JP2008540804A - Excess air control for cracking furnace burners - Google Patents

Excess air control for cracking furnace burners Download PDF

Info

Publication number
JP2008540804A
JP2008540804A JP2008512350A JP2008512350A JP2008540804A JP 2008540804 A JP2008540804 A JP 2008540804A JP 2008512350 A JP2008512350 A JP 2008512350A JP 2008512350 A JP2008512350 A JP 2008512350A JP 2008540804 A JP2008540804 A JP 2008540804A
Authority
JP
Japan
Prior art keywords
burner
air
combustion gas
analyte
excess air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008512350A
Other languages
Japanese (ja)
Other versions
JP5142986B2 (en
Inventor
タテ,ジェームズ,ディー.
フレデリック,ジェラルド,ディー.
イルビング,シルベスター
リップ,チャールズ,ダブリュ.
ウェバー,アンディー,イー.
リード,クリストファー,ジェイ.
Original Assignee
ダウ グローバル テクノロジーズ インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ グローバル テクノロジーズ インコーポレイティド filed Critical ダウ グローバル テクノロジーズ インコーポレイティド
Publication of JP2008540804A publication Critical patent/JP2008540804A/en
Application granted granted Critical
Publication of JP5142986B2 publication Critical patent/JP5142986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/206Tube furnaces controlling or regulating the tube furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

【課題】 熱分解炉からの燃焼ガスのより信頼できる代表的な分析が必要であるという前述した課題の少なくとも一部を解決する。
【解決手段】 熱分解器のバーナ(過剰空気)の空気/燃料比を制御するための3つのステップを含む方法。第1のステップは、近赤外光の波長変調されたビームを、波長可変ダイオードレーザから、バーナからの燃焼ガスを通じて、近赤外光検出器へと方向付けて、検出信号を生成することである。第2のステップは、酸素、一酸化炭素、窒素酸化物から成る群より選択される検体における波長特性での分光吸収に関して検出信号を分析し、燃焼ガス中の検体の濃度を決定することである。第3のステップは、第2のステップの検体の濃度に応じてバーナ(過剰空気)の空気/燃料比を調整することである。
【選択図】 図1
PROBLEM TO BE SOLVED To solve at least a part of the above-mentioned problem that a more reliable representative analysis of combustion gas from a pyrolysis furnace is necessary.
A method comprising three steps for controlling the air / fuel ratio of a pyrolyzer burner (excess air). The first step is to direct a wavelength-modulated beam of near-infrared light from the tunable diode laser through the combustion gas from the burner to the near-infrared light detector to generate a detection signal. is there. The second step is to analyze the detection signal for spectral absorption at a wavelength characteristic in an analyte selected from the group consisting of oxygen, carbon monoxide, and nitrogen oxides to determine the concentration of the analyte in the combustion gas. . The third step is to adjust the air / fuel ratio of the burner (excess air) according to the analyte concentration in the second step.
[Selection] Figure 1

Description

本発明は、分解炉バーナにおける過剰空気を制御するための方法の分野に含まれる。石油ナフサなどの炭化水素材料を熱分解することによるオレフィンの生成は、化学プロセス工業における最も重要なプロセスのうちの1つである。例えば、ABBコーポレーションは、伝えられるところによれば、1年当たり100万トンを超えるエチレンおよびプロピレンを生成する能力を有する分解プラントをテキサス州のポートアーサーに建設した。分解プロセスは「分解器」内で行なわれる。分解器は、通常、管路およびバーナを収容する筐体を備えている。燃料を燃やすことによって生成される熱は、管路内を流れる炭化水素材料を加熱し、それにより、炭化水素材料が熱分解されて、特にエチレンおよびプロピレンが生成される。   The present invention is included in the field of methods for controlling excess air in cracking furnace burners. The production of olefins by pyrolyzing hydrocarbon materials such as petroleum naphtha is one of the most important processes in the chemical process industry. For example, ABB Corporation reportedly built a cracking plant in Port Arthur, Texas that has the capacity to produce over 1 million tons of ethylene and propylene per year. The decomposition process takes place in a “decomposer”. The decomposer usually includes a housing that accommodates a conduit and a burner. The heat generated by burning the fuel heats the hydrocarbon material flowing in the conduit, which causes the hydrocarbon material to be pyrolyzed, particularly producing ethylene and propylene.

