JP2008514913A - sensor - Google Patents

sensor Download PDF

Info

Publication number
JP2008514913A
JP2008514913A JP2007533029A JP2007533029A JP2008514913A JP 2008514913 A JP2008514913 A JP 2008514913A JP 2007533029 A JP2007533029 A JP 2007533029A JP 2007533029 A JP2007533029 A JP 2007533029A JP 2008514913 A JP2008514913 A JP 2008514913A
Authority
JP
Japan
Prior art keywords
bridge
magnetic field
elements
characteristic
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007533029A
Other languages
Japanese (ja)
Inventor
ハンス、ファン、ゾン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2008514913A publication Critical patent/JP2008514913A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0338Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/0474Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks characterised by means converting mechanical movement into electric signals
    • G05G2009/04755Magnetic sensor, e.g. hall generator, pick-up coil

Abstract

移動に応じて磁場を変化させるための可動物体(13)を備えたセンサー構成(10)を有する装置(1)に、ブリッジの面内の磁場の成分を検出するために2つ以上の素子(21〜24、31〜34)を有するブリッジと2つ以上の素子(35〜38)を有する更なるブリッジとを備えた磁場検出器(12)が設けられる。ブリッジはZ方向の移動に依存した第1特性とX方向の移動に依存した第2特性とを備える。更なるブリッジはZ方向の移動に依存した第3特性とY方向の移動に依存した第4特性とを備える。第1及び第3特性はすべての素子の抵抗値が略同じ値を伴って増加したか又は減少したかを指示する。第2及び第4特性は2つの素子の抵抗値が略同じ値を伴って増加し及び2つの他の素子の抵抗値が略同じ値を伴って減少したことを指示する。  An apparatus (1) having a sensor arrangement (10) with a movable object (13) for changing the magnetic field in response to movement, has two or more elements (in order to detect the magnetic field component in the plane of the bridge). A magnetic field detector (12) with a bridge having 21-24, 31-34) and a further bridge having two or more elements (35-38) is provided. The bridge has a first characteristic that depends on movement in the Z direction and a second characteristic that depends on movement in the X direction. The further bridge has a third characteristic dependent on movement in the Z direction and a fourth characteristic dependent on movement in the Y direction. The first and third characteristics indicate whether the resistance values of all elements have increased or decreased with substantially the same value. The second and fourth characteristics indicate that the resistance values of the two elements increase with approximately the same value and the resistance values of the two other elements decrease with approximately the same value.

Description

本発明はセンサー構成を有する装置に関し、センサー構成、及びセンシング方法にも関する。   The present invention relates to an apparatus having a sensor configuration, and also relates to a sensor configuration and a sensing method.

そうした装置の例は、携帯用パーソナル・コンピュータ、並びに、携帯電話、携帯情報端末、ディジタルカメラ及び全地球測位システム装置などの小型携帯電子端末である。   Examples of such devices are portable personal computers and small portable electronic terminals such as mobile phones, personal digital assistants, digital cameras and global positioning system devices.

従来の技術による装置は米国特許第6738043B2号から知られており、この特許は磁場を発生させるための磁石及び出力電圧を発生させるための電磁変換器を備えた座標入力装置を開示している。これらの出力電圧は、電磁変換器と磁石との間の隔たりの変化に応じて変化する値を有する。このように1つの磁石の3次元空間内での移動が3次元座標に変換される。   A device according to the prior art is known from US Pat. No. 6,738,043 B2, which discloses a coordinate input device comprising a magnet for generating a magnetic field and an electromagnetic transducer for generating an output voltage. These output voltages have values that change in response to changes in the distance between the electromagnetic transducer and the magnet. Thus, the movement of one magnet in the three-dimensional space is converted into three-dimensional coordinates.

この知られた装置は、その装置が出力電圧を評価するためにパーソナル・コンピュータを必要とするという事実の結果としてとりわけ不利である。言い換えると、この知られた装置は、移動を特定する出力電圧を相対的に間接的な方法で発生させる。これは相対的に複雑であり相対的に高価である。   This known device is particularly disadvantageous as a result of the fact that the device requires a personal computer to evaluate the output voltage. In other words, this known device generates an output voltage specifying movement in a relatively indirect manner. This is relatively complex and relatively expensive.

本発明の目的は、とりわけ、相対的に直接的な方法で移動を特定するセンサー構成を備えた装置を提供することである。   It is an object of the present invention to provide, inter alia, a device with a sensor arrangement that identifies movement in a relatively direct manner.

本発明の更なる目的は、とりわけ、相対的に直接的な方法で移動を特定するセンサー構成と相対的に直接的な方法で移動を特定するセンシング方法とを提供することである。   It is a further object of the present invention to provide, inter alia, a sensor arrangement that identifies movement in a relatively direct manner and a sensing method that identifies movement in a relatively direct manner.

本発明による装置は、移動に応じて磁場の少なくとも一部分を変化させるための可動物体と、ブリッジの面内の前記磁場の成分を素子ごとに検出するための複数の素子を有するブリッジであって、第1方向の移動に依存した第1特性と、異なる第2方向の移動に依存した異なる第2特性とを備えたブリッジを備えた磁場検出器とを備えたセンサー構成を備える。   An apparatus according to the present invention is a bridge having a movable object for changing at least a part of a magnetic field in response to movement and a plurality of elements for detecting, for each element, a component of the magnetic field in the plane of the bridge, A sensor configuration is provided that includes a magnetic field detector including a bridge having a first characteristic depending on movement in a first direction and a different second characteristic depending on movement in a different second direction.

素子の抵抗値が該素子の配置された磁場の強度及び方向に依存する磁気抵抗素子などの少なくとも2つの磁場依存性素子を備えたブリッジの形態で磁場検出器を導入することにより、異なる移動を相対的に直接的な方法で指示するためにブリッジの異なる複数の特性が使用されることができる。結果として、従来技術における電磁変換器の出力電圧を評価するための複雑で高価なパーソナル・コンピュータがもはや必要とされない。ブリッジの第1特性は可動物体の第1方向の移動に依存し第1方向の第1座標を指示し、ブリッジの異なる第2特性は可動物体の異なる第2方向の移動に依存し第2座標を指示する。磁気抵抗素子以外の他の磁場依存性素子が除斥されるべきではない。   By introducing a magnetic field detector in the form of a bridge with at least two magnetic field dependent elements such as a magnetoresistive element whose resistance depends on the strength and direction of the magnetic field in which the element is arranged, different movements are achieved. Different characteristics of the bridge can be used to indicate in a relatively direct way. As a result, complex and expensive personal computers for evaluating the output voltage of electromagnetic transducers in the prior art are no longer needed. The first characteristic of the bridge depends on the movement of the movable object in the first direction and indicates the first coordinate in the first direction, and the different second characteristic of the bridge depends on the movement of the movable object in the second direction different from the second coordinate. Instruct. Other magnetic field dependent elements other than magnetoresistive elements should not be excluded.

本発明による装置は、従来技術における電磁変換器の出力電圧を評価するためにパーソナル・コンピュータを使用することと比較して全体の消費電力が削減されるという点においてとりわけ更に有利である。   The device according to the invention is particularly further advantageous in that the overall power consumption is reduced compared to using a personal computer to evaluate the output voltage of the electromagnetic transducer in the prior art.

