JP2008528438A - 水素発生システム及び方法 - Google Patents

水素発生システム及び方法 Download PDF

Info

Publication number
JP2008528438A
JP2008528438A JP2007555120A JP2007555120A JP2008528438A JP 2008528438 A JP2008528438 A JP 2008528438A JP 2007555120 A JP2007555120 A JP 2007555120A JP 2007555120 A JP2007555120 A JP 2007555120A JP 2008528438 A JP2008528438 A JP 2008528438A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel
chamber
storage chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007555120A
Other languages
English (en)
Inventor
ベリー、グラント
エー. フェニモーア、キース
ダブリュー. マクナマラ、ケビン
エム. モーリング、リチャード
スパルローン、ジョン
Original Assignee
ミレニアム セル インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミレニアム セル インコーポレイテッド filed Critical ミレニアム セル インコーポレイテッド
Publication of JP2008528438A publication Critical patent/JP2008528438A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

水素を水素貯蔵領域に移送するためのガス透過膜を含む隔壁によって分離された燃料貯蔵チャンバー及び水素貯蔵領域を含む、燃料容器及び水素ガス発生システム及び方法が提供される。水素分離チャンバー並びに燃料溶液及び製品物質を貯蔵する容量交換構成を組み込むこともできる。燃料貯蔵チャンバーから水素貯蔵領域への正の圧力差を維持しながら、燃料溶液の反応チャンバーへの移送及び水素及び生成物の水素分離チャンバーへの移送を制御する方法も提供される。