通常、分解器は輻射部と対流部とから成る。輻射部内にはバーナが位置されており、それにより、主にバーナに隣接する壁から放出される輻射熱によって、輻射部内に位置される管路が加熱される。その後、輻射部からの燃焼ガスが対流部へと方向付けられ、この対流部において、対流部内に配置される管路を加熱するために燃焼ガスからの熱が回収される。分解器内には、通常、バーナの空気/燃料比の制御を容易にするために、輻射部と対流部との間に酸化ジルコニウム酸素センサなどの酸素センサが配置されている。分解器の全体の効率は、主に、火室内に存在する過剰空気の量および分解器からの排気ガスの温度の関数である。炉内の空気の量を制御することは、効率の観点から有益となり得る。分解器からの一酸化炭素および煙の排出は、バーナで使用される空気の量が減少されて空気−燃料の化学量論比を下回るときに増大する傾向がある。一方、あまりにも過剰な空気は、分解器の全体の効率を低下させる可能性があるとともに、窒素酸化物の過剰な放出をもたらす可能性がある。したがって、効率の最適なバランスおよび放出の制御のためには、分解炉で使用される過剰空気の量の正確な制御が必要である。   Usually, the decomposer consists of a radiation part and a convection part. A burner is located in the radiant part, and thereby the pipe line located in the radiant part is heated mainly by the radiant heat emitted from the wall adjacent to the burner. Thereafter, the combustion gas from the radiant section is directed to the convection section where heat from the combustion gas is recovered to heat the conduits disposed within the convection section. In the cracker, an oxygen sensor such as a zirconium oxide oxygen sensor is usually placed between the radiant section and the convection section to facilitate control of the burner air / fuel ratio. The overall efficiency of the cracker is mainly a function of the amount of excess air present in the firebox and the temperature of the exhaust gas from the cracker. Controlling the amount of air in the furnace can be beneficial from an efficiency standpoint. Carbon monoxide and smoke emissions from the cracker tend to increase as the amount of air used in the burner is reduced below the air-fuel stoichiometry. On the other hand, too much air can reduce the overall efficiency of the cracker and can result in excessive release of nitrogen oxides. Thus, for optimal balance of efficiency and emission control, precise control of the amount of excess air used in the cracking furnace is necessary.

従来の分解器の酸素センサは「ポイント測定装置」である。すなわち、この酸素センサは、センサが配置されている位置で酸素を測定する。そのような測定は、分解器内の全体の酸素濃度を代表するものではない。分解器内の酸素のより代表的な決定を行なうシステムが開発された場合、それは分解炉の制御の分野における進歩となろう。また、従来の酸化ジルコニウムセンサがO2測定(例えば、炭化水素ガスおよびCOガス)の精度に影響を及ぼすことで知られる障害に晒されることは良く知られている。これらの障害に更に影響されないシステムが開発された場合には、分解炉の制御の分野における進歩となろう。 The conventional oxygen sensor of the decomposer is a “point measuring device”. That is, this oxygen sensor measures oxygen at a position where the sensor is disposed. Such a measurement is not representative of the total oxygen concentration in the cracker. If a system to develop a more representative determination of oxygen in the cracker is developed, it will be an advance in the field of cracker control. It is also well known that conventional zirconium oxide sensors are subject to obstacles known to affect the accuracy of O 2 measurements (eg, hydrocarbon gas and CO gas). If a system is developed that is not further affected by these obstacles, it would be an advance in the field of cracking furnace control.

