JP2008519249A - Gauge for measuring the linear strain of a material and its manufacturing method - Google Patents

Gauge for measuring the linear strain of a material and its manufacturing method Download PDF

Info

Publication number
JP2008519249A
JP2008519249A JP2007538251A JP2007538251A JP2008519249A JP 2008519249 A JP2008519249 A JP 2008519249A JP 2007538251 A JP2007538251 A JP 2007538251A JP 2007538251 A JP2007538251 A JP 2007538251A JP 2008519249 A JP2008519249 A JP 2008519249A
Authority
JP
Japan
Prior art keywords
lug
measuring
measured
measuring element
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007538251A
Other languages
Japanese (ja)
Inventor
コヴァチコヴァ,ダニエラ
Original Assignee
コヴァチコヴァ,ダニエラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コヴァチコヴァ,ダニエラ filed Critical コヴァチコヴァ,ダニエラ
Publication of JP2008519249A publication Critical patent/JP2008519249A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/30Measuring arrangements characterised by the use of mechanical techniques for measuring the deformation in a solid, e.g. mechanical strain gauge

Abstract

材料の線ひずみを測定するためのゲージに関し、このゲージは、互いに平行な軸を有する測定ブレード(2)と嵌り合う、測定される材料に取り付け可能な少なくとも2つの測定要素(1)、測定ブレード(2)の材料の硬度よりも低い硬度を有する寸法安定性材料で製作されたインプレッション面(4)を有する可搬走査体(3)を備える。測定要素(1)が測定ブレード(2)に対面しない側で、ラグ(11)の穴(10)内に配置され、樹脂ベースの接着剤を用いてそこに取り付けられ、ラグ(11)が、測定される材料の表面に溶接部を用いて取り付けられる。ゲージの製作方法は、測定要素とラグが移送リグ内の穴内に配置され、ブレードの軸が精密にその相互距離と平行が設定され、測定要素とラグと測定される材料との間の接着剤よりも低い硬度を有する接着剤を用いてラグに取り付けられ、測定要素が測定される材料にラグを用いて連結される。
【選択図】 図2
With respect to a gauge for measuring the linear strain of a material, this gauge is fitted with a measuring blade (2) having axes parallel to each other, at least two measuring elements (1) attachable to the material to be measured, measuring blade A portable scanning body (3) having an impression surface (4) made of a dimensionally stable material having a hardness lower than that of the material of (2). On the side where the measuring element (1) does not face the measuring blade (2), it is placed in the hole (10) of the lug (11) and attached thereto using a resin-based adhesive, the lug (11) It is attached to the surface of the material to be measured using a weld. The method of making the gauge is that the measuring element and lug are placed in a hole in the transfer rig, the blade axes are precisely set parallel to each other, and the adhesive between the measuring element and the lug and the material to be measured An adhesive having a lower hardness is attached to the lug and the measuring element is connected to the material to be measured using the lug.
[Selection] Figure 2

Description

本発明は、ある間隔で材料上に作り出された少なくとも2つの測定印を備える材料の線ひずみを測定するためのゲージに関し、本発明はまた、このゲージを製作する方法に関する。   The present invention relates to a gauge for measuring the linear strain of a material comprising at least two measurement marks created on the material at a distance, and the present invention also relates to a method of making this gauge.

機械式および光学式伸び計は、固体材料、特に金属の線ひずみを測定するために、すなわち、構造上の2つの固定点間の材料の伸びを測定するために使用される。測定点として、描かれた印または凹みが、最もよく用いられる。このタイプの測定の欠点は、切り目または凹みが作り出される場合、それによって材料が損傷を受ける可能性があることである。設備によっては、印が汚染物で汚れ、したがって発見が困難になるという欠点もある。そのような伸び計はまた、金属以外の材料の線ひずみを測定するためにも使用され、たとえば建造物の内部で、コンクリートなどの中の亀裂を測定するために使用される。その精度に限界があるので、こうした伸び計は、より大きい間隔を有する、材料上または構造上の測定点配置を必要とする。これらの距離は、数百ミリメートル以内である。   Mechanical and optical extensometers are used to measure the linear strain of solid materials, especially metals, i.e. to measure the elongation of the material between two fixed points on the structure. As a measuring point, a drawn mark or dent is most often used. The disadvantage of this type of measurement is that if a cut or dent is created, it can damage the material. Some equipment also has the disadvantage that the marks are contaminated with contaminants and are therefore difficult to find. Such extensometers are also used to measure the line strain of materials other than metals, for example, to measure cracks in concrete, etc., within a building. Due to their limited accuracy, such extensometers require a measurement point arrangement on the material or structure with larger spacing. These distances are within a few hundred millimeters.

