EP4105297A1 - Method and measuring system for determining an oxygen content in a furnace, furnace and processing system - Google Patents

Method and measuring system for determining an oxygen content in a furnace, furnace and processing system Download PDF

Info

Publication number
EP4105297A1
EP4105297A1 EP21020322.0A EP21020322A EP4105297A1 EP 4105297 A1 EP4105297 A1 EP 4105297A1 EP 21020322 A EP21020322 A EP 21020322A EP 4105297 A1 EP4105297 A1 EP 4105297A1
Authority
EP
European Patent Office
Prior art keywords
furnace
oxygen content
gas
oxygen
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP21020322.0A
Other languages
German (de)
French (fr)
Inventor
Christian Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP21020322.0A priority Critical patent/EP4105297A1/en
Publication of EP4105297A1 publication Critical patent/EP4105297A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/206Tube furnaces controlling or regulating the tube furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0012Monitoring the composition of the atmosphere or of one of their components
    • F27D2019/0015Monitoring the composition of the exhaust gases or of one of its components

Definitions

  • the invention relates to a method and a measuring system for determining an oxygen content, in particular at multiple points in a furnace such as a cracking furnace or reformer, a process engineering system in which a fuel gas is burned with the supply of an oxygen-containing gas such as air, a furnace with such a measuring system and a process plant with such a furnace.
  • Furnaces in which the oxygen content in the flue gas is a relevant parameter are used in various process engineering systems (or process systems).
  • steam cracking steam cracking, thermal cracking, steam cracking, etc.
  • olefins and other basic chemicals which is described, for example, in the article " Ethylene” in Ullmann's Encyclopedia of Industrial Chemistry, online publication of April 15, 2009, DOI: 10.1002/14356007.a10_045.pub2
  • Cracker furnaces also referred to as cracking furnaces for use.
  • feedstocks such as ethane, liquefied petroleum gas (LPG), naphtha, atmospheric gas oil (AGO) and hydrocracker bottoms are converted into ethylene and valuable by-products.
  • LPG liquefied petroleum gas
  • AGO atmospheric gas oil
  • hydrocracker bottoms are converted into ethylene and valuable by-products.
  • a furnace is also used in a steam reformer for the production of synthesis gas, hydrogen and carbon monoxide (steam reforming) and the oxygen content is relevant.
  • the thermal energy required is typically provided by the combustion of heating gas in a combustion chamber (combustion chamber), which forms the so-called radiant zone of the cracking or cracking furnace, and guided through the so-called coils (cracking tubes). are, through which a hydrocarbon vapor mixture to be converted to obtain a product mixture, the so-called raw or cracked gas.
  • combustion air required for combustion is fed into the radiation zone without preheating (so-called natural draft) and burned there together with the heating gas. Air preheating, possibly with gas turbine exhaust gas, is also increasingly being considered, and with it a need to determine the oxygen content in the exhaust gas.
  • the fuel gas When operating a cracker furnace, the fuel gas should be burned under strict conditions to ensure safe and efficient operation. This includes, for example, measuring the oxygen content in the combustion chamber in order to be able to detect any excess oxygen (sub-stoichiometric combustion). However, this generally requires complex and/or expensive measuring devices.
  • the present invention sets itself the task of providing a possibility of determining the oxygen content in cracker furnaces or other furnaces in process engineering systems as simply and inexpensively as possible, in particular at as many points as possible, in particular in order to obtain the most comprehensive information possible about the combustion in the combustion chamber obtain.
  • the present invention generally deals with the operation of a furnace (e.g. cracking furnace or reformer, generally a device with a furnace) in a process engineering (in particular petrochemical) plant, in which a heating gas with the supply of oxygen-containing gas such as air (among gas can generally also a gas mixture, but in principle in this special case, for example, also pure oxygen) is burned, with a flue gas being produced, and an oxygen content, for example after the combustion, then in the flue gas, is to be recorded.
  • a heating gas with the supply of oxygen-containing gas such as air (among gas can generally also a gas mixture, but in principle in this special case, for example, also pure oxygen) is burned, with a flue gas being produced, and an oxygen content, for example after the combustion, then in the flue gas, is to be recorded.
  • oxygen-containing gas such as air
  • the invention deals in particular with determining the oxygen content in or at such a furnace.
  • a cracker furnace (or cracking furnace) can be considered as such a furnace, as has already been explained in more detail at the beginning and is used in particular in steam cracking.
  • furnaces - e.g. reformers - can also be used in which (especially on an industrial scale) fuel gases are burned, e.g. in steam reforming (so-called "steam reforming").
  • steam reforming steam reforming
  • One way of determining or measuring the oxygen content in such a furnace or in the flue gas is, for example, a so-called “tunable diode laser", i.e. a tunable laser diode.
  • the so-called “Tunable Diode Laser Absorption Spectroscopy” (TDLAS, English, in German roughly “absorption spectroscopy using tunable laser diodes”) is a method with which the concentration or density of the gas or gas component to be examined (e.g. methane or water vapor or even oxygen) is determined.
  • TDLAS Transmission Diode Laser Absorption Spectroscopy
  • the concentration or density of the gas or gas component to be examined e.g. methane or water vapor or even oxygen
  • such lasers are very expensive and deliver (only) an average value over the measuring section or a locally limited value that does not provide information about the entire combustion chamber.
  • a corresponding measured value in the flue gas is recorded or measured by means of a plurality of lambda probes--and in particular also by a plurality of sampling points--and that by means of a computer system--particularly common to all lambda probes--a computer system (e.g. a (high-performance) ) computing system, so-called “edge computing") from the measured values, an oxygen content (or oxygen concentration) in the furnace is determined. This preferably takes place continuously.
  • a special computing unit suitable for acquiring and/or evaluating measured values from lambda probes or a control unit or the like is also expedient as the computing system.
  • a measured value in the flue gas can be recorded in particular by means of the multiple lambda probes at multiple different points of the furnace and the oxygen content can be determined at each of the multiple different points.
  • this allows a local course, ie a profile, of the oxygen content in the determine oven.
  • Preferred points at which measurements should be taken are, for example, along the firebox wall at the transition of the flue gas from the combustion chamber (closed combustion) into the so-called convection zone.
  • the oxygen content at one point in the furnace is determined from the readings from at least two or three lambda probes, i.e. the readings from the at least two, in particular at least three, lambda probes are used for this purpose.
  • three lambda probes for example, mutual monitoring and indication of a error possible, with an error tolerance of two out of three), to determine a (single) value for the oxygen content.
  • the at least two lambda probes can therefore be used in particular redundantly, i.e.
  • the mean value of which can be used can be used, or the measured values of the three probes can be compared with one another in order to eliminate an inaccurate measured value and replace it to indicate the probe.
  • three lambda probes can be used, from whose measured values only the measured values of the two best lambda probes and/or the middle value (median) are used to determine the oxygen content.
  • the measured values from the lambda probe that deviate the furthest from an average value can be excluded.
  • the (e.g. arithmetic) mean value can then be selected from the remaining measured values. This allows a particularly accurate determination of the oxygen content.
  • the relevant lambda probes are arranged at the same sampling point on the furnace. In the case of a total of several points, three or more lambda probes can therefore be used per point.
  • the computing system measures, for example, the voltage applied to the individual probes, which is in relation to the oxygen.
  • a local measurement for example, always consists of three measured values (error tolerance), which are then checked for the consistency of the data before the oxygen concentration is calculated from the measured voltages using a formula.
  • a profile is then in turn determined from the various measuring points.
  • the edge device takes over the communication with the user (data transfer) and also the monitoring of the sensors (see above), checks any existing drift and alarms if necessary.
  • lambda probes or also lambda sensors
  • These lambda probes are particularly cost-effective—at least in comparison to the oxygen measuring systems previously used for furnaces in process engineering systems—and can therefore also be used in large numbers. This in turn allows redundant use, which allows a particularly accurate and reliable determination of the oxygen content in the furnace by averaging the individual measured values despite possibly poorer measurement quality of the individual lambda probes compared to other oxygen measurement systems.
  • the lambda probes are arranged in particular in a line in which the flue gas is led out of the furnace and, in particular, is then fed back into the furnace again.
  • a pipe installation with two or three inch diameter pipes (conduit) can be used.
  • a pressure of e.g. 0.01 bar for the flue gas is usually sufficient.
  • Such lines can be arranged on the roof of the furnace, for example, and then also at different points there.
  • a draft in a convection section can then be used, whereby the line can be connected, for example, to an existing nozzle or a new one to be added in the convection section or in front of a fan or blower.
  • the flue gas can also be extracted from the furnace (e.g. via an ejector or a gas ring blower) and fed back into the combustion chamber.
  • a lambda probe works in particular in such a way that a measured value is recorded which indicates a ratio of an oxygen content in a gas to be measured--in this case the flue gas of the furnace--to a reference value.
  • the oxygen content of an ambient air can then be considered as a reference value.
  • Nernst probes as lambda probes.
  • the Nernst probe for example, uses zirconium dioxide (zirconium(IV) oxide) as the permeable material.
  • zirconium dioxide zirconium(IV) oxide
  • the property of zirconium dioxide is exploited to transport oxygen ions electrolytically at temperatures above approx. 350 °C, which creates a voltage between the external electrodes. Due to this property, zirconium-based lambda probes (or Oxygen sensors) the difference in oxygen partial pressure (this corresponds to a difference in oxygen concentration) of two different gases.
  • the lambda probe one side of the material is then exposed to the flue gas or flue gas flow, while the other side is at an oxygen reference, for example the ambient air.
  • the ambient air (or another reference gas) can be fed in through an opening directly on the lambda probe or via a separate supply line, which makes it more difficult for the reference gas to be contaminated by other gases or water. If the reference gas is contaminated, the oxygen content of the reference is reduced, which reduces the probe voltage.
  • Lambda probes or sensors that work with a pumped reference also come into consideration; no separate reference gas such as ambient air, which can become contaminated, is required here. Rather, the oxygen reference is produced independently in the lambda probe. For example, a current can be passed through the material and oxygen can be pumped out of the flue gas. This creates a reference of pure oxygen at the inner electrode.
