catalytic cracking of heavy oil)
After the fluid catalytic cracking catalysts G to I are calcined at 600 ° C. for 2 hours, the Mitchell method so that nickel (Ni) is 1500 ppm and vanadium (V) is 2500 ppm with benzene in which nickel naphthenate and vanadium naphthenate are dissolved. And then burned at 600 ° C. to remove organic matter, and further treated with 100% steam at 780 ° C. for 13 hours, and then subjected to heavy reaction under the following measurement conditions using the reaction test apparatus described above. The fluid catalytic cracking performance of the oil was evaluated.
Raw material oil: DSVGO 50% by mass + Desulfurized atmospheric distillation residue oil (DSAR) 50% by mass
Reaction temperature: 535 ° C
WHSV: 8% by mass /% by mass
Catalyst / oil ratio: 3 levels of 3.75, 5.0, 6.0 Cut temperature of product oil Gasoline: C5-205 ° C
LCO: 205-343 ° C
HCO: Above 343 ° C. Here, Table 6 shows heavy oil cracking rate, dry gas yield, LPG yield, gasoline yield for fluid catalytic cracking catalysts G to I when the catalyst / oil ratio is 5.0. Rate, LCO yield, HCO yield, coke yield, and octane number measured by the research method are shown (data not shown for catalyst / oil ratios of 3.75 and 6.0). In addition, the data on the cracking rate of heavy oil at three levels of catalyst / oil ratios of 3.75, 5.0, and 6.0, and the fluid catalytic cracking catalysts GI, the catalyst / oil ratio, the dry gas yield. When the cracking rate of gas oil is the same (74.0%) from the relationship with the data of the rate, LPG yield, gasoline yield, LCO yield, HCO yield, coke yield, and octane number by research method The catalyst / oil ratio, the dry gas yield, the LPG yield, the gasoline yield, the LCO yield, the HCO yield, the coke yield, and the octane number by the research method were determined, and the results are shown in Table 7.

Figure 2009000657
Figure 2009000657

Figure 2009000657
Figure 2009000657

表1〜7によると、ゼオライトと結合材である塩基性塩化アルミニウムを含有する無機酸化物マトリックスとを混合し、更に水酸化マグネシウム、水酸化カルシウム、炭酸水素ナトリウム、及び炭酸ナトリウムのいずれか1又は2以上からなる弱塩基性物質でpH4.6〜5.2に調整した後、噴霧乾燥した実施例1〜6の流動接触分解触媒A、C、D、E、G、Hは、耐摩耗性が高い。また、流動接触分解触媒A、C、D、E、G、Hは、分解率が高く、ガソリン収率が高く、コーク及びHCOの収率が低いことが解った。   According to Tables 1-7, the zeolite and the inorganic oxide matrix containing basic aluminum chloride as a binder are mixed, and any one of magnesium hydroxide, calcium hydroxide, sodium bicarbonate, and sodium carbonate or The fluid catalytic cracking catalysts A, C, D, E, G, and H of Examples 1 to 6, which were adjusted to pH 4.6 to 5.2 with a weakly basic substance composed of 2 or more and then spray-dried, were wear resistant. Is expensive. Further, it was found that the fluid catalytic cracking catalysts A, C, D, E, G and H have a high decomposition rate, a high gasoline yield, and a low yield of coke and HCO.

本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の流動接触分解触媒の製造方法を構成する場合も本発明の権利範囲に含まれる。
例えば、前記した実施の形態において、ゼオライトとして、USY単独、REUSY単独のものを使用したが、REY単独、USYとREYを混合、又はUSYとREUSYを混合したものを使用してもよい。また、重質油分解用の流動接触分解触媒には、カルシウムアルミネート、酸化マンガン、炭酸ランタン、酸化アルミニウム、水酸化アルミニウム等の金属補足剤を含有させて、重油中に含まれ、触媒を被毒させるニッケルやバナジウムを補足するようにしてもよい。
The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. A combination of these is also included in the scope of the right of the present invention to constitute the fluid catalytic cracking catalyst production method of the present invention.
For example, in the above-described embodiment, USY alone or REUSY alone is used as the zeolite, but REY alone, a mixture of USY and REY, or a mixture of USY and REUSY may be used. In addition, fluid catalytic cracking catalysts for heavy oil cracking contain metal supplements such as calcium aluminate, manganese oxide, lanthanum carbonate, aluminum oxide, aluminum hydroxide, etc., and are contained in heavy oil. You may make it supplement nickel and vanadium to poison.