参照点間距離のより高精度の測定、およびそれらの点を互いに接近して配置する可能性は、測定顕微鏡を用いることによって達成することができる。それらの主な欠点は、その寸法および重量が比較的大きいことであり、そのため、特に試験されるパイプがたとえば原子力発電所内など制限された空間内に配置される場合、橋、大直径のパイプおよび管など既存の金属構造の材料の変形を測定するためにそれらを実際に使用することはできない。別の大きな問題は、たとえば絶縁管路上、その他の構造内部の排水管路、橋の上などの試験位置へのアクセスが困難であることである。測定顕微鏡は、損傷を受けやすくその精度が低減されやすいという、もう一つの欠点を有する。   A more accurate measurement of the distance between the reference points and the possibility of placing these points close to each other can be achieved by using a measuring microscope. Their main drawback is their relatively large size and weight, so bridges, large diameter pipes and especially when the pipes to be tested are placed in a confined space, for example in a nuclear power plant They cannot actually be used to measure the deformation of existing metallic structural materials such as tubes. Another major problem is that it is difficult to access test locations such as on insulated conduits, drainage conduits inside other structures, and on bridges. The measuring microscope has another drawback that it is easily damaged and its accuracy is easily reduced.

機械式、光学式、電気式、音響式、空圧式など、様々なタイプの張力計が知られている。機械式、光学式、音響式、空圧式張力計の欠点は、上述の顕微鏡の欠点と同様である。電気式張力計は、上記欠点のいくつかをもたない一方で、その大きな欠点はある温度範囲内でしか動作できないことである。温度がより高く、またはより低い場合、電気式張力計は調整されなければならず、それらの取得価格は、随時高くなる。   Various types of tension meters, such as mechanical, optical, electrical, acoustic, and pneumatic, are known. The disadvantages of the mechanical, optical, acoustic and pneumatic tension meters are the same as those of the microscope described above. While electric tensiometers do not have some of the above disadvantages, the major drawback is that they can only operate within a certain temperature range. If the temperature is higher or lower, the electric tensiometers must be adjusted and their acquisition price increases from time to time.

張力計、特に電気式の張力計の別の欠点は、それらの耐用期間が限定されていることであり、耐用期間は、測定が行われる気候条件と比例して低減される。   Another drawback of tensiometers, especially electric tensiometers, is their limited lifetime, which is reduced in proportion to the climatic conditions in which the measurements are made.

したがって従来の張力計では、その結果が研究室条件での測定結果に匹敵する屋外測定を行うことが基本的に不可能である。   Therefore, with a conventional tensiometer, it is basically impossible to perform outdoor measurements whose results are comparable to the measurement results under laboratory conditions.

上記欠陥は、互いに平行な軸を有する測定ブレードと嵌り合う、測定される材料に取り付け可能な少なくとも2つの測定要素と、本発明による測定ブレードおよび/または可搬測定装置の材料の硬度よりも低い硬度を有する寸法安定性材料から製作されるインプレッション面を有する可搬走査体と、を備えた材料の線ひずみを測定するためのゲージを用いることにより、ある程度解消することができる。その本質は、測定体が、測定ブレードに対面しない側でラグの穴内に配置され、樹脂ベースの接着剤を用いてそこに取り付けられ、ラグが、測定される材料の表面に、溶接部を用いて連結されることである。   Said defect is lower than the hardness of the material of the measuring blade and / or the portable measuring device according to the invention, fitted with a measuring blade having axes parallel to each other and attachable to the material to be measured It can be solved to some extent by using a gauge for measuring the linear strain of a material provided with a portable scanning body having an impression surface manufactured from a dimensionally stable material having hardness. The essence is that the measuring body is placed in the hole of the lug on the side that does not face the measuring blade and is attached to it using a resin-based adhesive, and the lug uses a weld on the surface of the material to be measured Are connected.

ラグは、有利には、電気アークによって製作された溶接部を用いて、測定される材料の表面に連結される。ラグは、円筒形とすることができ、穴は、円筒軸の方向に配置され、有利には、雌ねじと嵌り合う。   The lug is advantageously connected to the surface of the material to be measured using a weld made by an electric arc. The lug can be cylindrical and the hole is arranged in the direction of the cylindrical axis and advantageously mates with the internal thread.