Description

(関連出願)
本発明は、その全体が参照により本明細書の記載の一部とされる、2005年1月28日出願、米国特許仮出願第60/647,392号についての優先権を主張するものである。
(連邦政府支援の研究開発に関する説明)
本発明は、技術投資契約FA8650−04−3−2411の下、米国空軍によって授与された政府援助を用いて行われた。
技術分野
本発明は、ボロハイドライド化合物の燃料溶液を使用する水素ガスの発生に関する。より具体的には、本発明は、燃料溶液、水素ガス、及び水素分離領域の貯蔵のための容量交換構成を有する燃料カートリッジ及び水素発生装置に関する。
水素は、燃料電池用に選択される燃料である。しかしながら、その広範囲な使用は、そのガスの貯蔵の難しさによって複雑化する。炭化水素、金属水素化物、及び化学物質水素化物を含む数多くの水素キャリヤーが、水素の貯蔵及び供給系として検討されている。いずれの場合でも、炭化水素の場合の改質、金属水素化物からの脱着、又は化学物質水素化物の触媒作用による加水分解のいずれかにより、そのキャリヤーから水素を放出する具体的な系を開発する必要がある。
水素の貯蔵及び発生のためのより有望な系の1つは、ボロハイドライド化合物を水素貯蔵媒体として使用する。水素化ホウ素ナトリウム(NaBH)は、それがアルカリ水溶液中に実質的反応無しで溶解できるので、特に興味深い。この場合は、水素化ホウ素ナトリウムの安定化したアルカリ溶液が燃料と呼ばれる。更に、水性ボロハイドライド燃料溶液は、非揮発性であり、燃えることがない。これらの特性は、大量、水素発生装置自体の内部のいずれもでの取り扱いと輸送を容易にする。
水性水素化ホウ素ナトリウム燃料溶液から水素ガスを生成する様々な水素発生システムが開発された。かかる発生装置は、一般的に燃料、ホウ酸塩生成物、及びボロハイドライドの加水分解を促進する触媒及び他の試薬を貯蔵するチャンバーを必要とする。また水素発生システムは、水素バラストタンク、熱交換器、凝縮器、気液分離器などの更なる構造要素を組み込むことができる。
バッテリーの後継としての燃料電池の開発は、簡便で安全な水素源の発見に依存する。小規模の用途のための燃料電池発電システムは、小型で、軽量で、高い重力水素貯蔵密度を有していることが必要であり、どんな向きでも運転可能なことが好ましい。更に、燃料電池の運転要請に対して、システムの水素流速及び圧力の制御が容易に合致するものでなければならない。
発明の簡単な概要
本発明は、触媒又は試薬及び水素化ホウ素化合物を使用する水素ガス発生のための装置及び方法に関する。
本発明の一実施形態は、燃料貯蔵チャンバー、水素貯蔵チャンバー、及び水素分離チャンバーを有するハウジングを備えた水素ガス発生装置を提供し、ここで水素分離及び燃料貯蔵チャンバーの両方が、それぞれのチャンバーから水素を輸送する少なくとも1つのガス透過膜を含んでいる。本発明の別の好ましい実施形態は、水素貯蔵チャンバー及び水素分離チャンバーの両方の内部に格納された燃料貯蔵チャンバーを有する容量交換構成を使用し、ここで水素分離及び燃料貯蔵チャンバーの両方が、その中に位置する少なくとも1つのガス透過膜を有している。
別の実施形態は、燃料貯蔵チャンバー;水素貯蔵領域;及び燃料貯蔵チャンバーから燃料を除去するポンプを含む、水素ガスの形成可能な水素発生装置を設け;ここで、燃料貯蔵チャンバーは、燃料を除去するための燃料出口及び燃料によって発生した水素ガスをガス透過膜を通過させて水素貯蔵領域に送ることを可能にする少なくとも1つのガス透過膜;及び水素貯蔵領域からの水素ガスが、システムの外部に通過することを可能にする水素出口を含む。
更なる実施形態において、本発明は、水素分離チャンバー;水素貯蔵チャンバー;少なくとも部分的に水素貯蔵チャンバー内に格納された燃料貯蔵チャンバー;燃料溶液を燃料貯蔵チャンバーから反応チャンバーに運び、燃料溶液の反応を促進して水素及び製品物質(product material)を生成するための第1導管;水素と製品物質を、反応チャンバーから水素分離チャンバーに運ぶための第2導管;水素分離チャンバーから水素を放出するための水素ガス出口;燃料貯蔵チャンバー及び水素分離チャンバーのそれぞれと接触して、水素ガスがガス透過膜を透過することを可能にし、同時に固体及び液体物質がガス透過膜を通過するのを実質的に妨げる、少なくとも1つのガス透過膜を含む水素発生装置を提供する。
本発明は、更に燃料貯蔵チャンバー、燃料溶液、水素貯蔵チャンバー、及び水素分離チャンバーを設けることを含む水素ガス発生のための方法を提供する。燃料溶液貯蔵チャンバーは、少なくとも部分的に水素貯蔵チャンバー内に位置し、水素貯蔵チャンバーは、少なくとも部分的に水素分離チャンバー内に位置する。燃料溶液貯蔵チャンバーと接触する少なくとも第1ガス透過膜と、水素分離チャンバーと接触する少なくとも第2ガス透過膜が設けられ、水素が第1及び第2ガス透過膜を通過することを可能にする。燃料溶液が、水素ガス及び製品物質を生成するために燃料溶液貯蔵チャンバーから反応チャンバーに運ばれる。製品物質及び水素ガスは、反応チャンバーから水素分離チャンバーに運ばれる。好ましい方法の運転中、水素貯蔵チャンバーは、燃料溶液チャンバーよりも低い圧力に維持される。
本発明の完全な理解は、以下の詳細な説明と併せて考えるとき、添付の図面を参照して得ることができる。
その内容全体が参照により本明細書の記載の一部とされる、「水素ガス発生システム(Hydrogen Gas Generation System)」と題する米国特許出願第10/359,104号において、第1フレキシブルバッグを含む燃料貯蔵チャンバーと第2フレキシブルバッグを含む水素分離チャンバーとを有し、ここでこれらフレキシブルバッグのいずれか又は両方が、その中に位置するガス透過膜を有することもできる容量交換構成を含むハウジングを備えた水素ガス発生システムが説明されている。
かかるシステムは、水素発生燃料の流れを主として受動的圧力システムを通して測定しており、ここで、ばねなどから加えられた機械的圧力又は加えられたガス圧力により、燃料は弁を通して反応チャンバーに押し進められる。水素発生の制御は、圧力調節によって与えられる。液体水素発生燃料は、約40℃未満の温度では安定(すなわち、水素発生がわずかか又はないことが観察される)であるが、温度が上昇すると水素を発生することができる。かかるシステムにおいて、燃料貯蔵チャンバー中の燃料溶液から自然発生的に生成された水素ガスは、制御弁を通して燃料を反応チャンバーに押し出すのに使用されるのと同じ圧力差によって、燃料貯蔵チャンバー中の隔膜を通してハウジングの主体に送り込むことができる。
