JP2008536267A - Current carrier of energy storage device - Google Patents

Current carrier of energy storage device Download PDF

Info

Publication number
JP2008536267A
JP2008536267A JP2008504307A JP2008504307A JP2008536267A JP 2008536267 A JP2008536267 A JP 2008536267A JP 2008504307 A JP2008504307 A JP 2008504307A JP 2008504307 A JP2008504307 A JP 2008504307A JP 2008536267 A JP2008536267 A JP 2008536267A
Authority
JP
Japan
Prior art keywords
current collector
current
carrier
carbon
collector plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008504307A
Other languages
Japanese (ja)
Inventor
ケリー,カーティス,シー.
オスターメイヤー,チャールズ,エフ.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Firefly Energy Inc
Original Assignee
Firefly Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firefly Energy Inc filed Critical Firefly Energy Inc
Publication of JP2008536267A publication Critical patent/JP2008536267A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • H01M50/541Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/571Methods or arrangements for affording protection against corrosion; Selection of materials therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

A current collector plate for an energy storage device comprising a first current collector, a bonding layer connected to the first current collector; and, at least one current carrier disposed at least partially between the first current collector and the bonding layer.

Description

本出願は、2005年3月31日に申請した米国仮出願第60/666,771号の優先権を主張する。   This application claims priority from US Provisional Application No. 60 / 666,771, filed Mar. 31, 2005.

本発明は、一般的に電流導体に関し、より詳細にはエネルギー蓄積装置のための電流キャリアに関連する。   The present invention relates generally to current conductors, and more particularly to current carriers for energy storage devices.

鉛酸蓄電池は、少なくとも1つの正極集電体、少なくとも1つの負極集電体、種々の蓄電池構成要素を互いに接続する電流キャリア、集電体上の化学的活性ペースト、及び、例えば、硫酸(HSO)若しくは蒸留水を含む電解液、などを含むことは知られたところである。通常、鉛酸蓄電池の正極及び負極の集電体は、鉛から構成されている。これら鉛集電体の役割は、放電及び充電過程の間、内部電流キャリアを通じて、電流をバッテリ端子へ伝導することである。鉛集電体は、電流キャリアに効果的に電流を収集及び伝導するのに適している。しかし、鉛は、高密度物質である。このため、鉛で形成された集電体は、従来の鉛酸蓄電池の全体重量を著しく増加する。 Lead acid batteries include at least one positive current collector, at least one negative current collector, a current carrier that connects the various storage battery components together, a chemically active paste on the current collector, and, for example, sulfuric acid (H 2 SO 4 ) or an electrolytic solution containing distilled water, etc. are known. Usually, the current collectors of the positive and negative electrodes of a lead acid battery are made of lead. The role of these lead current collectors is to conduct current to the battery terminals through internal current carriers during the discharging and charging process. Lead current collectors are suitable for collecting and conducting current effectively in current carriers. However, lead is a high density material. For this reason, the current collector formed of lead significantly increases the overall weight of a conventional lead acid battery.

さらに、鉛酸蓄電池の耐久性に関する顕著な制限が、鉛を基礎にした正極集電体の腐食及び電流キャリアにより生じる。一旦、蓄電池に硫酸電解液が加えられて、該蓄電池が充電されると、正極集電体及び電流キャリアは、硫酸と正極板(即ち、正極集電体及び電気的活性ペースト)のアノード電位とに曝されて絶えず腐食を受けるようになる。この腐食による最大の損傷効果は、体積膨張(volume expansion)である。特に、鉛集電体及び電流キャリアが腐食するときに、集電体及び電流キャリアの鉛原料金属から二酸化鉛が形成される。この二酸化鉛による腐食生成物は、二酸化鉛の生成に消費される鉛原料物質よりも大きな体積を有する。このように、鉛原料物質の腐食及び引き続き生じる二酸化鉛腐食生成物の体積増加は、体積膨張として知られている。   Furthermore, significant limitations on the durability of lead acid batteries are caused by corrosion of lead-based positive electrode current collectors and current carriers. Once the sulfuric acid electrolyte is added to the storage battery and the storage battery is charged, the positive electrode current collector and the current carrier are sulfuric acid and the anode potential of the positive electrode plate (ie, the positive electrode current collector and the electrically active paste). Be exposed to corrosion and become constantly corroded. The greatest damage effect due to this corrosion is volume expansion. In particular, when the lead current collector and current carrier corrode, lead dioxide is formed from the lead source metal of the current collector and current carrier. This corrosion product from lead dioxide has a larger volume than the lead source material consumed to produce lead dioxide. Thus, corrosion of the lead source material and subsequent increase in the volume of the lead dioxide corrosion product is known as volume expansion.

体積膨張は、集電体及びキャリアを変形若しくは伸長する腐食要素上の機械的応力を誘発する。集電体の体積増加の合計は、略4%〜7%であり、これにより集電体が破損する。その結果、蓄電池の容量が低下し、最終的に蓄電池は、有効寿命の終わりに到達する。また、このような電流キャリアの破損は、特定の集電体へと流れる電流又は特定の集電体から流れる電流を妨げるようになる。そして、腐食が進行した段階で、集電体範囲における内部短絡及びセル(隔室)ケースの断裂が生じる。これらの腐食の影響により、蓄電池内の1以上のセルが故障するようになる。   Volume expansion induces mechanical stress on the corrosive elements that deform or stretch the current collector and carrier. The total increase in the volume of the current collector is approximately 4% to 7%, which breaks the current collector. As a result, the capacity of the storage battery is reduced and finally the storage battery reaches the end of its useful life. Further, such a current carrier breakage prevents a current flowing to or from a specific current collector. When corrosion progresses, an internal short circuit and a cell (compartment) case rupture occur in the current collector range. Due to the effects of these corrosions, one or more cells in the storage battery will fail.

鉛蓄電池の有効寿命を延ばす1つの方法として、蓄電池要素の腐食耐性を増強させることがある。鉛酸蓄電池の腐食過程を抑制するために、幾つかの方法が提案されている。鉛酸蓄電池の一般的な作動温度において炭素は酸化しないので、幾つかの方法では、鉛酸蓄電池の有害な腐食過程を遅延又は防止させる多種多様に構成した炭素の使用を含む。例えば、米国特許第5,512,390号(以下、’390特許という)では、鉛に換えて黒鉛板から形成した集電体を含む鉛酸蓄電池を開示する。黒鉛板は、集電体として機能するために充分な伝導率を有し、及び、鉛よりも腐食耐性に優れている。従って、鉛集電体を黒鉛板に置換すれば、鉛酸蓄電池の寿命を延ばすことができる。   One way to extend the useful life of lead acid batteries is to increase the corrosion resistance of the battery elements. Several methods have been proposed to suppress the corrosion process of lead acid batteries. Since carbon does not oxidize at the typical operating temperatures of lead acid batteries, some methods involve the use of a wide variety of configured carbons that retard or prevent the harmful corrosion processes of lead acid batteries. For example, US Pat. No. 5,512,390 (hereinafter referred to as the '390 patent) discloses a lead acid storage battery including a current collector formed from a graphite plate instead of lead. The graphite plate has sufficient conductivity to function as a current collector, and is more resistant to corrosion than lead. Therefore, if the lead current collector is replaced with a graphite plate, the life of the lead acid battery can be extended.

’390特許の蓄電池が、正極板の腐食を減少させる結果として、その有効寿命を延長する可能性を提供する一方、’390特許の黒鉛板は問題も有する。例えば、’390特許の黒鉛板が、高密度であり、表面積が比較的に少量の物質で夫々形成された複数のシートであること、である。板の有効表面積を増加させる格子状構造に一般的にパターン形成された従来の鉛酸蓄電池の鉛電極板と異なって、’390特許の黒鉛板は、パターン形成のない滑らかシートである。鉛酸蓄電池において、集電体の表面積の増加は、蓄電池の比エネルギーを増加させるので、改良された蓄電池性能に変性することができる。また、集電体上のより多くの表面積は、蓄電池の充放電に要する時間を短縮する。このため、’390特許の黒鉛板が有する比較的に少量の表面積は、結果として、遅い充電速度を有する蓄電池を不十分に実行する。   While the '390 patent battery offers the possibility of extending its useful life as a result of reducing corrosion of the positive plate, the' 390 patent graphite plate also has problems. For example, the graphite plate of the '390 patent is a plurality of sheets each having a high density and a surface area formed from a relatively small amount of material. Unlike the lead electrode plates of conventional lead acid batteries, which are typically patterned in a grid structure that increases the effective surface area of the plates, the '390 patent graphite plate is a smooth sheet without patterning. In a lead acid battery, an increase in the surface area of the current collector increases the specific energy of the battery and can be modified to improved battery performance. In addition, more surface area on the current collector reduces the time required to charge and discharge the storage battery. For this reason, the relatively small surface area possessed by the '390 patent graphite plate results in poorly performing storage batteries with slow charge rates.