測定ブレードは中央区間で、有利には、取付部を備え、測定要素は、底部区間で、ネックおよび円錐形端部と嵌り合うことができる。   The measuring blade is advantageously provided with a mounting in the central section, and the measuring element can be fitted with the neck and the conical end in the bottom section.

測定要素および/またはラグは、有利には、測定ブレードの軸を互いに正確に平衡に調整した後に、測定要素および/またはラグのための穴を有する移送ボードを含む移送リグ内に差し込まれ、測定要素および/またはラグと移送リグとの間の接合部が、測定要素および/またはラグと測定される材料との間の接合部よりも低い強度を有する。   The measuring element and / or lug is advantageously inserted into a transfer rig comprising a transfer board with holes for the measuring element and / or lug after the axes of the measuring blades have been precisely balanced with each other The joint between the element and / or lug and the transfer rig has a lower strength than the joint between the measuring element and / or lug and the material to be measured.

上記ゲージは、有利には、測定要素および/またはラグが、移行準備物内の穴内に差し込まれ、ブレードの軸が正確にその相互距離と平行が設定され、測定要素および/またはラグと測定される材料との間の接着剤よりも強度が低い接着剤を用いてこの位置に固定され、その後測定要素が、測定される材料にラグを用いて連結され、移送リグが取外し可能となるように製作される。   The gauge is advantageously measured with the measuring element and / or lug, with the measuring element and / or lug inserted into a hole in the transition preparation, the axis of the blade being precisely set parallel to its mutual distance. So that it is fixed in this position with an adhesive that has a lower strength than the adhesive between it and the measuring element is then connected to the material to be measured with a lug so that the transfer rig can be removed Produced.

測定要素は、有利には、移送リグ内の穴に挿入され樹脂ベースの接着剤を用いてラグに連結される前に、ラグの穴内に配置され、ブレードの軸が正確な相互距離と平行な状態に設定されると、ラグは、測定される材料に溶接され、輸送リグが取り外される。   The measuring element is advantageously placed in the hole in the lug before being inserted into the hole in the transfer rig and connected to the lug using a resin-based adhesive, so that the blade axes are parallel to the exact mutual distance. Once set, the lug is welded to the material to be measured and the transport rig is removed.

次の有利な方法では、ラグは、測定される材料に溶接され、移送リグ内に配置された測定要素は、ラグ内に挿入され、樹脂ベースの接着剤を用いてそれらに連結され、接合部が硬化すると、輸送リグは取り外される。   In the following advantageous manner, the lugs are welded to the material to be measured, and the measuring elements arranged in the transfer rig are inserted into the lugs and connected to them using a resin-based adhesive, Once the is cured, the transport rig is removed.

測定要素は、その軸が互いに平行な測定ブレードと嵌り合うので、それらの正確な距離と、場合によっては測定される材料の屈曲を測定することが可能である。測定される材料の表面に固定的に連結されていることにより、航空機の構造、動力装置の表面など、一般的にその他の測定装置を連結することができない様々な構造上に、別々の測定要素を配置することができる。走査体のインプレッション面の材料は、その寸法安定性により、インプレッションを長時間にわたり維持することを可能にし、それによって、測定される材料をその全耐用期間中に亘って監視し比較することを可能とする。測定要素の材料の硬度よりも硬度が低いことにより、測定要素は、測定を多数繰り返した後でも摩滅しない。   Since the measuring elements are fitted with measuring blades whose axes are parallel to each other, it is possible to measure their exact distance and possibly the bending of the material to be measured. Separate measuring elements on various structures that cannot be connected to other measuring devices in general, such as aircraft structures, power equipment surfaces, etc., by being fixedly connected to the surface of the material to be measured Can be arranged. The material of the impression surface of the scanning body, due to its dimensional stability, allows the impression to be maintained for a long time, thereby allowing the measured material to be monitored and compared over its entire lifetime And Due to the fact that the hardness is lower than the hardness of the material of the measuring element, the measuring element will not wear out even after many measurements.