受動的システムは有用ではあるが、燃料送出を可変的に制御する能力を有するために、しばしばポンプを含むことが望ましいこともある。ポンプは、ばね機構よりもしばしば容量的及び重量的により小さく、燃料を能動的に反応チャンバーから引き出すように燃料流を逆転させる可能性を示す。しかしながら、ポンプが燃料を反応チャンバーに輸送するのと同じシステムに組み込まれた場合は、水素ガスを燃料溶液及び燃料貯蔵チャンバーから取り出すために利用可能であろう圧力差がない。燃料溶液中の気泡の存在は、例えばポンプに空洞を作るなど、望ましくない。加えて、燃料溶液中にトラップされた水素は、水素装置への送出又は燃料電池による電力への転換に潜在的に利用できない。
本発明の一側面において、水素発生燃料溶液及び燃料貯蔵チャンバーから水素を除去するため、ポンプ送液システムにおいて圧力差を作り出すためのシステム及び方法が提供される。
本発明のこれら及び以下の側面において有用な水素発生燃料は、液体又は流動性のある燃料として配合可能な水素化ホウ素化合物であることが好ましい。多くの水素化ホウ素化合物は水溶性であり、水性の流動性のある燃料溶液を、一般式M(OH)(式中、Mはナトリウム、カリウム又はリチウムなどのアルカリ金属陽イオン、カルシウム、アルミニウム陽イオンなどのアルカリ土類金属陽イオン、及びアンモニウム陽イオンから成る群から選択される陽イオンであり、nは陽イオンの電荷と同じである)を有する金属水酸化物などの安定剤を含むこともできる水性混合物として調製することもできる。非水性の流動性のある燃料も非水性溶媒中の分散物又はエマルションとして、例えば、鉱物油中の分散物として、又は例えばトルエン、グライム、又はアセトニトリルなどに溶かした溶液として調製することもできる。
本明細書において使用される水素化ホウ素には、ボラン、多面体ボラン、及びその内容全体が参照により本明細書の記載の一部とされる、「水素発生装置のための燃料ブレンド(Fuel Blends for Hydrogen Generators)」と題する同時係属の米国特許出願第10/741,199号に記載されているような、ボロハイドライド又は多面体ボランの陰イオンが含まれる。好適な水素化ホウ素には、限定を意図するわけではないが、デカボラン(14)(B1014);式NHBH及びNHRBHのアンモニアボラン化合物(式中、x及びyは独立に1〜4であって、同じである必要はなく、Rはメチル又はエチル基である);ボラザン(NHBH);ボロハイドライド塩M(BH;トリボロハイドライド塩M(B、デカヒドロデカホウ酸塩M(B1010、トリデカヒドロデカホウ酸塩M(B1013、ドデカヒドロドデカホウ酸塩M(B1212、及びオクタデカヒドロアイコサホウ酸塩M(B2018(式中、Mは、アルカリ金属陽イオン、アルカリ土類金属陽イオン、アルミニウム陽イオン、亜鉛陽イオン、及びアンモニウム陽イオンから成る群から選択される陽イオンであり、nは陽イオンの電荷と同じである)などの中性ボラン化合物が含まれる。Mは、ナトリウム、カリウム、リチウム又はカルシウムであることが好ましい。水素化ホウ素燃料は、水性混合物として調製することもでき、一般式M(OH)(式中、Mは、ナトリウム、カリウム又はリチウムなどのアルカリ金属陽イオン、カルシウム、アルミニウム陽イオンなどのアルカリ土類金属陽イオン及びアンモニウム陽イオンから成る群から選択される陽イオンであり、nは陽イオンの電荷に同じである)を有する金属水酸化物などの安定剤成分を含むこともできる。
水素発生燃料は、その内容全体が参照により本明細書の記載の一部とされる、「水素発生のためのシステム(A System for Hydrogen Generation)」と題する、米国特許出願第6,534,033号に記載されているような、安定化した金属ボロハイドライド溶液であることが好ましく、ここで水素は式1に示すように生成される(ここで、MBH及びMB(OH)は、それぞれアルカリ金属ボロハイドライド及びアルカリ金属メタホウ酸塩を表す)。
MBH+4HO→MB(OH)+4H+熱 式1
図1Aを参照すると、水素ガス発生システムのための燃料容器100は、外部ハウジング102を含み、これは本発明の燃料カートリッジを作成するのに適した任意の適当な材料のものでよい。かかる材料には、金属及びプラスチックが含まれるが、これらに限定されるものではない。ハウジングの内部には、可動性又は可撓性の隔壁108によって水素貯蔵チャンバー106から分離されている燃料貯蔵チャンバー104があり、隔壁は少なくとも1つのガス透過膜110を含んでいる。適切なガス透過膜の例には、例えば水などの液体に対するよりも水素に対してより透過性のある、シリコンゴム、ポリエチレン、ポリプロピレン、ポリウレタン、フルオロポリマー又はパラジウム−金合金などの任意の水素透過性金属膜などの物質が含まれる。適切なガス透過膜は微多孔性及び疎水性及び/又は疎油性であってもよい。隔壁の可撓性又は可動性の性質は、容量の拡大及び縮小に役立ち、従って2つの貯蔵領域の内部で圧力が変化する。本明細書において、「チャンバー」及び「領域」と言う用語は、互換性を持って使用される。
水素貯蔵チャンバーは、燃料貯蔵チャンバーよりも低い圧力に維持され、2つのチャンバー間に圧力差が維持される。かかる圧力差は、システム内の領域を異なる圧力に維持することで実現することができる。燃料容器は、例えば、弾性壁の圧縮又はばね板によって加えられた力を適用することによって加圧下とすることもできる。燃料貯蔵チャンバー104内に含まれる燃料溶液から生成される水素は、燃料貯蔵チャンバー中のより高い圧力によって、ガス透過膜を通って水素貯蔵チャンバーに押し出すことができる。2つのチャンバー間の圧力差は、燃料貯蔵チャンバー中の圧力より下の前もって設定した圧力において放出する圧力解放弁により、又は水素装置による水素の消費により、或いは水素出口112経由で水素をチャンバー106から除去するなどにより、水素を水素貯蔵チャンバーから取り出すことによって維持することができる。例えば、燃料電池が燃料容器水素貯蔵チャンバーに接続している場合、圧力差を保証するために、燃料電池の運転によってより低い圧力の領域を作り出すこともできる。この配列は、チャンバー106が、燃料溶液からの効率的な水素除去に必要な圧力差を作り出すための、より低い圧力で放出することを可能にする。