HansonらによるSectionII.4.3, Sensors for Advanced Combustion Systems, Global Climate & Energy Project, Stanford University, 2004は、石炭燃料ユーティリティボイラ、廃棄物焼却炉およびジェットエンジンからの燃焼ガス中の酸素、一酸化炭素、窒素酸化物を決定するための吸光光度法および波長可変近赤外線ダイオードレーザの開発について概説している。Thompsonらの米国特許出願公報US2004/0191712A1は、そのようなシステムを製鋼産業における燃焼用途に対して適用した。燃焼ガス中の例えば酸素、一酸化炭素、窒素酸化物を決定するための吸光光度法および波長可変近赤外線ダイオードレーザが熱分解器に対して適用された場合には、当分野における進歩となろう。   Hanson et al., Section II.4.3, Sensors for Advanced Combustion Systems, Global Climate & Energy Project, Stanford University, 2004. Outlines the development of absorptiometric methods and tunable near-infrared diode lasers to determine oxides. Thompson et al., US Patent Application Publication No. US 2004/0191712 A1, applied such a system for combustion applications in the steel industry. If an absorptiometric method and tunable near-infrared diode laser for determining, for example, oxygen, carbon monoxide, nitrogen oxides in combustion gases are applied to a pyrolyzer, this would be an advance in the field .

本発明は、熱分解炉からの燃焼ガスのより信頼できる代表的な分析が必要であるという前述した課題の少なくとも一部を解決する。本発明は、熱分解炉からの燃焼ガス中の例えば酸素、一酸化炭素、窒素酸化物を決定するための吸光光度法および波長可変近赤外線ダイオードレーザの用途である。   The present invention solves at least some of the aforementioned problems that a more reliable representative analysis of combustion gases from a pyrolysis furnace is required. The present invention is an application of a spectrophotometric method and a tunable near-infrared diode laser for determining, for example, oxygen, carbon monoxide, nitrogen oxides in combustion gases from a pyrolysis furnace.

より具体的には、本発明は、熱分解器のバーナの空気/燃料比を制御するための方法であって、(a)近赤外光の波長変調されたビームを、波長可変ダイオードレーザから、バーナからの燃焼ガスを通じて、近赤外光検出器へと方向付けて、検出信号を生成するステップと、(b)酸素、一酸化炭素、窒素酸化物から成る群より選択される検体における波長特性での分光吸収に関して検出信号を分析し、燃焼ガス中の検体の濃度を決定するステップと、(c)ステップ(b)の検体の濃度に応じてバーナ(すなわち、炉内の過剰空気)の空気/燃料比を調整するステップと、を含む方法である。   More specifically, the present invention is a method for controlling the air / fuel ratio of a pyrolyzer burner comprising: (a) transmitting a wavelength modulated beam of near infrared light from a tunable diode laser; Directing the combustion gas from the burner to a near-infrared photodetector to generate a detection signal; and (b) a wavelength in an analyte selected from the group consisting of oxygen, carbon monoxide, and nitrogen oxides Analyzing the detection signal for spectral absorption at the characteristic and determining the concentration of the analyte in the combustion gas; and (c) the burner (ie excess air in the furnace) according to the concentration of the analyte in step (b) Adjusting the air / fuel ratio.

図1は、空気吸入口12と排気口13とを有する筐体11を含むオレフィンを生成するための典型的な熱分解炉10の概略側面図を示している。空気吸入口ファン14は、バーナ15を通じて強制通風を供給する。排気ファン16は、導入された通風を炉10から供給する。炉10の内部は、3つの主要な部分、すなわち、火室部17と、耐火壁部18と、対流部19とから成る。バーナ15からの燃焼ガスは、最初に、炉10の火室部17内へと向けられた後、耐火壁部18を通じて方向付けられ、その後、対流部19を通じて排気口13から排出される。供給材料ストリーム20は、当該供給材料を予熱するために管路21を通じて導かれる。予熱された供給材料に対してはストリーム22が導入され、予熱された供給材料は、その後、対流部19内に位置する管路23によって更に加熱された後、火室部17内に位置される管路24によって更に加熱され、それにより、生成物25が生成される。   FIG. 1 shows a schematic side view of a typical pyrolysis furnace 10 for producing olefins including a housing 11 having an air inlet 12 and an exhaust 13. The air inlet fan 14 supplies forced ventilation through the burner 15. The exhaust fan 16 supplies the introduced ventilation from the furnace 10. The interior of the furnace 10 is composed of three main parts, that is, a fire chamber part 17, a refractory wall part 18 and a convection part 19. Combustion gas from the burner 15 is first directed into the fire chamber portion 17 of the furnace 10, then directed through the fire wall 18, and then discharged from the exhaust port 13 through the convection portion 19. The feed stream 20 is routed through line 21 to preheat the feed material. For the preheated feed, a stream 22 is introduced and the preheated feed is then further heated by a line 23 located in the convection 19 and then located in the fire chamber 17. Further heating by line 24, thereby producing product 25.