測定要素の寸法が小さいことおよび測定要素に使用される材料を考慮すると、特に測定要素の材料は溶接が困難であり、または接触面が小さすぎるので、これらの測定要素を測定される材料に連結することが困難な場合がある。ただし、測定要素が測定ブレードに対面しない側でラグの穴内に配置される場合、樹脂ベースの接着剤を用いてこれを連結することができ、その場合、接合部がせん断応力ならびに引張応力を伝達し、その強度が大幅に高くなる。樹脂ベースの接着剤によって、大きな温度差、外部からの影響など、極限条件下においても、恒久的な連結がもたらされる。   Considering the small dimensions of the measuring elements and the materials used for the measuring elements, especially the measuring element materials are difficult to weld or the contact surface is too small, so these measuring elements are connected to the material to be measured It may be difficult to do. However, if the measuring element is placed in the hole of the lug on the side that does not face the measuring blade, it can be connected using a resin-based adhesive, in which case the joint transmits shear and tensile stresses However, its strength is greatly increased. Resin-based adhesives provide a permanent connection even under extreme conditions such as large temperature differences and external influences.

ラグは、この場合、測定される材料の表面に、溶接部を用いて、最適には、測定される材料の特性に及ぼす影響が可能な限り最小となる溶接部を用いて、連結される。これは特に、電気アークによって製作された溶接部を指す。現在の技術では、数ミリ秒以内で溶接部を製作することが可能であり、必要な機器は、どこにでも移送できるほど小さく軽量である。   The lugs are in this case connected to the surface of the material to be measured using a weld, and optimally using a weld that has the least possible influence on the properties of the material to be measured. This particularly refers to a weld made by an electric arc. With current technology, it is possible to produce welds within a few milliseconds, and the necessary equipment is small and light enough to be transported anywhere.

ラグが円筒形である場合、穴は、円筒軸の方向に配置され、穴が雌ねじ内と嵌り合う場合により大きな接触面が生み出され、測定要素とラグの間の接合部がより高い強度を有する。   If the lug is cylindrical, the hole is arranged in the direction of the cylindrical axis, creating a larger contact surface when the hole fits inside the internal thread, and the joint between the measuring element and the lug has a higher strength .

測定ブレードは、その中央区間内に取付部を有することができ、それによって、インプレッションを生み出すのに必要な強度を低減させ、測定要素とラグの間、およびラグと測定される材料との間の接触面積を低減させることが可能になる。というのも、これらの接合部が測定中に受ける応力は、より小さいからである。測定要素が、底部区間でネックおよび円錐形端部と嵌り合う場合、それらによって、測定要素とラグとの間の接合部の強度を増大させる状態が生み出される。   The measuring blade can have a mounting in its central section, thereby reducing the strength required to produce the impression, between the measuring element and the lug, and between the lug and the material to be measured. The contact area can be reduced. This is because the stress these joints undergo during measurement is smaller. If the measuring element fits in the bottom section with the neck and the conical end, they create a condition that increases the strength of the joint between the measuring element and the lug.

測定要素および/またはラグは、相互の精密な設定後に移送リグ内に差し込まれるので、精密な設定が維持される場合、測定要素を基本的にどの場所に移送および設置することもでき、測定される材料上にそれらを配置した後に、測定要素と移送リグを容易に被係合状態とすることができる。   Since the measuring elements and / or lugs are inserted into the transfer rig after precise setting of each other, the measuring elements can be transported and installed essentially anywhere and measured if the precise settings are maintained. After placing them on the material to be measured, the measuring element and the transfer rig can be easily brought into engagement.

上述のゲージの製作方法は、測定要素を移送リグ内および測定される材料上に正確に設置し、要素と測定される材料の間の接合部を強力にし、長い耐用期間を有することを可能にする。   The gauge fabrication method described above allows the measuring element to be accurately placed in the transfer rig and on the material to be measured, strengthening the joint between the element and the material to be measured, and having a long service life To do.

一方法によれば、まず測定要素をラグと連結させ、次いでラグを測定される材料に溶接することができ、別の方法によれば、まずラグを測定される材料に溶接し、次いでそれらを測定要素に嵌め合わせることができる。現在の必要性と可能性に基づいて、特定の方法が選択されることになる。   According to one method, the measuring element can be first connected to the lug and then the lug can be welded to the material to be measured, and according to another method, the lug is first welded to the material to be measured and then they are Can be fitted to the measuring element. A specific method will be selected based on current needs and possibilities.