水素貯蔵チャンバーは、空気の逆流を防止する逆止め弁を含むことのできる水素出口112を通って直接大気に放出することもできる。水素ガス出口112は、例えば電力モジュールなどの水素装置に送出する目的で排気された水素ガスを捕獲するため、圧力降下から下流の水素出口120に接続できることが好ましい。かかる結合の具体例を図1Bに示すが、ここでは水素出口112が調節器124の下流の水素ライン120に接続しており、これが反応チャンバー116中の水素発生燃料の反応によって発生した水素を受け入れる。調節器124は、ライン120に圧力降下を与えるオリフィス又は流量制限弁を使用することによって置き換えることもできる。大気などのより低い圧力へ放出する1つ又は複数の圧力開放弁をシステムに組み込み、システムが長期間稼働しない場合などに、蓄積した水素ガスを除去することもできる。
図1Bに示すように、燃料ポンプなどの燃料調節制御器122が、燃料溶液を燃料貯蔵チャンバー104から燃料導管114を通って反応チャンバー116に輸送する。反応チャンバーは燃料溶液の反応を高めるための触媒を含み、ボロハイドライドについて式1に示すように、水素ガスを生成する。ホウ素製品物質及び水素ガスを含む生成物流を、水素分離チャンバー118に輸送し、ガスを生成物流の液体及び固体成分から分離し、ガスを送出する。ガスは、燃料電池すなわちエネルギーへの転換のための水素燃焼エンジン或いは気球又は水素シリンダー若しくは金属水素化物を含む他の水素貯蔵装置を含む電力モジュールによる使用のために送出することもできる。水素を放出するために、少なくとも1個の圧力逃がし弁を、チャンバー118又は導管ライン120に含むこともできる。
この実施形態で使用する反応チャンバーは、基板上の金属担持触媒などの試薬を含むことが好ましい。かかる担持触媒の調製は、例えば「水素発生のためのシステム(System for Hydrogen Generation)」と題する、米国特許第6,534,033号において教示されている。担持されていない金属、酸、又は熱など、水素化ホウ素化合物の反応を促進することが知られている他の適切な触媒又は試薬を、代わりに反応チャンバー中に存在させることができる。これら触媒及び試薬は、水素生成のために協奏して働くよう一緒にすることができる。例えば熱は、担持金属触媒システムと共に使用することもできる。
図2は、本発明による別の構成の燃料容器を示す。ここで、図1に示す特徴と同じ特徴は同様の番号付けとなっている。この構成において、燃料貯蔵チャンバー104は、これらだけには限定されないが、ナイロン;ポリウレタン;ポリ塩化ビニル(PVC);低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)及びエチレン−酢酸ビニルコポリマー(EVA)などを含むポリエチレンポリマー、天然ゴム;合成ゴム、金属フォイル又は他の物質などの液密の可撓性材料であって、少なくとも1つのガス透過膜を含んでいる。ガス透過膜は、液体及び固体に対して実質的に不透過性であり、ガスが通過するのを可能にしつつ、固体及び液体物質がガス透過膜を通過するのを実質的に妨げることが好ましい。この文脈において、「実質的に」とは、固体及び/又は液体の通過に比較してガスの通過を優先的に可能にすること、好ましくはガスだけを通過させることを意味する。可撓性の燃料貯蔵チャンバー104は図2に示すように、外部ハウジング内に含まれており、外部ハウジングと燃料溶液貯蔵チャンバーとの間に境界が定められている領域は、水素貯蔵チャンバー106を含んでいる。燃料溶液貯蔵チャンバーの可撓性の壁は、2つの貯蔵領域の圧力変化に役立つ。
本発明の水素発生システムにおいて、水素分離チャンバーと燃料貯蔵チャンバーを1つの外部ハウジング内に設計することが、総体的システム容量を最小化するなどの利益を提供するために好ましいこともある。図3A及び3Bを参照すると、ここで、前の図に示す特徴と同じ特徴は同様の番号付けとなっており、水素ガス発生システム300は、可撓性の水素貯蔵チャンバー106内に格納された可撓性の燃料貯蔵チャンバー104を含む外部ハウジング102、及び水素分離チャンバー302を含んでいる。水素分離チャンバー302は、図3Aに示すようにハウジングの内部にあってもよく、又は図3Bに示すように、分離した可撓性のチャンバーであってもよい。様々なチャンバーの1つ又は複数は、ナイロン;ポリウレタン;ポリ塩化ビニル;低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)及びエチレン−酢酸ビニルコポリマー(EVA)などを含むポリエチレンポリマー、天然ゴム;合成ゴム;金属フォイル又は他の物質などの可撓性の液密の物質でできていても、又は金属若しくはプラスチックなど非可撓性で剛性の物質でできていてもよく、容量交換構成のために、1つ又は複数の可動式隔壁を入れ子式の又は他の方法で含んでいる。燃料貯蔵チャンバー104は、少なくとも1つのガス透過膜を含む。
水素発生反応は、水素ガス及びホウ素製品物質を生成し、これらは導管304を経由して水素分離チャンバー302に送られる。例えば、ボロハイドライド化合物について式1に示される加水分解反応では、ホウ酸塩が製品物質に含まれる。
図3Aに示す構成において、水素及び製品物質は、ハウジングの内部すなわち水素分離チャンバー302に集まり、水素は、生成混合物のいかなる固体及び液体成分も水素分離チャンバー302内に残しつつ、水素ライン120の入口に存在する少なくとも1つの水素分離膜110を通して送られる。水素は、燃料電池すなわちエネルギーへの転換のための水素燃焼エンジン、又は他の水素装置を含む電力モジュールによる使用のために送出することができる。
ここで図3Bを参照すると、水素及びホウ素製品物質は、可撓性の水素分離チャンバー302に集まる。水素は、生成混合物のいかなる固体及び液体成分も水素分離チャンバー302内に残しつつ、チャンバー302の壁に存在する水素分離膜110を通して送られる。水素はハウジングの内部に集まり、燃料電池すなわちエネルギーへの転換のための水素燃焼エンジン又は水素デバイスを含む電力モジュールによる使用のために水素ガス出口306を通して取り除くことができる。