  • zirconium could be used as YSZ ceramic (yttria-stabilized zirconia), which, among other things, would noticeably reduce the operating temperature.
  • YSZ ceramic yttria-stabilized zirconia
  • the yttrium-doped zirconium dioxide material of the probe becomes penetrable for negative oxygen ions at temperatures of around 300 °C and above.
  • the difference in concentration leads to ion diffusion of the oxygen, as a result of which oxygen ions migrate from the high concentration (usually in the ambient air) to the low concentration (usually the flue gas).
  • the oxygen atoms can therefore diffuse through the zirconium ceramic as doubly negatively charged ions.
  • the electrons required to ionize the oxygen atoms are supplied by the electrically conductive electrodes.
  • an electrical voltage can be measured between the internal and external electrodes (eg platinum electrodes), the probe voltage. This voltage is then forwarded to the computing system (Edge Device) via a cable, for example.
  • a suitable calibration can thus be used to determine the oxygen content in the furnace or in the flue gas of the furnace using a lambda probe. Even with the simple lambda probe, an exact measurement can be carried out, at least in certain areas.
  • the invention makes it possible to detect an oxygen value that is locally too low (local sub-stoichiometry, ⁇ 1), although the average oxygen content of the flue gas is in the acceptable range. It can often also be sufficient to detect an oxygen content that is too high or too low, regardless of the specific value. Rather, the furnace can then be controlled or adjusted in such a way that the oxygen content remains within a desired range. Ultimately, in this way, the greatest possible reduction in undesirable exhaust gases such as carbon monoxide and soot can be achieved.
  • the operation of the furnace is in particular automatically controlled or also regulated based on the determined oxygen content.
  • a volume flow of supplied fresh air (or other oxygen-containing gas) can be increased, possibly also at individual points if the oxygen content in the flue gas is too low.
  • mere monitoring of the operation is also conceivable.
  • a measure can also be initiated if the oxygen content leaves a specified range; a hint to an operator to intervene manually is conceivable, for example.
  • the invention further relates to a measuring system for determining an oxygen content in a furnace or in the flue gas of a furnace of a process engineering plant, in which a fuel gas is burned with the supply of an oxygen-containing gas.
  • a measuring system for determining an oxygen content in a furnace or in the flue gas of a furnace of a process engineering plant, in which a fuel gas is burned with the supply of an oxygen-containing gas.
  • the invention also relates to a furnace for a process plant, in which a heating gas is burned with the supply of an oxygen-containing gas, in particular an exhaust gas (e.g. from a gas turbine, there for determining the residual oxygen content), and to which a measuring system according to the invention is assigned, as well as a process engineering plant with such a furnace including measuring system.
  • a heating gas is burned with the supply of an oxygen-containing gas, in particular an exhaust gas (e.g. from a gas turbine, there for determining the residual oxygen content), and to which a measuring system according to the invention is assigned, as well as a process engineering plant with such a furnace including measuring system.
  • FIG 1 a process engineering plant 100 designed as a steam cracking arrangement with a cracker furnace 10 is shown, on the basis of which the invention is to be explained. It should already be mentioned at this point that this system 100 is only used as an example to explain the invention and that the system can also be configured differently or it could be a different system with a furnace (ie a device with a furnace).
  • the cracker furnace 10 or a corresponding furnace unit (here also referred to as a cracking furnace or furnace for short) has a radiation zone 11 and a convection zone 12 .
  • the plant 100 for steam cracking can also include several corresponding cracker furnaces 10 .
  • System components or units referred to below as central several cracker ovens 10 are available, decentralized units are provided separately for each cracker oven 10.
  • a hydrocarbon feed H is heated and process steam P is provided, which is further heated in the convection zone 12 in a manner known per se (not relevant to the present case), combined to form a feed stream F and then the radiation zone 11 are supplied.
  • the representation according to figure 1 is greatly simplified and only an example.
  • a corresponding feed stream can already be divided into several partial streams in the area of the convection zone, which can then be preheated separately from one another and finally passed through groups of, for example, six or eight cans in the radiation zone 11.
  • Centralized units can be replaced here and subsequently by decentralized units and vice versa at any time.
  • the cleavage gas C is removed from the radiation zone 11, which is cooled by means of one or more quench gas coolers 13, which can in particular be designed as known quench coolers or can include such quench coolers and which can also function as steam generators at the same time, and then undergo a central cleavage gas separation and cleavage gas treatment 90 is supplied.
  • quench gas coolers 13 which can in particular be designed as known quench coolers or can include such quench coolers and which can also function as steam generators at the same time, and then undergo a central cleavage gas separation and cleavage gas treatment 90 is supplied.
  • the invention is not limited by a specific embodiment.
  • a central feed water system 40 provides feed water W, which in the example shown is also heated in the convection zone 12 and then further heated by means of one or more cracked gas coolers 13 to obtain high-pressure or super-high-pressure saturated steam S (hereinafter also referred to as saturated steam for short) and finally is vaporized.
  • saturated steam S is superheated in the convection zone 12 to obtain superheated high-pressure steam or superheated superhigh-pressure steam T (also referred to as superheated steam below) and fed into a central steam system 50 .
  • feed heating gas Y is heated to form preheated heating gas X and is fed to the radiation zone 11 or to the burners in this zone, which are not separately illustrated, and thus to the furnace 10.
  • combustion air L and thus an oxygen-containing gas—passes via an air intake 79 into the radiation zone 11 or the burners located there.
  • Flue gas Z is discharged from the radiation zone 11, which passes through the convection zone 12 and is then discharged into a flue gas treatment system or to a central or decentralized chimney 80, e.g. with a blower, and via this to the atmosphere.
  • central heating gas 65 is optional.
  • a decentralized heating gas preheating ie separately for the individual cracker ovens 10 or oven units
  • the heating gas X is burned in the furnace 10 with the supply of the combustion air L, with flue gas Z (ie a type of exhaust gas) being produced, which is ultimately discharged to the environment.
  • flue gas Z ie a type of exhaust gas
  • the combustion of the fuel gas X should take place under strict conditions, also to enable safe and efficient operation.
  • this includes in particular the measurement of the oxygen content in the furnace or in the combustion chamber in order to be able to detect any excess oxygen. This is where the invention comes in.
  • a measuring system 110 that is provided for the furnace 10 is used for this purpose.
  • the measuring system 110 comprises, for example, a computing system 112 (eg processor with memory) and several lambda probes, with two lambda probes 114, 116 being shown here by way of example, by means of which measurements of the oxygen content in the flue gas Z can be undertaken.
  • the lambda sensors 114, 116 are arranged at two different locations on the furnace 10 at which a measurement is taken.
  • flue gas can be diverted--as already mentioned--and fed back into the furnace 10 or into the regular course after the measurement by means of the respective lambda probe.
  • several lambda probes can also be provided at one point, each recording a measured value.
  • the measured values recorded by the lambda probes 114, 116 are transmitted, for example, via signal lines (indicated with dashed lines with arrows) to the measuring system 112, where the measured values can then be offset in order to determine the oxygen content in the flue gas or in the furnace, possibly also at different places to determine.
  • FIG 2 a sequence of such a method according to the invention is shown schematically in a preferred embodiment.
  • the lambda probe 114 and the computing system 112 are off figure 1 shown.
  • the lambda probe 114 contains a measuring element 120 which is exposed to the flue gas Z of the furnace on one side and to a reference, for example ambient air, on the other side.
  • a reference for example ambient air
  • O R oxygen content
  • a ratio of the oxygen content in the flue gas to the oxygen content in the ambient air is determined by means of the lambda probe. if, for example, the oxygen content in the ambient air is known, the Oxygen content in the flue gas can be determined. This can be done, for example, as part of the calculation mentioned, so that the oxygen content O for a specific point can correspond to the (possibly averaged) oxygen content Oz in the flue gas. It goes without saying that it is also possible to work only with relative values.
  • FIG. 14 is yet another view of cracker furnace 10.
  • FIG figure 1 shown to explain the invention in more detail, namely with four zones 10A, 10B, 10C and 10D by way of example.
  • each of the zones in the wall 140 is a tap 130, only one of the taps being shown in more detail.
  • a pipe 132 is guided through the wall 130, on which, for example, three lambda probes 114 are attached on the outside (only one probe is shown).
  • cooling fins 134 can be provided in order to ensure sufficient cooling of the gas after the measurement, in order to prevent any damage to materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Bestimmen eines Sauerstoffgehalts in einem Ofen (10) einer verfahrenstechnischen Anlage (100), in dem ein Heizgas (X) unter Zufuhr eines sauerstoffhaltigen Gases (L) und unter Entstehung von Rauchgas (Z) verbrannt wird, wobei mittels mehreren Lambdasonden (114, 116) jeweils ein Messwert in dem Rauchgas (Z) erfasst und mittels eines Rechensystems (112) aus den Messwerten ein Sauerstoffgehalt in dem Ofen (10) bestimmt wird, ein Messsystem (110) hierfür, einen Ofen (10) und eine verfahrenstechnische Anlage (100).The invention relates to a method for determining an oxygen content in a furnace (10) of a process plant (100), in which a heating gas (X) is burned with the supply of an oxygen-containing gas (L) and with the formation of flue gas (Z), using several lambda probes (114, 116) in each case a measured value is recorded in the flue gas (Z) and an oxygen content in the furnace (10) is determined from the measured values by means of a computing system (112), a measuring system (110) for this, a furnace (10) and a processing plant (100).

Description

Die Erfindung betrifft ein Verfahren und ein Messsystem zum Bestimmen eines Sauerstoffgehalts insbesondere an multiplen Stellen in einem Ofen wie z.B. einem Spaltofen oder Reformer, einer verfahrenstechnischen Anlage, in dem ein Heizgas unter Zufuhr eines sauerstoffhaltigen Gases wie Luft verbrannt wird, einen Ofen mit einem solchen Messsystem sowie eine verfahrenstechnische Anlage mit einem solchen Ofen.The invention relates to a method and a measuring system for determining an oxygen content, in particular at multiple points in a furnace such as a cracking furnace or reformer, a process engineering system in which a fuel gas is burned with the supply of an oxygen-containing gas such as air, a furnace with such a measuring system and a process plant with such a furnace.