本発明で特定されるゲージは、測定顕微鏡などの高度に精密な測定機器を用いることによって、測定される区間上の永久材料変形の正確な測定を可能にする。この大きくて重い装置は、たとえば地震など過剰な負荷が作用した後にその状態が監視されなければならない、橋や管路、船舶、またはその他の構造上に直接設置することができない。そこで、負荷がかけられる前後の測定要素の間隔測定を、収集されたインプレッション体上に生み出された測定点のインプレッション上で測定顕微鏡を用いて実施する、本発明のゲージを使用することが有利になる。   The gauge specified in the present invention enables accurate measurement of permanent material deformation on the section to be measured by using a highly precise measuring instrument such as a measuring microscope. This large and heavy device cannot be installed directly on a bridge, pipeline, ship, or other structure whose condition must be monitored after an excessive load, such as an earthquake, is applied. It is therefore advantageous to use a gauge according to the invention in which the measurement of the distance between measuring elements before and after being loaded is carried out with a measuring microscope on the impressions of the measuring points produced on the collected impression bodies. Become.

本発明は、添付の図面を用いて、特定の実施形態についてより詳細に説明される。   The present invention will be described in more detail with respect to specific embodiments using the accompanying drawings.

材料のための例示的な線ひずみゲージは、平行軸を有する測定ブレード2と嵌り合う、少なくとも2つの測定要素1を備える。それらの測定要素1は、測定される材料に取り付け可能である。ゲージはまた、測定ブレード2の材料よりも低い硬度を有する寸法安定性材料で製作されたインプレッション面4を有する、可搬走査体3を備え、または、走査体3は、可搬測定装置で置換または補完することができる。測定ブレード2に対面しない側で、測定要素1は、ラグ11の穴10内に配置され、樹脂ベースの接着剤を用いてそれに取り付けられる。ラグ11は円柱形状であり、穴10は、円柱軸の方向に配置され、雌ねじ部12と嵌り合う。ラグ11は、電気アークによって製作された溶接部を用いて、測定される材料の表面に取り付けられる。   An exemplary linear strain gauge for a material comprises at least two measuring elements 1 that mate with a measuring blade 2 having parallel axes. These measuring elements 1 can be attached to the material to be measured. The gauge also comprises a portable scanning body 3 having an impression surface 4 made of a dimensionally stable material having a lower hardness than the material of the measuring blade 2, or the scanning body 3 is replaced by a portable measuring device Or it can be complemented. On the side not facing the measuring blade 2, the measuring element 1 is placed in the hole 10 of the lug 11 and attached thereto using a resin-based adhesive. The lug 11 has a cylindrical shape, and the hole 10 is disposed in the direction of the cylindrical axis and fits with the female screw portion 12. The lug 11 is attached to the surface of the material to be measured using a weld made by an electric arc.

測定ブレード2は、その中央区間において、取付部5を有し、測定要素1は、その底部区間で、ネック6および円錐形端部7と嵌り合う。   The measuring blade 2 has a mounting part 5 in its central section, and the measuring element 1 fits with the neck 6 and the conical end 7 in its bottom section.

測定ブレード2の軸を互いに平行に精密に設定することに続いて、測定要素1は、測定要素1用の穴9を有する、移送ボードを含む移送リグ8内に差し入れられ、測定要素1と移送リグ8の間の接合部は、測定要素1と測定される材料との間の接合部よりも低い強度を有する。   Following the precise setting of the axes of the measuring blade 2 parallel to each other, the measuring element 1 is inserted into a transfer rig 8 including a transfer board having a hole 9 for the measuring element 1, and the measuring element 1 and the transfer The joint between the rigs 8 has a lower strength than the joint between the measuring element 1 and the material to be measured.

ゲージは、測定要素1がリグ8内の穴9内に挿入され、ブレード2の軸の厳密な相互距離および平行が設定されるように製造され、その後測定要素1は、測定要素1と測定される材料との間で使用される接着剤よりも強度が低い接着剤を用いて、この位置に固定される。その後、測定要素1は、測定される材料にラグ11を用いて取り付けられ、移送リグ8は、測定要素1を連結させた後に取り外すことができる。   The gauge is manufactured so that the measuring element 1 is inserted into the hole 9 in the rig 8 and the exact mutual distance and parallelism of the axis of the blade 2 are set, after which the measuring element 1 is measured with the measuring element 1. It is fixed in this position using an adhesive having a lower strength than the adhesive used with the adhesive material. Thereafter, the measuring element 1 is attached to the material to be measured with a lug 11 and the transfer rig 8 can be removed after the measuring element 1 is connected.