図3A及び3Bの水素発生システムは、最初水素貯蔵バッグで囲まれた全燃料貯蔵チャンバーが、ハウジング内部の半分以上を占める様に、容量交換様式で運転するのが好ましい。燃料が、反応チャンバーに供給されると、水素ガス及びホウ酸塩化合物などのホウ素反応生成物が水素分離チャンバー302に移送される。反応生成物は、以前燃料が占めていた容量を占めることになる。全ての燃料が消費されると、水素分離チャンバーすなわちバッグは、内部容量の半分以上を構成することになることもある。
図4A及び4Bに示す別の実施形態において、水素分離チャンバー302は燃料貯蔵チャンバー及び水素貯蔵チャンバーを取り囲んでおり、ここで先の図に示される特徴と同じ特徴は同様の番号付けとなっている。かかるシステムは、容量効率を最大化し、容量交換様式で働き、向きに関係なく運転できる。水素分離チャンバーは、図4Aに示すように全体的に、又は図4Bに示すように部分的に燃料貯蔵及び水素貯蔵チャンバーを取り囲んでいる。
本発明の燃料容器を使用している水素ガス発生のための完全なシステムを図5に示すが、ここで先の図に示される特徴と同じ特徴は、同様の番号付けとなっている。燃料ポンプ502は、燃料を燃料貯蔵チャンバー104から導管114を経由して反応チャンバー504に運ぶ。水素ガス及びホウ酸塩化合物などのホウ素反応生成物を含む生成物流は、反応チャンバーの出口から水素分離チャンバー302に導管304を経由して輸送される。水素は、チャンバー302の壁の中の水素分離膜110を通って送出され、ハウジングの内部に集まり、燃料電池すなわちエネルギーへの転換のための水素燃焼エンジン又は水素デバイスを含む電力モジュールによる使用のために、水素ガス出口306を通って除去することができる。別な方法として、水素ガス出口306を直接水素分離チャンバー302に接続することができ、ガスライン306の入口に存在する少なくとも1つの水素分離膜110が、生成混合物中のいかなる固体及び液体成分も、水素分離チャンバー302内に止める。
水素貯蔵チャンバー106中の蓄積された水素は、水素導管112及び306に接続している任意選択的な調節器506を経由して装置又は電力モジュールに供給でき、又はシステムから単純に放出することもできる。水素は、水素貯蔵チャンバー106及び水素分離チャンバー302から同時に取り出すこと、すなわち両方の領域が、水素消費装置に同時に供給を行うことが好ましい。別の方法として、最初1つの領域から可変的に水素を取り出し、次いで別の領域から取り出すこともできる。
以下の例は、本発明による水素発生システムの特徴を更に説明し実証するものである。例はもっぱら例示的目的のために提供されるものであり、本発明を限定するものと解釈してはならない。
図4の容器システムを、2ミルのポリウレタン(Stevens Urethane P/N ST−1522F3)で作られた3つのバッグのセットから作成した。燃料貯蔵チャンバー104及び水素分離チャンバー302は、それぞれ、固体及び液体に対してバリヤーを提供しつつ、水素の通過を可能とする19.2cmのポリテトラフルオロエチレン膜(Gore,Inc製)を含んでいた。3つのバッグは、銅メッキしたアルミニウムハウジング102内に包含され、アルミニウムハウジングは密封され、水素出口及び圧力開放弁が取り付けられた。
内部バッグ104に、20重量%水素化ホウ素ナトリウム及び3重量%水酸化ナトリウムの水溶液(燃料溶液)を充填した。内部燃料バッグを取り囲んでいる水素貯蔵バッグを大気圧に接続した。この溶液をポンプ送液して、水素発生触媒を含んでいる反応チャンバーに通し、ホウ酸塩化合物、水、及び水素を含む生成物流を生成した。生成物流は、外部水素分離チャンバー302に移送したが、この間、水素発生システムは、5psigと7psigの間の圧力に維持された。
ガスを、バッグ302中の膜を通してアルミニウムハウジングの内部へと通過することによって、水素を液体及び固体生成物から分離した。水素発生反応の発熱に起因して、生成物流の温度は燃料溶液より高くなる。生成物流がバッグ302を満たすと、熱はバッグ104中の燃料溶液に伝えられ、燃料溶液が温められて、燃料の一部分が加水分解を受けて、水素を内部バッグ104に放出した。この水素は、バッグ104からその膜を通過して水素貯蔵バッグ106に送られ、ボックスから出口112を経由して大気圧に放出した。反応チャンバー中の水素発生触媒を使用した反応により生成された水素は、水素発生システム外部の質量流制御器を用いて監視した。800mLの燃料溶液から、17時間のシステムの連続運転によって、425cc/分の水素が生成された。
本発明は、特定の開示した実施形態について説明してきたが、多くの他の実施形態も本発明の範囲内であることが理解されなければならない。例えば、先行する図面及び実施形態は、反応チャンバーをハウジングの外部にあるものとして示したが、反応チャンバーは外部ハウジング内に組み込むこともでき、このような場合には、適切な燃料及び生成物導管ラインは、外部ハウジングを出ないであろう。制御器及び燃料ポンプなどの典型的な水素発生システムの追加の構造部品も、外部ハウジング内に組み込むこともできる。外部の剛性のハウジング102は、外部容器の重量を減少させ、システムのエネルギー密度を増加するために、可撓性のハウジングに取り替えることができる。圧力差を維持し、及び/又は燃料を反応装置に駆動するのを支援するために、チャンバー104及び106の1つ又は両方を押し込んで、機械的に圧力をかけるピストン又はばねなどの要素を、ある態様に組み込むこともできる。
本発明による、水素ガス発生システムのための燃料容器の概略図である。 本発明による、水素ガス発生システムのための燃料容器の概略図である。 本発明による、水素ガス発生システムのための燃料容器の代替構成の概略図である。 本発明による、水素ガス発生システムのための燃料カートリッジの配置の概略図である。 本発明による、水素ガス発生システムのための燃料カートリッジの配置の概略図である。 水素ガス発生システムのための代替燃料カートリッジの配置の概略図である。 水素ガス発生システムのための代替燃料カートリッジの配置の概略図である。 本発明による、好ましい水素ガス発生システムのための配置の概略図である。