Stand der TechnikState of the art

In verschiedenen verfahrenstechnischen Anlagen (oder Prozessanlagen) kommen Öfen zum Einsatz, in denen ein Sauerstoffgehalt im Rauchgas ein relevanter Parameter ist. Beispielsweise kommen beim sog. Steamcracken (Dampfspalten, thermisches Spalten, Dampfcracken usw.), das zur Herstellung von Olefinen und anderen Grundchemikalien eingesetzt wird, und das beispielsweise im Artikel " Ethylene" in Ullmann's Encyclopedia of Industrial Chemistry, Online-Publikation vom 15. April 2009, DOI: 10.1002/14356007.a10_045.pub2 , beschrieben ist, einer oder auch mehrere sog. Crackeröfen (auch als Spaltöfen bezeichnet) zur Verwendung. Bezüglich der nachfolgend verwendeten Begriffe sei auch auf entsprechende Fachliteratur verwiesen. In Crackeröfen werden Rohstoffe wie Ethan, Flüssiggas (LPG), Naphtha, atmosphärisches Gasöl (AGO) und Hydrocracker-Rückstände in Ethylen und wertvolle Nebenprodukte umgewandelt. Auch bei einem Steam-Reformer zur Erzeugung von Synthesegas, Wasserstoff und Kohlenmonoxid (Dampfreformierung) wird eine Feuerung verwendet und der Sauerstoffgehalt ist relevant.Furnaces in which the oxygen content in the flue gas is a relevant parameter are used in various process engineering systems (or process systems). For example, in the so-called steam cracking (steam cracking, thermal cracking, steam cracking, etc.), which is used for the production of olefins and other basic chemicals, and which is described, for example, in the article " Ethylene" in Ullmann's Encyclopedia of Industrial Chemistry, online publication of April 15, 2009, DOI: 10.1002/14356007.a10_045.pub2 , is described, one or more so-called. Cracker furnaces (also referred to as cracking furnaces) for use. With regard to the terms used below, reference is also made to the relevant specialist literature. In cracker furnaces, feedstocks such as ethane, liquefied petroleum gas (LPG), naphtha, atmospheric gas oil (AGO) and hydrocracker bottoms are converted into ethylene and valuable by-products. A furnace is also used in a steam reformer for the production of synthesis gas, hydrogen and carbon monoxide (steam reforming) and the oxygen content is relevant.

Für die Einleitung und Aufrechterhaltung der endothermen Reaktionen wird beim Steamcracken die erforderliche Wärmeenergie typischerweise durch die Verbrennung von Heizgas in einer Brennkammer (Feuerraum) bereitgestellt, die die sog. Strahlungszone des Spalt- oder Crackerofens bildet, und durch die sog. Coils (Spaltrohre) geführt sind, durch welche ein umzusetzendes Kohlenwasserstoff-DampfGemisch unter Erhalt eines Produktgemischs, des sog. Roh- oder Spaltgases, geleitet wird. In den häufigsten Anwendungen wird die für die Verbrennung erforderliche Verbrennungsluft ohne Vorwärmung in die Strahlungszone geführt (sog. Naturzug) und dort zusammen mit dem Heizgas verbrannt. Ebenso kommt auch immer mehr eine Luftvorwärmung, ggf. mit Gasturbinenabgas in Betracht, und damit einhergehend ein Bedarf an Bestimmung des Sauerstoffgehaltes im Abgas.For the initiation and maintenance of the endothermic reactions in steam cracking, the thermal energy required is typically provided by the combustion of heating gas in a combustion chamber (combustion chamber), which forms the so-called radiant zone of the cracking or cracking furnace, and guided through the so-called coils (cracking tubes). are, through which a hydrocarbon vapor mixture to be converted to obtain a product mixture, the so-called raw or cracked gas. In the most common applications, the combustion air required for combustion is fed into the radiation zone without preheating (so-called natural draft) and burned there together with the heating gas. Air preheating, possibly with gas turbine exhaust gas, is also increasingly being considered, and with it a need to determine the oxygen content in the exhaust gas.

Beim Betrieb eines Crackerofens sollte die Verbrennung des Heizgases unter Einhaltung strenger Bedingungen erfolgen, um einen sicheren und effizienten Betrieb zu ermöglichen. Dies umfasst z.B. die Messung des Sauerstoffgehalts in der Brennkammer, um etwaigen unterschüssigen Sauerstoff (unterstöchiometrische Verbrennung) erkennen zu können. Hierzu sind allerdings in aller Regel komplexe und/oder teure Messgeräte nötig.When operating a cracker furnace, the fuel gas should be burned under strict conditions to ensure safe and efficient operation. This includes, for example, measuring the oxygen content in the combustion chamber in order to be able to detect any excess oxygen (sub-stoichiometric combustion). However, this generally requires complex and/or expensive measuring devices.

Die vorliegende Erfindung stellt sich vor diesem Hintergrund die Aufgabe, eine Möglichkeit bereitzustellen, bei Crackeröfen oder anderen Öfen in verfahrenstechnischen Anlagen den Sauerstoffgehalt möglichst einfach und kostengünstig, insbesondere an möglichst vielen Stellen, zu bestimmen, insbesondere um eine möglichst umfassende Information der Verbrennung im Brennraum zu erhalten.Against this background, the present invention sets itself the task of providing a possibility of determining the oxygen content in cracker furnaces or other furnaces in process engineering systems as simply and inexpensively as possible, in particular at as many points as possible, in particular in order to obtain the most comprehensive information possible about the combustion in the combustion chamber obtain.

Diese Aufgabe wird durch ein Verfahren, ein Messystem, einen Ofen sowie eine verfahrenstechnische Anlage mit den Merkmalen der unabhängigen Patentansprüche gelöst. Ausgestaltungen sind Gegenstand der abhängigen Patentansprüche sowie der nachfolgenden Beschreibung.This object is achieved by a method, a measuring system, a furnace and a process engineering system with the features of the independent patent claims. Configurations are the subject of the dependent patent claims and the following description.

Vorteile der ErfindungAdvantages of the Invention

Die vorliegende Erfindung beschäftigt sich generell mit dem Betrieb eines Ofens (z.B. Spaltofen oder Reformer, allgemein eine Vorrichtung mit Feuerraum) in einer verfahrenstechnischen (insbesondere petrochemischen) Anlage, bei dem ein Heizgas unter Zufuhr von sauerstoffhaltigem Gas wie z.B. Luft (unter Gas kann allgemein auch ein Gasgemisch verstanden werden, grundsätzlich aber in diesem speziellen Fall z.B. auch reiner Sauerstoff) verbrannt wird, wobei ein Rauchgas entsteht, und ein Sauerstoffgehalt z.B. nach der Verbrennung, dann in dem Rauchgas, zu erfassen ist. Insofern beschäftigt sich die Erfindung insbesondere mit dem Bestimmen des Sauerstoffgehalts in bzw. bei einem solchen Ofen.The present invention generally deals with the operation of a furnace (e.g. cracking furnace or reformer, generally a device with a furnace) in a process engineering (in particular petrochemical) plant, in which a heating gas with the supply of oxygen-containing gas such as air (among gas can generally also a gas mixture, but in principle in this special case, for example, also pure oxygen) is burned, with a flue gas being produced, and an oxygen content, for example after the combustion, then in the flue gas, is to be recorded. In this respect, the invention deals in particular with determining the oxygen content in or at such a furnace.

Als ein solcher Ofen kommt insbesondere ein Crackerofen (bzw. Spaltofen) in Betracht, wie er eingangs bereits näher erläutert wurde und insbesondere beim Steamcracken zum Einsatz kommt. Es sei jedoch darauf hingewiesen, dass auch andere Öfen - z.B. Reformer - in Betracht kommen, in denen (insbesondere im industriellen Maßstab) Heizgase verbrannt werden wie z.B. bei der Dampfreformierung (sog. "steam reforming"). Letztlich kommen dabei alle Arten von Verbrennungen in Betracht.In particular, a cracker furnace (or cracking furnace) can be considered as such a furnace, as has already been explained in more detail at the beginning and is used in particular in steam cracking. However, it should be pointed out that other furnaces - e.g. reformers - can also be used in which (especially on an industrial scale) fuel gases are burned, e.g. in steam reforming (so-called "steam reforming"). Ultimately, all types of burns come into consideration.

Eine Möglichkeit, den Sauerstoffgehalt in einem solchen Ofen bzw. in dem Rauchgas zu bestimmen bzw. zu messen, ist z.B. ein sog. "Tunable Diode Laser", also eine durchstimmbare Laserdiode. Die sog. "Tunable Diode Laser Absorption Spectroscopy" (TDLAS, englisch, auf deutsch in etwa "Absorptionsspektroskopie mittels durchstimmbarer Laserdioden") ist ein Verfahren, mit dem aus einer gemessenen Absorption die Konzentration oder Dichte des zu untersuchenden Gases bzw. Gasbestandteils (beispielsweise Methan oder Wasserdampf oder eben auch Sauerstoff) bestimmt wird. Solche Laser sind allerdings sehr kostenintensiv und liefern (nur) einen Mittelwert über die Messstrecke oder einen lokal begrenzten Wert, der nicht über den gesamten Feuerraum Auskunft gibt.One way of determining or measuring the oxygen content in such a furnace or in the flue gas is, for example, a so-called "tunable diode laser", i.e. a tunable laser diode. The so-called "Tunable Diode Laser Absorption Spectroscopy" (TDLAS, English, in German roughly "absorption spectroscopy using tunable laser diodes") is a method with which the concentration or density of the gas or gas component to be examined (e.g. methane or water vapor or even oxygen) is determined. However, such lasers are very expensive and deliver (only) an average value over the measuring section or a locally limited value that does not provide information about the entire combustion chamber.