加えて、’390特許の黒鉛板は、鉛集電体よりも耐久性が不足している。’390特許の高密度黒鉛板は、物理的な衝撃又は振動を受けると、壊れやすく及び破損する虞がある。このような物理的な衝撃及び振動は、例えば、一般的な車両に適用した場合に生じる。また、黒鉛板のあらゆる破損は、通常の鉛集電体の体積膨張によって生じる問題と同様の問題をも引き起こす。従って、従来の鉛集電体と比較して腐食に対する耐性の増強を提供するにもかかわらず、’390特許に係る黒鉛板の壊れやすい性質は、実際には、通常の鉛集電体の可能な限りの使用期間よりも短い蓄電池有効寿命となることがあり得る。   In addition, the graphite plate of the '390 patent is less durable than the lead current collector. The high-density graphite plate of the '390 patent is fragile and can be damaged when subjected to physical shock or vibration. Such physical shock and vibration occur, for example, when applied to a general vehicle. Further, any breakage of the graphite plate causes a problem similar to the problem caused by the volume expansion of a normal lead current collector. Thus, despite providing increased resistance to corrosion compared to conventional lead current collectors, the fragile nature of the graphite plate according to the '390 patent is actually possible with ordinary lead current collectors. The useful life of the storage battery may be shorter than the usable period.

本発明の一態様は、エネルギー蓄積装置用の集電体板を含む。集電体板は、第1集電体と、該第1集電体に連結する結合層と、を含む。少なくとも1つの電流キャリアは、第1集電体と接着層との間に少なくとも部分的に配置される。   One aspect of the invention includes a current collector plate for an energy storage device. The current collector plate includes a first current collector and a bonding layer connected to the first current collector. At least one current carrier is at least partially disposed between the first current collector and the adhesive layer.

添付の図面は、本願明細書に組み込まれ、本願明細書の一部を構成し、本発明の一実施形態を図示し、及び、記述した説明と共に本発明の原理を説明するために用いられる。   The accompanying drawings are incorporated into and constitute a part of this specification, illustrate an embodiment of the invention, and are used to explain the principles of the invention in conjunction with the written description.

以下の説明では、その説明の一部を構成すると共に、本発明を実施するための特定の実施形態を実例として示した添付の図面を参照する。各実施形態は、当業者が本発明を実施可能なように充分に詳述されているため、当業者であれば、本発明の範囲を逸脱することなく、他の実施形態に利用し及び変形できることを理解するであろう。また、以下の説明は、本発明を限定するものではない。全図面において、同一又は同様の構成要素には、可能な限り同一の参照符号を使用する。   In the following description, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration specific embodiments for carrying out the invention. Each embodiment has been described in sufficient detail to enable those skilled in the art to practice the invention, and those skilled in the art can use and modify other embodiments without departing from the scope of the invention. You will understand what you can do. Also, the following description does not limit the present invention. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like elements.

図1A及び図1Bは、本発明の一実施形態に整合させた集電体板20を示す。集電体板20は、任意の結合層22により互いに連結された集電体11、13を含んで構成される。図1A及び図1Bに示した一実施形態では2つの集電体11、13を含むが、本発明の他の実施形態では単一の集電体11又は集電体13だけを含むことができる。あるいは、集電体板20が、2以上の集電体を含んでもよい。   1A and 1B show a current collector plate 20 that is matched to one embodiment of the present invention. The current collector plate 20 includes current collectors 11 and 13 connected to each other by an arbitrary bonding layer 22. Although one embodiment shown in FIGS. 1A and 1B includes two current collectors 11, 13, other embodiments of the present invention can include only a single current collector 11 or current collector 13. . Alternatively, the current collector plate 20 may include two or more current collectors.

集電体11、13は、鉛を含む種々の材料から形成することができ、また、集電体11及び集電体13の少なくとも一方を炭素発泡体(carbon foam)で形成することができる。炭素発泡体は、軽量であり電気伝導性がある。特定のフォームにおいて、炭素発泡体は、略0.6gm/cm未満の密度を有し、略1ohm/cm未満の面積抵抗値を提供する。また、炭素は、腐食に対する耐性があるため、例えば、鉛酸蓄電池の腐食性環境下で集電体板20に用いることができる。 The current collectors 11 and 13 can be formed of various materials including lead, and at least one of the current collector 11 and the current collector 13 can be formed of a carbon foam. Carbon foam is lightweight and has electrical conductivity. In certain foams, the carbon foam has a density of less than about 0.6 gm / cm 3 and provides a sheet resistance value of less than about 1 ohm / cm. Moreover, since carbon has resistance to corrosion, it can be used for the current collector plate 20 in a corrosive environment of a lead acid battery, for example.

開示の発泡体の材料は、支柱及び孔の3次元網目構造を含む網状パターンを有したあらゆる炭素基材を含むことができる。発泡体は、自然発生的由来物質及び人工的由来物質の少なくとも一方を含んで構成されることができる。   The disclosed foam material can include any carbon substrate having a reticulated pattern that includes a three-dimensional network of struts and holes. The foam may be configured to include at least one of a naturally occurring material and an artificially derived material.

同様に、黒鉛発泡体(即ち、炭素発泡体の一種)が、集電体11、13を形成するために用いられる。黒鉛発泡体の1つとして、Poco Graphite, Inc社から入手可能な商品名PocoFoam(登録商標)がある。この黒鉛発泡体の密度及び孔構造は、炭素発泡体と類似する。黒鉛発泡体と炭素発泡体との間の主たる相違は、発泡体の構造要素を占める炭素原子の配向(orientation)である。例えば、炭素発泡体において、炭素は主にアモルファスである。しかし、黒鉛発泡体において、炭素の多くは、黒鉛、層構造により順序付けられる。黒鉛構造体のこの順序付ける性質のため、黒鉛発泡体は、炭素発泡体よりも高い伝導率を提供する。PocoFoam(登録商標)黒鉛発泡体は、略100:Σ/cm〜略400:Σ/cmまでの抵抗値を示す。   Similarly, graphite foam (ie, a type of carbon foam) is used to form current collectors 11 and 13. As one of the graphite foams, there is a trade name PocoFoam (registered trademark) available from Poco Graphite, Inc. The density and pore structure of this graphite foam is similar to that of carbon foam. The main difference between graphite foam and carbon foam is the orientation of the carbon atoms that occupy the structural elements of the foam. For example, in a carbon foam, carbon is mainly amorphous. However, in graphite foam, most of the carbon is ordered by the graphite and layer structure. Due to this ordering property of the graphite structure, the graphite foam provides a higher conductivity than the carbon foam. PocoFoam (registered trademark) graphite foam exhibits a resistance value of approximately 100: Σ / cm to approximately 400: Σ / cm.

結合層22は、集電体11、13を共に取り付けることができ、集電体板20の構造上に支持を提供する。特定の実施形態において、例えば、集電体11、13が炭素発泡体を含む場合、集電体11、13は、孔14の網目を含む。この孔は、結合層22の材料が集電体11、13の少なくとも一方に透過することを許容するので、集電体11、13を共に結合することを容易にする。様々な物質を、結合層22に用いることができる。結合層22は、電気伝導性であり、また、非伝導性であってもよい。また、結合層22は、ポリマー(例えば、ポリプロピレン)、エポキシ、金属、伝導性ポリマー、セラミック、ゴム、コンポジット(例えば、ポリマーマトリックスにおいて分散した炭素繊維)、及び、これらのあらゆる組み合わせを含むことができる。   A tie layer 22 can attach the current collectors 11, 13 together and provide support on the structure of the current collector plate 20. In certain embodiments, for example, when the current collectors 11, 13 include carbon foam, the current collectors 11, 13 include a network of holes 14. This hole allows the material of the bonding layer 22 to pass through at least one of the current collectors 11, 13, thus facilitating the bonding of the current collectors 11, 13 together. Various materials can be used for the tie layer 22. The tie layer 22 is electrically conductive and may be non-conductive. The tie layer 22 can also include a polymer (eg, polypropylene), epoxy, metal, conductive polymer, ceramic, rubber, composite (eg, carbon fibers dispersed in a polymer matrix), and any combination thereof. .

また、集電体板20は、集電体11及び集電体13のうちの1つと、結合層22と、の間に少なくとも部分的に配置される少なくとも1つの電流キャリア31を含むことができる。電流キャリア31は、伝導材料から形成され、集電体11及び集電体13の少なくと一方と電気的に接触する。また、電流キャリア31は、集電体板20と外部回路との間に電気接続を確立する手段として機能するように、外部に伸長し及び集電体から離れるセクションを含むことができる。さらに、この外部セクションは、特定の用途に従い様々に異なる寸法構成を有してもよい。例えば、図1A及び図1Bに示すように、電流キャリア31の外部セクションは、タブのような突起状に形成されることができ、また、例えば、図4に示した電流キャリア68、78のように、蓄電池の内部接続に相当する部分を提供するために充分な長さを有してもよい。   In addition, the current collector plate 20 can include at least one current carrier 31 disposed at least partially between one of the current collector 11 and the current collector 13 and the coupling layer 22. . The current carrier 31 is made of a conductive material and is in electrical contact with at least one of the current collector 11 and the current collector 13. The current carrier 31 can also include a section extending outwardly and away from the current collector to function as a means for establishing electrical connection between the current collector plate 20 and the external circuit. Further, the outer section may have a variety of different dimensional configurations depending on the particular application. For example, as shown in FIGS. 1A and 1B, the outer section of the current carrier 31 can be formed as a tab-like protrusion, and, for example, like the current carriers 68 and 78 shown in FIG. In addition, it may have a length sufficient to provide a portion corresponding to the internal connection of the storage battery.