Claims (59)

  1. 水素ガス及び製品物質を形成できる水素発生装置であって、
    第1内部圧力を有する燃料貯蔵チャンバーと、
    第2内部圧力を有する水素貯蔵領域と、
    燃料を前記燃料貯蔵チャンバーから反応チャンバーに移送するように適合されたポンプと、
    前記第2内部圧力を前記第1内部圧力より低い水準に維持する手段と
    を含み、
    前記燃料貯蔵チャンバーが少なくとも1つのガス透過膜を含み、前記燃料によって発生した水素ガスをガス透過膜を通過させて前記水素貯蔵領域に送ることが可能である、水素発生装置。
  2. 前記燃料貯蔵チャンバー及び前記水素貯蔵領域が、容量交換構成において互いに移動可能に配置される、請求項1に記載の装置。
  3. 前記燃料貯蔵チャンバーが、拡大及び縮小が可能な、請求項1に記載の装置。
  4. 前記燃料貯蔵チャンバーが、可撓性材料を含む、請求項3に記載の装置。
  5. ハウジングを更に含み、前記燃料貯蔵チャンバーが前記ハウジング内に配置される、請求項1に記載の装置。
  6. 水素出口を更に含み、水素ガスが前記水素貯蔵領域から前記領域の外側に通過することが可能である、請求項1に記載の装置。
  7. 前記燃料貯蔵チャンバーが、少なくとも部分的に前記水素貯蔵領域内に配置される、請求項1に記載の装置。
  8. 前記反応チャンバーからの水素及び製品物質を受け入れるように適合された水素分離領域を更に含む、請求項1に記載の装置。
  9. 燃料を前記燃料貯蔵チャンバーから前記反応チャンバーに運び、前記燃料の反応を促進して水素及び製品物質を生成するための第1導管、及び前記水素及び製品物質を、前記反応チャンバーから前記水素分離チャンバーに運ぶための第2導管、並びに
    水素を前記水素分離チャンバーから放出するための水素ガス出口
    を更に含む、請求項8に記載の装置。
  10. 前記燃料貯蔵チャンバーと接触する少なくとも1つのガス透過膜と、前記水素分離チャンバーと接触する少なくとも1つのガス透過膜とを更に含み、固体及び液体物質の通過を実質的に防止しながら、水素ガスが前記の両ガス透過膜を通過することが可能である、請求項8に記載の装置。
  11. 前記水素貯蔵チャンバーが、少なくとも部分的に前記水素分離領域内に格納される、請求項8に記載の装置。
  12. 前記水素貯蔵領域が、前記分離チャンバーの内部圧力より低い内部圧力を有する、請求項11に記載の装置。
  13. 水素ガス発生装置であって、
    水素分離領域及び水素貯蔵領域を含むハウジングと、
    燃料溶液を含み、少なくとも部分的に水素貯蔵領域内に格納される燃料貯蔵チャンバーと、
    前記燃料溶液を、前記燃料貯蔵チャンバーから、前記燃料溶液の水素及び製品物質を発生する反応を促進する試薬を含むチャンバーに移送するように適合されたポンプと、
    前記燃料貯蔵チャンバー及び前記水素分離領域の各々に、水素ガスが前記燃料貯蔵チャンバーと前記水素分離領域を通過するのを可能にする少なくとも1つのガス透過手段と
    を含み、
    前記燃料貯蔵チャンバーと前記水素貯蔵領域とが、容量交換構成において互いに移動可能に配置される、装置。
  14. 前記燃料貯蔵チャンバーが、少なくとも部分的に前記水素分離チャンバー内に格納される、請求項13に記載の装置。
  15. 前記ハウジングが剛性である、請求項13に記載の装置。
  16. 前記ハウジングが可撓性である、請求項13に記載の装置。
  17. 前記水素分離領域、前記水素貯蔵領域、及び前記燃料貯蔵チャンバーの少なくとも2つが、少なくとも部分的に、別の前記水素分離領域、前記水素貯蔵領域、及び前記燃料貯蔵チャンバー内に位置する、請求項13に記載の装置。
  18. 少なくとも1つのガス透過膜が、前記燃料貯蔵チャンバー及び前記水素貯蔵領域と接触し、少なくとももう1つのガス透過膜が、前記水素分離領域と接触する、請求項13に記載の装置。
  19. 前記燃料貯蔵チャンバーが、前記水素分離領域内に完全に格納される、請求項18に記載の装置。
  20. 前記水素貯蔵領域が、前記水素分離領域内に完全に格納される、請求項19に記載の装置。
  21. 前記水素貯蔵領域、前記水素分離領域、及び前記燃料貯蔵チャンバーの少なくとも1つが、可撓性材料を含む、請求項13に記載の装置。
  22. 前記水素貯蔵領域、前記水素分離領域、及び前記燃料貯蔵チャンバーの少なくとも2つが、可撓性材料を含む、請求項13に記載の装置。
  23. 前記水素分離領域及び前記燃料貯蔵チャンバーが、可撓性材料を含む、請求項13に記載の装置。
  24. 前記水素貯蔵領域、前記水素分離領域、及び燃料貯蔵チャンバーのそれぞれが、容量交換構成に配置される、請求項13に記載の装置。
  25. 前記水素貯蔵領域と連通している水素ガス出口を更に含む、請求項13に記載の装置。
  26. 水素ガス発生のための方法であって、
    燃料溶液貯蔵チャンバーを設けること、
    燃料溶液を設けること、
    水素貯蔵チャンバーを設けること、
    水素分離チャンバーを設けること
    を含み、
    前記燃料溶液貯蔵チャンバーは、少なくとも部分的に前記水素貯蔵チャンバー内に位置し、
    前記燃料溶液貯蔵チャンバーと接触する少なくとも第1ガス透過膜と、前記水素分離チャンバーと接触する少なくとも第2ガス透過膜を設けて、水素が前記第1及び第2ガス透過膜を通過することを可能にすること、
    前記燃料溶液を、前記燃料溶液貯蔵チャンバーから反応チャンバーにポンプ送液して水素ガスと製品物質を発生させること、及び
    圧力差を作り出して、前記水素貯蔵チャンバーが前記燃料溶液チャンバーよりも低い圧力になるようにしながら、前記製品物質及び水素ガスを、前記反応チャンバーから前記水素分離チャンバーに運ぶこと
    を含む方法。
  27. 水素ガスを、前記水素貯蔵チャンバーから取り出すことを更に含む、請求項26に記載の方法。
  28. 水素ガスを、前記水素分離チャンバーから取り出すことを更に含む、請求項26に記載の方法。