本発明による装置の一実施形態は、前記可動物体の休止位置に対して及び前記磁場の所与の強度に対して、素子の長手軸とこの素子の磁化の方向とが25〜65度の角度を形成することによって規定される。この実施形態は、バーバーポール状の(barberpole)のストライプが避けられることができるという点で有利である。こうしたバーバーポール状のストライプは、これが素子の上に特定されたときにはこの素子の全抵抗値を減少させ電力消費を増加させる。   An embodiment of the device according to the invention is that the longitudinal axis of the element and the direction of magnetization of the element are between 25 and 65 degrees with respect to the rest position of the movable object and for a given strength of the magnetic field. Is defined by forming This embodiment is advantageous in that barberpole stripes can be avoided. Such barber pole-like stripes reduce the overall resistance of the device and increase power consumption when it is specified on the device.

本発明による装置の一実施形態は前記角度は略45度であることにより規定される。この実施形態はセンサー構成が最高の直線性と最大の感度とを有するという点で有利である。   An embodiment of the device according to the invention is defined by the angle being approximately 45 degrees. This embodiment is advantageous in that the sensor configuration has the highest linearity and maximum sensitivity.

本発明による装置の一実施形態は、前記センサー構成は固定物体を更に備え、前記磁場検出器は両物体の間に配置され、前記両物体の一方の物体は前記磁場を発生させるための磁場発生器を備え、他方の物体は前記磁場を伝導するための磁場導体を備えたことによって規定される。米国特許第6738043B2号に開示されたように2つ以上の磁石を使用することに比較して、例えば1つの磁石などの磁場発生器と1つの磁場導体とを使用することは装置の費用を削減する。   In one embodiment of the device according to the invention, the sensor arrangement further comprises a fixed object, the magnetic field detector is arranged between the two objects, and one of the two objects generates a magnetic field for generating the magnetic field. And the other object is defined by having a magnetic field conductor for conducting said magnetic field. Using a magnetic field generator, such as one magnet and one magnetic conductor, for example, reduces the cost of the device compared to using two or more magnets as disclosed in US Pat. No. 6,734,043B2 To do.

本発明による装置の一実施形態は、前記第1特性は外部特性であり、前記第2特性は内部特性であり、前記第1方向は前記ブリッジの前記面に略垂直である方向であり、前記第2方向は前記ブリッジの前記面内に実質的に存在する方向であることによって規定される。ブリッジの面がX軸とY軸とに一致する場合には、第1方向はZ軸に一致し第2方向は例えばX軸に一致する。   In one embodiment of the device according to the present invention, the first characteristic is an external characteristic, the second characteristic is an internal characteristic, the first direction is a direction substantially perpendicular to the face of the bridge, The second direction is defined by being a direction that is substantially in the plane of the bridge. When the surface of the bridge coincides with the X axis and the Y axis, the first direction coincides with the Z axis, and the second direction coincides with, for example, the X axis.

本発明による装置の一実施形態は、前記ブリッジは、前記外部特性を供給するための第1及び第2外部端子と、前記内部特性を供給するための第1及び第2内部端子と、前記複数の外部端子の間に並列に配置された第1及び第2直列分岐とを備え、前記第1直列分岐は前記第1内部端子を介して互いに結合された第1及び第2素子を備え、前記第2直列分岐は前記第2内部端子を介して互いに結合された第3及び第4素子を備えたことによって規定される。外部特性は例えば、すべての素子の抵抗値が略同じ値を伴って増加したか又は略同じ値を伴って減少したかを示す。内部特性は例えば、2つの素子の抵抗値が略同じ値を伴って増加し及び2つの他の素子の抵抗値が略同じ値を伴って減少したことを示す。この内部特性は温度変化から相対的に独立しており外部特性は温度変化に相対的に依存している。   In one embodiment of the apparatus according to the present invention, the bridge includes first and second external terminals for supplying the external characteristics, first and second internal terminals for supplying the internal characteristics, and the plurality of the plurality of external terminals. A first and second series branch disposed in parallel between the external terminals of the first and second series branches, the first series branch comprising first and second elements coupled to each other via the first internal terminal, The second series branch is defined by including third and fourth elements coupled to each other via the second internal terminal. The external characteristic indicates, for example, whether the resistance values of all elements have increased with substantially the same value or decreased with substantially the same value. For example, the internal characteristics indicate that the resistance values of the two elements have increased with approximately the same value and the resistance values of the two other elements have decreased with approximately the same value. This internal characteristic is relatively independent of the temperature change, and the external characteristic is relatively dependent on the temperature change.

本発明による装置の一実施形態は、前記センサー構成は前記ブリッジの温度依存性を補償するために温度補償器を更に備えたことによって規定される。   An embodiment of the device according to the invention is defined by the sensor arrangement further comprising a temperature compensator to compensate for the temperature dependence of the bridge.

温度補償器はブリッジの温度依存性を補償し、従って外部特性の温度依存性を補償し、変化する温度条件の下でセンサー構成が使用されることを可能とする。   The temperature compensator compensates for the temperature dependence of the bridge and thus compensates for the temperature dependence of the external characteristics, allowing the sensor configuration to be used under changing temperature conditions.

本発明による装置の一実施形態は、前記磁場検出器は複数の更なる素子を有する更なるブリッジを備え、前記複数の更なる素子は前記更なるブリッジの更なる面内における前記磁磁場成分を前記複数の更なる素子ごとに検出し、前記更なるブリッジは前記第1方向の前記移動に依存した第3特性及び異なる第3方向の前記移動に依存した第4特性とを備えたことによって規定される。このセンサー構成は3つの異なる方向の移動に対して感度がある。通常、ブリッジの面と更なるブリッジの更なる面とは略一致する面ということになる。   An embodiment of the device according to the invention is characterized in that the magnetic field detector comprises a further bridge having a plurality of further elements, the plurality of further elements representing the magnetic field component in a further plane of the further bridge. Detecting for each of the plurality of further elements, wherein the further bridge comprises a third characteristic dependent on the movement in the first direction and a fourth characteristic dependent on the movement in a different third direction. Is done. This sensor configuration is sensitive to movement in three different directions. Usually, the surface of the bridge and the further surface of the further bridge are substantially coincident surfaces.

本発明による装置の一実施形態は、前記第3特性は外部特性であり、前記第4特性は内部特性であり、前記第1方向は前記更なるブリッジの前記更なる面に対して略垂直である方向であり、前記第3方向は前記更なるブリッジの前記更なる面内に実質的に存在する方向であり、前記第2及び第3方向は略直角をなす方向であることによって規定される。更なるブリッジの更なる面がX軸とY軸とに一致する場合には、第1方向はZ軸に一致し第3方向は例えばY軸に一致する。   In an embodiment of the device according to the invention, the third characteristic is an external characteristic, the fourth characteristic is an internal characteristic, and the first direction is substantially perpendicular to the further surface of the further bridge. A direction, wherein the third direction is a direction substantially in the further plane of the further bridge, and the second and third directions are substantially perpendicular. . If the further surface of the further bridge coincides with the X axis and the Y axis, the first direction coincides with the Z axis and the third direction coincides with the Y axis, for example.

本発明による装置の一実施形態は、前記更なるブリッジは前記外部特性を供給するための第3及び第4外部端子と、前記内部特性を供給するための第3及び第4内部端子と、前記外部端子間に並列に配置された第3及び第4直列分岐とを備え、前記第3直列分岐は前記第3内部端子を介して互いに結合された第5及び第6素子を備え、前記第4直列分岐は前記第4内部端子を介して互いに結合された第7及び第8素子を備えたことによって規定される。外部特性は例えば、すべての素子の抵抗値が略同じ値を伴って増加したか又は略同じ値を伴って減少したかを示す。内部特性は例えば、2つの素子の抵抗値が略同じ値を伴って増加し及び2つの他の素子の抵抗値が略同じ値を伴って減少したことを示す。この内部特性は温度変化から相対的に独立しており、外部特性は温度変化に相対的に依存している。   An embodiment of the device according to the invention is characterized in that the further bridge provides third and fourth external terminals for supplying the external characteristic, third and fourth internal terminals for supplying the internal characteristic, A third and a fourth series branch arranged in parallel between the external terminals, the third series branch comprising a fifth and a sixth element coupled to each other via the third internal terminal; A serial branch is defined by having seventh and eighth elements coupled together via the fourth internal terminal. The external characteristic indicates, for example, whether the resistance values of all elements have increased with substantially the same value or decreased with substantially the same value. For example, the internal characteristics indicate that the resistance values of the two elements have increased with approximately the same value and the resistance values of the two other elements have decreased with approximately the same value. This internal characteristic is relatively independent of the temperature change, and the external characteristic is relatively dependent on the temperature change.