電流キャリア31は、あらゆる伝導材料を含んで構成される。本発明の特定の実施形態において、電流キャリア31は、硼素、炭素、黒鉛、伝導性のポリマー、及び、これらあらゆる組み合わせのうち少なくとも1つを含むことができる。また、電流キャリア31は、炭素繊維布、炭素繊維テープ、不織炭素繊維布(unwoven carbon fiber cloth)、炭素繊維、複数の炭素繊維、炭素繊維バンドル(bundle)、黒鉛繊維布、黒鉛繊維テープ、不織黒鉛繊維布(unwoven graphite fiber cloth)、黒鉛繊維、複数の黒鉛繊維、黒鉛繊維バンドル、及び、これらのあらゆる組み合わせを含むことができる。   The current carrier 31 includes any conductive material. In certain embodiments of the present invention, the current carrier 31 may include at least one of boron, carbon, graphite, conductive polymer, and any combination thereof. Further, the current carrier 31 includes a carbon fiber cloth, a carbon fiber tape, a non-woven carbon fiber cloth, a carbon fiber, a plurality of carbon fibers, a carbon fiber bundle, a graphite fiber cloth, a graphite fiber tape, Unwoven graphite fiber cloth, graphite fiber, multiple graphite fibers, graphite fiber bundles, and any combination thereof can be included.

図2Aは、本発明の一実施形態に係る炭素繊維44のバンドル42を含む電流キャリア31を示す。バンドル42は、多くの炭素繊維44(例えば、1本、2本、10本、100本、1000本、10,000本、又はこれ以上)を含む。電流キャリア31の炭素繊維44数を増加させると、電流キャリア31が伝達する電流量も増加する。バンドル42の炭素繊維44は、炭素繊維に対して増加する伝導率を提供する黒鉛繊維であってもよい。   FIG. 2A shows a current carrier 31 including a bundle 42 of carbon fibers 44 according to one embodiment of the present invention. The bundle 42 includes a number of carbon fibers 44 (eg, 1, 2, 10, 100, 1000, 10,000, or more). When the number of carbon fibers 44 of the current carrier 31 is increased, the amount of current transmitted by the current carrier 31 is also increased. The carbon fibers 44 of the bundle 42 may be graphite fibers that provide increased conductivity relative to the carbon fibers.

図2Bは、集電体11に関する電流キャリア31の例示的な構成を示す。例えば、電流キャリア31は、炭素繊維44のバンドル42を含むことができる。少なくともバンドル42の一部分は、集電体11の端部を超えて伸長する。バンドル42の他の部分、例えば、集電体11に接触する部分において、炭素繊維44は、扇状又は他のパターンで夫々離れて広がる。図2Bに示すように、炭素繊維44の夫々離れた広がりは、集電体11の表面上に炭素繊維44の相対的に一様な分布を提供する。このような分布は、集電体11及び集電体13の少なくとも一方と、電流キャリア31と、の間の良好な電気接触を維持すること、及び、電流キャリア31に接触する前に、集電体11、13を通じて充電が進行しなければならない距離を最小化することを補助する。加えて、図2A及び図2Bに示すように、末広がりパターンに炭素繊維44を配置することは、集電体11及び集電体13の少なくとも一方に対して一定の構造上の支持を提供する。   FIG. 2B shows an exemplary configuration of the current carrier 31 for the current collector 11. For example, the current carrier 31 can include a bundle 42 of carbon fibers 44. At least a portion of the bundle 42 extends beyond the end of the current collector 11. In other parts of the bundle 42, for example, the part that contacts the current collector 11, the carbon fibers 44 spread apart in a fan shape or other pattern, respectively. As shown in FIG. 2B, each separate spread of the carbon fibers 44 provides a relatively uniform distribution of the carbon fibers 44 on the surface of the current collector 11. Such a distribution maintains good electrical contact between at least one of the current collector 11 and current collector 13 and the current carrier 31, and the current collector before contacting the current carrier 31. Helps minimize the distance that charging must proceed through the bodies 11, 13. In addition, as shown in FIGS. 2A and 2B, disposing the carbon fibers 44 in a diverging pattern provides a certain structural support for at least one of the current collector 11 and the current collector 13.

図3Aに示す本発明の他の実施形態に係る電流キャリア31は、織布52形状となるように少なくとも部分的に織られた複数の炭素繊維54を含むことができる。また、炭素繊維44のバンドル42と同様に、織布52の炭素繊維54が、黒鉛繊維を含んで構成されることができる。   The current carrier 31 according to another embodiment of the present invention shown in FIG. 3A can include a plurality of carbon fibers 54 that are at least partially woven into a woven fabric 52 shape. Similarly to the bundle 42 of the carbon fibers 44, the carbon fibers 54 of the woven fabric 52 can be configured to include graphite fibers.

図3Bは、集電体11に関する電流キャリア31の例示的な他の構成を示す。例えば、電流キャリア31は、複数の炭素繊維54から形成された織布52を含むことができる。少なくとも織布52の一部分は、集電体11の端部を超えて伸長する。編布52の他の部分、例えば、集電体11に接触する部分において、炭素繊維54は、扇状パターンで夫々離れて広がる。図3Bに示すように、炭素繊維54の夫々離れた広がりは、集電体11の表面上に炭素繊維54の相対的に一様な分布を提供する。図2A及び図2Bに示した一実施形態と同様に、図3A及び図3Bに示すように、末広がりパターンに炭素繊維を配置することは、集電体11及び集電体13の少なくとも一方と、電流キャリア31と、の間の良好な電気接触の維持を補助し、及び、集電体11及び集電体13の少なくとも一方に対して構造上の支持を提供する。   FIG. 3B shows another exemplary configuration of the current carrier 31 for the current collector 11. For example, the current carrier 31 can include a woven fabric 52 formed from a plurality of carbon fibers 54. At least a portion of the woven fabric 52 extends beyond the end of the current collector 11. In the other part of the knitted fabric 52, for example, the part in contact with the current collector 11, the carbon fibers 54 spread apart in a fan-shaped pattern. As shown in FIG. 3B, each separate spread of the carbon fibers 54 provides a relatively uniform distribution of the carbon fibers 54 on the surface of the current collector 11. Similar to the embodiment shown in FIGS. 2A and 2B, as shown in FIGS. 3A and 3B, disposing the carbon fibers in a diverging pattern includes at least one of the current collector 11 and the current collector 13, Helps maintain good electrical contact with the current carrier 31 and provides structural support for at least one of the current collector 11 and current collector 13.

電流キャリア31は、オプションとして金属コーティングを含むことができる。このような金属コーティングは、電流キャリア31の耐久性を向上させ、外部回路と、集電体11及び集電体13の少なくとも一方と、の双方に良好な電気接触を促進する。また、電流キャリア31上の金属コーティングは、電流キャリア31の鉛ぬれを促進する。この鉛ぬれは、電流キャリア31に対する様々な伝導体による半田付け又は電流キャリア31に連結する成形された鉛ストラップ(例えば、溶融鉛を含むモールドに浸された電流キャリアの1以上の部分を冷却することで形成される鉛ストラップ)の使用を可能にする。金属コーティングは、広範囲にわたるあらゆる金属を含むことができ、この一実施形態では、銀を含んで構成される。   The current carrier 31 can optionally include a metal coating. Such a metal coating improves the durability of the current carrier 31 and promotes good electrical contact with both the external circuit and at least one of the current collector 11 and current collector 13. In addition, the metal coating on the current carrier 31 promotes lead wetting of the current carrier 31. This lead wetting cools one or more portions of the current carrier immersed in a mold containing molten lead, such as soldered to the current carrier 31 with various conductors or connected to the current carrier 31. Can be used. The metal coating can include a wide range of metals, and in this embodiment is comprised of silver.

また、集電体板20は、集電体11及び集電体13の少なくとも一方に化学的活性ペーストが配置される。集電体に配置されたペーストの化学反応は、蓄電池のエネルギーの貯蔵及び解放を可能にする。このペーストの組成は、特定の集電体板を正極板又は負極板のいずれで機能させるかにより決定する。   In the current collector plate 20, a chemically active paste is disposed on at least one of the current collector 11 and the current collector 13. The chemical reaction of the paste placed on the current collector allows the storage and release of energy in the battery. The composition of this paste is determined by whether a specific current collector plate functions as a positive electrode plate or a negative electrode plate.

正極集電板及び負極集電体板の夫々となる集電体11及び集電体13の少なくとも一方に適用される化学的活性ペーストは、化学組成に関する条件が実質的に同一であってもよい。例えば、ペーストは、酸化鉛(PbO)を含むことができる。また、適切な他の鉛の酸化物でもよい。さらに、ペーストは、例えば、無鉛のパーセンテージを変化させる、繊維構造、伝導材料、炭素、及び、蓄電池の寿命以上の体積変化率に適合させる増量剤など、様々な添加剤を含むことができる。   The chemically active paste applied to at least one of the current collector 11 and the current collector 13 serving as the positive electrode current collector plate and the negative electrode current collector plate may be substantially the same in terms of chemical composition. . For example, the paste can include lead oxide (PbO). Other suitable lead oxides may also be used. In addition, the paste can include various additives such as, for example, fiber structures, conductive materials, carbon, and bulking agents that adapt to the volume change over the life of the battery, which change the percentage of lead free.