ここで、図2を参照すると、火室部17、耐火壁部18、および、対流部19の外壁を示す図1の炉10の概略背面図が示されている。炉10の耐火壁部18には波長可変ダイオードレーザシステム26が装着されており、これにより、波長可変ダイオードレーザシステム26の可変波長ダイオードレーザからの光を、耐火壁部18を通じて流れる燃焼ガスを介して、光検出システム27に対して示すことができるようになっている。   Referring now to FIG. 2, there is shown a schematic rear view of the furnace 10 of FIG. 1 showing the outer walls of the fire chamber part 17, the refractory wall part 18 and the convection part 19. A tunable diode laser system 26 is mounted on the refractory wall 18 of the furnace 10, thereby allowing light from the tunable diode laser of the tunable diode laser system 26 to pass through the combustion gas flowing through the refractory wall 18. Thus, the light detection system 27 can be shown.

ここで、図3を参照すると、図2に示されたダイオードレーザシステム26および光検出システム27の更に詳しい図が示されている。図3に示されるシステムは、波長可変ダイオードレーザを含むレーザモジュール37を有する。制御ユニット31は、信号処理(以下で更に詳しく説明する)のためにプログラムされた中央処理ユニット、および、波長可変ダイオードレーザのための温度・電流制御機器、並びに、ユーザインタフェースおよびディスプレイを含む。制御ユニットは、図示のように別個のユニット内に収容されても良く、または、システムの他の構成要素のうちの1つに含められても良い。例えば、制御ユニットが送信器内に収容されても良い。アライメントプレート29および調整ロッド30はレーザビーム41のアライメントを行なうことができる。レーザビームは、1または複数の窓(例えば、石英ガラス窓、サファイア窓)を通過して炉内へ入る。デュアルサファイア窓28などの窓が4インチパイプフランジ40に装着されている。窓28同士の間の空間は、1分当たり25リットルの窒素を用いて1平方インチ当たり10ポンドのゲージ圧で浄化される。フランジ40は、炉の壁を貫通して取り付けられる。   Referring now to FIG. 3, a more detailed view of the diode laser system 26 and the light detection system 27 shown in FIG. 2 is shown. The system shown in FIG. 3 has a laser module 37 that includes a tunable diode laser. The control unit 31 includes a central processing unit programmed for signal processing (discussed in more detail below), a temperature and current control device for the tunable diode laser, and a user interface and display. The control unit may be housed in a separate unit as shown, or may be included in one of the other components of the system. For example, the control unit may be housed in the transmitter. The alignment plate 29 and the adjustment rod 30 can align the laser beam 41. The laser beam enters the furnace through one or more windows (eg, quartz glass window, sapphire window). A window such as a dual sapphire window 28 is mounted on the 4 inch pipe flange 40. The space between the windows 28 is cleaned at a gauge pressure of 10 pounds per square inch using 25 liters of nitrogen per minute. The flange 40 is mounted through the furnace wall.