Im Rahmen der Erfindung wird nun vorgeschlagen, dass mittels mehrerer Lambdasonden - und insbesondere auch mehrerer Entnahmestellen -jeweils ein entsprechender Messwert in dem Rauchgas erfasst bzw. gemessen wird, und dass mittels eines - insbesondere für alle Lambdasonden gemeinsamen - Rechensystems (z.B. eines (Hochleistungs-)Rechensystems, sog. "Edge-Computing") aus den Messwerten ein Sauerstoffgehalt (oder Sauerstoffkonzentration) in dem Ofen bestimmt wird. Dies erfolgt bevorzugt kontinuierlich. Als Rechensystem ist auch eine spezielle zur Erfassung und/oder Auswertung von Messwerten von Lambdasonden geeignete Recheneinheit oder ein Steuergerät oder dergleichen zweckmäßig. Hierbei kann insbesondere mittels der mehreren Lambdasonden an mehreren, verschiedenen Stellen des Ofens jeweils ein Messwert in dem Rauchgas erfasst und an den mehreren verschiedenen Stellen jeweils der Sauerstoffgehalt bestimmt werden. Dies erlaubt es insbesondere, einen örtlichen Verlauf, also ein Profil, des Sauerstoffgehalts in dem Ofen zu bestimmen. Bevorzugten Stellen, an denen gemessen werden soll, sind z.B. entlang der Feuerboxwand am Übergang des Rauchgases vom Verbrennungsraum (abgeschlossene Verbrennung) in die sog. Konvektionszone.In the context of the invention, it is now proposed that a corresponding measured value in the flue gas is recorded or measured by means of a plurality of lambda probes--and in particular also by a plurality of sampling points--and that by means of a computer system--particularly common to all lambda probes--a computer system (e.g. a (high-performance) ) computing system, so-called "edge computing") from the measured values, an oxygen content (or oxygen concentration) in the furnace is determined. This preferably takes place continuously. A special computing unit suitable for acquiring and/or evaluating measured values from lambda probes or a control unit or the like is also expedient as the computing system. In this case, a measured value in the flue gas can be recorded in particular by means of the multiple lambda probes at multiple different points of the furnace and the oxygen content can be determined at each of the multiple different points. In particular, this allows a local course, ie a profile, of the oxygen content in the determine oven. Preferred points at which measurements should be taken are, for example, along the firebox wall at the transition of the flue gas from the combustion chamber (closed combustion) into the so-called convection zone.

Außerdem ist es zweckmäßig, wenn aus den Messwerten von wenigstens zwei oder drei Lambdasonden der Sauerstoffgehalt an einer Stelle des Ofens bestimmt wird, d.h. die Messwerte der wenigstens zwei, insbesondere wenigstens drei Lambdasonden werden dazu verwendet Bei drei Lambdasonden ist z.B. eine gegenseitige Überwachung und Indikation eines Fehlers möglich, mit einer Fehlertoleranz zwei von drei), einen (einzigen) Wert für den Sauerstoffgehalt zu bestimmen. Die wenigstens zwei Lambdasonden können hierbei also insbesondere redundant verwendet werden, d.h. bei Ausfall eines Sensors verbleiben bei insgesamt drei noch zwei Sonden, deren Mittelwert verwendet werden kann bzw. die Messwerte der drei Sonden können miteinander verglichen werden, um einen ungenauen Messwert auszusondern und den Austausch der Sonde zu indizieren. So können z.B. drei Lambdasonden verwendet werden, von deren Messwerte nur die Messwerte der zwei besten Lambdasonden und/oder des mittleren Wertes (Median) zur Bestimmung des Sauerstoffgehalts herangezogen werden. Beispielsweise können die Messwerte von derjenigen Lambdasonde, die am weitesten von einem Mittelwert abweichen, ausgeschlossen werden. Von den verbleibenden Messwerten kann dann der (z.B. arithmetische) Mittelwert gewählt werden. Dies erlaubt eine besonders genaue Bestimmung des Sauerstoffgehalts. Hierzu sind die relevanten Lambdasonden an jeweils derselben Probenahme-Stelle am Ofen angeordnet. Bei insgesamt mehreren Stellen können also je Stelle drei oder mehr Lambdasonden verwendet werden.It is also useful if the oxygen content at one point in the furnace is determined from the readings from at least two or three lambda probes, i.e. the readings from the at least two, in particular at least three, lambda probes are used for this purpose. With three lambda probes, for example, mutual monitoring and indication of a error possible, with an error tolerance of two out of three), to determine a (single) value for the oxygen content. The at least two lambda probes can therefore be used in particular redundantly, i.e. if one sensor fails, there are still two probes out of a total of three, the mean value of which can be used, or the measured values of the three probes can be compared with one another in order to eliminate an inaccurate measured value and replace it to indicate the probe. For example, three lambda probes can be used, from whose measured values only the measured values of the two best lambda probes and/or the middle value (median) are used to determine the oxygen content. For example, the measured values from the lambda probe that deviate the furthest from an average value can be excluded. The (e.g. arithmetic) mean value can then be selected from the remaining measured values. This allows a particularly accurate determination of the oxygen content. For this purpose, the relevant lambda probes are arranged at the same sampling point on the furnace. In the case of a total of several points, three or more lambda probes can therefore be used per point.

Das Rechensystem ("Edge-Device") misst dabei z.B. die an den einzelnen Sonden anliegende Spannung, die im Verhältnis zum Sauerstoff steht. Eine örtliche Messung besteht z.B. immer aus drei Messwerten (Fehlertoleranz), die daraufhin auf die Konsistenz der Daten überprüft wird, bevor aus den gemessenen Spannungen über eine Formel die Sauerstoffkonzentration gerechnet wird. Aus den verschiedenen Messpunkten wird dann wiederum ein Profil bestimmt. Das Edge-Device übernimmt die Kommunikation mit dem Benutzer (Datenweitergabe) und auch die Überwachung der Sensoren (s.o.), überprüft deren ggf. vorhandene Drift und alarmiert bei Bedarf.The computing system ("edge device") measures, for example, the voltage applied to the individual probes, which is in relation to the oxygen. A local measurement, for example, always consists of three measured values (error tolerance), which are then checked for the consistency of the data before the oxygen concentration is calculated from the measured voltages using a formula. A profile is then in turn determined from the various measuring points. The edge device takes over the communication with the user (data transfer) and also the monitoring of the sensors (see above), checks any existing drift and alarms if necessary.

Hier zeigt sich der besondere Vorteil von Lambdasonden (oder auch Lambdasensoren), wie sie an sich in Kraftfahrzeugen zur Messung des Sauerstoffgehalts in den Abgasen verwendet werden. Diese Lambdasonden sind - jedenfalls im Vergleich zu bisher für Öfen in verfahrenstechnischen Anlagen verwendeten Sauerstoffmesssystemen - besonders kostengünstig und können daher auch in einer hohen Anzahl eingesetzt werden. Dies wiederum erlaubt eine redundante Verwendung, was durch Mittelwertbildung der einzelnen Messwerte trotz ggf. schlechterer Messqualität der einzelnen Lambdasonden gegenüber anderen Sauerstoffmesssystemen eine besonders genaue und zuverlässige Bestimmung des Sauerstoffgehalts im Ofen erlaubt.This is where the particular advantage of lambda probes (or also lambda sensors) as they are used in motor vehicles to measure the oxygen content in the exhaust gases becomes evident. These lambda probes are particularly cost-effective—at least in comparison to the oxygen measuring systems previously used for furnaces in process engineering systems—and can therefore also be used in large numbers. This in turn allows redundant use, which allows a particularly accurate and reliable determination of the oxygen content in the furnace by averaging the individual measured values despite possibly poorer measurement quality of the individual lambda probes compared to other oxygen measurement systems.

Die Lambdasonden sind insbesondere in einer Leitung angeordnet, in der Rauchgas aus dem Ofen herausgeführt und insbesondere anschließend wieder in den Ofen zurückgeführt wird. Hierzu kann z.B. eine Rohrinstallation mit Rohren (Leitung) mit einem Durchmesser von zwei oder drei Zoll verwendet werden. Ein Druck von z.B. 0,01 bar für das Rauchgas ist dabei in aller Regel ausreichend. Solche Leitungen können z.B. auf dem Dach des Ofens angeordnet werden, dort dann z.B. auch an verschiedenen Stellen. Dann kann ein Luftzug in einem Konvektionsabschnitt ausgenutzt werden, wobei die Leitung z.B. an eine bereits vorhandene oder auch neu hinzufügende Düse im Konvektionsabschnitt oder vor einem Lüfter bzw. Gebläse angeschlossen werden kann. Alternativ kann das Rauchgas auch extraktiv aus dem Ofen (z.B. über einen Ejektor oder ein Gasringgebläse) gesogen und wieder in den Feuerraum zurückgeführt werden.The lambda probes are arranged in particular in a line in which the flue gas is led out of the furnace and, in particular, is then fed back into the furnace again. For example, a pipe installation with two or three inch diameter pipes (conduit) can be used. A pressure of e.g. 0.01 bar for the flue gas is usually sufficient. Such lines can be arranged on the roof of the furnace, for example, and then also at different points there. A draft in a convection section can then be used, whereby the line can be connected, for example, to an existing nozzle or a new one to be added in the convection section or in front of a fan or blower. Alternatively, the flue gas can also be extracted from the furnace (e.g. via an ejector or a gas ring blower) and fed back into the combustion chamber.

Eine Lambdasonde arbeitet insbesondere derart, dass ein Messwert erfasst wird, der ein Verhältnis eines Sauerstoffgehalts in einem zu messenden Gas - hier also dem Rauchgas des Ofens - zu einem Referenzwert angibt. Als Referenzwert kommt dann insbesondere der Sauerstoffgehalt einer Umgebungsluft in Betracht. Dabei gibt es insbesondere die sog. Nernstsonden als Lambdasonden.A lambda probe works in particular in such a way that a measured value is recorded which indicates a ratio of an oxygen content in a gas to be measured--in this case the flue gas of the furnace--to a reference value. In particular, the oxygen content of an ambient air can then be considered as a reference value. There are in particular the so-called Nernst probes as lambda probes.