一旦、化学的活性ペーストが集電体11及び集電体13の少なくとも一方に配置されると、正極集電体板及び負極集電体板が形成される。正極集電体板を形成するために、化学的活性ペーストは、ペースト内の硫酸鉛結晶の成長を促進するべく高温及び高湿度水準で選択的に硬化(cure)される。負極集電体板は、硬化することを要としない。任意の乾燥ステップを除き、酸化鉛ペーストは、負極集電体板上に”そのまま”残されてもよい。一旦、正極集電体板及び負極集電体板が調整されると、これらを蓄電池の構成と共に組み立てることができる。   Once the chemically active paste is disposed on at least one of the current collector 11 and the current collector 13, a positive electrode current collector plate and a negative electrode current collector plate are formed. To form the positive current collector plate, the chemically active paste is selectively cured at high temperature and high humidity levels to promote the growth of lead sulfate crystals in the paste. The negative electrode current collector plate does not need to be cured. Except for the optional drying step, the lead oxide paste may be left “as is” on the negative electrode current collector plate. Once the positive and negative current collector plates are adjusted, they can be assembled with the storage battery configuration.

図4は、本発明の例示的な実施形態に従う蓄電池60を示す。蓄電池60は、ハウジング64、負極端子62及び正極端子63を含む。少なくとも1つのセル70は、ハウジング64内に配置される。ただ一つのセル70が必要であると共に、複数のセルは蓄電池60の所定の総ポテンシャルを提供するために、直列又は並行に連結される。夫々のセル70は、セル隔離板66により各隣接セル70から分離される。   FIG. 4 shows a storage battery 60 according to an exemplary embodiment of the present invention. The storage battery 60 includes a housing 64, a negative electrode terminal 62, and a positive electrode terminal 63. At least one cell 70 is disposed within the housing 64. Only one cell 70 is required and a plurality of cells are connected in series or in parallel to provide a predetermined total potential of the storage battery 60. Each cell 70 is separated from each adjacent cell 70 by a cell separator 66.

夫々のセル70は、1以上の負極板72と1以上の正極板76とを交互に含んで構成され、例えば、硫酸及び蒸留水を含む電解液に浸されている。分離板74は、正極板76と負極板72との間の短絡を減少又は除去するために、正極板76と負極板72との間に配置される。陽極板76及び負極板72は、例えば、図1A及び図1Bにおいて図示した集電体板20を含むことができる。負極板72及び陽極板76の少なくとも一方に含まれる集電体11及び集電体13は、公知技術による集電体の炭素発泡体又は他のタイプを含むことができる。   Each cell 70 is configured to include one or more negative plates 72 and one or more positive plates 76 alternately, and is immersed in, for example, an electrolytic solution containing sulfuric acid and distilled water. The separation plate 74 is disposed between the positive electrode plate 76 and the negative electrode plate 72 in order to reduce or eliminate a short circuit between the positive electrode plate 76 and the negative electrode plate 72. The anode plate 76 and the negative electrode plate 72 may include, for example, the current collector plate 20 illustrated in FIGS. 1A and 1B. The current collector 11 and the current collector 13 included in at least one of the negative electrode plate 72 and the positive electrode plate 76 may include a carbon foam or other type of current collector according to a known technique.

蓄電池60の夫々のセル70は、電流キャリア、即ち、図4に示した電流キャリア68及び電流キャリア78を含む。電流キャリア68、78は、様々な異なる手段で構成されることができ、広範囲にわたるあらゆる材料を含んで構成される。例えば、電流キャリア68、78は、図1A、図1B、図2A、図2B、図3A及び図3Bのいずれかに示した電流キャリア31と同様の構成であってもよい。さらに、電流キャリア68、78は、電流キャリア31について詳述したあらゆる材料を含むことができる。本発明の一実施形態において、1以上の電流キャリア68、78は、炭素繊維バンドル、及びより詳細には黒鉛繊維バンドルを含んでいる。本発明の他の実施形態において、1以上の電流キャリア68、78は、炭素繊維織布、及びより詳細には黒鉛繊維織布を含んでいる。   Each cell 70 of the storage battery 60 includes a current carrier, ie, the current carrier 68 and the current carrier 78 shown in FIG. The current carriers 68, 78 can be constructed by a variety of different means and comprise a wide variety of materials. For example, the current carriers 68 and 78 may have the same configuration as the current carrier 31 shown in any of FIGS. 1A, 1B, 2A, 2B, 3A, and 3B. Furthermore, the current carriers 68, 78 can comprise any material detailed for the current carrier 31. In one embodiment of the present invention, the one or more current carriers 68, 78 include carbon fiber bundles, and more particularly graphite fiber bundles. In other embodiments of the present invention, the one or more current carriers 68, 78 include a carbon fiber woven fabric, and more particularly a graphite fiber woven fabric.

夫々のセル70において、全ての正極板76は、電流キャリア68又は電流キャリア78を経て、互いに連結される。同様に、全ての負極板72は、電流キャリア68又は電流キャリア78を経て、互いに連結される。しかしながら、注意しなければならないのは、その他の可能な配線構成で各々のセルを連結することができ、さらに、適切な特定の応用例に従ってもよいということである。本発明の一実施形態において、例えば、セル70の正極板76を隣接セル70又は他のセル70の負極板72に接続して、蓄電池60のセル70を直列に連結することができる。さらに、最も高ポテンシャルセルの正電流キャリアは、正極端子63を形成する蓄電池ハウジング上の電気接点に連結される。同様に、最も低ポテンシャルセルの負電流キャリアは、負極端子62を形成する蓄電池ハウジング上の電気接点に連結される。   In each cell 70, all positive plates 76 are connected to each other via a current carrier 68 or a current carrier 78. Similarly, all the negative plates 72 are connected to each other via the current carrier 68 or the current carrier 78. However, it should be noted that each cell can be connected with other possible wiring configurations, and may be followed according to the appropriate specific application. In one embodiment of the present invention, for example, the positive electrode plate 76 of the cell 70 can be connected to the negative electrode plate 72 of the adjacent cell 70 or another cell 70 and the cells 70 of the storage battery 60 can be connected in series. Further, the positive current carrier of the highest potential cell is coupled to an electrical contact on the storage battery housing that forms the positive terminal 63. Similarly, the negative current carrier of the lowest potential cell is coupled to an electrical contact on the storage battery housing that forms the negative terminal 62.

用語の問題として、対比される特定の電流キャリアを備えるセルに依存して、特定の電流キャリアを正電流キャリア又は負電流キャリアのいずれとみなすかを決定する。例えば、特定の電流キャリアは、1つのセルが有する正電流キャリア(即ち、セルの正極板から出る電流キャリア)であり、同一の電流キャリアが、他のセルが有する負電流キャリア(即ち、他のセルの負極板から出る電流キャリア)でもある。図4において、電流キャリア78は、セル70が有する負電流キャリアである。しかしながら、電流キャリア78は、セル70の隣接セルが有する正電流キャリアでもある。   As a matter of terminology, depending on the cell with the particular current carrier being compared, it is determined whether the particular current carrier is considered a positive current carrier or a negative current carrier. For example, a specific current carrier is a positive current carrier that one cell has (that is, a current carrier that exits from the positive plate of the cell), and the same current carrier has a negative current carrier that another cell has (that is, another current carrier). Current carrier coming out of the negative electrode plate of the cell). In FIG. 4, a current carrier 78 is a negative current carrier that the cell 70 has. However, the current carrier 78 is also a positive current carrier that a cell adjacent to the cell 70 has.

集電体板の正電流キャリア及び負電流キャリアと、蓄電池60のセルとは、様々な異なる手段で相互に連結される。例えば、電流キャリアは、2以上の電流キャリアを互いに接続するために、半田付けされ、締着され、編まれ、重ね継ぎされ、ねじられ、又はこれらのあらゆる組み合わせが実施される。さらに、1以上の電流キャリアは、成形鉛ストラップ、テープ、結束、ナット、クランプ、又はあらゆる適切な結合装置又は方法で、互いに接続される。   The positive and negative current carriers of the current collector plate and the cells of the storage battery 60 are connected to each other by various different means. For example, the current carriers are soldered, clamped, knitted, lap jointed, twisted, or any combination thereof, to connect two or more current carriers together. Further, the one or more current carriers are connected to each other by molded lead straps, tapes, ties, nuts, clamps, or any suitable coupling device or method.

耐食性、高表面積、伝導率又は低重量を有する材料が要求される場合に、本発明の集電体及び電流キャリアは多種多様なあらゆる用途において有用である。1つの可能な用途において、例えば、本発明の集電体及び電流キャリアは、蓄電池(例えば、鉛酸蓄電池)における集電体板の構成要素として用いられることができる。これらの集電体及び電流キャリアは、蓄電池の化学的活性構成要素を支持することができ、及び、蓄電池の構成要素と端子との間における電流の流れを促進する。   When materials with corrosion resistance, high surface area, conductivity or low weight are required, the current collectors and current carriers of the present invention are useful in a wide variety of applications. In one possible application, for example, the current collector and current carrier of the present invention can be used as a component of a current collector plate in a storage battery (eg, a lead acid battery). These current collectors and current carriers can support the chemically active components of the storage battery and facilitate the flow of current between the storage battery components and the terminals.