一方法によれば、測定要素1は、移送リグ8内の穴9内へと挿入する前に、ラグ11の穴10内に配置され、樹脂ベースの接着剤を用いてラグ11に連結され、ブレード2の軸の厳密な距離および平行を設定した後、ラグは測定される材料に溶接され、移送リグ8は取り外される。   According to one method, the measuring element 1 is placed in the hole 10 of the lug 11 before being inserted into the hole 9 in the transfer rig 8 and connected to the lug 11 using a resin-based adhesive, After setting the exact distance and parallelism of the axis of the blade 2, the lug is welded to the material to be measured and the transfer rig 8 is removed.

別の方法によれば、ラグ11は、まず測定される材料に溶接され、移送リグ8内に配置された測定要素1が、ラグ11内に挿入され、樹脂ベースの接着剤を用いてそれらに連結される。接合部が硬化すると、輸送リグ8は取り外される。   According to another method, the lugs 11 are first welded to the material to be measured and the measuring element 1 arranged in the transfer rig 8 is inserted into the lug 11 and attached to them using a resin-based adhesive. Connected. When the joint is cured, the transport rig 8 is removed.

材料の永久線ひずみの測定方法の場合、材料の表面上にある2点間の元の距離の変化が確認されるところで、測定される材料の表面に固定された測定要素1のインプレッションが、走査体3のインプレッション面4上に生み出され、両インプレッションの確認された位置の厳密な距離が、測定要素1の間隔内で測定され、第1対のインプレッションが、ひずみ前に生み出され、測定要素1の別の対のインプレッションが臨界ひずみ後に生み出され、第1対のインプレッションと第2対のインプレッションの間の距離が比較される。したがってゲージは、材料の測定される区間に取り付けられた固定された部品と、可搬部品とを備える。   In the case of a method for measuring the permanent line strain of a material, where the change in the original distance between two points on the surface of the material is confirmed, the impression of the measuring element 1 fixed on the surface of the material to be measured is scanned. The exact distance of the confirmed position of both impressions produced on the impression surface 4 of the body 3 is measured within the spacing of the measuring element 1 and a first pair of impressions is produced before the strain, measuring element 1 Another pair of impressions is produced after the critical strain, and the distance between the first pair of impressions and the second pair of impressions is compared. The gauge thus comprises a fixed part attached to the section of material to be measured and a portable part.

本発明による、材料の線ひずみを測定するためのゲージおよびその製作方法は、特に宇宙空間、船舶、電力、建設など、様々な産業分野に応用することができる。   The gauge for measuring the linear strain of a material and the manufacturing method thereof according to the present invention can be applied to various industrial fields such as outer space, ships, electric power, and construction.

2つの測定要素の位置を示す平面図である。It is a top view which shows the position of two measurement elements. インプレッション体を備える、ラグ内にある測定要素の側断面図である。FIG. 4 is a side cross-sectional view of a measuring element in a lug with an impression body.

符号の説明Explanation of symbols

1…測定要素、2…測定ブレード、3…走査体、4…インプレッション面、8…リグ、11…ラグ   DESCRIPTION OF SYMBOLS 1 ... Measuring element, 2 ... Measuring blade, 3 ... Scanning body, 4 ... Impression surface, 8 ... Rig, 11 ... Lug

Claims (8)