更に図3を参照すると、レーザビーム41は、1または複数の窓33(これらの窓は、デュアルサファイアであっても良く、あるいは、石英ガラスなどの他の適した材料であっても良い)を通過して、近赤外光検出器38へと送られる。窓33は4インチパイプフランジ39に装着されていても良い。窓33同士の間の空間は、1分当たり25リットルの窒素を用いて1平方インチ当たり10ポンドのゲージ圧で浄化される。フランジ39は、炉の壁を貫通して取り付けられる。アライメントプレート34および調整ロッド35は、検出光学素子とレーザビーム41とのアライメントを行なうことができる。検出エレクトロニクス36は、ケーブル37を通じて制御ユニット31と電気的通信状態にある。また、制御ユニット31は、炉10を制御するためのプロセス制御システム32とも(電気ケーブル38を通じて)電気的通信状態にある。レーザビーム41の光路長は約60フィートである。図3に示されるシステムは、テキサス州のヒューストンにあるAnalytical Specialitiesから市販されている。   Still referring to FIG. 3, the laser beam 41 includes one or more windows 33 (which may be dual sapphire or other suitable material such as quartz glass). It passes and is sent to the near-infrared light detector 38. The window 33 may be attached to a 4 inch pipe flange 39. The space between the windows 33 is cleaned with a gauge pressure of 10 pounds per square inch using 25 liters of nitrogen per minute. The flange 39 is mounted through the furnace wall. The alignment plate 34 and the adjustment rod 35 can align the detection optical element and the laser beam 41. The detection electronics 36 is in electrical communication with the control unit 31 through a cable 37. The control unit 31 is also in electrical communication with a process control system 32 for controlling the furnace 10 (through an electrical cable 38). The optical path length of the laser beam 41 is about 60 feet. The system shown in FIG. 3 is commercially available from Analytical Specialties in Houston, Texas.

図3に示されるシステムは、レーザ光が燃焼ガスを通過して進むときに吸収される(失われる)レーザ光量を測定することにより動作する。酸素、一酸化炭素および窒素酸化物はそれぞれ、固有の微細構造を示すスペクトル吸収を有する。スペクトルの個々の特徴は、波長可変ダイオードレーザ37の高い分解能で見られる。波長可変ダイオードレーザ37は、制御ユニット31からのその入力電流を制御することにより変調される(走査され或いは1つの波長から他の波長へと調整される)。   The system shown in FIG. 3 operates by measuring the amount of laser light that is absorbed (lost) as the laser light travels through the combustion gas. Oxygen, carbon monoxide, and nitrogen oxides each have spectral absorption that exhibits a unique microstructure. The individual characteristics of the spectrum are seen with the high resolution of the tunable diode laser 37. The tunable diode laser 37 is modulated (scanned or tuned from one wavelength to another) by controlling its input current from the control unit 31.

ここで、図4を参照すると、波長可変ダイオードレーザからの近赤外光の変調ビームを酸素が吸収する領域におけるスペクトルが示されている。図4に示される吸光度は、燃焼ガス中の酸素の濃度に比例している。2333ナノメートル付近の一酸化炭素吸光度ラインは、100万分の1下側の一酸化炭素濃度を決定するために使用される。1570付近の一酸化炭素吸光度ラインは、更に高い一酸化炭素濃度を決定するために使用される。2740ナノメートル付近の窒素酸化物吸光度ラインは、100万分の1下側〜中間の窒素酸化物濃度を決定するために使用される。1800付近の窒素酸化物吸光度ラインは、更に高い窒素酸化物濃度を決定するために使用される。   Here, referring to FIG. 4, a spectrum in a region where oxygen absorbs a modulated beam of near-infrared light from a wavelength tunable diode laser is shown. The absorbance shown in FIG. 4 is proportional to the concentration of oxygen in the combustion gas. The carbon monoxide absorbance line near 2333 nanometers is used to determine the 1 millionth lower carbon monoxide concentration. The carbon monoxide absorbance line near 1570 is used to determine a higher carbon monoxide concentration. The nitrogen oxide absorbance line near 2740 nanometers is used to determine the lower 1 / million to intermediate nitrogen oxide concentration. A nitrogen oxide absorbance line near 1800 is used to determine higher nitrogen oxide concentrations.