本発明による装置の一実施形態は、前記センサー構成は前記複数のブリッジの温度依存性を補償するための温度補償器を更に備えたことによって規定される。   An embodiment of the device according to the invention is defined by the sensor arrangement further comprising a temperature compensator for compensating the temperature dependence of the plurality of bridges.

温度補償器はブリッジの温度依存性を補償し、従って外部特性の温度依存性を補償し、変化する温度条件下でセンサー構成が使用されることを可能とする。   The temperature compensator compensates for the temperature dependence of the bridge and thus compensates for the temperature dependence of the external characteristics, allowing the sensor configuration to be used under changing temperature conditions.

本発明による装置の一実施形態は、前記温度補償器は、前記ブリッジ及び前記更なるブリッジを更に備えたなおも更なるブリッジの一部を形成する2つの温度依存性素子を備えたことによって規定される。このブリッジ及び更なるブリッジをなおも更なるブリッジの中に配置することにより、並びにブリッジ及び更なるブリッジの温度依存性と同様の温度依存性を例えば有する2つの温度依存性素子をなおも更なるブリッジの中に配置することにより、ブリッジ及び更なるブリッジの温度に依存する外部特性は相対的に温度から独立であるなおも更なるブリッジの内部特性に変換される。   An embodiment of the device according to the invention is defined by the temperature compensator comprising two temperature dependent elements forming part of a still further bridge further comprising the bridge and the further bridge. Is done. By placing this bridge and further bridges in still further bridges, and still further two temperature-dependent elements having, for example, temperature dependence similar to that of the bridges and further bridges. By placing in the bridge, the external characteristics depending on the temperature of the bridge and further bridges are converted into the internal characteristics of still further bridges which are relatively temperature independent.

本発明による装置の一実施形態は、前記複数の温度依存性素子及び前記複数の素子は同一の磁気材料から作られ、前記複数の温度依存性素子は、前記複数の温度依存性素子が前記磁場の変化に実質的に応答しないように構成された一対の抵抗器を、それぞれ備えることによって規定される。例えば異方性磁気抵抗材料が使用されている場合は、一対の抵抗器は2つの略直角をなす抵抗器を例えば備える。   In one embodiment of the device according to the invention, the plurality of temperature-dependent elements and the plurality of elements are made of the same magnetic material, the plurality of temperature-dependent elements, wherein the plurality of temperature-dependent elements are the magnetic field. Each of which is provided with a pair of resistors configured to be substantially insensitive to changes in For example, when an anisotropic magnetoresistive material is used, the pair of resistors includes, for example, two substantially right-angle resistors.

本発明によるセンサー構成の実施形態と本発明によるセンシング方法の実施形態とは本発明による装置の実施形態に対応する。   The embodiment of the sensor arrangement according to the invention and the embodiment of the sensing method according to the invention correspond to the embodiment of the device according to the invention.

本発明は、センサー構成は相対的に直接的な方法で移動を特定すべきであるという洞察にとりわけ基づいており、磁場検出器は出力電圧に関する従来技術の評価に取って代わる異なる特性を備えた少なくとも1つのブリッジを備えるべきであるという基本的発想にとりわけ基づいている。   The present invention is based in particular on the insight that the sensor configuration should identify movement in a relatively direct manner, with the magnetic field detector having different characteristics that replace the prior art evaluation of the output voltage. Specifically based on the basic idea that at least one bridge should be provided.

本発明は相対的に直接的な方法で移動を特定するセンサー構成を備えた装置を提供するための課題をとりわけ解決し、本発明は従来技術における電磁変換器の出力電圧を評価するためにパーソナル・コンピュータを使用することに比較して全体の電力消費が削減されるという点においてとりわけ更に有利である。   The present invention solves, among other things, the problem of providing a device with a sensor configuration that identifies movement in a relatively direct manner, and the present invention provides a personal computer for evaluating the output voltage of an electromagnetic transducer in the prior art. It is particularly advantageous in that the overall power consumption is reduced compared to using a computer.

本発明のこれらの及び他の態様は以下に説明される実施形態を参照することによって明らかになり解明されるであろう。   These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.

図1に示された本発明による装置1は本発明によるセンサー構成10を備える。センサー構成10は、例えば磁石などの磁場を発生させるための例えば磁場発生器などの固定物体11を備える。センサー構成10は磁場の成分(図3に示すような)を検出するための磁場検出器12と、移動に応じて磁場の少なくとも一部分を変化させるための例えばジョイスティックなどの例えば可動性の磁場導体(field conductor)などの可動物体13と、を更に備える。磁場検出器の面上への磁場の投影は略ラジアル磁場(radial field)である。検出される磁場の成分は磁場検出器の面内に位置する磁場ベクトルである。すなわちこの成分はラジアル磁場ベクトルである。変化は例えばラジアル磁場中心19(図2に示すような)の変位を備える。   The device 1 according to the invention shown in FIG. 1 comprises a sensor arrangement 10 according to the invention. The sensor arrangement 10 comprises a fixed object 11 such as a magnetic field generator for generating a magnetic field such as a magnet. The sensor arrangement 10 includes a magnetic field detector 12 for detecting a magnetic field component (as shown in FIG. 3) and a movable magnetic field conductor (eg, a joystick) for changing at least a portion of the magnetic field in response to movement. and a movable object 13 such as a field conductor. The projection of the magnetic field on the surface of the magnetic field detector is approximately a radial field. The detected magnetic field component is a magnetic field vector located in the plane of the magnetic field detector. That is, this component is a radial magnetic field vector. The change comprises, for example, a displacement of the radial magnetic field center 19 (as shown in FIG. 2).

例えば永久磁石などの固定物体11と例えば磁気的に伝導性のあるスティックなどの可動物体13とは共にチップの状態でパッケージ内に例えば集積される。パッケージは、可動物体13がパッケージ内の非貫通穴の中に例えば可とう性接着剤14、オーリング、又は任意の他の機械的スプリングと共に取り付けられてもよいように変更される。磁場検出器12は、ワイヤーボンドを介してリードフレーム15に結合された基板16の上に取り付けられる。   For example, a fixed object 11 such as a permanent magnet and a movable object 13 such as a magnetically conductive stick are both integrated in a package, for example, in the form of a chip. The package is modified so that the movable object 13 may be mounted in a non-through hole in the package, for example with a flexible adhesive 14, an O-ring, or any other mechanical spring. The magnetic field detector 12 is mounted on a substrate 16 that is coupled to a lead frame 15 via wire bonds.