互いに平行な軸を有する測定ブレード(2)と嵌り合い、測定される材料に取り付け可能である、少なくとも2つの測定要素(1)、前記測定ブレード(2)の材料の硬度よりも低い硬度を有する寸法安定性材料で製作されたインプレッション面(4)を有する可搬走査体(3)、および/または可搬測定装置を有し、測定要素(1)が、前記測定ブレード(2)に対面しない側でラグ(11)の穴(10)内に配置され、樹脂ベースの接着剤を用いてそこに取り付けられ、前記ラグ(11)が測定される材料の表面に溶接を用いて取り付けられる、材料の線ひずみを測定するためのゲージ。   At least two measuring elements (1), which fit into a measuring blade (2) having axes parallel to each other and are attachable to the material to be measured, have a hardness lower than the hardness of the material of said measuring blade (2) A portable scanning body (3) having an impression surface (4) made of a dimensionally stable material and / or a portable measuring device, the measuring element (1) not facing the measuring blade (2) A material which is placed in the hole (10) of the lug (11) on the side and attached thereto using a resin-based adhesive, said lug (11) being attached using welding to the surface of the material to be measured Gauge for measuring the line strain. 前記ラグ(11)が、電気アークによって製作される溶接部を用いて、前記測定される材料の前記表面に取り付けられることを特徴とする、請求項1に記載のゲージ。   Gauge according to claim 1, characterized in that the lug (11) is attached to the surface of the material to be measured using a weld made by an electric arc. 前記ラグ(11)が円柱形であり、前記穴(10)が、前記円柱軸の方向に配置され、雌ねじ(12)と嵌り合うことを特徴とする、請求項1または2に記載のゲージ。   Gauge according to claim 1 or 2, characterized in that the lug (11) is cylindrical and the hole (10) is arranged in the direction of the cylinder axis and fits with an internal thread (12). 前記測定ブレード(2)がその中央区間内に取付部(5)を有し、前記測定要素(1)が、その底部区間でネック(6)および円錐形端部(7)と嵌り合うことを特徴とする、請求項1〜3のいずれか一項に記載のゲージ。   The measuring blade (2) has a mounting part (5) in its central section, and the measuring element (1) fits in the bottom section with the neck (6) and the conical end (7). The gauge according to any one of claims 1 to 3, which is characterized. 前記測定要素(1)および/または前記ラグ(11)が、前記測定ブレード(2)の互いに平行な軸を精密に設定した後に、前記測定要素(1)およびラグ(11)のための穴(9)を有する移送ボードによって形成される移送リグ(8)内に差し込まれ、前記測定要素(1)および/またはラグ(11)と前記移送リグ(8)との間の接合部が、前記測定要素(1)および/またはラグ(11)と前記測定される材料との間の接合部よりも低い強度を有することを特徴とする、請求項1〜4のいずれか一項に記載のゲージ。   After the measuring element (1) and / or the lug (11) has precisely set the mutually parallel axes of the measuring blade (2), holes for the measuring element (1) and the lug (11) ( 9) is inserted into a transfer rig (8) formed by a transfer board having a measuring board (1) and / or a joint between the lug (11) and the transfer rig (8) Gauge according to any one of the preceding claims, characterized in that it has a lower strength than the joint between the element (1) and / or the lug (11) and the material to be measured. 前記測定要素および/またはラグが、移送リグ内の穴内に挿入され、前記ブレードの軸が精密な相互距離で平行に設定され、前記測定要素および/または前記ラグと測定される材料との間の前記接着剤よりも強度が低い接着剤を用いてこの位置に固定され、その後前記測定要素が、前記ラグを用いて前記測定される材料に連結され、前記移送リグが取外し可能であることを特徴とする、請求項1〜5のいずれか一項に記載のゲージの製作方法。   The measuring element and / or lug is inserted into a hole in a transfer rig, the blade axes are set parallel with a precise mutual distance, and between the measuring element and / or the lug and the material to be measured It is fixed in this position using an adhesive having a lower strength than the adhesive, after which the measuring element is connected to the material to be measured using the lug and the transfer rig is removable. The manufacturing method of the gauge as described in any one of Claims 1-5. 前記測定要素が、前記移送リグ内の前記穴内に挿入されて樹脂ベースの接着剤を用いて前記ラグに取り付けられる前に、前記ラグの穴内に配置され、前記ブレードの軸を精密な相互距離で平行に設定した後に、前記ラグが、前記測定される材料上に溶接され、前記移送リグが、取り外されることを特徴とする、請求項6に記載の方法。   The measuring element is placed in the lug hole before being inserted into the hole in the transfer rig and attached to the lug using a resin-based adhesive, and the blade axis is placed at a precise mutual distance. The method according to claim 6, characterized in that, after setting in parallel, the lug is welded onto the material to be measured and the transfer rig is removed. 前記測定される材料に溶接された前記ラグ、および前記移送リグ内に配置された前記測定要素が、次いでラグ内に挿入され、樹脂ベースの接着剤を用いてそれらに連結され、前記接合部が硬化すると、前記移送リグが取り外されることを特徴とする請求項6に記載の方法。   The lug welded to the material to be measured and the measuring element arranged in the transfer rig are then inserted into the lug and connected to them using a resin-based adhesive, the joint being The method of claim 6, wherein upon curing, the transfer rig is removed.
JP2007538251A 2004-11-02 2005-09-14 Gauge for measuring the linear strain of a material and its manufacturing method Withdrawn JP2008519249A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CZ20041088A CZ301142B6 (en) 2004-11-02 2004-11-02 Gauge for measuring linear strains of materials and process for producing thereof
PCT/CZ2005/000069 WO2006047970A1 (en) 2004-11-02 2005-09-14 Gauge for measuring linear strain of materials and method of its production