Claims (5)

ゼオライトと、結合材である塩基性塩化アルミニウムを含有する無機酸化物マトリックスとを混合して得られたpH3.0〜4.4の混合スラリーに、弱塩基性物質を加えてpH4.6〜5.2に調整して調整スラリーとし、該調整スラリーを液滴として噴霧乾燥する流動接触分解触媒の製造方法において、
前記弱塩基性物質が、水酸化マグネシウム、水酸化カルシウム、炭酸水素ナトリウム、及び炭酸ナトリウムのいずれか1又は2以上からなることを特徴とする流動接触分解触媒の製造方法。
A weak basic substance is added to a mixed slurry having a pH of 3.0 to 4.4 obtained by mixing zeolite and an inorganic oxide matrix containing basic aluminum chloride as a binder, and the pH is 4.6 to 5. In the method for producing a fluid catalytic cracking catalyst, wherein the slurry is adjusted to 2 and spray-dried as a droplet.
The method for producing a fluid catalytic cracking catalyst, wherein the weakly basic substance is one or more of magnesium hydroxide, calcium hydroxide, sodium hydrogen carbonate, and sodium carbonate.
ゼオライトと、結合材である塩基性塩化アルミニウムを含有する無機酸化物マトリックスと、水酸化マグネシウム、水酸化カルシウム、炭酸水素ナトリウム、及び炭酸ナトリウムからなる群から選ばれた少なくとも1つの弱塩基性物質とを含有するpH4.6〜5.2の調整スラリーを液滴として噴霧乾燥することを特徴とする流動接触分解触媒の製造方法。   Zeolite, an inorganic oxide matrix containing basic aluminum chloride as a binder, and at least one weakly basic substance selected from the group consisting of magnesium hydroxide, calcium hydroxide, sodium bicarbonate, and sodium carbonate; A process for producing a fluid catalytic cracking catalyst comprising spray-drying a prepared slurry having a pH of 4.6 to 5.2 containing 前記ゼオライトが超安定化Y型ゼオライトであることを特徴とする請求項1又は2に記載の流動接触分解触媒の製造方法。   The method for producing a fluid catalytic cracking catalyst according to claim 1 or 2, wherein the zeolite is ultra-stabilized Y-type zeolite. 前記ゼオライトが、レアアース交換Y型ゼオライト又はレアアース交換超安定化Y型ゼオライトであることを特徴とする請求項1又は2に記載の流動接触分解触媒の製造方法。   The method for producing a fluid catalytic cracking catalyst according to claim 1 or 2, wherein the zeolite is a rare earth exchange Y-type zeolite or a rare earth exchange ultra-stabilized Y type zeolite. 前記混合スラリーが金属捕捉剤を含有していることを特徴とする請求項1〜4のいずれか1項に記載の流動接触分解触媒の製造方法。   The method for producing a fluid catalytic cracking catalyst according to any one of claims 1 to 4, wherein the mixed slurry contains a metal scavenger.
JP2007165617A 2007-06-22 2007-06-22 Method for producing fluid catalytic cracking catalyst Active JP4859766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165617A JP4859766B2 (en) 2007-06-22 2007-06-22 Method for producing fluid catalytic cracking catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165617A JP4859766B2 (en) 2007-06-22 2007-06-22 Method for producing fluid catalytic cracking catalyst

Publications (3)

Publication Number Publication Date
JP2009000657A true JP2009000657A (en) 2009-01-08
JP2009000657A5 JP2009000657A5 (en) 2010-04-22
JP4859766B2 JP4859766B2 (en) 2012-01-25

Family

ID=40317628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165617A Active JP4859766B2 (en) 2007-06-22 2007-06-22 Method for producing fluid catalytic cracking catalyst