Die Nernstsonde nutzt z.B. Zirkoniumdioxid (Zirkonium(IV)-oxid) als permeables Material. Dabei wird die Eigenschaft von Zirkoniumdioxid ausgenutzt, bei Temperaturen ab ca. 350 °C Sauerstoffionen elektrolytisch transportieren zu können, wodurch eine Spannung zwischen den außenliegenden Elektroden entsteht. Durch diese Eigenschaft bestimmen Zirkonium-basierte Lambdasondern (bzw. Sauerstoffsensoren) den Unterschied des Sauerstoffpartialdrucks (dies entspricht einem Sauerstoff-Konzentrationsunterschied) zweier verschiedener Gase. Bei der Lambdasonde wird dann eine Seite des Materials dem Rauchgas bzw. Rauchgasstrom ausgesetzt, während die andere Seite an einer Sauerstoffreferenz liegt, z.B. eben der Umgebungsluft. Die Umgebungsluft (oder auch ein anderes Referenzgas) kann z.B. durch eine Öffnung direkt an der Lambdasonde oder über eine separate Zuleitung herangeführt werden, wodurch eine mögliche Verunreinigung des Referenzgases durch andere Gase oder Wasser erschwert wird. Bei einer Verunreinigung des Referenzgases ist der Sauerstoffgehalt der Referenz verringert, wodurch die Sondenspannung kleiner wird.The Nernst probe, for example, uses zirconium dioxide (zirconium(IV) oxide) as the permeable material. The property of zirconium dioxide is exploited to transport oxygen ions electrolytically at temperatures above approx. 350 °C, which creates a voltage between the external electrodes. Due to this property, zirconium-based lambda probes (or Oxygen sensors) the difference in oxygen partial pressure (this corresponds to a difference in oxygen concentration) of two different gases. In the case of the lambda probe, one side of the material is then exposed to the flue gas or flue gas flow, while the other side is at an oxygen reference, for example the ambient air. The ambient air (or another reference gas) can be fed in through an opening directly on the lambda probe or via a separate supply line, which makes it more difficult for the reference gas to be contaminated by other gases or water. If the reference gas is contaminated, the oxygen content of the reference is reduced, which reduces the probe voltage.

Es kommen auch Lambdasonden bzw. Sensoren in Betracht, die mit einer gepumpten Referenz arbeiten; hier wird kein separates Referenzgas wie Umgebungsluft benötigt, das verunreinigt werden kann. Die Sauerstoffreferenz wird vielmehr eigenständig in der Lambdasonde hergestellt. Hierzu kann z.B. durch das Material ein Strom geleitet und so Sauerstoff aus dem Rauchgas gepumpt werden. Damit wird eine Referenz aus reinem Sauerstoff an der inneren Elektrode erzeugt.Lambda probes or sensors that work with a pumped reference also come into consideration; no separate reference gas such as ambient air, which can become contaminated, is required here. Rather, the oxygen reference is produced independently in the lambda probe. For example, a current can be passed through the material and oxygen can be pumped out of the flue gas. This creates a reference of pure oxygen at the inner electrode.

Denkbar ist auch, dass Zirkonium als YSZ-Keramik (Yttria-stabilized Zirconia) zum Einsatz kommt, wodurch unter anderem die Betriebstemperatur merklich reduziert wird. Schon bei Temperaturen ab etwa 300 °C wird das Yttrium-dotierte Zirkoniumdioxid-Material der Sonde für negative Sauerstoffionen durchgängig.It is also conceivable that zirconium could be used as YSZ ceramic (yttria-stabilized zirconia), which, among other things, would noticeably reduce the operating temperature. The yttrium-doped zirconium dioxide material of the probe becomes penetrable for negative oxygen ions at temperatures of around 300 °C and above.

Bei Nernstsonden kommt es durch den Konzentrationsunterschied (oder Partialdruckunterschied) zu einer lonendiffusion des Sauerstoffs, folglich wandern Sauerstoffionen von der hohen Konzentration (in der Regel bei der Umgebungsluft) zur niedrigen Konzentration (in der Regel das Rauchgas). Die Sauerstoffatome können als doppelt negativ geladene Ionen also durch die Zirkonium-Keramik hindurchdiffundieren. Die zur Ionisierung der Sauerstoffatome erforderlichen Elektronen werden von den elektrisch leitfähigen Elektroden geliefert. Dadurch lässt sich zwischen den innen und außen angebrachten Elektroden (z.B. Platinelektroden) eine elektrische Spannung abnehmen, die Sondenspannung. Diese Spannung wird dann z.B. über Kabel an das Rechensystem (Edge Device) weitergeleitet.With Nernst probes, the difference in concentration (or difference in partial pressure) leads to ion diffusion of the oxygen, as a result of which oxygen ions migrate from the high concentration (usually in the ambient air) to the low concentration (usually the flue gas). The oxygen atoms can therefore diffuse through the zirconium ceramic as doubly negatively charged ions. The electrons required to ionize the oxygen atoms are supplied by the electrically conductive electrodes. As a result, an electrical voltage can be measured between the internal and external electrodes (eg platinum electrodes), the probe voltage. This voltage is then forwarded to the computing system (Edge Device) via a cable, for example.

Durch eine geeignete Eichung kann also mit einer Lambdasonde der Sauerstoffgehalt im Ofen bzw. im Rauchgas des Ofens bestimmt werden. Auch mit der einfachen Lambdasonde kann zumindest in bestimmten Bereichen eine genaue Messung erfolgen. Durch die Erfindung wird es ermöglicht, einen lokal zu niedrigen Sauerstoffwert (lokale Unterstöchiometrie, λ<1) zu erkennen, obwohl der mittlere Sauerstoffgehalt des Rauchgases sich im Gut-Bereich befindet. Oftmals kann es auch ausreichend sein, einen zu hohen oder zu niedrigen Sauerstoffgehalt zu erkennen, ohne dass es auf den konkreten Wert ankommt. Vielmehr kann z.B. der Ofen dann derart angesteuert oder auch eingeregelt werden, dass der Sauerstoffgehalt in einem gewünschten Bereich bleibt. Letztlich kann auf diese Weise eine möglichst weitgehende Reduzierung von unerwünschten Abgasen wie Kohlenstoffmonoxid und Ruß erreicht werden.A suitable calibration can thus be used to determine the oxygen content in the furnace or in the flue gas of the furnace using a lambda probe. Even with the simple lambda probe, an exact measurement can be carried out, at least in certain areas. The invention makes it possible to detect an oxygen value that is locally too low (local sub-stoichiometry, λ<1), although the average oxygen content of the flue gas is in the acceptable range. It can often also be sufficient to detect an oxygen content that is too high or too low, regardless of the specific value. Rather, the furnace can then be controlled or adjusted in such a way that the oxygen content remains within a desired range. Ultimately, in this way, the greatest possible reduction in undesirable exhaust gases such as carbon monoxide and soot can be achieved.

In diesem Sinne ist es auch bevorzugt, wenn der Betrieb des Ofens basierend auf dem bestimmten Sauerstoffgehalt insbesondere automatisch gesteuert oder auch geregelt wird. Dabei kann z.B. ein Volumenstrom an zugeführter Frischluft (oder sonstigem sauerstoffhaltigen Gas) erhöht werden, ggf. auch an individuellen Stellen, wenn der Sauerstoffgehalt im Rauchgas zu niedrig ist. Ebenso ist aber eine bloße Überwachung des Betriebs denkbar. Dann kann z.B. auch eine Maßnahme eingeleitet werden, wenn der Sauerstoffgehalt einen vorgegebenen Bereich verlässt; denkbar ist z.B. ein Hinweis an einen Operateur zum manuellen Eingreifen.In this sense, it is also preferred if the operation of the furnace is in particular automatically controlled or also regulated based on the determined oxygen content. For example, a volume flow of supplied fresh air (or other oxygen-containing gas) can be increased, possibly also at individual points if the oxygen content in the flue gas is too low. However, mere monitoring of the operation is also conceivable. Then, for example, a measure can also be initiated if the oxygen content leaves a specified range; a hint to an operator to intervene manually is conceivable, for example.

Die Erfindung betrifft weiterhin ein Messsystem zum Bestimmen eines Sauerstoffgehalts in einem Ofen bzw. in dem Rauchgas eines Ofens einer verfahrenstechnischen Anlage, in dem ein Heizgas unter Zufuhr eines sauerstoffhaltigen Gases verbrannt wird. Für nähere Erläuterungen des Messsystems sei zur Vermeidung von Wiederholungen auf obige Ausführungen verwiesen. Das Messsystem ist dabei insbesondere dazu eingerichtet, ein erfindungsgemäßes Verfahren durchzuführen.The invention further relates to a measuring system for determining an oxygen content in a furnace or in the flue gas of a furnace of a process engineering plant, in which a fuel gas is burned with the supply of an oxygen-containing gas. For more detailed explanations of the measuring system, to avoid repetition, reference is made to the above statements. The measuring system is set up in particular to carry out a method according to the invention.

Die Erfindung betrifft ebenfalls einen Ofen für eine verfahrenstechnischen Anlage, in dem ein Heizgas unter Zufuhr eines sauerstoffhaltigen Gases, insbesondere eines Abgases (z.B. aus einer Gasturbine, dort zur Ermittlung des Rest-Sauerstoffgehaltes) verbrannt wird, und dem ein erfindungsgemäßes Messsystem zugeordnet ist sowie eine verfahrenstechnischen Anlage mit einem solchen Ofen inkl. Messsystem.The invention also relates to a furnace for a process plant, in which a heating gas is burned with the supply of an oxygen-containing gas, in particular an exhaust gas (e.g. from a gas turbine, there for determining the residual oxygen content), and to which a measuring system according to the invention is assigned, as well as a process engineering plant with such a furnace including measuring system.

Für nähere Erläuterungen (z.B. auch die Möglichkeit der Positionierung bzw. Anordnung der Lambdasonden) sowie weitere Ausgestaltungen und Vorteile sei zur Vermeidung von Wiederholungen auf obige Ausführungen zum Verfahren verwiesen, die hier entsprechend gelten.For more detailed explanations (e.g. also the possibility of positioning or arranging the lambda probes) as well as further configurations and advantages, to avoid repetition, reference is made to the above statements on the method, which apply here accordingly.

Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügte Zeichnung näher erläutert, welche verschiedene Anlagenteile zeigt, anhand derer die erfindungsgemäßen Maßnahmen erläutert werden.The invention is explained in more detail below with reference to the attached drawing, which shows various parts of the system, with the aid of which the measures according to the invention are explained.