集電体11、13及び電流キャリア31、68、78が、炭素を含むことができるので(例えば、鉛/黒鉛の発泡体及び炭素/黒鉛の繊維)、これらの要素は、鉛酸蓄電池において、硫酸及び正極板のアノード電位に曝されても、腐食に対する耐性がある。その結果、この蓄電池は、鉛/黒鉛発泡体の集電体及び炭素/黒鉛の電流キャリアの少なくとも一方を有しない蓄電池と比較して、非常に長い有効寿命を提供する。   Since the current collectors 11, 13 and the current carriers 31, 68, 78 can include carbon (eg, lead / graphite foam and carbon / graphite fibers), these elements are used in lead acid batteries, It is resistant to corrosion even when exposed to sulfuric acid and the anode potential of the positive plate. As a result, this battery provides a much longer useful life as compared to a battery without at least one of a lead / graphite foam current collector and a carbon / graphite current carrier.

また、集電体11、13の炭素発泡体は、大表面積を夫々の集電体11、13に提供する孔14の網目を含む。炭素発泡体で構成される集電体は、従来の鉛集電体が提供する表面積総量の2000倍以上を示す。集電体11、13が有する大表面積は、大きい比エネルギー及び電力値を有する蓄電池に変性させる。例えば、開放セル、多孔性の網目及び炭素発泡体材料の比較的小さな孔により、正極板及び負極板の化学的活性ペーストは、集電体11、13の伝導性の炭素材料に緊密に集積化される。従って、特定の反応部位における化学的活性ペーストで生成される電子は、集電体11、13の伝導性炭素発泡体に遭遇する前にペーストを介して短い距離だけ進行する。例えば、この電流は、電流キャリア31の末広がりした複数の伝導性繊維により伝達される。   Further, the carbon foam of the current collectors 11 and 13 includes a network of holes 14 that provide a large surface area to each of the current collectors 11 and 13. A current collector made of carbon foam exhibits 2000 times or more the total surface area provided by a conventional lead current collector. The large surface area of the current collectors 11 and 13 is denatured into a storage battery having a large specific energy and power value. For example, due to the open cells, the porous mesh and the relatively small holes in the carbon foam material, the chemically active paste of the positive and negative plates is tightly integrated into the conductive carbon material of the current collectors 11 and 13. Is done. Thus, the electrons generated in the chemically active paste at a particular reaction site travel a short distance through the paste before encountering the conductive carbon foam of the current collector 11,13. For example, this current is transmitted by a plurality of conductive fibers spread out at the end of the current carrier 31.

その結果、集電体11、13を有する炭素発泡体の蓄電池及び炭素/黒鉛繊維の電流キャリア31は、改良された比エネルギー及び電力値を提供する。言い換えれば、これらの蓄電池は、負荷下に配置すると、従来の電流キャリアを有する鉛集電体又は黒鉛板集電体のいずれかを含んで構成される蓄電池よりも、所定の閾値を超える電圧を長期間、維持する。また、これらの蓄電池は、鉛集電体又は黒鉛板集電体のいずれかを含んで構成される蓄電池よりも急速に放電することができる。   As a result, the carbon foam accumulator with current collectors 11, 13 and the carbon / graphite fiber current carrier 31 provide improved specific energy and power values. In other words, when these storage batteries are placed under load, they have a voltage exceeding a predetermined threshold, compared to conventional storage batteries that include either a lead current collector having a current carrier or a graphite plate current collector. Maintain for a long time. Moreover, these storage batteries can discharge more rapidly than the storage battery comprised including either a lead electrical power collector or a graphite plate electrical power collector.

本発明の蓄電池により提供される増加した比出力値は、充電時間を減少させるように変性させることができる。このため、この蓄電池は、充電エネルギーを制限された時間だけ利用可能な用途に適している。例えば、車両において、多くのエネルギーは、通常の制動の間に失われる。この制動エネルギーは、取り戻すことができ、及び、例えば、ハイブリッド車の蓄電池の充電に用いることができる。しかし、制動エネルギーは、短期間の間(即ち、制動が生じている間)にだけ有効である。この充電時間を減少させる観点から、本発明の蓄電池を、例えば、制動エネルギーを蓄積する効率的な手段として提供することができる。   The increased specific power value provided by the storage battery of the present invention can be modified to reduce the charging time. For this reason, this storage battery is suitable for an application in which charging energy can be used for a limited time. For example, in a vehicle, much energy is lost during normal braking. This braking energy can be recovered and used, for example, to charge a storage battery of a hybrid vehicle. However, the braking energy is only valid for a short period of time (i.e. while braking is occurring). From the viewpoint of reducing the charging time, the storage battery of the present invention can be provided as an efficient means for storing braking energy, for example.

また、炭素発泡体の集電体が多孔性であるといった特性は、エネルギー蓄積装置の化学的活性ペーストを維持するための改良された基材を生成する。炭素発泡体の集電体における孔にペーストを染み込ませることにより、ペーストが、集電体から分離する可能性が小さくなる。この特性は、振動が一般的な車両及び他の用途において重要である。   Also, the property that the carbon foam current collector is porous produces an improved substrate for maintaining the chemically active paste of the energy storage device. By soaking the paste in the holes in the current collector of the carbon foam, the possibility that the paste is separated from the current collector is reduced. This characteristic is important in vehicles and other applications where vibration is common.

さらに、炭素繊維で構成される電流キャリア及び略0.6g/cm未満の密度を有する炭素発泡体の集電体を含むことにより、蓄電池は、鉛集電体又は黒鉛板集電体のいずれかを含んで構成される蓄電池よりも、その重量を大幅に減少することができる。 Further, by including a current carrier composed of carbon fiber and a carbon foam current collector having a density of less than about 0.6 g / cm 3 , the storage battery can be either a lead current collector or a graphite plate current collector. The weight of the battery can be greatly reduced as compared with a storage battery including such a battery.

当業者によれば、本発明の範囲を逸脱することなく、前述した電流キャリア若しくはエネルギー蓄積装置を様々に修正し及び変形できることは明らかである。本発明の他の実施形態は、当業者によれば、本願明細書を考慮し、ここに開示した本発明の実行から明らかである。明細書及び各実施形態は、例示として用いることだけを意図しており、本発明の真の範囲は、特許請求の範囲及びそれらの均等物により画定される。   It will be apparent to those skilled in the art that various modifications and variations can be made to the current carrier or energy storage device described above without departing from the scope of the present invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification and embodiments are intended to be used as examples only, with the true scope of the present invention being defined by the claims and their equivalents.

Aは、本発明の一実施形態に従う集電体板の図的記述、Bは、図1Aの1B−1B線に沿った集電体板の断面図A is a schematic description of a current collector plate according to an embodiment of the present invention, and B is a cross-sectional view of the current collector plate along line 1B-1B in FIG. 1A. Aは、本発明の一実施形態に従う電流キャリアの図的記述、Bは、本発明の一実施形態に従う集電体及び電流キャリアの図的記述A is a graphical description of a current carrier according to an embodiment of the invention, and B is a graphical description of a current collector and a current carrier according to an embodiment of the invention. Aは、本発明の一実施形態に従う他の電流キャリアの図的記述、Bは、本発明の一実施形態に従う他の集電体及び電流キャリアの図的記述A is a graphical description of other current carriers according to one embodiment of the present invention, and B is a graphical description of other current collectors and current carriers according to one embodiment of the present invention. 本発明の一実施形態に従う蓄電池の一部切り欠き図1 is a partially cutaway view of a storage battery according to an embodiment of the present invention.

Claims (27)