  29. 前記燃料貯蔵、水素貯蔵、及び水素分離チャンバーが、ハウジング内に格納される請求項26に記載の方法。
  30. 前記燃料貯蔵及び水素分離チャンバーが、容量交換構成に配置される、請求項26に記載の方法。
  31. 前記水素分離チャンバーが、少なくとも部分的に前記水素貯蔵チャンバー内に位置する、請求項26に記載の方法。
  32. 前記圧力差が、少なくとも一部は、前記水素貯蔵領域から水素を放出することによって作り出される、請求項26に記載の方法。
  33. 前記圧力差が、少なくとも一部は、前記燃料溶液貯蔵チャンバーに対する弾性壁又はばねの圧縮によって作り出される、請求項26に記載の方法。
  34. 前記圧力差が、少なくとも一部は、前記水素貯蔵領域から水素を除去することによって作り出される、請求項33に記載の方法。
  35. 前記圧力差が、少なくとも一部は、前記水素貯蔵領域を真空にすることによって作り出される、請求項26に記載の方法。
  36. 水素を前記燃料溶液貯蔵領域において生成させることを更に含む、請求項26に記載の方法。
  37. 前記水素貯蔵領域からの水素を、前記水素分離領域からの水素と合わせることを更に含む、請求項36に記載の方法。
  38. 前記圧力差が、燃料溶液を前記反応チャンバーへポンプ送液する間、常に同時に維持される、請求項26に記載の方法。
  39. 水素ガス発生のための方法であって、
    燃料貯蔵チャンバー中に燃料溶液を設けること、
    水素貯蔵チャンバー及び水素分離チャンバーを、前記燃料貯蔵チャンバーが、前記水素貯蔵チャンバー内に少なくとも一部が位置するように、及び前記水素貯蔵チャンバーが、前記水素分離チャンバー内に少なくとも一部が位置するように設けること、
    前記燃料貯蔵チャンバーと接触する少なくとも1つのガス透過膜を設けること、
    前記燃料溶液の少なくとも一部を熱加水分解させ、水素を前記燃料貯蔵チャンバーから前記少なくとも1つのガス透過膜を通って前記水素貯蔵チャンバーに放出すること
    を含む方法。
  40. 前記燃料溶液の少なくとも一部を熱加水分解させることが、熱を前記水素分離チャンバーから前記燃料貯蔵チャンバーに伝えることを含む、請求項39に記載の方法。
  41. 前記水素貯蔵チャンバーを、前記燃料貯蔵チャンバーより低い圧力にすることを更に含む、請求項39に記載の方法。
  42. 前記燃料貯蔵チャンバーと前記水素貯蔵チャンバーの間に圧力差を作り出し、燃料によって発生した水素ガスを前記ガス透過膜を透過させて前記水素貯蔵チャンバーに送ることを可能にすることを更に含む、請求項39に記載の方法。
  43. 前記圧力差が、少なくとも一部は前記水素貯蔵チャンバーから水素を除去することによって作り出される、請求項42に記載の方法。
  44. 前記圧力差が、少なくとも一部は燃料電池を前記水素貯蔵チャンバーに結合することによって作り出される、請求項43に記載の方法。
  45. 前記圧力差が、少なくとも一部は燃料貯蔵チャンバーに対する弾性壁又はばねの圧縮によって作り出される、請求項39に記載の方法。
  46. 前記燃料貯蔵、水素貯蔵、及び水素分離チャンバーのそれぞれが、容量交換構成において交互に配置される、請求項39に記載の方法。
  47. 前記燃料貯蔵及び水素分離チャンバーが、容量交換構成に配置される、請求項39に記載の方法。
  48. 前記燃料溶液を、触媒チャンバーにポンプ送液し、水素及び製品物質を生成することを更に含む、請求項39に記載の方法。
  49. 前記水素及び製品物質を、前記触媒チャンバーから水素分離チャンバーに運ぶことを更に含む、請求項48に記載の方法。
  50. 前記水素貯蔵領域からの前記熱加水分解生成水素を、前記水素分離チャンバーからの水素と合わせることを更に含む、請求項49に記載の方法。
  51. 前記圧力差が、燃料溶液を前記反応チャンバーにポンプ送液している間、常に維持される、請求項48に記載の方法。
  52. 水素ガス及び製品物質を形成可能な水素発生装置のための燃料カートリッジであって、
    第1内部圧力を有する燃料貯蔵チャンバーと、
    第2内部圧力を有する水素貯蔵領域と、
    前記第2内部圧力を、前記第1内部圧力より低い水準に維持する手段と
    を含み、前記燃料貯蔵チャンバーが少なくとも1つのガス透過膜を含み、前記燃料によって発生した水素ガスを前記ガス透過膜を通過させて前記水素貯蔵領域に送ることを可能にする燃料カートリッジ。
  53. 燃料を前記燃料貯蔵チャンバーから反応チャンバーに移送するように適合されたポンプを更に含む、請求項52に記載の燃料カートリッジ。
  54. 前記燃料貯蔵チャンバー及び前記水素貯蔵領域が、容量交換構成において互いに移動可能に配置される、請求項52に記載の燃料カートリッジ。
  55. 前記燃料貯蔵チャンバーが、拡大及び縮小が可能である、請求項52に記載の燃料カートリッジ。
  56. 前記燃料貯蔵チャンバーが、可撓性材料を含む、請求項52に記載の燃料カートリッジ。
  57. ハウジングを更に含み、前記燃料貯蔵チャンバーが前記ハウジング内に配置される、請求項52に記載の燃料カートリッジ。
  58. 水素出口を更に含み、水素ガスが、前記水素貯蔵領域から前記領域の外側に通過することを可能にする請求項52に記載の燃料カートリッジ。
  59. 前記燃料貯蔵チャンバーが、少なくとも部分的に前記水素貯蔵領域内に配置される、請求項52に記載の燃料カートリッジ。
JP2007555120A 2005-01-28 2006-01-27 水素発生システム及び方法 Pending JP2008528438A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64739205P 2005-01-28 2005-01-28
PCT/US2006/002895 WO2007084142A2 (en) 2005-01-28 2006-01-27 Hydrogen generation system and method