Kurze Beschreibung der Zeichnung

Figur 1
zeigt eine verfahrenstechnische Anlage mit Crackerofen, bei dem ein erfindungsgemäßes Verfahren durchführbar ist.
Figur 2
zeigt schematisch einen Ablauf eines solchen erfindungsgemäßen Verfahrens in einer bevorzugten Ausführungsform.
Figur 3
zeigt eine Ansicht des Crackerofens aus Figur 1 zur näheren Erläuterung der Erfindung.
Brief description of the drawing
figure 1
shows a process plant with a cracker furnace, in which a method according to the invention can be carried out.
figure 2
shows schematically a sequence of such a method according to the invention in a preferred embodiment.
figure 3
shows a view of the cracker furnace figure 1 for a more detailed explanation of the invention.

Ausführliche Beschreibung der ZeichnungDetailed description of the drawing

In Figur 1 ist eine als Dampfcrackanordnung ausgebildete verfahrenstechnische Anlage 100 mit einem Crackerofen 10 gezeigt, anhand dessen die Erfindung erläutert werden soll. Bereits an dieser Stelle sei erwähnt, dass diese Anlage 100 nur als Beispiel zur Erläuterung der Erfindung dient und die Anlage auch anders ausgestaltet sein kann oder es sich um eine andere Anlage mit Ofen (also eine Vorrichtung mit Feuerraum) handeln könnte.In figure 1 a process engineering plant 100 designed as a steam cracking arrangement with a cracker furnace 10 is shown, on the basis of which the invention is to be explained. It should already be mentioned at this point that this system 100 is only used as an example to explain the invention and that the system can also be configured differently or it could be a different system with a furnace (ie a device with a furnace).

Der Crackerofen 10 bzw. eine entsprechende Ofeneinheit (hier auch kurz als Spaltofen oder Ofen bezeichnet) weist eine Strahlungszone 11 und eine Konvektionszone 12 auf. Die Anlage 100 zum Steamcracken kann auch mehrere entsprechende Crackeröfen 10 umfassen. Nachfolgend als zentral bezeichnete Anlagenkomponenten bzw. Einheiten stehen mehreren Crackeröfen 10 zur Verfügung, dezentrale Einheiten sind für jeden Crackerofen 10 gesondert vorgesehen.The cracker furnace 10 or a corresponding furnace unit (here also referred to as a cracking furnace or furnace for short) has a radiation zone 11 and a convection zone 12 . The plant 100 for steam cracking can also include several corresponding cracker furnaces 10 . System components or units referred to below as central several cracker ovens 10 are available, decentralized units are provided separately for each cracker oven 10.

Mittels einer beispielhaft gezeigten zentralen Einsatzvorwärmung 20 und einer zentralen Prozessdampferzeugung 30 werden ein Kohlenwasserstoffeinsatz H erwärmt und Prozessdampf P bereitgestellt, welche in der Konvektionszone 12 in an sich bekannter Weise (für die vorliegende nicht weiter relevant) weiter erwärmt, zu einem Speisestrom F vereinigt und danach der Strahlungszone 11 zugeführt werden. Die Darstellung gemäß Figur 1 ist stark vereinfacht und lediglich beispielhaft. So kann beispielsweise auch in einer sogenannten Passregelung ein entsprechender Speisestrom bereits im Bereich der Konvektionszone auf mehrere Teilströme aufgeteilt werden, die dann getrennt voneinander vorgewärmt und schließlich durch Gruppen von jeweils beispielsweise sechs oder acht Spaltrohren in der Strahlungszone 11 geführt werden können. Hier und nachfolgend können jederzeit zentrale durch dezentrale Einheiten ersetzt werden und umgekehrt.By means of a central feed preheater 20 shown as an example and a central process steam generation 30, a hydrocarbon feed H is heated and process steam P is provided, which is further heated in the convection zone 12 in a manner known per se (not relevant to the present case), combined to form a feed stream F and then the radiation zone 11 are supplied. The representation according to figure 1 is greatly simplified and only an example. For example, in a so-called pass control, a corresponding feed stream can already be divided into several partial streams in the area of the convection zone, which can then be preheated separately from one another and finally passed through groups of, for example, six or eight cans in the radiation zone 11. Centralized units can be replaced here and subsequently by decentralized units and vice versa at any time.

Der Strahlungszone 11 wird das Spaltgas C entnommen, das mittels eines oder mehrerer Spaltgaskühler 13, die insbesondere als bekannte Quenchkühler ausgebildet sein können bzw. solche Quenchkühler umfassen können, und die zugleich auch als Dampferzeuger fungieren können, abgekühlt und danach einer zentralen Spaltgastrennung und Spaltgasaufbereitung 90 zugeführt wird. Die Erfindung ist nicht durch eine spezifische Ausgestaltung beschränkt.The cleavage gas C is removed from the radiation zone 11, which is cooled by means of one or more quench gas coolers 13, which can in particular be designed as known quench coolers or can include such quench coolers and which can also function as steam generators at the same time, and then undergo a central cleavage gas separation and cleavage gas treatment 90 is supplied. The invention is not limited by a specific embodiment.

Mittels eines zentralen Speisewassersystems 40 wird Speisewasser W bereitgestellt, das im dargestellten Beispiel ebenfalls in der Konvektionszone 12 erwärmt und danach mittels des einen oder der mehreren Spaltgaskühler 13 unter Erhalt von Hochdruck- oder Superhochdrucksattdampf S (nachfolgend auch kurz als Sattdampf bezeichnet) weiter erhitzt und schließlich verdampft wird. Der Sattdampf S wird im dargestellten Beispiel in der Konvektionszone 12 unter Erhalt von überhitztem Hochdruckdampf oder überhitztem Superhochdruckdampf T (nachfolgend vereinfacht auch als überhitzter Dampf bezeichnet) überhitzt und in ein zentrales Dampfsystem 50 eingespeist.A central feed water system 40 provides feed water W, which in the example shown is also heated in the convection zone 12 and then further heated by means of one or more cracked gas coolers 13 to obtain high-pressure or super-high-pressure saturated steam S (hereinafter also referred to as saturated steam for short) and finally is vaporized. In the example shown, the saturated steam S is superheated in the convection zone 12 to obtain superheated high-pressure steam or superheated superhigh-pressure steam T (also referred to as superheated steam below) and fed into a central steam system 50 .

Mittels eines z.B. zentralen Heizgassystems 60, dem eine mögliche zentrale Heizgasvorwärmung 65 nachgeschaltet ist, in der Prozess- oder Hilfsmittel wie beispielsweise überhitzter Dampf auf Hoch-, Mittel- oder Niedrigdruck, Waschwasser und/oder Quenchöl, aber auch elektrischer Strom als Heizmedien bzw. Wärmequellen genutzt wird, wird Speiseheizgas Y zu vorgewärmtem Heizgas X erwärmt und der Strahlungszone 11 bzw. nicht gesondert veranschaulichten Brennern in dieser - und damit dem Ofen 10 - zugeführt.For example, by means of a central heating gas system 60, which is followed by a possible central heating gas preheating 65, in which process or auxiliary means such as superheated steam at high, medium or low pressure, washing water and/or quench oil, but also electric power is used as heating media or heat sources, feed heating gas Y is heated to form preheated heating gas X and is fed to the radiation zone 11 or to the burners in this zone, which are not separately illustrated, and thus to the furnace 10.

Verbrennungsluft L - und damit ein sauerstoffhaltiges Gas - gelangt in der hier veranschaulichten Ausgestaltung über eine Luftansaugung 79 in die Strahlungszone 11 bzw. die dortigen Brenner. Aus der Strahlungszone 11 wird Rauchgas Z ausgeführt, das die Konvektionszone 12 passiert und danach in eine Rauchgasbehandlung bzw. an einen zentralen oder dezentralen Kamin 80 z.B. mit Gebläse und hierüber an die Atmosphäre abgegeben wird.In the embodiment illustrated here, combustion air L—and thus an oxygen-containing gas—passes via an air intake 79 into the radiation zone 11 or the burners located there. Flue gas Z is discharged from the radiation zone 11, which passes through the convection zone 12 and is then discharged into a flue gas treatment system or to a central or decentralized chimney 80, e.g. with a blower, and via this to the atmosphere.

Die in Figur 1 veranschaulichte zentrale Heizgasvorwärmung 65 ist optional. Eine dezentrale Heizgasvorwärmung (d.h. separat für die einzelnen Crackeröfen 10 bzw. Ofeneinheiten) ist ebenfalls möglich. Ähnliches gilt für die Einsatzvorwärmung und die Prozessdampferzeugung, die alternativ zur zentralen Ausführung auch dezentral ausgeführt werden können.In the figure 1 illustrated central heating gas 65 is optional. A decentralized heating gas preheating (ie separately for the individual cracker ovens 10 or oven units) is also possible. The same applies to the preheating of the insert and the generation of process steam, which can also be carried out decentrally as an alternative to the central design.

Wie erwähnt, wird in dem Ofen 10 das Heizgases X unter Zufuhr der Verbrennungsluft L verbrannt, wobei Rauchgas Z (also eine Art Abgas) entsteht, das letztlich an die Umgebung abgeführt wird. Aus Umweltschutz- und auch Energieeffizienzgründen ist es dabei wünschenswert, eine möglichst optimale Verbrennung in dem Ofen 10 zu erreichen. Hierzu sollte die Verbrennung des Heizgases X unter Einhaltung strenger Bedingungen erfolgen, auch um einen sicheren und effizienten Betrieb zu ermöglichen. Dies umfasst, wie schon erwähnt, insbesondere die Messung des Sauerstoffgehalts in dem Ofen bzw. in der Brennkammer, um etwaigen überschüssigen Sauerstoff erkennen zu können. Hier setzt die Erfindung an.As mentioned, the heating gas X is burned in the furnace 10 with the supply of the combustion air L, with flue gas Z (ie a type of exhaust gas) being produced, which is ultimately discharged to the environment. For reasons of environmental protection and energy efficiency, it is desirable to achieve the best possible combustion in the furnace 10. For this purpose, the combustion of the fuel gas X should take place under strict conditions, also to enable safe and efficient operation. As already mentioned, this includes in particular the measurement of the oxygen content in the furnace or in the combustion chamber in order to be able to detect any excess oxygen. This is where the invention comes in.