再び図1を参照すると、バーナ(炉内の過剰空気)15の空気/燃料比(図3のプロセスコントローラ32によって制御される)は、先に概説した酸素、一酸化炭素、窒素酸化物の波長可変ダイオードレーザ分光分析に応じて燃焼ガス中の酸素濃度、一酸化炭素濃度、窒素酸化物濃度を最適化するように制御できる。   Referring again to FIG. 1, the air / fuel ratio of the burner (excess air in the furnace) 15 (controlled by the process controller 32 of FIG. 3) is the wavelength of oxygen, carbon monoxide, nitrogen oxides outlined above. Control can be made to optimize the oxygen concentration, carbon monoxide concentration, and nitrogen oxide concentration in the combustion gas in accordance with variable diode laser spectroscopy.

結論
以上、本発明をその好ましい実施形態にしたがって説明してきたが、本発明はこの開示の思想および範囲内で変更することができる。したがって、本出願は、ここに開示された一般的な原理を使用する本発明の任意の変形、使用または適合を網羅するべく意図されている。また、本出願は、この発明に関連し且つ以下の請求項の制限の範囲内に入る、当分野で公知の或いは通例の慣行に入るような本発明からのそのような逸脱を網羅するべく意図されている。
CONCLUSION While the invention has been described in accordance with its preferred embodiments, the invention can be modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using the general principles disclosed herein. This application is also intended to cover such departures from the invention as it relates to this invention and that fall within the scope of the following claims, as known in the art or within conventional practice. Has been.

オレフィンを生成するための典型的な熱分解炉10の概略側面図である。1 is a schematic side view of a typical pyrolysis furnace 10 for producing olefins. 図1の炉10の概略背面図である。It is a schematic rear view of the furnace 10 of FIG. 本発明で用いる好ましい波長可変ダイオードレーザ分光装置の詳細図である。It is a detailed view of a preferred wavelength tunable diode laser spectroscopic device used in the present invention. 波長可変ダイオードレーザによって生成される近赤外光の酸素吸光度における波長領域特性の微細構造吸光度を示す、本発明のシステムを使用して収集されたスペクトルである。FIG. 3 is a spectrum collected using the system of the present invention showing the fine-structure absorbance of the wavelength domain characteristics in the near-infrared oxygen absorbance produced by a tunable diode laser.

Claims (2)

オレフィンを生成するための熱分解器のバーナの空気/燃料比を制御するための方法であって、
(a)近赤外光の波長変調されたビームを、波長可変ダイオードレーザから、バーナからの燃焼ガスを通じて、近赤外光検出器へと方向付けて、検出信号を生成するステップと、
(b)酸素、一酸化炭素、窒素酸化物から成る群より選択される検体における波長特性での分光吸収に関して検出信号を分析し、燃焼ガス中の検体の濃度を決定するステップと、
(c)ステップ(b)の検体の濃度に応じてバーナ(過剰空気)の空気/燃料比を調整するステップとを含む、方法。
A method for controlling the air / fuel ratio of a burner of a pyrolyzer to produce olefins, comprising:
(A) directing a wavelength-modulated beam of near-infrared light from a tunable diode laser through combustion gas from a burner to a near-infrared light detector to generate a detection signal;
(B) analyzing the detection signal for spectral absorption at a wavelength characteristic in an analyte selected from the group consisting of oxygen, carbon monoxide, and nitrogen oxide, and determining the concentration of the analyte in the combustion gas;
(C) adjusting the air / fuel ratio of the burner (excess air) according to the analyte concentration in step (b).
波長可変ダイオードレーザからの近赤外光の波長が、約500〜約15000波数の範囲内にある、請求項1記載の方法。   The method of claim 1, wherein the wavelength of near infrared light from the tunable diode laser is in the range of about 500 to about 15000 wavenumbers.
JP2008512350A 2005-05-16 2006-05-09 Excess air control for cracking furnace burners Active JP5142986B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US68154905P 2005-05-16 2005-05-16
US60/681,549 2005-05-16
PCT/US2006/017977 WO2006124422A2 (en) 2005-05-16 2006-05-09 Excess air control for cracker furnace burners