Publications (1)

Publication Number Publication Date
JP2008528438A true JP2008528438A (ja) 2008-07-31

Family

ID=38288049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007555120A Pending JP2008528438A (ja) 2005-01-28 2006-01-27 水素発生システム及び方法

Country Status (6)

Country Link
EP (1) EP1851813A2 (ja)
JP (1) JP2008528438A (ja)
KR (1) KR20070106737A (ja)
CN (1) CN101208261A (ja)
CA (1) CA2600920A1 (ja)
WO (1) WO2007084142A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522360A (ja) * 2011-04-21 2014-09-04 エバレデイ バツテリ カンパニー インコーポレーテツド 改善した体積効率を有する水素発生器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039848B1 (ko) * 2008-04-14 2011-06-09 삼성전기주식회사 연료 카트리지 및 이를 구비한 연료 전지 발전 시스템
CN107746038A (zh) * 2012-06-19 2018-03-02 生物焦炭技术研究株式会社 氢产生装置
CN103552982B (zh) * 2013-11-20 2015-07-01 青岛科技大学 一种硼氢化钠水解/醇解制氢反应器
KR101864417B1 (ko) * 2018-02-13 2018-06-05 휴그린파워(주) 고체연료에 증기분해제를 이용한 수소발생 및 공급장치
CN108483395B (zh) * 2018-04-20 2020-11-03 四川大学 一种制氢储氢一体化装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10230149B4 (de) * 2002-07-04 2008-08-07 Sgl Carbon Ag Vorrichtung zur Erzeugung von Wasserstoff
US7323148B2 (en) * 2002-11-05 2008-01-29 Millennium Cell, Inc. Hydrogen generator
US7105033B2 (en) * 2003-02-05 2006-09-12 Millennium Cell, Inc. Hydrogen gas generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522360A (ja) * 2011-04-21 2014-09-04 エバレデイ バツテリ カンパニー インコーポレーテツド 改善した体積効率を有する水素発生器

Also Published As

Publication number Publication date
CA2600920A1 (en) 2007-07-26
KR20070106737A (ko) 2007-11-05
CN101208261A (zh) 2008-06-25
WO2007084142A3 (en) 2008-01-17
WO2007084142A2 (en) 2007-07-26
EP1851813A2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
US8372168B2 (en) Hydrogen generating fuel cartridge with volume exchange configuration
US20090101520A1 (en) Methods and devices for hydrogen generation
US20070271844A1 (en) Hydrogen fuel cartridge and methods for hydrogen generation
US20090104481A1 (en) Methods and devices for hydrogen generation
US7105033B2 (en) Hydrogen gas generation system
ES2393405T3 (es) Cartucho de combustible para pilas de combustible
US7501008B2 (en) Hydrogen storage systems and fuel cell systems with hydrogen storage capacity
EP2726405B1 (en) Hydrogen gas generator
US20060269470A1 (en) Methods and devices for hydrogen generation from solid hydrides
JP2008528438A (ja) 水素発生システム及び方法
EP2700121B1 (en) Hydrogen generator with improved volume efficiency
EP1728290A2 (en) Use of an ammonia storage device in production of energy
CN1958438B (zh) 一种产生氢气的装置及方法
US20080274384A1 (en) Self-regulating hydrogen generator for use with a fuel cell
US20150207161A1 (en) Hydrogen Generator System With Liquid Interface
WO2022124881A1 (en) A hydrogen generator for fuel cell application, a method and a system thereof
US20070148508A1 (en) Reactor purge system and method
WO2009109865A2 (en) Self-regulating hydrogen generator for fuel cells and hybrid vehicle power system utilizing the same
WO2022124879A1 (en) A hydrogen generator for fuel cell application, a method and a system thereof
WO2022124880A1 (en) Scalable hydrogen generator for fuel cell application, a method and a system thereof
SG185167A1 (en) Hydrogen generator and method of operating hydrogen generators