図2に示されたセンサー構成10の性能として、可動物体13が該可動物体13のある点と磁場検出器12に最も接近して配置された可動物体13の端部との間に配置される枢動点を備える。好ましくはこの枢動点は、磁場検出器12に最も接近して配置された可動物体13のこの端部に略一致する。可動物体13を枢動させることにより、磁場の成分のラジアル磁場中心19(図3に示すように)は変位させられ、この変位が磁場検出器12によって検出される。こうした磁場検出器12は例えば図3に示されるような複数の素子を備える。   As a performance of the sensor arrangement 10 shown in FIG. 2, the movable object 13 is arranged between a point of the movable object 13 and the end of the movable object 13 arranged closest to the magnetic field detector 12. It has a pivot point. Preferably, this pivot point substantially coincides with this end of the movable object 13 located closest to the magnetic field detector 12. By pivoting the movable object 13, the radial magnetic field center 19 (as shown in FIG. 3) of the magnetic field component is displaced, and this displacement is detected by the magnetic field detector 12. Such a magnetic field detector 12 includes a plurality of elements as shown in FIG. 3, for example.

図3に示された磁場検出器12は複数の素子21〜24を備える。素子21〜24ごとにラジアル磁場Hと磁化Mと電流Iとが取り出される。ラジアル磁場は磁場発生器から発せられた磁場が磁場検出器の面上に投射されたときに生起する。点Cは可動物体13が休止位置にあるときのラジアル磁場Hの中心である。このラジアル磁場の磁場線(magnetic field line)は矢線Hで示される。素子の抵抗値が該素子の配置された磁場の強度及び方向に依存する素子である4つの磁気抵抗素子21〜24、すなわち例えばバーバーポール状の(barberpole)のない磁気抵抗材料からなる4つの細片は、素子内の磁化Mと磁気抵抗素子21〜24の長手方向とが例えば25〜65度の角度好ましくは45度の角度などのある角度を作るように配置される。電流Iは磁気抵抗素子21〜24を貫いて流れる。素子21〜24内の磁化Mは一方で素子21〜24の長手方向に整列しようとし、他方でラジアル磁場Hの方向に整列しようとする。結果として磁化Mは、素子21〜24の長手方向と磁場Hの成分との間の位置を取るであろう。低い磁場Hでは磁化Mは素子21〜24の長手方向により近づいた状態になり、より高い磁場Hでは磁化Mは磁場Hの成分の方向により近づいた状態になるであろう。無限に高い磁場Hのもとでは磁化Mは磁場Hに整列されるであろう。   The magnetic field detector 12 shown in FIG. 3 includes a plurality of elements 21 to 24. A radial magnetic field H, magnetization M, and current I are extracted for each element 21-24. A radial magnetic field occurs when a magnetic field generated from a magnetic field generator is projected onto the surface of the magnetic field detector. Point C is the center of the radial magnetic field H when the movable object 13 is at the rest position. A magnetic field line of the radial magnetic field is indicated by an arrow H. Four magnetoresistive elements 21 to 24 whose resistance value depends on the strength and direction of the magnetic field in which the element is arranged, that is, four fine resistance elements made of, for example, a barber pole-free magnetoresistive material. The pieces are arranged so that the magnetization M in the element and the longitudinal direction of the magnetoresistive elements 21 to 24 make an angle such as an angle of 25 to 65 degrees, preferably an angle of 45 degrees. Current I flows through magnetoresistive elements 21-24. The magnetization M in the elements 21 to 24 attempts to align on the one hand in the longitudinal direction of the elements 21 to 24 and on the other hand to align in the direction of the radial magnetic field H. As a result, the magnetization M will take a position between the longitudinal direction of the elements 21 to 24 and the component of the magnetic field H. At low magnetic field H, magnetization M will be closer to the longitudinal direction of elements 21-24, and at higher magnetic field H, magnetization M will be closer to the direction of the component of magnetic field H. Under an infinitely high magnetic field H, the magnetization M will be aligned with the magnetic field H.

素子21〜24内の磁化Mと電流Iとの角度θは、素子21〜24の抵抗値を決定し、従って異方性の磁気抵抗の場合には抵抗R=R+ΔRcosθであり、式中Rは素子21〜24の全抵抗値でありRはベース抵抗(base resistance)でありΔR/Rは磁気抵抗効果である。角度θが45度近傍に選ばれるならば素子21〜24の応答特性はおおよそ直線的になるであろう。最良の直線性はθ=45度に対して得られる。ある角度のもとにある磁場を素子21〜24の長手の方向に設定することによりバーバーポール状のストライプが必要とされなくなり、これはいくつかの利点(より容易な処理、より高い抵抗、より良好な抵抗再現性)をもたらす。通常この形態は磁場が正から負にそして逆に循環させられたときに磁化のヒステリシスが切り換えられること多くなるであろう。しかし、永久磁場を伴ったこの形態にあっては第1に磁場は正と負との間を循環させられることはなく(特定の値近辺で変調させられるだけである)、第2に磁場は磁化をヒステリシス領域の外側に至らせる異方性の磁場よりも大きい。 The angle θ between the magnetization M and the current I in the elements 21 to 24 determines the resistance value of the elements 21 to 24. Therefore, in the case of anisotropic magnetoresistance, the resistance R = R 0 + ΔRcos 2 θ, In the equation, R is the total resistance value of the elements 21 to 24, R 0 is a base resistance, and ΔR / R 0 is a magnetoresistive effect. If the angle θ is chosen around 45 degrees, the response characteristics of the elements 21-24 will be approximately linear. The best linearity is obtained for θ = 45 degrees. By setting a magnetic field at an angle in the longitudinal direction of elements 21-24, barber pole-like stripes are not required, which has several advantages (easier handling, higher resistance, more Good resistance reproducibility). Usually this configuration will increase the switching of magnetization hysteresis when the magnetic field is cycled from positive to negative and back. However, in this form with a permanent magnetic field, firstly the magnetic field is not circulated between positive and negative (it is only modulated around a certain value), and secondly the magnetic field is It is larger than the anisotropic magnetic field that brings the magnetization outside the hysteresis region.

ラジアル磁場Hは磁場検出器12の面内に位置している、すなわち素子21〜24の面内に位置している例えばラジアル磁場ベクトルである。この面は例えばX軸とY軸とを備える。ラジアル磁場中心19がこのX−Y面内で位置Cから位置Dに移動させられると、ラジアル磁場Hの主に方向が変えられる。素子21及び23の中で、ラジアル磁場ベクトルは電流Iの方向に向かって動き、磁化Mと電流Iとの角度を減少させ、これにより素子21及び23の抵抗値を増加させる。素子22及び24については逆のことが起こる。ラジアル磁場ベクトルは電流Iの方向から遠ざかり、磁化Mと電流Iとの角度θを増加させ、これにより抵抗値を減少させる。素子21〜24をホイーストン・ブリッジなどのブリッジの形態に適切に接続することにより、X方向のラジアル磁場中心位置19に応じて近似的に直線的に変化する出力信号が生成されることができる。Y方向については全体の形態を90度回転させることによって同様の形態が形成されることができる。通常、素子21〜24とラジアル成分のラジアル磁場中心19との間の距離は該ラジアル磁場中心の典型的な変位(例えば20μm)よりもはるかに大きい(例えば300μm)であろう。従って、ラジアル磁場中心19が変位させられたときはラジアル磁場Hの主に方向が変えられ、ほんの僅かな範囲だけラジアル磁場Hの強度が変化させられるであろう。   The radial magnetic field H is, for example, a radial magnetic field vector located in the plane of the magnetic field detector 12, that is, in the plane of the elements 21 to 24. This surface includes, for example, an X axis and a Y axis. When the radial magnetic field center 19 is moved from the position C to the position D in the XY plane, the direction of the radial magnetic field H is mainly changed. In elements 21 and 23, the radial magnetic field vector moves in the direction of current I, reducing the angle between magnetization M and current I, thereby increasing the resistance of elements 21 and 23. The reverse occurs for elements 22 and 24. The radial magnetic field vector moves away from the direction of the current I and increases the angle θ between the magnetization M and the current I, thereby decreasing the resistance value. By appropriately connecting the elements 21 to 24 in the form of a bridge such as a Wheatstone bridge, an output signal that changes approximately linearly according to the radial magnetic field center position 19 in the X direction can be generated. . For the Y direction, a similar configuration can be formed by rotating the entire configuration by 90 degrees. Usually, the distance between the elements 21-24 and the radial component center 19 of the radial component will be much larger (eg 300 μm) than the typical displacement of the radial field center (eg 20 μm). Therefore, when the radial magnetic field center 19 is displaced, the direction of the radial magnetic field H is mainly changed, and the intensity of the radial magnetic field H will be changed by only a small range.