Publications (2)

Publication Number Publication Date
JP2008540804A true JP2008540804A (en) 2008-11-20
JP5142986B2 JP5142986B2 (en) 2013-02-13

Family

ID=37038383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008512350A Active JP5142986B2 (en) 2005-05-16 2006-05-09 Excess air control for cracking furnace burners

Country Status (5)

Country Link
US (1) US20110062056A1 (en)
EP (1) EP1889035A2 (en)
JP (1) JP5142986B2 (en)
CN (1) CN101175988B (en)
WO (1) WO2006124422A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526143A (en) * 2013-05-20 2016-09-01 エドワーズ リミテッド Combustion monitoring

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175642B (en) * 2010-12-31 2012-12-12 聚光科技(杭州)股份有限公司 On-site gas measurement method and device
EP3553499B1 (en) 2018-04-13 2020-03-25 Siemens Aktiengesellschaft Gas analysis system and method for measuring nitrogen oxides in a waste gas
EP3561487B1 (en) * 2018-04-25 2023-01-18 ABB Schweiz AG Measuring device for analysis of a composition of a combustible gas with a filter chamber arranged in front of a detector
EP4105297A1 (en) * 2021-06-16 2022-12-21 Linde GmbH Method and measuring system for determining an oxygen content in a furnace, furnace and processing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275691A (en) * 1988-04-27 1989-11-06 Mitsubishi Kasei Corp Method of controlling thermal cracking oven
JPH0228293A (en) * 1988-05-30 1990-01-30 Bp Chimie Sa Hydrocarbon steam-cracking method and apparatus controlled by near infrared analysis
JPH0885795A (en) * 1994-08-25 1996-04-02 Phillips Petroleum Co Method of processing radiation heat transfer tube of tubularheating furnace
US20040191712A1 (en) * 2000-06-26 2004-09-30 Thomson Murray J. Method and apparatus for improved process control in combustion applications
WO2004090496A2 (en) * 2003-03-31 2004-10-21 Zolo Technologies, Inc. Method and apparatus for the monitoring and control of combustion

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2037379A (en) * 1923-09-24 1936-04-14 Sinclair Refining Co Cracking of oil
US3831030A (en) * 1971-07-19 1974-08-20 Texas Instruments Inc Laser-operated system for spectroscopic analysis
GB2064780B (en) * 1979-11-23 1984-04-18 Neotronics Ltd Apparatus for measuring the efficiency of combustion appliances
SE8802536D0 (en) * 1988-07-07 1988-07-07 Altoptronic Ab METHOD AND APPARATUS FOR SPECTROSCOPIC MEASUREMENT OF THE CONCENTRATION OF A GAS IN A SAMPLE
US5252060A (en) * 1992-03-27 1993-10-12 Mckinnon J Thomas Infrared laser fault detection method for hazardous waste incineration
US5448071A (en) * 1993-04-16 1995-09-05 Bruce W. McCaul Gas spectroscopy
JP3595360B2 (en) * 1993-12-28 2004-12-02 千代田化工建設株式会社 Combustion control method for tubular heating furnace and tubular heating furnace
US20020031737A1 (en) * 2000-03-10 2002-03-14 American Air Liquide, Inc. Method for continuously monitoring chemical species and temperature in hot process gases
CN1150300C (en) * 2001-04-11 2004-05-19 中国石化集团扬子石油化工有限责任公司 Intelligent control method of cracking furnace in ethylene preparing equipment
US6640199B1 (en) * 2001-10-24 2003-10-28 Spectral Sciences, Inc. System and method for optically determining properties of hot fluids from the spectral structure of emitted radiation
US7005645B2 (en) * 2001-11-30 2006-02-28 Air Liquide America L.P. Apparatus and methods for launching and receiving a broad wavelength range source
US7318909B2 (en) * 2001-12-12 2008-01-15 Trustees Of Princeton University Method and apparatus for enhanced evanescent field exposure in an optical fiber resonator for spectroscopic detection and measurement of trace species
US7022992B2 (en) * 2002-01-17 2006-04-04 American Air Liquide, Inc. Method and apparatus for real-time monitoring of furnace flue gases
US20030132389A1 (en) * 2002-01-17 2003-07-17 Von Drasek William A. Method for monitoring and controlling the high temperature reducing combustion atmosphere
US6859766B2 (en) * 2002-02-11 2005-02-22 American Air Liquide, Inc. Indirect gas species monitoring using tunable diode lasers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275691A (en) * 1988-04-27 1989-11-06 Mitsubishi Kasei Corp Method of controlling thermal cracking oven
JPH0228293A (en) * 1988-05-30 1990-01-30 Bp Chimie Sa Hydrocarbon steam-cracking method and apparatus controlled by near infrared analysis
JPH0885795A (en) * 1994-08-25 1996-04-02 Phillips Petroleum Co Method of processing radiation heat transfer tube of tubularheating furnace
US20040191712A1 (en) * 2000-06-26 2004-09-30 Thomson Murray J. Method and apparatus for improved process control in combustion applications
WO2004090496A2 (en) * 2003-03-31 2004-10-21 Zolo Technologies, Inc. Method and apparatus for the monitoring and control of combustion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526143A (en) * 2013-05-20 2016-09-01 エドワーズ リミテッド Combustion monitoring