第1集電体と、
該第1集電体に連結される結合層と、
前記第1集電体と前記結合層との間に少なくとも部分的に配置される少なくとも1つの電流キャリアと、
を含んで構成されることを特徴とするエネルギー蓄積装置の集電体板。
A first current collector;
A coupling layer coupled to the first current collector;
At least one current carrier disposed at least partially between the first current collector and the coupling layer;
A current collector plate of an energy storage device, comprising:
前記結合層に連結される第2集電体をさらに含むことを特徴とする請求項1記載の集電体板。   The current collector plate according to claim 1, further comprising a second current collector connected to the coupling layer. 前記第1集電体及び前記第2集電体の少なくとも一方が、炭素発泡体であることを特徴とする請求項2記載の集電体板。   The current collector plate according to claim 2, wherein at least one of the first current collector and the second current collector is a carbon foam. 前記少なくとも1つの電流キャリアが、硼素、炭素及び伝導性ポリマーの少なくとも1つを含むことを特徴とする請求項1記載の集電体板。   The current collector plate of claim 1, wherein the at least one current carrier includes at least one of boron, carbon, and a conductive polymer. 前記少なくとも1つの電流キャリアが、炭素繊維布、炭素繊維テープ、不織炭素繊維布、炭素繊維、複数の炭素繊維、及び炭素繊維バンドルの少なくとも1つを含むことを特徴とする請求項1記載の集電体板。   The said at least one current carrier comprises at least one of a carbon fiber cloth, a carbon fiber tape, a non-woven carbon fiber cloth, a carbon fiber, a plurality of carbon fibers, and a carbon fiber bundle. Current collector plate. 前記少なくとも1つの電流キャリアが、炭素繊維バンドルを含むことを特徴とする請求項1記載の集電体板。   The current collector plate of claim 1, wherein the at least one current carrier includes a carbon fiber bundle. 前記炭素繊維が、黒鉛繊維であることを特徴とする請求項6記載の集電体板。   The current collector plate according to claim 6, wherein the carbon fibers are graphite fibers. 前記炭素繊維バンドルが、前記第1集電体と前記結合層との間に配置される第1セクションと、前記集電体板から突出する第2セクションと、を含むことを特徴とする請求項6記載の集電体板。   The carbon fiber bundle includes a first section disposed between the first current collector and the bonding layer, and a second section protruding from the current collector plate. 6. The current collector plate according to 6. 前記第1セクションにおける前記炭素繊維の少なくとも一部分が、夫々離れて広がることを特徴とする請求項8記載の集電体板。   The current collector plate according to claim 8, wherein at least a part of the carbon fibers in the first section spread apart from each other. 前記少なくとも1つの電流キャリアが、炭素繊維布を含むことを特徴とする請求項1記載の集電体板。   The current collector plate of claim 1, wherein the at least one current carrier comprises a carbon fiber cloth. 前記炭素繊維布が、前記第1集電体と前記結合層との間に配置される第1セクションと、前記集電体板から突出する第2セクションと、を含むことを特徴とする請求項10記載の集電体板。   The carbon fiber cloth includes a first section disposed between the first current collector and the bonding layer, and a second section protruding from the current collector plate. The current collector plate according to 10. 前記第1セクションにおける前記炭素繊維布の少なくとも一部分が、夫々離れて広がる炭素繊維を含むことを特徴とする請求項11記載の集電体板。   The current collector plate according to claim 11, wherein at least a part of the carbon fiber cloth in the first section includes carbon fibers spreading apart from each other. 前記第2セクションにおける前記炭素繊維布の少なくとも一部分が、金属コーティングを含むことを特徴とする請求項11記載の集電体板。   The current collector plate of claim 11, wherein at least a portion of the carbon fiber cloth in the second section includes a metal coating. 前記結合層が、ポリマーを含むことを特徴とする請求項1記載の集電体板。   The current collector plate according to claim 1, wherein the bonding layer includes a polymer. 少なくとも1つのセルを含んで構成される蓄電池であって、
該少なくとも1つのセルが、
炭素発泡体の集電体を含む少なくとも1つの正集電体板と、
該炭素発泡体の集電体に連結される少なくとも1つの電流キャリアと、
少なくとも1つの負集電体板と、
を含むことを特徴とする蓄電池。
A storage battery comprising at least one cell,
The at least one cell is
At least one positive current collector plate comprising a carbon foam current collector;
At least one current carrier coupled to the carbon foam current collector;
At least one negative current collector plate;
A storage battery comprising:
前記少なくとも1つの電流キャリアが、炭素、硼素及び伝導性ポリマーの少なくとも1つを含むことを特徴とする請求項15記載の蓄電池。   The storage battery of claim 15, wherein the at least one current carrier includes at least one of carbon, boron, and a conductive polymer. 前記少なくとも1つの電流キャリアが、少なくとも1つの黒鉛繊維を含むことを特徴とする請求項16記載の蓄電池。   The storage battery according to claim 16, wherein the at least one current carrier includes at least one graphite fiber. 前記少なくとも1つの電流キャリアが、黒鉛繊維布を含むことを特徴とする請求項16記載の蓄電池。   The storage battery of claim 16, wherein the at least one current carrier includes a graphite fiber cloth. 前記少なくとも1つの電流キャリアが、前記第1炭素発泡体の集電体から離れて延びることを特徴とする請求項15記載の蓄電池。   16. The storage battery of claim 15, wherein the at least one current carrier extends away from the current collector of the first carbon foam. ハウジングと、
該ハウジングに連結される正極端子及び負極端子と、
前記ハウジング内に配置される電解液と、
前記ハウジング内に配置される少なくとも1つのセルであって、負集電体、負電流キャリア、及び、該負集電体に配置される鉛を基礎にした化学的活性ペーストを含む少なくとも1つの負集電体板と、正集電体、正電流キャリア、及び、該正集電体に配置される鉛を基礎にした化学的活性ペーストを含む少なくとも1つの正集電体板と、を含み、前記負電流キャリア及び前記正電流キャリアの少なくとも一方が炭素を含む前記少なくとも1つのセルと、
を含んで構成されることを特徴とする鉛酸蓄電池。
A housing;
A positive terminal and a negative terminal connected to the housing;
An electrolyte disposed in the housing;
At least one cell disposed within the housing, the negative current collector comprising at least one negative current carrier, a negative current carrier, and a lead based chemically active paste disposed on the negative current collector. A current collector plate and at least one positive current collector plate comprising a positive current collector, a positive current carrier, and a lead-based chemically active paste disposed on the positive current collector; The at least one cell in which at least one of the negative current carrier and the positive current carrier comprises carbon;
Lead acid storage battery characterized by comprising.
前記正電流キャリア及び前記負電流キャリアの少なくとも一方が、黒鉛繊維バンドルを含むことを特徴とする請求項20記載の鉛酸蓄電池。   21. The lead acid storage battery according to claim 20, wherein at least one of the positive current carrier and the negative current carrier includes a graphite fiber bundle. 前記正電流キャリア及び前記負電流キャリアの少なくとも一方が、黒鉛繊維布を含むことを特徴とする請求項20記載の鉛酸蓄電池。   21. The lead acid storage battery according to claim 20, wherein at least one of the positive current carrier and the negative current carrier includes a graphite fiber cloth. 前記少なくとも1つのセルが複数の正集電体板をさらに含み、該複数の正集電体板の前記複数の正電流キャリアが、夫々連結されることを特徴とする請求項20記載の鉛酸蓄電池。   The lead acid according to claim 20, wherein the at least one cell further includes a plurality of positive current collector plates, and the plurality of positive current carriers of the plurality of positive current collector plates are respectively connected. Storage battery. 前記少なくとも1つのセルが複数の負集電体板をさらに含み、該複数の負集電体板の前記複数の負電流キャリアが、夫々連結されることを特徴とする請求項23記載の鉛酸蓄電池。   The lead acid according to claim 23, wherein the at least one cell further includes a plurality of negative current collector plates, and the plurality of negative current carriers of the plurality of negative current collector plates are respectively connected. Storage battery. 第2セルをさらに含んで構成され、前記少なくとも1つのセルの少なくとも1つの正電流キャリアが、少なくとも1つの正極端子及び前記第2セルの負電流キャリアに連結されることを特徴とする請求項20記載の鉛酸蓄電池。   21. The apparatus according to claim 20, further comprising a second cell, wherein at least one positive current carrier of the at least one cell is connected to at least one positive terminal and a negative current carrier of the second cell. Lead acid storage battery of description. 前記少なくとも1つの正集電体板が、炭素発泡体の正集電体を含むことを特徴とする請求項20記載の鉛酸蓄電池。   21. The lead acid battery according to claim 20, wherein the at least one positive current collector plate includes a carbon foam positive current collector. 前記少なくとも1つの負集電体板が、炭素発泡体の負集電体を含むことを特徴とする請求項20記載の鉛酸蓄電池。   21. The lead acid storage battery of claim 20, wherein the at least one negative current collector plate includes a carbon foam negative current collector.
JP2008504307A 2005-03-31 2006-03-29 Current carrier of energy storage device Pending JP2008536267A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66677105P 2005-03-31 2005-03-31
PCT/US2006/011448 WO2006105186A2 (en) 2005-03-31 2006-03-29 Current carrier for an energy storage device

Publications (1)

Publication Number Publication Date
JP2008536267A true JP2008536267A (en) 2008-09-04

Family

ID=36933333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008504307A Pending JP2008536267A (en) 2005-03-31 2006-03-29 Current carrier of energy storage device

Country Status (6)

Country Link
US (2) US20090233175A1 (en)
EP (1) EP1866988B1 (en)
JP (1) JP2008536267A (en)
CN (1) CN101167201A (en)
AT (1) ATE517445T1 (en)
WO (1) WO2006105186A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035928A1 (en) * 2014-09-03 2016-03-10 (주) 루트제이드 Lead tab of fibrous secondary battery

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8399134B2 (en) * 2007-11-20 2013-03-19 Firefly Energy, Inc. Lead acid battery including a two-layer carbon foam current collector
JP6067377B2 (en) 2009-12-24 2017-01-25 アークアクティブ リミテッド Improvements in the construction of lead acid batteries.
BR112014022226B1 (en) 2012-03-08 2021-03-16 Arcactive Limited lead-acid battery or cell
FR2993098B1 (en) 2012-07-09 2019-11-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives CURRENT COLLECTOR FOR LITHIUM BATTERY
JP6434412B2 (en) * 2012-09-20 2018-12-05 アークアクティブ リミテッド Lead acid battery or lead acid cell
JP2018505518A (en) 2014-12-11 2018-02-22 アークアクティブ リミテッド Fabric electrode manufacturing method and machine
KR102124712B1 (en) 2015-07-07 2020-06-18 애플 인크. Bipolar battery design
CN117638425A (en) * 2016-09-22 2024-03-01 苹果公司 Current collector for stacked cell design
CN110546790A (en) 2017-04-21 2019-12-06 苹果公司 Battery cell with electrolyte diffusion material
WO2018213601A2 (en) 2017-05-19 2018-11-22 Cougeller Research Llc Rechargeable battery with anion conducting polymer
US11018343B1 (en) 2017-06-01 2021-05-25 Apple Inc. Current collector surface treatment
US10923728B1 (en) * 2017-06-16 2021-02-16 Apple Inc. Current collector structures for rechargeable battery
US10916741B1 (en) 2017-08-08 2021-02-09 Apple Inc. Metallized current collector devices and materials
US11189834B1 (en) 2017-08-09 2021-11-30 Apple Inc. Multiple electrolyte battery cells
US11862801B1 (en) 2017-09-14 2024-01-02 Apple Inc. Metallized current collector for stacked battery
US11335977B1 (en) 2017-09-21 2022-05-17 Apple Inc. Inter-cell connection materials
US11043703B1 (en) * 2017-09-28 2021-06-22 Apple Inc. Stacked battery components and configurations
US10916796B1 (en) 2018-02-02 2021-02-09 Apple Inc. Selective charging matrix for rechargeable batteries
US11677120B2 (en) 2020-09-08 2023-06-13 Apple Inc. Battery configurations having through-pack fasteners
US11588155B1 (en) 2020-09-08 2023-02-21 Apple Inc. Battery configurations for cell balancing
US11600891B1 (en) 2020-09-08 2023-03-07 Apple Inc. Battery configurations having balanced current collectors
US11923494B2 (en) 2020-09-08 2024-03-05 Apple Inc. Battery configurations having through-pack fasteners