距離D1だけ隔てられた可動物体13及び磁場検出器12、並びに磁場検出器12から距離D2だけ隔てられた固定物体11が断面図の状態で図4に示される。距離D1を可変とするために図1で接着剤14は可とう性の接着剤であってよいが、3次元の移動を可能とする他の実施形態を除斥するものではない。   A movable object 13 and a magnetic field detector 12 separated by a distance D1 and a fixed object 11 separated by a distance D2 from the magnetic field detector 12 are shown in a sectional view in FIG. In order to make the distance D1 variable, the adhesive 14 in FIG. 1 may be a flexible adhesive, but does not exclude other embodiments that allow three-dimensional movement.

磁場検出器12の面内位置に応じたラジアル磁場Hの強度が、可動物体13と磁場検出器12との間の様々な距離D1について図5に示される。この強度は明らかにこの距離D1に依存する。   The intensity of the radial magnetic field H in accordance with the in-plane position of the magnetic field detector 12 is shown in FIG. 5 for various distances D1 between the movable object 13 and the magnetic field detector 12. This intensity obviously depends on this distance D1.

素子31〜34を有するホイーストン・ブリッジを備えた磁場検出器12が図6に示される。ホイーストン・ブリッジの第1外部端子は電圧源50に結合され、第2外部端子は抵抗器30に結合され、この抵抗器30は更にグラウンドに結合される。ホイーストン・ブリッジの内部端子を介してX方向の移動が指示されることになる。外部端子を介してZ方向の移動が指示されることになる。抵抗器30とホイーストン・ブリッジとは共に直列回路を形成するという事実により、Z方向の移動はまた抵抗器30の両端間でも指示されることになる。これは以下のように導かれることができる。   A magnetic field detector 12 with a Wheatstone bridge having elements 31-34 is shown in FIG. The first external terminal of the Wheatstone bridge is coupled to voltage source 50, the second external terminal is coupled to resistor 30, which is further coupled to ground. Movement in the X direction is instructed via the internal terminal of the Wheatstone bridge. Movement in the Z direction is instructed via the external terminal. Due to the fact that resistor 30 and Wheatstone bridge together form a series circuit, movement in the Z direction will also be indicated across resistor 30. This can be derived as follows.

休止位置ではラジアル磁場中心19は位置Cに位置することになる。素子の位置におけるラジアル磁場強度はある値を有することになる。この値は例えば固定物体11と磁場検出器12との間の軸上距離D2、及び/又は磁場検出器12と可動物体13との間の距離D1によって決定される。図5には距離D1に応じたラジアル磁場計算された強度が示される。距離が変化するにつれてラジアル磁場強度が変化する。   At the rest position, the radial magnetic field center 19 is located at the position C. The radial magnetic field strength at the element position will have a certain value. This value is determined, for example, by the on-axis distance D2 between the fixed object 11 and the magnetic field detector 12 and / or the distance D1 between the magnetic field detector 12 and the movable object 13. FIG. 5 shows the calculated intensity of the radial magnetic field according to the distance D1. As the distance changes, the radial magnetic field strength changes.

可動物体13と磁場検出器12との間の距離が例えば可動物体を軸方向に押すことによって変えられたときには、X−Y面内のラジアル成分のラジアル磁場中心19の位置は位置Cにとどまる。ラジアル磁場方向は変わらないままである。しかし距離が磁場の強度を変化させるという事実によりラジアル磁場強度は変えられる。図3において磁場の強度が変えられた場合には、磁化Mの方向はすべての素子について変化させられる。そしてすべての素子について磁化Mの方向に関するこの変化は同一ということになる。磁気抵抗素子21〜24、31〜34はホイーストン・ブリッジ形態の一部分であるから、ブリッジの内部端子における出力は磁場Hの強度のこの変化によって変えられることはない。言い換えるとブリッジ出力は可動物体13の垂直方向の移動には影響を受けない。   When the distance between the movable object 13 and the magnetic field detector 12 is changed, for example, by pushing the movable object in the axial direction, the position of the radial magnetic field center 19 of the radial component in the XY plane remains at the position C. The radial magnetic field direction remains unchanged. However, the radial field strength can be changed by the fact that the distance changes the strength of the magnetic field. In FIG. 3, when the strength of the magnetic field is changed, the direction of the magnetization M is changed for all the elements. This change in the direction of magnetization M is the same for all elements. Since the magnetoresistive elements 21-24, 31-34 are part of a Wheatstone bridge configuration, the output at the internal terminal of the bridge is not altered by this change in the strength of the magnetic field H. In other words, the bridge output is not affected by the vertical movement of the movable object 13.

しかしこのブリッジの全抵抗値は変えられる。この変化はZ方向の機能性を提供するための例えば抵抗器30などの別の回路によって検出されることができる。例えば、一定電圧がブリッジに印加されると抵抗値の変化は電流の変化をもたらすことになる。この電流をホイーストン・ブリッジと直列の抵抗器30を通して送ることにより、電流の変化は測定されることが可能な抵抗器30の両端間の電圧の変化に変換されることができる。このようにブリッジの全抵抗値が非差動的及び非温度補償的方法で検出される。ブリッジの全抵抗値を温度補償的方法で検出するためには、抵抗器30をブリッジと例えば同じ温度依存性を備えた温度依存状態に例えば形成することによって温度補償器が導入されることができる。   However, the total resistance of this bridge can be changed. This change can be detected by another circuit such as resistor 30 to provide Z-direction functionality. For example, when a constant voltage is applied to the bridge, a change in resistance will result in a change in current. By sending this current through resistor 30 in series with the Wheatstone bridge, the change in current can be converted into a change in voltage across resistor 30 that can be measured. In this way, the total resistance value of the bridge is detected in a non-differential and non-temperature compensated manner. In order to detect the total resistance value of the bridge in a temperature-compensated manner, a temperature compensator can be introduced, for example by forming the resistor 30 in a temperature-dependent state, for example with the same temperature dependence as the bridge. .

言い換えれば、本発明による装置1は、ブリッジ面内の磁場成分を素子ごとに検出するための少なくとも2つの好ましくは4つの素子31〜34を有するブリッジを備えた磁場検出器12を備えた本発明によるセンサー構成10を備え、このブリッジは、第1方向の移動に依存した第1特性及び異なる第2方向の移動に依存した異なる第2特性を備える。第1特性はブリッジの外部値を全体的視点で定義する外部特性である。第2特性はブリッジの内部値をバランス/アンバランスの視点で定義する内部特性である。ブリッジの面がX軸とY軸とに一致する場合には、第1方向はZ軸に一致し第2方向は例えばX軸に一致する。   In other words, the device 1 according to the invention comprises the magnetic field detector 12 with a bridge having at least two and preferably four elements 31 to 34 for detecting the magnetic field component in the bridge plane for each element. This bridge comprises a first characteristic dependent on movement in a first direction and a different second characteristic dependent on movement in a different second direction. The first characteristic is an external characteristic that defines an external value of the bridge from an overall viewpoint. The second characteristic is an internal characteristic that defines the internal value of the bridge from the viewpoint of balance / unbalance. When the bridge surface coincides with the X axis and the Y axis, the first direction coincides with the Z axis, and the second direction coincides with the X axis, for example.