Also Published As

Publication number Publication date
WO2006124422A2 (en) 2006-11-23
WO2006124422A3 (en) 2007-01-04
JP5142986B2 (en) 2013-02-13
EP1889035A2 (en) 2008-02-20
CN101175988A (en) 2008-05-07
CN101175988B (en) 2010-08-25
US20110062056A1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5336394B2 (en) Combustion gas analysis
US8500442B2 (en) Combustion gas analysis
US7787123B2 (en) Two line gas spectroscopy calibration
Teichert et al. Simultaneous in situ measurement of CO, H 2 O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers
US6780378B2 (en) Method for measuring concentrations of gases and vapors using controlled flames
EP0766080A1 (en) System and method for monitoring combustion and pollutants by means of laser diodes
JP5142986B2 (en) Excess air control for cracking furnace burners
US20060124852A1 (en) Chemical species detection including a multisection laser for improved process monitoring
JP2001527632A (en) Optical flame control method and apparatus for combustion burner
EP1230535A1 (en) Method for continuously monitoring chemical species and temperature in hot process gases
US20030132389A1 (en) Method for monitoring and controlling the high temperature reducing combustion atmosphere
Lewen et al. A sensitive carbon monoxide sensor for industrial process control based on laser absorption spectroscopy with a 2.3 μm distributed feedback laser
US20160176780A9 (en) Excess air control for cracker furnace burners
JPS60129524A (en) Contorller of flame temperature
JPS6340824A (en) Diagnosis of combustion state
Gao et al. A simple sensor for simultaneous measurements of OH, H 2 O, and temperature in combustion environments using a single tunable diode laser near 1.477 μm
Matoušek et al. Fate of free selenium atoms in externally heated quartz tube atomizers for hydride generation atomic absorption spectrometry and their reatomization at tube ends studied by means of the determination of longitudinal free atom distribution
JPH0791656A (en) Flame detecting and combustion diagnosing apparatus
Andreussi et al. Boundary layer burning of fuel surfaces: the soot field
Clausen et al. Infrared low-resolution emission spectroscopy of hot gases
Von Drasek et al. Tunable diode laser sensor for multiple species monitoring in harsh atmospheres
JPH0467134B2 (en)
Silver Quantitative measurement of oxygen in microgravity combustion
Diau et al. Laser-induced fluorescence of HCO concentration in flames
Spelman Development of radiative emission concentration sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120426

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120508

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120530

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120606

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120627

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250