Im Rahmen der Erfindung wird hierzu ein Messsystem 110 verwendet, das für den Ofen 10 vorgesehen ist. Das Messsystem 110 umfasst beispielsweise ein Rechensystem 112 (z.B. Prozessor mit Speicher) sowie mehrere Lambdasonden, wobei hier beispielhaft zwei Lambdasonden 114, 116 gezeigt sind, mittels welcher Messungen des Sauerstoffgehalts im Rauchgas Z vorgenommen werden können. In dem gezeigten Beispiel sind die Lambdasonden 114, 116 an zwei verschiedenen Stellen am Ofen 10 angeordnet, an denen eine Messung vorgenommen wird. Beispielsweise kann hierzu Rauchgas - wie schon erwähnt - abgezweigt und nach der Messung mittels der jeweiligen Lambdasonde wieder in den Ofen 10 bzw. in den regulären Verlauf zurückgeführt werden. Wie schon erwähnt, können an einer Stelle auch mehrere Lambdasonden vorgesehen werden, die jeweils einen Messwert erfassen.Within the scope of the invention, a measuring system 110 that is provided for the furnace 10 is used for this purpose. The measuring system 110 comprises, for example, a computing system 112 (eg processor with memory) and several lambda probes, with two lambda probes 114, 116 being shown here by way of example, by means of which measurements of the oxygen content in the flue gas Z can be undertaken. In the example shown, the lambda sensors 114, 116 are arranged at two different locations on the furnace 10 at which a measurement is taken. For example, for this purpose flue gas can be diverted--as already mentioned--and fed back into the furnace 10 or into the regular course after the measurement by means of the respective lambda probe. As already mentioned, several lambda probes can also be provided at one point, each recording a measured value.

Die von den Lambdasonden 114, 116 erfassten Messwerte werden z.B. über Signalleitungen (mit gestrichelten Linien mit Pfeilen angedeutet) an das Messsystem 112 übermittelt, wo die Messwerte dann verrechnet werden können, um den Sauerstoffgehalt im Rauchgas bzw. im Ofen, ggf. auch an verschiedenen Stellen, zu bestimmen.The measured values recorded by the lambda probes 114, 116 are transmitted, for example, via signal lines (indicated with dashed lines with arrows) to the measuring system 112, where the measured values can then be offset in order to determine the oxygen content in the flue gas or in the furnace, possibly also at different places to determine.

In Figur 2 ist hierzu schematisch ein Ablauf eines solchen erfindungsgemäßen Verfahrens in einer bevorzugten Ausführungsform dargestellt. Hierzu sind beispielhaft die Lambdasonde 114 und das Rechensystem 112 aus Figur 1 gezeigt. Die Lambdasonde 114 enthält ein Messelement 120, das auf einer Seite dem Rauchgas Z des Ofens ausgesetzt ist, auf der anderen Seite hingegen einer Referenz, z.B. Umgebungsluft. Im Rauchgas herrscht ein Sauerstoffgehalt Oz, in der Umgebungsluft bzw. in der Referenz hingegen ein Sauerstoffgehalt OR. Wenn diese beiden Sauerstoffgehalte sich unterscheiden, ergibt sich, wie vorstehend erläutert, ein Spannungsabfall an dem Messelement 120, der z.B. als Messwert M an das Rechensystem 112 übermittelt wird.In figure 2 a sequence of such a method according to the invention is shown schematically in a preferred embodiment. For this purpose, the lambda probe 114 and the computing system 112 are off figure 1 shown. The lambda probe 114 contains a measuring element 120 which is exposed to the flue gas Z of the furnace on one side and to a reference, for example ambient air, on the other side. In the flue gas there is an oxygen content Oz, in the ambient air or in the reference, on the other hand, an oxygen content O R . If these two oxygen contents differ, as explained above, there is a voltage drop across the measuring element 120, which is transmitted to the computing system 112 as a measured value M, for example.

Beispielhaft sind fünf weitere Messwerte M von (hier nicht dargestellten) Lambdasonden gezeigt, die ebenfalls an das Rechensystem 112 übermittelt werden. Es ist vorgesehen, dass jeweils drei Lambdasonden an (zumindest näherungsweise) derselben Stelle (Entnahmestelle) des Ofens angeordnet sind und den Messwert erfassen. Diese drei Messwerte werden dann verarbeitet, z.B. kann der (objektiv) schlechteste Messwert von der Verrechnung ausgeschlossen werden. Auf diese Weise wird für jede der beispielhaft zwei Stellen am bzw. im Ofen ein Sauerstoffgehalt O bestimmt.By way of example, five further measured values M from lambda probes (not shown here) are shown, which are also transmitted to the computing system 112 . Provision is made for three lambda probes to be arranged at (at least approximately) the same point (extraction point) of the furnace and to record the measured value. These three measured values are then processed, e.g. the (objectively) worst measured value can be excluded from the calculation. In this way, an oxygen content O is determined for each of the two locations on or in the furnace.

Wie erwähnt, wird mittels der Lambdasonde zunächst nur ein Verhältnis des Sauerstoffgehalts im Rauchgas zum Sauerstoffgehalt in der Umgebungsluft ermittelt. wenn z.B. der Sauerstoffgehalt in der Umgebungsluft bekannt ist, kann damit der Sauerstoffgehalt im Rauchgas bestimmt werden. Dies kann z.B. im Rahmen der erwähnten Verrechnung erfolgen, sodass der Sauerstoffgehalt O für eine bestimmte Stelle dem (ggf. gemittelten) Sauerstoffgehalt Oz im Rauchgas entsprechend kann. Es versteht sich, dass aber auch nur mit relativen Werten gearbeitet werden kann.As mentioned, initially only a ratio of the oxygen content in the flue gas to the oxygen content in the ambient air is determined by means of the lambda probe. if, for example, the oxygen content in the ambient air is known, the Oxygen content in the flue gas can be determined. This can be done, for example, as part of the calculation mentioned, so that the oxygen content O for a specific point can correspond to the (possibly averaged) oxygen content Oz in the flue gas. It goes without saying that it is also possible to work only with relative values.

In Figur 3 ist nochmals eine andere Ansicht des Crackerofens 10 aus Figur 1 zur näheren Erläuterung der Erfindung gezeigt, und zwar mit beispielhaft vier Zonen 10A, 10B, 10C und 10D. In jeder der Zonen ist in der Wand 140 (Feuerboxwand) eine Entnahmestelle 130, wobei nur eine der Entnahmestellen detaillierter gezeigt ist.In figure 3 FIG. 14 is yet another view of cracker furnace 10. FIG figure 1 shown to explain the invention in more detail, namely with four zones 10A, 10B, 10C and 10D by way of example. In each of the zones in the wall 140 (firebox wall) is a tap 130, only one of the taps being shown in more detail.

An einer Entnahmestelle 130 ist ein Rohr 132 durch die Wand 130 geführt, an dem auf der Außenseite z.B. drei Lambdasonden 114 angebracht sind (nur eine Sonde ist gezeigt). Zudem können z.B. Kühlrippen 134 vorgesehen sein, um eine ausreichende Kühlung des Gases nach der Messung zu gewährleisten, um ggf. Schäden an Materialien zu verhindern. Hier kann eine Messung wie in Bezug auf Figur 2 (dort für nur zwei Stellen) erläutert, erfolgen, um der erwähnte Sauerstoffgehalt O im Sinne eines Sauerstoffprofils ermittelt werden kann.At an extraction point 130, a pipe 132 is guided through the wall 130, on which, for example, three lambda probes 114 are attached on the outside (only one probe is shown). In addition, cooling fins 134, for example, can be provided in order to ensure sufficient cooling of the gas after the measurement, in order to prevent any damage to materials. Here a measurement like in terms of figure 2 (There for only two places) explained, take place in order to be able to determine the oxygen content O mentioned in the sense of an oxygen profile.

Claims (12)