Publications (1)

Publication Number Publication Date
JP2008519249A true JP2008519249A (en) 2008-06-05

Family

ID=35385433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007538251A Withdrawn JP2008519249A (en) 2004-11-02 2005-09-14 Gauge for measuring the linear strain of a material and its manufacturing method

Country Status (4)

Country Link
JP (1) JP2008519249A (en)
CZ (1) CZ301142B6 (en)
EA (1) EA010533B1 (en)
WO (1) WO2006047970A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0919352D0 (en) * 2009-11-05 2009-12-23 Third Dimension Software Ltd Optical metrology apparatus and method
CN102278971B (en) * 2011-06-24 2012-09-19 湖南大学 Strain test method using multiple balance reference points

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE945191C (en) * 1954-10-08 1956-07-05 Otto & Co Gmbh Dr C Method for measuring the changes in length that occur when burning refractory bricks
US3948090A (en) * 1974-02-14 1976-04-06 Foster Wheeler Energy Corporation Method of measuring dimensional variations in a workpiece
US5668324A (en) * 1996-04-01 1997-09-16 Voss; Karl Friedrich Strain sensors having ultra-high dynamic range
CZ290398B6 (en) * 1999-05-28 2002-07-17 Jindřich Ing. Zeman Method and device for measuring permanent linear deformations of materials
CZ290412B6 (en) * 2000-05-29 2002-07-17 Vúts Liberec A. S. Pulling capacity sensor of elongated formation, particularly of textile threads
CZ12445U1 (en) * 2002-05-21 2002-07-15 Jindřich Ing. Zeman Gauge for measuring linear strain of materials
CZ20032084A3 (en) * 2003-07-31 2005-03-16 Jindřich Ing. Zeman Kit for measuring linear strains of materials

Also Published As

Publication number Publication date
EA200700992A1 (en) 2007-10-26
CZ20041088A3 (en) 2006-06-14
EA010533B1 (en) 2008-10-30
CZ301142B6 (en) 2009-11-18
WO2006047970A1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
US8525979B2 (en) Monitoring device for detecting stress strain and method for using same
JP6010733B2 (en) Plate-shaped specimen evaluation test unit and fixing jig used therefor
JP2017528732A (en) Multi-target multi-degree-of-freedom static and dynamic test apparatus and method for distributed sensing optical fiber
JP2019105477A (en) Method to detect damage/deformation of structure with cfrp tendon for introducing pre-stress and cfrp tendon
CN105806203B (en) A kind of three-dimensional relative displacement transducer
KR102044959B1 (en) Concrete constructions crack displacement measurement equipment
JP2008519249A (en) Gauge for measuring the linear strain of a material and its manufacturing method
KR101264375B1 (en) Smart interface plate for electro-mechanical impedance-based bolt-loose monitoring in bolt-connected plate
JP2007078364A (en) Strain sensitive sensor
CN105806210A (en) High-resolution strain testing method
JP2008164515A (en) Crack length detection method and crack length detection device
US6170337B1 (en) Method and device for measuring permanent length deformations of materials
CN205981524U (en) Be used for civil engineering prestressing force shearing force detection device
JP2000180326A (en) Sacrificial test piece for monitoring long-term stress intensity of structure and method for using the same
CN111721510B (en) Intelligent diagnosis method for steel crane beam based on real-time monitoring
CN110849521B (en) Portable loading and optical testing device applied to field residual stress
RU2178049C2 (en) Crack monitoring in building structures
GB2284669A (en) Determination of in situ stress in concrete
JP2007315810A (en) Repeated stress sensor
CZ20032084A3 (en) Kit for measuring linear strains of materials
CN101825507A (en) Multi-axis force transducer with double-bending beam structure
JP3784073B2 (en) Apparatus for measuring shear in the core of a sandwich structure
JP3229726B2 (en) Method for measuring internal stress of existing concrete structures
CZ23783U1 (en) Gauge for measuring relative deformations of materials
JP2019174290A (en) Damage evaluation method of beam and beam for damage evaluation

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202