Country Status (1)

Country Link
JP (1) JP4859766B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2368633A1 (en) 2010-03-25 2011-09-28 NGK Insulators, Ltd. Formed zeolite honeycomb article and fired zeolite honeycomb article
EP2368631A1 (en) 2010-03-25 2011-09-28 NGK Insulators, Ltd. Zeolite structure and manufacturing method thereof
CN103007981A (en) * 2011-09-20 2013-04-03 中国石油天然气股份有限公司 Residual oil catalytic cracking catalyst
WO2014027537A1 (en) * 2012-08-17 2014-02-20 日揮触媒化成株式会社 Catalyst for hydrocarbon catalytic cracking
JP2018167213A (en) * 2017-03-30 2018-11-01 日揮触媒化成株式会社 Method for producing fluid catalytic cracking catalyst
WO2020044859A1 (en) * 2018-08-29 2020-03-05 日揮触媒化成株式会社 Fluid catalytic cracking catalyst for hydrocarbon oil
JP2020142229A (en) * 2019-02-28 2020-09-10 日揮触媒化成株式会社 Fluid catalytic cracking catalyst for hydrocarbon oil
US11731114B2 (en) 2018-08-29 2023-08-22 Jgc Catalysts And Chemicals Ltd. Fluid catalytic cracking catalyst for hydrocarbon oil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836637A (en) * 1981-08-10 1983-03-03 ダブリュー・アール・グレイス・アンド・カンパニー―コネチカット Production of catalyst
JPH0751574A (en) * 1993-07-21 1995-02-28 Exxon Res & Eng Co Preparation of catalyst for catalytic cracking
JP2000514863A (en) * 1996-07-19 2000-11-07 エクソン リサーチ アンド エンジニアリング カンパニー Catalysts for optimal resid cracking of heavy feedstocks.
JP2004528180A (en) * 2001-06-05 2004-09-16 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for producing catalyst with improved accessibility
JP2005169215A (en) * 2003-12-09 2005-06-30 Catalysts & Chem Ind Co Ltd Method and apparatus for manufacturing catalyst composition for hydrocarbon fluid catalytic cracking
JP2006142273A (en) * 2004-11-24 2006-06-08 Catalysts & Chem Ind Co Ltd Process for producing catalyst composition for hydrocarbon fluid catalytic cracking

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836637A (en) * 1981-08-10 1983-03-03 ダブリュー・アール・グレイス・アンド・カンパニー―コネチカット Production of catalyst
JPH01266853A (en) * 1981-08-10 1989-10-24 W R Grace & Co Production of catalyst
JPH0751574A (en) * 1993-07-21 1995-02-28 Exxon Res & Eng Co Preparation of catalyst for catalytic cracking
JP2000514863A (en) * 1996-07-19 2000-11-07 エクソン リサーチ アンド エンジニアリング カンパニー Catalysts for optimal resid cracking of heavy feedstocks.
JP2004528180A (en) * 2001-06-05 2004-09-16 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for producing catalyst with improved accessibility
JP2005169215A (en) * 2003-12-09 2005-06-30 Catalysts & Chem Ind Co Ltd Method and apparatus for manufacturing catalyst composition for hydrocarbon fluid catalytic cracking
JP2006142273A (en) * 2004-11-24 2006-06-08 Catalysts & Chem Ind Co Ltd Process for producing catalyst composition for hydrocarbon fluid catalytic cracking