Verfahren zum Bestimmen eines Sauerstoffgehalts in einem Ofen (10) einer verfahrenstechnischen Anlage (100), in dem ein Heizgas (X) unter Zufuhr eines sauerstoffhaltigen Gases (L) und unter Entstehung von Rauchgas (Z) verbrannt wird,
wobei mittels mehrerer Lambdasonden (114, 116) jeweils ein Messwert (M) in dem Rauchgas (Z) erfasst und mittels eines Rechensystems (112) aus den Messwerten ein Sauerstoffgehalt (O) in dem Ofen (10) bestimmt wird.
Method for determining an oxygen content in a furnace (10) of a process plant (100), in which a heating gas (X) is burned with the supply of an oxygen-containing gas (L) and with the formation of flue gas (Z),
a measured value (M) in the flue gas (Z) being recorded by means of a plurality of lambda probes (114, 116) and an oxygen content (O) in the furnace (10) being determined from the measured values by means of a computer system (112).
Verfahren nach Anspruch 1, wobei mittels der mehreren Lambdasonden (120114, 116) an mehreren, verschiedenen Stellen (130) des Ofens (10) ein Messwert (M) in dem Rauchgas (Z) erfasst und an den mehreren verschiedenen Stellen jeweils der Sauerstoffgehalt (O) bestimmt wird, und wobei damit insbesondere ein örtlicher Verlauf des Sauerstoffgehalts (O), insbesondere ein Sauerstoffprofil , in dem Ofen (10) bestimmt wird.Method according to Claim 1, in which a measured value (M) in the flue gas (Z) is recorded at a number of different points (130) of the furnace (10) by means of the number of lambda probes (120114, 116) and the oxygen content ( O) is determined, and with it in particular a local course of the oxygen content (O), in particular an oxygen profile, in the furnace (10) being determined. Verfahren nach Anspruch 1 oder 2, wobei aus den Messwerten (M) von wenigstens zwei, insbesondere wenigstens drei Lambdasonden der Sauerstoffgehalt (O) an einer Stelle des Ofens (10) in dem Rauchgas (Z) bestimmt wird, und wobei die wenigstens zwei Lambdasonden hierbei insbesondere redundant und/oder fehlertolerant verwendet werden.The method according to claim 1 or 2, wherein the oxygen content (O) at a point of the furnace (10) in the flue gas (Z) is determined from the measured values (M) of at least two, in particular at least three lambda probes, and wherein the at least two lambda probes in this case, in particular, be used redundantly and/or in a fault-tolerant manner. Verfahren nach einem der vorstehenden Ansprüche, wobei jede Lambdasonde (114, 116) in einer Leitung angeordnet ist, in der das Rauchgas (Z) aus dem Ofen (10) herausgeführt und insbesondere anschließend wieder in den Ofen (10) zurückgeführt wird.Method according to one of the preceding claims, wherein each lambda probe (114, 116) is arranged in a line in which the flue gas (Z) is conducted out of the furnace (10) and in particular subsequently returned to the furnace (10). Verfahren nach einem der vorstehenden Ansprüche, wobei mittels der Lambdasonden (114,116) jeweils ein Messwert (M) erfasst wird, der ein Verhältnis eines Sauerstoffgehalts (Oz) in einem Rauchgas (Z) des Ofens zu einem Referenzwert (OR) angibt, wobei als Referenzwert insbesondere der Sauerstoffgehalt einer Umgebungsluft verwendet wird.Method according to one of the preceding claims, wherein a measured value (M) is recorded by means of the lambda probes (114, 116), which indicates a ratio of an oxygen content (Oz) in a flue gas (Z) of the furnace to a reference value (O R ), wherein as Reference value in particular the oxygen content of ambient air is used. Verfahren nach einem der vorstehenden Ansprüche, wobei Nernstsonden und/oder Widerstandssprungsonden als die Lambdasonden (114, 116) verwendet werden.A method according to any one of the preceding claims, wherein Nernst sensors and/or resistance step sensors are used as the lambda sensors (114, 116). Verfahren nach einem der vorstehenden Ansprüche, wobei basierend auf dem bestimmten Sauerstoffgehalt (O) ein Betrieb des Ofens (10) überwacht und/oder gesteuert wird.Method according to one of the preceding claims, wherein based on the determined oxygen content (O) an operation of the furnace (10) is monitored and / or controlled. Verfahren nach einem der vorstehenden Ansprüche, wobei als Ofen (10) ein Crackerofen zum Steamcracken verwendet wird.Method according to one of the preceding claims, in which a cracker furnace for steam cracking is used as the furnace (10). Messsystem (110) zum Bestimmen eines Sauerstoffgehalts in einem Ofen (10) einer verfahrenstechnischen Anlage (100), in dem ein Heizgas (X) unter Zufuhr eines sauerstoffhaltigen Gases (L) unter Entstehung von Rauchgas (Z) verbrannt wird, mit mehreren Lambdasonden (114, 116), die dazu vorgesehen sind in oder an dem Ofen (10) angeordnet zu werden und dazu eingerichtet sind, jeweils Messwerte (M) in dem Rauchgas (Z) zu erfassen, und mit einem Rechensystem (112), das dazu eingerichtet ist, die Messwerte (M) der Lambdasonden (114, 116) zu empfangen und daraus einen Sauerstoffgehalt (O) in dem Ofen (10) zu bestimmen. Measuring system (110) for determining an oxygen content in a furnace (10) of a process plant (100), in which a fuel gas (X) is burned with the supply of an oxygen-containing gas (L) with the formation of flue gas (Z), with a plurality of lambda probes (114, 116) which are intended to be arranged in or on the furnace (10) and are set up to record measured values (M) in the flue gas (Z), and with a computing system (112) which is set up to receive the measured values (M) from the lambda probes (114, 116) and to determine an oxygen content (O) in the furnace (10) from them. Messsystem (110) nach Anspruch 9, das dazu eingerichtet ist, ein Verfahren nach einem der Ansprüche 1 bis 8 durchzuführen.Measuring system (110) according to Claim 9, which is set up to carry out a method according to one of Claims 1 to 8. Ofen (10) für eine verfahrenstechnischen Anlage (100), in dem ein Heizgas (X) unter Zufuhr eines sauerstoffhaltigen Gases (L) verbrannt wird, mit einem Messsystem (110) nach Anspruch 9 oder 10Furnace (10) for a process plant (100), in which a heating gas (X) is burned with the supply of an oxygen-containing gas (L), with a measuring system (110) according to Claim 9 or 10 Verfahrenstechnischen Anlage (!00) mit einem Ofen (10) nach Anspruch 11.Process engineering plant (!00) with a furnace (10) according to Claim 11.
EP21020322.0A 2021-06-16 2021-06-16 Method and measuring system for determining an oxygen content in a furnace, furnace and processing system Withdrawn EP4105297A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21020322.0A EP4105297A1 (en) 2021-06-16 2021-06-16 Method and measuring system for determining an oxygen content in a furnace, furnace and processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21020322.0A EP4105297A1 (en) 2021-06-16 2021-06-16 Method and measuring system for determining an oxygen content in a furnace, furnace and processing system

Publications (1)

Publication Number Publication Date
EP4105297A1 true EP4105297A1 (en) 2022-12-21

Family

ID=76942702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21020322.0A Withdrawn EP4105297A1 (en) 2021-06-16 2021-06-16 Method and measuring system for determining an oxygen content in a furnace, furnace and processing system

Country Status (1)

Country Link
EP (1) EP4105297A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH624204A5 (en) * 1975-03-12 1981-07-15 Friedrichsfeld Gmbh Device on a gas, oil or coaldust furnace for controlling the fuel/air quantity ratio
WO2006124422A2 (en) * 2005-05-16 2006-11-23 Dow Global Technologies Inc. Excess air control for cracker furnace burners
DE102009016695A1 (en) * 2009-04-07 2010-10-14 Linde Ag Process and apparatus for the cracking of hydrocarbons
US20190309228A1 (en) * 2018-04-04 2019-10-10 Nova Chemicals (International) S.A. Reduced fouling from the convection section of a cracker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH624204A5 (en) * 1975-03-12 1981-07-15 Friedrichsfeld Gmbh Device on a gas, oil or coaldust furnace for controlling the fuel/air quantity ratio
WO2006124422A2 (en) * 2005-05-16 2006-11-23 Dow Global Technologies Inc. Excess air control for cracker furnace burners
DE102009016695A1 (en) * 2009-04-07 2010-10-14 Linde Ag Process and apparatus for the cracking of hydrocarbons
US20190309228A1 (en) * 2018-04-04 2019-10-10 Nova Chemicals (International) S.A. Reduced fouling from the convection section of a cracker

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Ethylene", ULLMANN'S ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY, 15 April 2009 (2009-04-15)
KNIGHT B ET AL: "High temperature in-situ combustion oxygen sensors", AMMONIA PLANT SAFETY AND RELATED FACILITIES, 1 January 2001 (2001-01-01), pages 186 - 191, XP055857840, Retrieved from the Internet <URL:http://www.iffcokandla.in/data/polopoly_fs/1.2496218.1439327212!/fileserver/file/523312/filename/Aiche-41-017.pdf> [retrieved on 20211104] *
MICKITY D.: "A game-changing approach to furnace safeguarding", 1 September 2018 (2018-09-01), XP055857926, Retrieved from the Internet <URL:https://www.hydrocarbonprocessing.com/magazine/2018/september-2018/special-focus-refining-technology/a-game-changing-approach-to-furnace-safeguarding> [retrieved on 20211104] *

Similar Documents

Publication Publication Date Title
DE10302487A1 (en) Real time determination of the alkane and carbon dioxide content of fuel gas comprises using an infrared absorption measuring system having measuring channels which acquire the infrared adsorption in different wavelength regions
DE2239285C2 (en) Method and device for measuring the fuel and oxygen content of a gas
DE3006525A1 (en) METHOD AND DEVICE FOR MEASURING THE FUEL / AIR RATIO OF A MIXTURE WHICH IS ADDED TO A COMBUSTION SYSTEM
WO2010006723A2 (en) Method and device for igniting and operating burners when gasifying carbon-containing fuels
EP0156200A1 (en) Method of and device for determining the mixing ratio of a mixture containing an oxygen carrier and a fuel
DE112008004160T5 (en) Anode utilization control system for a fuel cell power generator
EP2866288B1 (en) Fuel cell apparatus
EP4105297A1 (en) Method and measuring system for determining an oxygen content in a furnace, furnace and processing system
EP3985306A1 (en) Method and device for safe operation of a burner operated with a high proportion of hydrogen
EP2347178A1 (en) Method and device for monitoring the combustion of fuel in a power station
EP1051585B1 (en) Method and device for operating an incinerator plant
WO2017085133A1 (en) Measuring method and measuring apparatus for determining the recirculation rate
DE2747643A1 (en) DEVICE AND METHOD FOR MEASURING THE AMOUNT OF FUEL AND OXYGEN IN A GAS FLOW
DE102020205449A1 (en) Device and method for controlling combustion for a fuel gas with a proportionate amount of additional gas
DE102015107751A1 (en) Method and device for continuous calorific value measurement in process gases
DE2510717B2 (en) Device for burners to regulate the fuel-air ratio
EP3647780B1 (en) Method and measuring system for detecting a tar content in gases
EP1542304A2 (en) Determination of the lambda-value of a reformate
DE112014002390T5 (en) coker
EP3214370A1 (en) Method and apparatus for burning solid organic fuels
WO2022058612A1 (en) Method and installation for thermally recycling solid fuel in a reaction chamber
DE102009057121A1 (en) Method for qualitative monitoring of combustion status of boiler system in e.g. industrial combustion, involves determining exhaust gas value of combustion of fuel-air-mixture by boiler-isothermal current and/or voltage characteristic curve
DE2510718C2 (en) Compound controller for a gas, oil and coal dust burner
CH624204A5 (en) Device on a gas, oil or coaldust furnace for controlling the fuel/air quantity ratio
DE19908885A1 (en) Method for operating gas burner by heating gas in separated measurement chamber and using relationship between and pressure or temperature to measure gas composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230622