好ましくは磁場検出器12は、更なるブリッジの更なる面内の磁場成分を更なる素子ごとに検出するための更なる素子35〜38を有する更なるブリッジを更に備え、この更なるブリッジは第1方向の移動に依存した第3特性と、異なる第3方向の移動に依存した第4特性とを備える。通常、ブリッジの面と更なるブリッジの更なる面とは一致することになる。第3特性は外部特性であり第4特性は内部特性である。更なるブリッジの更なる面がX軸とY軸とに一致する場合には、第1方向はZ軸に一致し第3方向は例えばY軸に一致する。   Preferably, the magnetic field detector 12 further comprises a further bridge having further elements 35 to 38 for detecting for each further element a magnetic field component in a further plane of the further bridge, the further bridge being A third characteristic depending on movement in one direction and a fourth characteristic depending on movement in a different third direction are provided. Usually, the face of the bridge and the further face of the further bridge will coincide. The third characteristic is an external characteristic, and the fourth characteristic is an internal characteristic. If the further surface of the further bridge coincides with the X axis and the Y axis, the first direction coincides with the Z axis and the third direction coincides with the Y axis, for example.

4つの素子を備えたブリッジの場合には、外部特性は例えば、すべての素子の抵抗値が略同じ値を伴って増加したか又は略同じ値を伴って減少したかを示す。内部特性は例えば、交差した位置にある2つの素子の抵抗値が略同じ値を伴って増加し及び他の交差した位置にある2つの他の素子の抵抗値が略同じ値を伴って減少したことを示す。   In the case of a bridge with four elements, the external characteristic indicates, for example, whether the resistance values of all elements have increased or decreased with substantially the same value. For example, the resistance value of two elements at crossing positions increases with substantially the same value, and the resistance value of two other elements at other crossing positions decreases with approximately the same value. It shows that.

2つの素子を備えたブリッジの場合には、外部特性は例えば、すべての素子の抵抗値が略同じ値を伴って増加したか又は略同じ値を伴って減少したかを示す。内部特性は例えば、1つの素子の抵抗値が増加又は減少し及び他の素子の抵抗値が変化しなかったことを示す。   In the case of a bridge with two elements, the external characteristic indicates, for example, whether the resistance values of all elements have increased or decreased with substantially the same value. The internal characteristics indicate, for example, that the resistance value of one element has increased or decreased and the resistance value of the other element has not changed.

図7に示された磁場検出器12は、ブリッジと、2つの温度依存性抵抗器39、40を更に備えたなおも更なるブリッジの一部分を形成する更なるブリッジを備える。図8に示された温度依存性抵抗器は磁場の変化に感応しない。この全体は以下のように考察されるべきである。   The magnetic field detector 12 shown in FIG. 7 comprises a bridge and a further bridge forming part of a still further bridge further comprising two temperature dependent resistors 39, 40. The temperature dependent resistor shown in FIG. 8 is insensitive to changes in the magnetic field. This whole should be considered as follows.

内部特性は温度変化から相対的独立しているが、しかし外部特性は温度変化に相対的依存している。例えばNiFeを備える素子の温度係数は約2.9×10−3−1である。80℃の温度変化(これはラップトップの内側ではあり得る温度である)は、従って抵抗値の23%の変化を引き起こすであろう。この変化は、異方性磁気抵抗効果による抵抗値の2%の最大変化と比較されなくてはならない。可動物体13のZ方向の移動に起因する抵抗値の変化は更にずっと少なくなることになる(0.1%)。 Internal characteristics are relatively independent of temperature changes, but external characteristics are relatively dependent on temperature changes. For example, the temperature coefficient of an element including NiFe is about 2.9 × 10 −3 ° C. −1 . A temperature change of 80 ° C. (this is the temperature that can be inside the laptop) will therefore cause a 23% change in resistance. This change must be compared with a 2% maximum change in resistance due to the anisotropic magnetoresistance effect. The change in resistance value due to the movement of the movable object 13 in the Z direction will be much smaller (0.1%).

この温度の問題を克服するために温度補償器が導入されることができる。温度補償器はブリッジの温度依存性を補償し、それゆえ外部特性の温度依存性を補償し、変化する温度条件の下でセンサー構成10を使用可能とする。そうした温度補償器は例えば温度を測定し、測定された抵抗値がブリッジのコモンモード抵抗値(外部特性)に及ぼす影響を計算し、ブリッジのコモンモード抵抗値を補償する。   A temperature compensator can be introduced to overcome this temperature problem. The temperature compensator compensates for the temperature dependence of the bridge and thus compensates for the temperature dependence of the external characteristics, enabling the sensor configuration 10 to be used under changing temperature conditions. Such a temperature compensator measures, for example, the temperature, calculates the influence of the measured resistance value on the common mode resistance value (external characteristic) of the bridge, and compensates for the common mode resistance value of the bridge.

別法として、ブリッジ及び更なるブリッジのコモンモード抵抗が、再びホイーストン・ブリッジなどのなおも更なるブリッジの中に置かれる。なおも更なるブリッジは、2つのホイーストン・ブリッジ(1つはX検出のための、及び1つはY検出のための)と、またこれらも例えばダイの上にある2つの温度依存性素子39、40とからなる。これらの温度依存性素子は好ましくはブリッジ及び更なるブリッジと同一の温度依存性を有する。従ってそれら温度依存性素子は同一の(磁性)材料で作られてよい。しかしそれら温度依存性素子は磁場Hの変化に応答すべきではない。これらの温度依存性素子の特殊な形状によってそれら温度依存性素子は磁場の変化に(ほとんど)感応しないように形成されることができる。   Alternatively, the common mode resistance of the bridge and further bridge is again placed in a still further bridge, such as a Wheatstone bridge. Still further bridges are two Wheatstone bridges (one for X detection and one for Y detection), and also two temperature dependent elements, for example on the die 39, 40. These temperature dependent elements preferably have the same temperature dependency as the bridge and further bridges. Therefore, these temperature dependent elements may be made of the same (magnetic) material. However, these temperature dependent elements should not respond to changes in the magnetic field H. Due to the special shape of these temperature dependent elements, they can be formed so that they are (almost) insensitive to changes in the magnetic field.

このアイデアは、素子の一方の半分がR+ΔR.sin2ψ(ψは磁化と電流との間の角度)に従ってラジアル成分の方向の変化に応答し、素子の他方の半分がR+ΔR.cosψに従って変化するという事実に基づいている。これらの素子を加算することによって全抵抗は角度ψから独立な2(R+ΔR)になる。ダイ上にこれら4つの抵抗が置かれることができる。2つは新しい(入れ子になった)ホイーストン・ブリッジを形成するために使用され、他の2つはダイ自体の温度測定のために使用されることができる。こうしていくらかの、結果として生じる温度依存性(ホイーストン・ブリッジは温度依存性を完全に消去することはできず、様々な抵抗の温度係数の僅かな変動がブリッジ内に常に存在することになる)は、必要であればソフトウェアの手段によって補償されることができる。 The idea is that one half of the element is R 0 + ΔR 0 . in response to a change in the direction of the radial component according to sin2ψ (ψ is the angle between magnetization and current), the other half of the element is R 0 + ΔR 0 . Based on the fact that it changes according to cos 2 ψ. By adding these elements, the total resistance becomes 2 (R 0 + ΔR 0 ) independent of the angle ψ. These four resistors can be placed on the die. Two can be used to form a new (nested) Wheatstone bridge and the other two can be used to measure the temperature of the die itself. Thus some resulting temperature dependence (Wheatstone bridge cannot completely eliminate temperature dependence, and slight variations in the temperature coefficient of various resistances will always be present in the bridge) Can be compensated by software means if necessary.