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165561A (en) * 1988-12-17 1990-06-26 Furukawa Battery Co Ltd:The Electrode substrate for lead storage battery and manufacture thereof
JPH02165562A (en) * 1988-12-17 1990-06-26 Furukawa Battery Co Ltd:The Plate for lead storage battery and manufacture thereof
JPH03272565A (en) * 1990-03-20 1991-12-04 Sanyo Electric Co Ltd Organic electrolyte battery
JPH06275267A (en) * 1993-03-22 1994-09-30 Toray Ind Inc Electrode, battery using the same, and its manufacture
JP2003521101A (en) * 2000-01-26 2003-07-08 ライオン コンパクト エナジー, インコーポレイテッド Carbon fiber for dual graphite battery
WO2004004027A2 (en) * 2002-06-28 2004-01-08 Firefly Energy Inc. Battery including carbon foam current collectors
WO2004062005A2 (en) * 2002-12-20 2004-07-22 Firefly Energy Inc. Composite material and current collector for battery

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2843649A (en) * 1956-11-30 1958-07-15 Myron A Coler Moldable miniature battery
US3188242A (en) * 1959-01-22 1965-06-08 Union Carbide Corp Fuel cell battery containing flat carbon electrodes
US3021379A (en) * 1960-04-21 1962-02-13 Roland D Jackel Ceramic separators for primary batteries
DE1252292B (en) * 1964-10-02 1967-10-19 VARTA AKTIENGESELLSCHAFT, Frankfurt/M Device for covering electrodes for accumulators with separator arenal
US3510359A (en) * 1967-03-22 1970-05-05 Standard Oil Co Fused salt electrochemical battery with inorganic separator
US3565694A (en) * 1969-03-17 1971-02-23 Yardney International Corp Bipolar electrode and method of making same
US3597829A (en) * 1969-03-18 1971-08-10 Us Army Method of making a nickel hydroxide electrode
US3635676A (en) * 1969-11-05 1972-01-18 Atomic Energy Commission Method for increasing the strength of carbon foam
US3832426A (en) * 1972-12-19 1974-08-27 Atomic Energy Commission Syntactic carbon foam
US3973991A (en) * 1973-02-13 1976-08-10 Nl Industries, Inc. Light-weight lead-acid battery with laminated electrodes
CA1051512A (en) * 1973-05-23 1979-03-27 Royce E. Biddick Bipolar electrode using electrically conductive plastic substrate containing vitreous carbon
US3960770A (en) * 1973-08-03 1976-06-01 The Dow Chemical Company Process for preparing macroporous open-cell carbon foam from normally crystalline vinylidene chloride polymer
US4152825A (en) * 1974-06-10 1979-05-08 Polaroid Corporation Method of making a flat battery
US4011374A (en) * 1975-12-02 1977-03-08 The United States Of America As Represented By The United States Energy Research And Development Administration Porous carbonaceous electrode structure and method for secondary electrochemical cell
US4048715A (en) * 1976-01-27 1977-09-20 The United States Of America As Represented By The United States Energy Research And Development Administration Method of preparing porous, active material for use in electrodes of secondary electrochemical cells
US4134192A (en) * 1976-10-12 1979-01-16 Gould Inc. Composite battery plate grid
US4188464A (en) * 1978-07-31 1980-02-12 Hooker Chemicals & Plastics Corp. Bipolar electrode with intermediate graphite layer and polymeric layers
US4275130A (en) * 1979-09-27 1981-06-23 California Institute Of Technology Bipolar battery construction
US4339322A (en) * 1980-04-21 1982-07-13 General Electric Company Carbon fiber reinforced fluorocarbon-graphite bipolar current collector-separator
US4317872A (en) * 1980-04-25 1982-03-02 Gould Inc. Lead acid battery with gel electrolyte
US4374186A (en) * 1981-04-29 1983-02-15 The United States Of America As Represented By The Secretary Of The Navy Polymer packaged cell in a sack
FR2520938A1 (en) * 1982-02-01 1983-08-05 Europ Accumulateurs FABRIC FOR MANUFACTURING A GRID FOR A PLATE OF ACCUMULATOR, METHOD FOR MANUFACTURING SUCH A GRID, PLATE OF ACCUMULATOR AND ACCUMULATOR COMPRISING SUCH MATERIAL
FR2543968B1 (en) * 1983-04-07 1985-06-21 Siderurgie Fse Inst Rech PACKAGING OF CARBON-RICH MATERIAL AND METHOD OF MAKING
US4717633A (en) * 1985-11-25 1988-01-05 Eric Hauser Electrode structure for lightweight storage battery
DE3603373A1 (en) * 1986-02-05 1987-08-06 Basf Ag METHOD FOR THE ELECTROCHEMICAL COATING OF CARBON FIBERS
US4758473A (en) * 1986-11-20 1988-07-19 Electric Power Research Institute, Inc. Stable carbon-plastic electrodes and method of preparation thereof
GB8630857D0 (en) * 1986-12-24 1987-02-04 Sylva Ind Ltd Electrical contact tab
US4900643A (en) * 1988-04-08 1990-02-13 Globe-Union Inc. Lead acid bipolar battery plate and method of making the same
US4832870A (en) * 1988-06-20 1989-05-23 The United States Department Of Energy Electrically conductive composite material
US5017446A (en) * 1989-10-24 1991-05-21 Globe-Union Inc. Electrodes containing conductive metal oxides
FR2662545B1 (en) * 1990-05-25 1992-08-28 Sorapec COLLECTOR SUPPORT FOR LEAD / LEAD OXIDE BATTERY ELECTRODES.
US5106709A (en) * 1990-07-20 1992-04-21 Globe-Union Inc. Composite substrate for bipolar electrode
US5455206A (en) * 1990-09-14 1995-10-03 Kaun; Thomas D. Corrosion resistant ceramic materials
US5691087A (en) * 1991-03-26 1997-11-25 Gnb Technologies, Inc. Sealed lead-acid cells and batteries
US5667917A (en) * 1991-09-10 1997-09-16 Idaho Research Foundation Electrode with conductive fillers
US5401596A (en) * 1991-10-14 1995-03-28 Stoilov; Georgi T. Hermetically sealed dry accumulator
US5200281A (en) * 1991-11-18 1993-04-06 Westinghouse Electric Corp. Sintered bipolar battery plates
FR2684092B1 (en) * 1991-11-21 1994-03-04 Pechiney Recherche PROCESS FOR THE PREPARATION OF LARGE SPECIFIC METAL CARBIDES FROM ACTIVATED CARBON FOAMS.
US5223352A (en) * 1992-01-07 1993-06-29 Rudolph V. Pitts Lead-acid battery with dimensionally isotropic graphite additive in active material
US5260855A (en) * 1992-01-17 1993-11-09 Kaschmitter James L Supercapacitors based on carbon foams
US5268395A (en) * 1992-10-13 1993-12-07 Martin Marietta Energy Systems, Inc. Microcellular carbon foam and method
US5208003A (en) * 1992-10-13 1993-05-04 Martin Marietta Energy Systems, Inc. Microcellular carbon foam and method
CA2110097C (en) * 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
US5593797A (en) * 1993-02-24 1997-01-14 Trojan Battery Company Electrode plate construction
US5426006A (en) * 1993-04-16 1995-06-20 Sandia Corporation Structural micro-porous carbon anode for rechargeable lithium-ion batteries
US5336274A (en) * 1993-07-08 1994-08-09 Regents Of The University Of California Method for forming a cell separator for use in bipolar-stack energy storage devices
US5395709A (en) * 1993-10-18 1995-03-07 Westinghouse Electric Corporation Carbon bipolar walls for batteries and method for producing same
US5411818A (en) * 1993-10-18 1995-05-02 Westinghouse Electric Corporation Perimeter seal on bipolar walls for use in high temperature molten electrolyte batteries
US5712054A (en) * 1994-01-06 1998-01-27 Electrion, Inc. Rechargeable hydrogen battery
US5429893A (en) * 1994-02-04 1995-07-04 Motorola, Inc. Electrochemical capacitors having dissimilar electrodes
US5508131A (en) * 1994-04-07 1996-04-16 Globe-Union Inc. Injection molded battery containment for bipolar batteries
US5543247A (en) * 1994-04-28 1996-08-06 Northrop Grumman Corporation High temperature cell electrical insulation
JP3282443B2 (en) * 1994-06-09 2002-05-13 住友電気工業株式会社 Metallic non-woven fabric and its manufacturing method
US5512390A (en) * 1994-07-21 1996-04-30 Photran Corporation Light-weight electrical-storage battery
US5498489A (en) * 1995-04-14 1996-03-12 Dasgupta; Sankar Rechargeable non-aqueous lithium battery having stacked electrochemical cells
US5705259A (en) * 1994-11-17 1998-01-06 Globe-Union Inc. Method of using a bipolar electrochemical storage device
US5441824A (en) * 1994-12-23 1995-08-15 Aerovironment, Inc. Quasi-bipolar battery requiring no casing