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9452936B2 (en) 2010-03-25 2016-09-27 Ngk Insulators, Ltd. Zeolite structure and manufacturing method thereof
EP2368631A1 (en) 2010-03-25 2011-09-28 NGK Insulators, Ltd. Zeolite structure and manufacturing method thereof
EP2368633A1 (en) 2010-03-25 2011-09-28 NGK Insulators, Ltd. Formed zeolite honeycomb article and fired zeolite honeycomb article
US8716162B2 (en) 2010-03-25 2014-05-06 Ngk Insulators, Ltd. Zeolite structure and manufacturing method thereof
US9023454B2 (en) 2010-03-25 2015-05-05 Ngk Insulators, Ltd. Formed zeolite honeycomb article and fired zeolite honeycomb article
CN103007981A (en) * 2011-09-20 2013-04-03 中国石油天然气股份有限公司 Residual oil catalytic cracking catalyst
WO2014027537A1 (en) * 2012-08-17 2014-02-20 日揮触媒化成株式会社 Catalyst for hydrocarbon catalytic cracking
US9731281B2 (en) 2012-08-17 2017-08-15 Jgc Catalysts And Chemicals Ltd. Catalyst for hydrocarbon catalytic cracking
JP2018167213A (en) * 2017-03-30 2018-11-01 日揮触媒化成株式会社 Method for producing fluid catalytic cracking catalyst
JP7012450B2 (en) 2017-03-30 2022-01-28 日揮触媒化成株式会社 Method for manufacturing flow catalytic cracking catalyst
WO2020044859A1 (en) * 2018-08-29 2020-03-05 日揮触媒化成株式会社 Fluid catalytic cracking catalyst for hydrocarbon oil
US11731114B2 (en) 2018-08-29 2023-08-22 Jgc Catalysts And Chemicals Ltd. Fluid catalytic cracking catalyst for hydrocarbon oil
JP2020142229A (en) * 2019-02-28 2020-09-10 日揮触媒化成株式会社 Fluid catalytic cracking catalyst for hydrocarbon oil
JP7123864B2 (en) 2019-02-28 2022-08-23 日揮触媒化成株式会社 Fluid catalytic cracking catalyst for hydrocarbon oil

Also Published As

Publication number Publication date
JP4859766B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4859766B2 (en) Method for producing fluid catalytic cracking catalyst
JP6793004B2 (en) Residual oil cracking active flow catalytic cracking catalyst and its manufacturing method
JP2002143687A (en) Catalyst for fluid catalytic cracking of heavy hydrocarbon oil and method for fluid catalytic cracking
JP7012450B2 (en) Method for manufacturing flow catalytic cracking catalyst
RU2624443C2 (en) Catalyst for catalytic cracking of hydrocarbons
MX2012003901A (en) Improved heavy metals trapping co-catalyst for fcc processes.
JP4535929B2 (en) Catalyst for catalytic cracking of hydrocarbon oil and catalytic cracking method
JP2018103120A (en) Metal scavenger, manufacturing method of metal scavenger, and fluid contact decomposition catalyst
JP5258488B2 (en) Hydrocarbon catalytic cracking catalyst
WO2003064036A1 (en) Catalyst for fluid catalytic cracking of heavy hydrocarbon oil and method of fluid catalytic cracking
JP5954970B2 (en) Hydrocarbon catalytic cracking catalyst and process for producing the same
JP2017014100A (en) Method for producing high silica chabazite-type zeolite and high silica chabazite-type zeolite
JPS6241782B2 (en)
JPH04200641A (en) Production of hydrocarbon converting catalyst
JP4859774B2 (en) Method for producing fluid catalytic cracking catalyst
JP2020032352A (en) Fluid contact cracking catalyst for hydrocarbon oil
JP5084560B2 (en) Fluid catalytic cracking catalyst and method for producing the same
JP2014231034A (en) Catalyst for fluid catalytic cracking and method for producing the same
JP2005169215A (en) Method and apparatus for manufacturing catalyst composition for hydrocarbon fluid catalytic cracking
JP2012066245A (en) Method for producing desulfurization catalyst for catalytically-cracked gasoline
JP5868698B2 (en) Fluid catalytic cracking catalyst and method for producing the same
JP4167123B2 (en) Hydrocarbon fluid catalytic cracking catalyst composition and fluid catalytic cracking method of heavy hydrocarbons using the same
JP2004130193A (en) Catalyst composition for cracking hydrocarbon catalytically and catalytic cracking method using the same
JP7101004B2 (en) Active matrix and its production method, as well as (residual oil) fluid catalytic cracking catalyst
JP2009160496A (en) Catalyst composition for catalytic cracking of hydrocarbon oil

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4859766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250