上述の実施形態は本発明を限定するものではないことを示すことに留意すべきであり、当業者は添付の特許請求の範囲から逸脱することなく多くの代替の実施形態を設計できるであろうことに留意すべきである。特許請求の範囲の中でカッコ内に置かれた任意の参照記号は特許請求の範囲を限定するものと解釈されるべきでない。動詞「備える」の使用及びその活用は、特許請求の範囲の中で述べられたもの以外は要素又はステップの存在を除斥しない。ある特徴が互いに異なる従属請求項において引用されるという単なる事実は、これらの方策の組合せが利益をもたらすために使用されることができないことを示すものではない。   It should be noted that the above-described embodiments are not intended to limit the present invention, and those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. It should be noted. Any reference signs placed in parentheses in the claims shall not be construed as limiting the claims. The use and exploitation of the verb “comprise” does not exclude the presence of elements or steps other than those stated in the claims. The mere fact that certain features are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to benefit.

本発明によるセンサー構成を備えた本発明による装置を概略的に示す断面図である。1 is a cross-sectional view schematically showing a device according to the invention with a sensor arrangement according to the invention. 本発明によるセンサー構成の動作を示す概略図である。FIG. 3 is a schematic diagram illustrating the operation of a sensor configuration according to the present invention. 素子を備えた磁場検出器を示す概略図であり、磁場、磁化及び電流の成分を素子ごとに開示する図である。It is the schematic which shows the magnetic field detector provided with the element, and is a figure which discloses the component of a magnetic field, magnetization, and an electric current for every element. 距離D1だけ隔てられた可動物体及び磁場検出器と、磁場検出器から距離D2だけ隔てられた固定物体とを概略的に示す断面図である。It is sectional drawing which shows schematically the movable object and magnetic field detector which were separated by the distance D1, and the fixed object separated by the distance D2 from the magnetic field detector. 可動物体と磁場検出器との間の様々な距離D1について、磁場成分の強度を磁場検出器の面内位置に応じて示す図である。It is a figure which shows the intensity | strength of a magnetic field component according to the in-plane position of a magnetic field detector about various distance D1 between a movable object and a magnetic field detector. 非差動的及び非温度補償的方法でブリッジの外部特性を検出するための更なる素子に結合された素子を有するブリッジを備えた磁場検出器を示す概略図である。FIG. 6 is a schematic diagram illustrating a magnetic field detector with a bridge having elements coupled to further elements for detecting external characteristics of the bridge in a non-differential and non-temperature compensated manner. ブリッジ及びなおも更なるブリッジの一部分を形成する更なるブリッジを備え、更なるブリッジは差動的及び温度補償的方法でブリッジ及び更なるブリッジの外部特性を検出するための2つの温度依存性素子を備えた、磁場検出器を示す概略図である。Two temperature-dependent elements for detecting the external characteristics of the bridge and further bridge in a differential and temperature compensated manner comprising a bridge and further bridge forming part of still further bridge It is the schematic which shows a magnetic field detector provided with. 異方性磁気抵抗材料から作られ、磁場の変化に感応しない温度依存性素子を示す図である。It is a figure which shows the temperature dependence element which is made from an anisotropic magnetoresistive material and does not respond to the change of a magnetic field.

Claims (15)

移動に応じて磁場の少なくとも一部分を変化させるための可動物体と、
ブリッジの面内の前記磁場の成分を素子ごとに検出するための複数の素子を有するブリッジであって、第1方向の移動に依存した第1特性と、異なる第2方向の移動に依存した異なる第2特性とを備えたブリッジを備えた磁場検出器とを備えたセンサー構成を備えた装置。
A movable object for changing at least a portion of the magnetic field in response to movement;
A bridge having a plurality of elements for detecting the component of the magnetic field in the plane of the bridge for each element, the first characteristic depending on movement in the first direction and different depending on movement in different second directions An apparatus with a sensor arrangement comprising a magnetic field detector with a bridge having a second characteristic.
前記可動物体の休止位置に対して及び前記磁場の所与の強度に対して、素子の長手軸とこの素子の磁化の方向とが25〜65度の角度を形成する請求項1に記載の装置。   The apparatus of claim 1, wherein the longitudinal axis of the element and the direction of magnetization of the element form an angle of 25 to 65 degrees with respect to the rest position of the movable object and for a given strength of the magnetic field. . 前記角度は略45度である請求項2に記載の装置。   The apparatus of claim 2, wherein the angle is approximately 45 degrees. 前記センサー構成は固定物体を更に備え、前記磁場検出器は両物体の間に配置され、前記両物体の一方の物体は前記磁場を発生させるための磁場発生器を備え、他方の物体は前記磁場を伝導するための磁場導体を備えた請求項1に記載の装置。   The sensor arrangement further comprises a fixed object, the magnetic field detector is disposed between both objects, one object of the two objects comprises a magnetic field generator for generating the magnetic field, and the other object is the magnetic field The apparatus according to claim 1, further comprising a magnetic field conductor for conducting the magnetic field. 前記第1特性は外部特性であり、前記第2特性は内部特性であり、前記第1方向は前記ブリッジの前記面に略垂直である方向であり、前記第2方向は前記ブリッジの前記面内に略存在する方向である請求項1に記載の装置。   The first characteristic is an external characteristic, the second characteristic is an internal characteristic, the first direction is a direction substantially perpendicular to the surface of the bridge, and the second direction is an in-plane of the bridge. The apparatus according to claim 1, wherein the apparatus is in a direction substantially existing in 前記ブリッジは、前記外部特性を供給するための第1及び第2外部端子と、前記内部特性を供給するための第1及び第2内部端子と、前記複数の外部端子の間に並列に配置された第1及び第2直列分岐とを備え、前記第1直列分岐は前記第1内部端子を介して互いに結合された第1及び第2素子を備え、前記第2直列分岐は前記第2内部端子を介して互いに結合された第3及び第4素子を備えた請求項5に記載の装置。   The bridge is arranged in parallel between first and second external terminals for supplying the external characteristics, first and second internal terminals for supplying the internal characteristics, and the plurality of external terminals. First and second series branches, wherein the first series branch comprises first and second elements coupled to each other through the first internal terminal, and the second series branch is the second internal terminal. 6. The apparatus of claim 5, comprising a third and a fourth element coupled to each other via. 前記センサー構成は前記ブリッジの温度依存性を補償するために温度補償器を更に備えた請求項1に記載の装置。   The apparatus of claim 1, wherein the sensor arrangement further comprises a temperature compensator to compensate for temperature dependence of the bridge. 前記磁場検出器は複数の更なる素子を有する更なるブリッジを備え、前記複数の更なる素子は前記更なるブリッジの更なる面内における前記磁磁場成分を前記複数の更なる素子ごとに検出し、前記更なるブリッジは前記第1方向の前記移動に依存した第3特性及び異なる第3方向の前記移動に依存した第4特性とを備えた請求項1に記載の装置。   The magnetic field detector comprises a further bridge having a plurality of further elements, the plurality of further elements detecting the magnetic field component in a further plane of the further bridge for each of the plurality of further elements. The apparatus of claim 1, wherein the further bridge comprises a third characteristic dependent on the movement in the first direction and a fourth characteristic dependent on the movement in a different third direction. 前記第3特性は外部特性であり、前記第4特性は内部特性であり、前記第1方向は前記更なるブリッジの前記更なる面に対して略垂直である方向であり、前記第3方向は前記更なるブリッジの前記更なる面内に実質的に存在する方向であり、前記第2及び第3方向は略直角をなす方向である請求項8に記載の装置。   The third characteristic is an external characteristic, the fourth characteristic is an internal characteristic, the first direction is a direction that is substantially perpendicular to the further surface of the further bridge, and the third direction is 9. The apparatus of claim 8, wherein the direction is substantially in the further plane of the further bridge, and the second and third directions are substantially perpendicular. 前記更なるブリッジは前記外部特性を供給するための第3及び第4外部端子と、前記内部特性を供給するための第3及び第4内部端子と、前記外部端子間に並列に配置された第3及び第4直列分岐とを備え、前記第3直列分岐は前記第3内部端子を介して互いに結合された第5及び第6素子を備え、前記第4直列分岐は前記第4内部端子を介して互いに結合された第7及び第8素子を備えた請求項9に記載の装置。   The further bridge includes third and fourth external terminals for supplying the external characteristics, third and fourth internal terminals for supplying the internal characteristics, and a third disposed between the external terminals in parallel. 3 and a fourth series branch, the third series branch comprising fifth and sixth elements coupled to each other via the third internal terminal, and the fourth series branch via the fourth internal terminal. 10. The apparatus of claim 9, further comprising seventh and eighth elements coupled together. 前記センサー構成は前記複数のブリッジの温度依存性を補償するための温度補償器を更に備えた請求項8に記載の装置。   The apparatus of claim 8, wherein the sensor arrangement further comprises a temperature compensator for compensating for temperature dependence of the plurality of bridges. 前記温度補償器は、前記ブリッジ及び前記更なるブリッジを更に備えたなおも更なるブリッジの一部を形成する2つの温度依存性素子を備えた請求項11に記載の装置。   12. The apparatus of claim 11, wherein the temperature compensator comprises two temperature dependent elements that form part of a still further bridge further comprising the bridge and the further bridge. 前記複数の温度依存性素子及び前記複数の素子は同一の磁気材料から作られ、前記複数の温度依存性素子は、前記複数の温度依存性素子が前記磁場の変化に実質的に応答しないように構成された一対の抵抗器を、それぞれ備える請求項12に記載の装置。   The plurality of temperature dependent elements and the plurality of elements are made of the same magnetic material, the plurality of temperature dependent elements such that the plurality of temperature dependent elements do not substantially respond to changes in the magnetic field. The apparatus of claim 12, each comprising a pair of configured resistors. 移動に応じて磁場の少なくとも一部分を変化させるための可動物体と、
複数の素子を有するブリッジであって、前記複数の素子は前記ブリッジの面内の前記磁場の成分を前記複数の素子ごとに検出し、第1方向の前記移動に依存した第1特性と、異なる第2方向の前記移動に依存した異なる第2特性とを備えたブリッジを備えた磁場検出器とを備えたセンサー構成。
A movable object for changing at least a portion of the magnetic field in response to movement;
A bridge having a plurality of elements, wherein the plurality of elements detect a component of the magnetic field in the plane of the bridge for each of the plurality of elements and differ from a first characteristic depending on the movement in a first direction. A sensor configuration comprising: a magnetic field detector with a bridge having different second characteristics depending on the movement in a second direction.
移動に応じて磁場の少なくとも一部分を変化させるステップと、
ブリッジの面内の前記磁場の成分を前記ブリッジの素子ごとに検出するステップであって、前記ブリッジは第1方向の前記移動に依存した第1特性と、異なる第2方向の前記移動に依存した異なる第2特性とを備えるステップとを備えたセンシング方法。
Changing at least a portion of the magnetic field in response to movement;
Detecting the component of the magnetic field in the plane of the bridge for each element of the bridge, wherein the bridge depends on the first characteristic depending on the movement in a first direction and on the movement in a different second direction. A sensing method comprising: a step having different second characteristics.
JP2007533029A 2004-09-27 2005-09-19 sensor Withdrawn JP2008514913A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04104681 2004-09-27
EP05102254 2005-03-22
PCT/IB2005/053072 WO2006035350A1 (en) 2004-09-27 2005-09-19 Sensor