US5626977A (en) * 1995-02-21 1997-05-06 Regents Of The University Of California Composite carbon foam electrode
JP3262704B2 (en) * 1995-04-24 2002-03-04 シャープ株式会社 Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
US5636437A (en) * 1995-05-12 1997-06-10 Regents Of The University Of California Fabricating solid carbon porous electrodes from powders
US5888469A (en) * 1995-05-31 1999-03-30 West Virginia University Method of making a carbon foam material and resultant product
US5738907A (en) * 1995-08-04 1998-04-14 Eltech Systems Corporation Conductive metal porous sheet production
US5595840A (en) * 1995-11-27 1997-01-21 Gnb Technologies, Inc. Method of manufacturing modular molded components for a bipolar battery and the resulting bipolar battery
AU1147597A (en) * 1995-12-07 1997-06-27 Sandia Corporation Methods of preparation of carbon materials for use as electrodes in rechargeable batteries
US5766797A (en) * 1996-11-27 1998-06-16 Medtronic, Inc. Electrolyte for LI/SVO batteries
US5800946A (en) * 1996-12-06 1998-09-01 Grosvenor; Victor L. Bipolar lead-acid battery plates
US6077464A (en) * 1996-12-19 2000-06-20 Alliedsignal Inc. Process of making carbon-carbon composite material made from densified carbon foam
US5935724A (en) * 1997-04-04 1999-08-10 Wilson Greatbatch Ltd. Electrochemical cell having multiplate electrodes with differing discharge rate regions
US6120930A (en) * 1997-07-25 2000-09-19 3M Innovative Properties Corporation Rechargeable thin-film electrochemical generator
US6033506A (en) * 1997-09-02 2000-03-07 Lockheed Martin Engery Research Corporation Process for making carbon foam
US6037032A (en) * 1997-09-02 2000-03-14 Lockheed Martin Energy Research Corp. Pitch-based carbon foam heat sink with phase change material
US6045943A (en) * 1997-11-04 2000-04-04 Wilson Greatbatch Ltd. Electrode assembly for high energy density batteries
US6060198A (en) * 1998-05-29 2000-05-09 Snaper; Alvin A. Electrochemical battery structure and method
JP2002519214A (en) * 1998-06-29 2002-07-02 エルテック・システムズ・コーポレーション Manufacturing method of three-dimensional net-like sheet
US6248467B1 (en) * 1998-10-23 2001-06-19 The Regents Of The University Of California Composite bipolar plate for electrochemical cells
US6193871B1 (en) * 1998-12-09 2001-02-27 Eagle-Picher Industries, Inc. Process of forming a nickel electrode
US6183854B1 (en) * 1999-01-22 2001-02-06 West Virginia University Method of making a reinforced carbon foam material and related product
US6602631B1 (en) * 1999-01-26 2003-08-05 Lynntech Power Systems, Ltd. Bonding electrochemical cell components
US6379845B1 (en) * 1999-04-06 2002-04-30 Sumitomo Electric Industries, Ltd. Conductive porous body and metallic porous body and battery plate both produced by using the same
US6245461B1 (en) * 1999-05-24 2001-06-12 Daimlerchrysler Battery package having cubical form
US6528204B1 (en) * 1999-09-22 2003-03-04 Koninklijke Philips Electronics N.V. Lithium secondary battery comprising individual cells with one another, as well as watches, computers and communication equipment provided with a battery
US6576365B1 (en) * 1999-12-06 2003-06-10 E.C.R. - Electro Chemical Research Ltd. Ultra-thin electrochemical energy storage devices
US6566004B1 (en) * 2000-08-31 2003-05-20 General Motors Corporation Fuel cell with variable porosity gas distribution layers
JP2002083595A (en) * 2000-09-06 2002-03-22 Mitsubishi Gas Chem Co Inc Coke, artificial graphite, method of manufacturing carbon material for negative electrode of nonaqueous solvent secondary battery, and pitch composition
JP3727840B2 (en) * 2000-09-29 2005-12-21 株式会社東芝 Battery pack and portable electronic device
DE10058337A1 (en) * 2000-11-24 2002-05-29 Gen Motors Corp Sheet product used as a bipolar plate in a fuel cell or in an electrolyzer has a conductive corrosion resistant protective coating made from a metal oxide on one side.
US7325064B2 (en) * 2001-07-17 2008-01-29 International Business Machines Corporation Distributed locking protocol with asynchronous token prefetch and relinquish
JP4619000B2 (en) * 2001-07-27 2011-01-26 マサチューセッツ インスティテュート オブ テクノロジー Battery structure, self-organizing structure, and related method
US6617072B2 (en) * 2001-11-27 2003-09-09 Ovonic Battery Company, Inc. Positive active electrode composition with graphite additive
JP2005521991A (en) * 2002-02-07 2005-07-21 ケイヴィージー テクノロジーズ インコーポレイテッド Lead acid battery having gelled electrolyte formed by filtration action of absorbent separator, electrolyte thereof, and absorbent separator
US6706079B1 (en) * 2002-05-03 2004-03-16 C And T Company, Inc. Method of formation and charge of the negative polarizable carbon electrode in an electric double layer capacitor
US7341806B2 (en) * 2002-12-23 2008-03-11 Caterpillar Inc. Battery having carbon foam current collector
US20050084762A1 (en) * 2003-10-15 2005-04-21 Vaccaro Frank J. Hybrid gelled-electrolyte valve-regulated lead-acid battery
US20060068294A1 (en) * 2004-09-29 2006-03-30 C&D Charter Holdings, Inc. Lead acid battery with gelled electrolyte contained within compressed absorbent separator mat and method of making the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165561A (en) * 1988-12-17 1990-06-26 Furukawa Battery Co Ltd:The Electrode substrate for lead storage battery and manufacture thereof
JPH02165562A (en) * 1988-12-17 1990-06-26 Furukawa Battery Co Ltd:The Plate for lead storage battery and manufacture thereof
JPH03272565A (en) * 1990-03-20 1991-12-04 Sanyo Electric Co Ltd Organic electrolyte battery
JPH06275267A (en) * 1993-03-22 1994-09-30 Toray Ind Inc Electrode, battery using the same, and its manufacture
JP2003521101A (en) * 2000-01-26 2003-07-08 ライオン コンパクト エナジー, インコーポレイテッド Carbon fiber for dual graphite battery
WO2004004027A2 (en) * 2002-06-28 2004-01-08 Firefly Energy Inc. Battery including carbon foam current collectors
WO2004062005A2 (en) * 2002-12-20 2004-07-22 Firefly Energy Inc. Composite material and current collector for battery
JP2006511917A (en) * 2002-12-20 2006-04-06 ファイアフライ エナジー インコーポレイテッド Composite material and current collector for battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035928A1 (en) * 2014-09-03 2016-03-10 (주) 루트제이드 Lead tab of fibrous secondary battery

Also Published As

Publication number Publication date
US20120021281A1 (en) 2012-01-26
ATE517445T1 (en) 2011-08-15
WO2006105186A3 (en) 2007-04-12
EP1866988B1 (en) 2011-07-20
WO2006105186A2 (en) 2006-10-05
EP1866988A2 (en) 2007-12-19
CN101167201A (en) 2008-04-23
US20090233175A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP2008536267A (en) Current carrier of energy storage device
US6979513B2 (en) Battery including carbon foam current collectors
KR101061971B1 (en) Composite materials and battery current collector
JP5727618B2 (en) Lead acid cell with active material held in lattice
JP5362824B2 (en) Electrode for lead acid battery and method for producing the same
CN102782905B (en) The improvement of lead-acid battery group structure
KR20100100895A (en) Lead acid battery including a two-layer carbon foam current collector
US10700332B2 (en) Separator and galvanic cell providing robust separation of anode and cathode
JP5260058B2 (en) Method for manufacturing lead-acid battery electrode, lead-acid battery electrode and lead-acid battery
CA2489953C (en) Battery including carbon foam current collectors
US20220293959A1 (en) Acid battery pasting carrier
RU2737952C1 (en) Flexible battery
JPH03285263A (en) Collector for lead-acid battery
US20200287246A1 (en) An electrode for lead acid battery assembly and its method of preparation
JP4250910B2 (en) Lead-acid battery separator and control valve type lead-acid battery using the same
JPH07254408A (en) Lead-acid battery
JPH1064529A (en) Negative electrode plate for lead-acid battery
JPH10334920A (en) Electrode for battery and lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111005