Publications (1)

Publication Number Publication Date
JP2008514913A true JP2008514913A (en) 2008-05-08

Family

ID=35395869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007533029A Withdrawn JP2008514913A (en) 2004-09-27 2005-09-19 sensor

Country Status (5)

Country Link
EP (1) EP1797438A1 (en)
JP (1) JP2008514913A (en)
KR (1) KR20070057259A (en)
TW (1) TW200628806A (en)
WO (1) WO2006035350A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537139A (en) * 2005-04-22 2008-09-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device comprising a sensor device
JP2009139252A (en) * 2007-12-07 2009-06-25 Tokai Rika Co Ltd Position sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8195423B2 (en) 2007-07-03 2012-06-05 Nxp, B.V. Calibration of an AMR sensor
US9238796B2 (en) 2010-06-04 2016-01-19 Toagosei Co. Ltd. Cell growth-promoting peptide and use thereof
DE102013224409B4 (en) * 2013-11-28 2022-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. DEVICE AND METHOD FOR DETECTING A POSITION OF A POSITION TRANSMITTER
US11573072B2 (en) 2018-12-13 2023-02-07 Analog Devices International Unlimited Company Magnetic position determination systems and methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525901A (en) * 1993-02-02 1996-06-11 Beaudreau Electric, Inc. Sensor systems for monitoring and measuring angular position in two or three axes
DE4317512C2 (en) * 1993-05-26 1995-03-30 Univ Schiller Jena Device for non-contact zero point, position and rotation angle measurement
JP2002007059A (en) * 2000-06-27 2002-01-11 Nagano Fujitsu Component Kk Device for inputting coordinates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537139A (en) * 2005-04-22 2008-09-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device comprising a sensor device
JP2009139252A (en) * 2007-12-07 2009-06-25 Tokai Rika Co Ltd Position sensor

Also Published As

Publication number Publication date
WO2006035350A1 (en) 2006-04-06
KR20070057259A (en) 2007-06-04
TW200628806A (en) 2006-08-16
EP1797438A1 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP6438959B2 (en) Single chip Z-axis linear magnetoresistive sensor
US20080258722A1 (en) Sensor Arrangement
US10302712B2 (en) Magnetic field sensing apparatus
US20070194787A1 (en) Magnetic sensor, production method thereof, rotation detection device, and position detection device
US7064537B2 (en) Rotation angle detecting device
US7444871B2 (en) Acceleration sensor and magnetic disk drive apparatus
CN101065676A (en) Sensor
JP7056503B2 (en) Rotation detector
JP2008514913A (en) sensor
JP2016223894A (en) Magnetic sensor
US10901050B2 (en) Magnetic field sensing device including magnetoresistor wheatstone bridge
CN210142176U (en) Magnetic field sensing device
US8261458B2 (en) Geomagnetic sensor device and digital compass with the same
US11009569B2 (en) Magnetic field sensing device
JP5103158B2 (en) Magnetic coordinate position detector
WO2017077871A1 (en) Magnetic sensor
US11067642B2 (en) Device for generating a magnetic field of calibration and built-in self-calibration magnetic sensor and calibration method using the same
JP6699638B2 (en) Magnetic sensor
JP4928875B2 (en) Sensor module
US11898886B2 (en) Position detection device
US20240133715A1 (en) Position detection device
KR20050122792A (en) 3-axis magnetic sensor using magnetoimpedance sensor and all-orientation magnetic sensor using the same
KR20050111683A (en) Joystick pointing apparatus of non-contact type using magnetic sensor and method for generating coordinate axes thereof
US20140125328A1 (en) Magnetic detection device
JP2011196698A (en) Current detector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091111